cnrs   Université de Toulouse
Avec cedram.org

Table des matières de ce fascicule | Article précédent | Article suivant
Paulo Sad
Regular foliations along curves
Annales de la faculté des sciences de Toulouse Sér. 6, 8 no. 4 (1999), p. 661-675, doi: 10.5802/afst.948
Article PDF | Analyses MR 1815160 | Zbl 0983.32033

Bibliographie

[1] Barth (W.), Peters (C.) and Van de Ven (A.). - Compact Complex Surfaces, Springer-Verlag, 1984.  MR 749574 |  Zbl 0718.14023
[2] Brunella (M.). - Feuilletages Holomorphes sur les Surfaces Complexes Compactes, Ann. Scient. Ec. Norm. Sup. 30, 1997, p. 569-594. Numdam |  MR 1474805 |  Zbl 0893.32019
[3] Camacho (C.) and Sad (P.). - Invariant Varieties through Singularities of Holomorphic Vector Fields, Ann. of Math. 115, 1982, p. 579-595.  MR 657239 |  Zbl 0503.32007
[4] Demailly (J.-P.), Peternell (T.) and Schneider (M.). - Compact Kahler Manifolds with Hermitian Semipositive Anticanonical Bundle, Compositio Math. 101-2, 1996, p. 217-224. Numdam |  MR 1389367 |  Zbl 1008.32008
[5] Farkas (H.) and Kra (I.). - Riemann Surfaces, Springer-Verlag, 1979.
[6] Friedman (R.) and Morgan (J.). - Smooth Four-Manifolds and Complex Surfaces, Springer-Verlag, 1994.  MR 1288304 |  Zbl 0817.14017
[7] Fulton (W.). - Algebraic Curves, Benjamin, 1969.  MR 313252 |  Zbl 0181.23901
[8] Lins Neto (A.). - Algebraic Solutions of Polynomial Differential Equations and Foliations in Dimension 2, Springer Lecture Notes in Math. 1345, 1988, p.192-232.  MR 980960 |  Zbl 0677.58036
[9] Lins Neto (A.). - Construction of Singular Holomorphic Vector Fields and Foliations in Dimension Two, J. Diff. Geometry 26-1, 1987, p. 1-31.  MR 892029 |  Zbl 0625.57012
[10] Lins Neto (A.). — IMPA preprint,1999.
[11] Miranda (R.). - The Basic Theory of Elliptic Fibrations, ETS Editrice, Pisa, 1989.  MR 1078016
[12] Sad (P.). - Linear Holonomy Groups of Algebraic Solutions of Polynomial Differential Equations, Ann. de l'Institut Fourier 47, 1997, p. 123-138. Cedram |  MR 1437181 |  Zbl 0861.32019
Recherche d'un article
Recherche dans le site
haut