cnrs   Université de Toulouse
Avec cedram.org

Table des matières de ce fascicule | Article précédent | Article suivant
B. Zegarliński
Analysis on Extended Heisenberg Group
Annales de la faculté des sciences de Toulouse Sér. 6, 20 no. 2 (2011), p. 379-405, doi: 10.5802/afst.1296
Article PDF | Analyses MR 2847888 | Zbl 1253.47028

Résumé - Abstract

Dans ce travail, nous étudions les semi-groupes de Markov produits par les opérateurs de type d’Hörmander-Dunkl sur le groupe d’Heisenberg.

Bibliographie

[1] Aronson (D.G.).— Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa. Cl. Sci. (4) 22 (1968) 607-694, Addendum, 25, p. 221-228 (1971). Numdam |  MR 435594 |  Zbl 0182.13802
[2] Alekseevsky (D.), Kriegl (A.), Losik (M.) and Michor (P.W.).— Reflection Groups on Riemannian Manifolds, Annali di Mathematica Pura ed Applicata.
[3] Bakry (D.), Baudoin (F.), Bonnefont (M.) and Chafaï (D.).— On gradient bounds for the heat kernel on the Heisenberg group, J. Funct. Anal. 255, p. 1905-1938 (2008).  MR 2462581 |  Zbl 1156.58009
[4] Beals (R.), Gaveau (B.) and Greiner (P.C.).— Hamiltonian-Jacobi Theory and Heat Kernel On Heisenberg Groups, J. Math. Pures Appl. 79, p. 633-689 (2000).  MR 1776501 |  Zbl 0959.35035
[5] Benjamini (I.), Chavel (I.) and Feldman (A.).— Heat Kernel Lower Bounds on Riemannian Manifolds Using the Old Idea of Nash, Proc. of the London Math. Soc. 1996 s3-72(1):215-240; doi:10.1112/plms/s3-72.1.215  MR 1357093 |  Zbl 0853.58098
[6] Bonfiglioli (A.), Lanconelli (E.), and Uguzzoni (F.).— Stratified Lie Groups and Potential Theory for their Sub-Laplacians, Springer Monographs in Mathematics, Springer (2007).  MR 2363343 |  Zbl 1128.43001
[7] Chow (B.), Lu Peng and Ni Lei.— Hamilton’s Ricci Flow, Grad. Stud. Math., Amer. Math. Soc. (2006).  MR 2274812 |  Zbl 1118.53001
[8] Davies (E.B.).— Heat kernels and spectral theory. Cambridge University Press, Cambridge, 197 pp (1989).  MR 990239 |  Zbl 0699.35006
[9] Davies (E.B.).— Explicit Constants for Gaussian Upper Bounds on Heat Kernels, American Journal of Mathematics, Vol. 109, No. 2 (Apr., 1987) p. 319-333, http://www.jstor.org/stable/2374577  MR 882426 |  Zbl 0659.35009
[10] Davies (E.B.).— Heat Kernel Bounds for Second Order Elliptic Operators on Riemannian Manifolds, Amer. J. of Math. Vol. 109, No. 3 (Jun., 1987) p. 545-569, http://www.jstor.org/stable/2374567  MR 892598 |  Zbl 0648.58037
[11] Davies (E.B.) and Simon (B.).— Ultra-contractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians, J. Funct. Anal. 59, p. 335-395 (1984).  MR 766493 |  Zbl 0568.47034
[12] Driver (B.K.) and Melcher (T.).— Hypoelliptic heat kernel inequalities on the Heisenberg group, J. Funct. Anal. 221, p. 340-365 (2005).  MR 2124868 |  Zbl 1071.22005
[13] Eldredge (N.).— Precise estimates for the subelliptic heat kernel on H-type groups, J. Math. Pures Appl. 92, p. 52-85 (2009).  MR 2541147 |  Zbl 1178.35096
[14] Eldredge (N.).— Gradient estimates for the subelliptic heat kernel on H-type groups J. Funct. Anal. (2009), http://dx.doi.org/doi:10.1016/j.jfa.2009.08.012.  MR 2557945 |  Zbl 1185.43004
[15] Fukushima (M.).— Dirichlet Forms and Markov Processes, North Holland (1980).  MR 569058 |  Zbl 0422.31007
[16] Gross (L.).— Logarithmic Sobolev inequalities, Amer. J. Math. 97, p. 1061-1083 (1975).  MR 420249 |  Zbl 0318.46049
[17] Grigor’yan (A.).— Gaussian Upper Bounds for the Heat Kernel on Arbitrary Manifolds, J. Differential Geometry 45, 33-52 (1997).  MR 1443330 |  Zbl 0865.58042
[18] Guionnet (A.) and Zegarliński (B.).— Lectures on logarithmic Sobolev inequalities. Séminaire de Probabilités, XXXVI, p. 1-134, Lecture Notes in Math., 1801, Springer, Berlin (2003).  MR 1971582 |  Zbl 1125.60111
[19] Hebisch (W.) and Zegarliński (B.).— Coercive inequalities on metric measure spaces, J. Funct. Anal. 258, p. 814-851 (2010), http://dx.doi.org/doi:10.1016/j.jfa.2009.05.016.  MR 2558178 |  Zbl 1189.26032
[20] Inglis (J.), Kontis (V.) and Zegarliński (B.).— From $U$-bounds to Isoperimetry with applications to H-type groups, http://arxiv.org/abs/0912.0236.  Zbl pre05825475
[21] Grayson (M.) and Grossman (R.).— Nilpotent Lie algebras and vector fields, Symbolic Computation: Applications to Scientific Computing, R. Grossman, ed., SIAM, Philadelphia, p. 77-96 (1989).  MR 1022023
[22] Junqiang Han, Pengcheng Niu and Wenji Qin.— Hardy Inequalities in Half Spaces of the Heinsenberg Group, Bull. Korean Math. Soc. 45, p. 405-417 (2008).  MR 2442182 |  Zbl 1158.35339
[23] Li (H.-Q.).— Estimation optimale du gradient du semi-groupe de la chaleur sur le groupe de Heisenberg, J. Funct. Analysis 236, p. 369-394 (2006).  MR 2240167 |  Zbl 1106.22009
[24] P. Ługiewicz (P.) and Zegarliński (B.).— Coercive inequalities for Hörmander type generators in infinite dimensions, J. Funct. Anal. 247 p. 438-476 (2007), http://dx.doi.org/doi:10.1016/j.jfa.2007.03.00.  Zbl 1128.58009
[25] Masatoshi Noumi.— Painlevé Equations through Symmetry, Translations of Math. Monographs, vol. 223, AMS (2004).  MR 2044201 |  Zbl 1077.34003
[26] Rösler (M.).— Generalized Hermite Polynomials and the Heat Equation for Dunkl Operators, Communications on Matematical Physics 192, p. 519-541 (1998).  MR 1620515 |  Zbl 0908.33005
[27] Varopoulos (N.), Saloff-Coste (L.) and Coulhon (T.).— Analysis and Geometry on Groups, Cambridge University Press (1992).  MR 1218884 |  Zbl 1179.22009
Recherche d'un article
Recherche dans le site
haut