cnrs   Université de Toulouse
Avec cedram.org

Table des matières de ce fascicule | Article suivant
Luigi Ambrosio; Gianluca Crippa; Stefania Maniglia
Traces and fine properties of a $BD$ class of vector fields and applications
Annales de la faculté des sciences de Toulouse Sér. 6, 14 no. 4 (2005), p. 527-561, doi: 10.5802/afst.1102
Article PDF | Analyses MR 2188582 | Zbl 1091.35007

Bibliographie

[1] Alberti (G. ).Rank-one properties for derivatives of functions with bounded variation. Proc. Roy. Soc. Edinburgh Sect. A, 123, p. 239-274 (1993).  MR 1215412 |  Zbl 0791.26008
[2] Alberti (G. ), Ambrosio (L.).A geometrical approach to monotone functions in Rn. Math. Z., 230, p. 259-316 (1999).  MR 1676726 |  Zbl 0934.49025
[3] Ambrosio ( L.).Transport equation and Cauchy problem for BV vector fields. Invent. Math., 158, p. 227-260 (2004).  MR 2096794 |  Zbl 02132011
[4] Ambrosio ( L.), Bouchut (F.), De Lellis (C.). - Well-posedness for a class of hyperbolic systems of conservation laws in several space dimensions . Comm. Partial Diff. Eq., 29, p. 1635-1651 (2004).  MR 2103848 |  Zbl 02130280
[5] Ambrosio ( L.), Coscia (A.), Dal Maso (G.).Fine properties of functions in BD. Arch. Rat. Mech. Anal., 139, p. 201-238 (1997).  MR 1480240 |  Zbl 0890.49019
[6] Ambrosio ( L.), De Lellis (C.).Existence of solutions for a class of hyperbolic systems of conservation laws in several space dimensions . IMRN, 41, p. 2205-2220 (2003 ).  MR 2000967 |  Zbl 1061.35048
[7] Ambrosio (L. ) , De Lellis ( C.), Maly (J.).On the chain rule for the divergence of BV like vector fields: applications, partial results, open problems. Preprint (2005).
[8] Ambrosio ( L.), Fusco (N.), Pallara (D.).Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs (2000).  MR 1857292 |  Zbl 0957.49001
[9] Anzellotti ( G.).Pairings between measures and bounded functions and compensated compactness. Ann. Mat. Pura App. , 135, p. 293-318 (1983).  MR 750538 |  Zbl 0572.46023
[10] Anzellotti ( G.).The Euler equation for functionals with linear growth. Trans. Amer. Mat. Soc., 290, p. 483-501 (1985).  MR 792808 |  Zbl 0611.49018
[11] Anzellotti ( G. ).Traces of bounded vectorfields and the divergence theorem. Unpublished preprint (1983).
[12] Bouchut ( F.).Renormalized solutions to the Vlasov equation with coefficients of bounded variation. Arch. Rational Mech. Anal., 157, p. 75-90 (2001).  MR 1822415 |  Zbl 0979.35032
[13] Bouchut (F. ) , James ( F.).One dimensional transport equation with discontinuous coefficients. Nonlinear Analysis , 32, p. 891-933 (1998).  MR 1618393 |  Zbl 0989.35130
[14] Bouchut (F. ) , James ( F.), Mancini (S.).Uniqueness and weak stablity for multi-dimensional transport equations with one-sided Lipschitz coefficients . Ann. Scuola Normale Superiore di Pisa, Classe di Scienze , (5) 4, p. 1-25 (2005).  MR 2165401 |  Zbl 1170.35363
[15] Bressan ( A.).An ill posed Cauchy problem for a hyperbolic system in two space dimensions. Rend. Sem. Mat. Univ. Padova, 110, p. 103-117 (2003). Numdam |  MR 2033003 |  Zbl 1114.35123
[16] Capuzzo Dolcetta ( I.), Perthame (B.). - On some analogy between different approaches to first order PDE's with nonsmooth coefficients. Adv. Math. Sci Appl., 6, p. 689-703 (1996).  MR 1411988 |  Zbl 0865.35032
[17] Chen (G.-Q. ), Frid ( H.).Divergence-measure fields and conservation laws. Arch. Rational Mech. Anal., 147, p. 89-118 (1999).  MR 1702637 |  Zbl 0942.35111
[18] Chen (G.-Q. ), Frid ( H.).Extended divergence-measure fields and the Euler equation of gas dynamics. Comm. Math. Phys. , 236, p. 251-280 (2003).  MR 1981992 |  Zbl 1036.35125
[19] Colombini ( F.), Lerner (N.).Uniqueness of continuous solutions for BV vector fields. Duke Math. J., 111, p. 357-384 (2002). Article |  MR 1882138 |  Zbl 1017.35029
[20] Colombini ( F.), Lerner (N.).Uniqueness of L°° solutions for a class of conormal BV vector fields. Geometric Analysis of PDE and Several Complex Variables, Contemp. Math., 368, p. 133-156 (2005).  Zbl 1064.35033
[21] Di Perna ( R.J.), Lions (P.L.).Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. , 98, p. 511-547 (1989).  Zbl 0696.34049
[22] Evans (L.C. ) , Gariepy ( R.F.).Lecture notes on measure theory and fine properties of functions, CRC Press (1992).
[23] Federer (H. ).Geometric measure theory, Springer (1969).  MR 257325 |  Zbl 0176.00801
[24] Keyfitz ( B.L.), Kranzer (H.C.).A system of nonstrictly hyperbolic conservation laws arising in elasticity theory. Arch. Rational Mech. Anal., 72, p. 219-241 (1980).  MR 549642 |  Zbl 0434.73019
[25] Lions (P.L. ). - Sur les équations différentielles ordinaires et les équations de transport. C. R. Acad. Sci. Paris Sér. I, 326, p. 833-838 (1998).  Zbl 0919.34028
[26] Petrova ( G.), Popov (B.).Linear transport equation with discontinuous coefficients. Comm. PDE, 24, p. 1849-1873 (1999).  MR 1708110 |  Zbl 0992.35104
[27] Popaud (F. ), Rascle (M.). - Measure solutions to the liner multidimensional transport equation with non-smooth coefficients. Comm. PDE, 22, p. 337-358 (1997).  MR 1434148 |  Zbl 0882.35026
[28] Temam (R.).Problèmes mathématiques en plasticité. Gauthier-Villars, Paris ( 1983).  Zbl 0547.73026
[29] Vasseur ( A.).Strong traces for solutions of multidimensional scalar conservation laws. Arch. Ration. Mech. Anal., 160, p. 181-193 (2001).  MR 1869441 |  Zbl 0999.35018
Recherche d'un article
Recherche dans le site
haut