cnrs   Université de Toulouse
Avec cedram.org

Table des matières de ce fascicule | Article précédent | Article suivant
Luis Paris
$K(\pi ,1)$ conjecture for Artin groups
Annales de la faculté des sciences de Toulouse Sér. 6, 23 no. 2: Numéro Spécial à l’occasion de la conférence Arrangements in Pyrénées, Pau 11-15 juin 2012 (2014), p. 361-415, doi: 10.5802/afst.1411
Article PDF | Analyses MR 3205598 | Zbl 06297897

Résumé - Abstract

Le but de cet article est de mettre ensemble une grande partie des résultats connus sur la conjecture du $K(\pi ,1)$ pour les groupes d’Artin et de les rendre accessibles aux non-spécialistes. Tout d’abord, ce texte est un exposé, contenant les définitions de base, les principaux résultats, des exemples et un aperçu historique. C’est aussi un texte qui devrait servir de référence dans le sujet et qui contient des démonstrations de la plupart des résultats énoncés. Certaines démonstrations et quelques résultats sont nouveaux. En outre, le texte, s’adressant à des non-spécialistes, est aussi complet que possible.

Bibliographie

[1] Abramenko (P.), Brown (K. S.).— Buildings. Theory and applications. Graduate Texts in Mathematics, 248. Springer, New York (2008).  MR 2439729 |  Zbl 1214.20033
[2] Arnol’d (V. I.).— Certain topological invariants of algebraic functions. Trudy Moskov. Mat. Obšč. 21, p. 27-46 (1970).  MR 274462 |  Zbl 0208.24003
[3] Bourbaki (N.).— Eléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV : Groupes de Coxeter et systèmes de Tits. Chapitre V : Groupes engendrés par des réflexions. Chapitre VI : Systèmes de racines. Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris (1968).  MR 240238 |  Zbl 0186.33001
[4] Brieskorn (E.).— Sur les groupes de tresses [d’après V. I. Arnol’d]. Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 401, p. 21-44. Lecture Notes in Math., Vol. 317, Springer, Berlin (1973). Numdam |  MR 422674 |  Zbl 0277.55003
[5] Brieskorn (E.), Saito (K.).— Artin-Gruppen und Coxeter-Gruppen. Invent. Math. 17, p. 245-271 (1972).  MR 323910 |  Zbl 0243.20037
[6] Brown (K. S.).— Cohomology of groups. Graduate Texts in Mathematics, 87. Springer-Verlag, New York-Berlin (1982).  MR 672956 |  Zbl 0584.20036
[7] Callegaro (F.).— On the cohomology of Artin groups in local systems and the associated Milnor fiber. J. Pure Appl. Algebra 197, no. 1-3, p. 323-332 (2005).  MR 2123992 |  Zbl 1109.20027
[8] Callegaro (F.).— The homology of the Milnor fiber for classical braid groups. Algebr. Geom. Topol. 6, p. 1903-1923 (2006).  MR 2263054 |  Zbl 1166.20044
[9] Callegaro (F.), Moroni (D.), Salvetti (M.).— Cohomology of affine Artin groups and applications. Trans. Amer. Math. Soc. 360, no. 8, p. 4169-4188 (2008).  MR 2395168 |  Zbl 1191.20056
[10] Callegaro (F.), Moroni (D.), Salvetti (M.).— Cohomology of Artin groups of type $\tilde{A}_n, B_n$ and applications. Groups, homotopy and configuration spaces, 85-104, Geom. Topol. Monogr., 13, Geom. Topol. Publ., Coventry (2008).  MR 2508202 |  Zbl 1143.20031
[11] Callegaro (F.), Moroni (D.), Salvetti (M.).— The $K(\pi ,1)$ problem for the affine Artin group of type $\tilde{B}_n$ and its cohomology. J. Eur. Math. Soc. (JEMS) 12, no. 1, p. 1-22 (2010).  MR 2578601 |  Zbl 1190.20042
[12] Callegaro (F.), Salvetti (M.).— Integral cohomology of the Milnor fibre of the discriminant bundle associated with a finite Coxeter group. C. R. Math. Acad. Sci. Paris 339, no. 8, p. 573-578 (2004).  MR 2111354 |  Zbl 1059.32008
[13] Charney (R.), Davis (M. W.).— The $K(\pi ,1)$-problem for hyperplane complements associated to infinite reflection groups. J. Amer. Math. Soc. 8, no. 3, p. 597-627 (1995).  MR 1303028 |  Zbl 0833.51006
[14] Charney (R.), Davis (M. W.).— Finite $K(\pi ,1)$’s for Artin groups. Prospects in topology (Princeton, NJ, 1994), p. 110-124, Ann. of Math. Stud., 138, Princeton Univ. Press, Princeton, NJ (1995).  MR 1368655 |  Zbl 0930.55006
[15] Charney (R.), Meier (J.), Whittlesey (K.).— Bestvina’s normal form complex and the homology of Garside groups. Geom. Dedicata 105, p. 171-188 (2004).  MR 2057250 |  Zbl 1064.20044
[16] Charney (R.), Peifer (D.).— The $K(\pi ,1)$-conjecture for the affine braid groups. Comment. Math. Helv. 78, no. 3, 584-600 (2003).  MR 1998395 |  Zbl 1066.20043
[17] Cohen (F. R.).— The homology of $C_{n+1}$-spaces, $n \ge 0$. Lecture Notes in Math. 533, p. 207-353, Springer-Verlag, Berlin-New York (1976).
[18] Coxeter (H. S. M.).— Discrete groups generated by reflections. Ann. of Math. (2) 35, no. 3, p. 588-621 (1934).  MR 1503182 |  Zbl 0010.01101
[19] Coxeter (H. S. M.).— The complete enumeration of finite groups of the form $R_i^2 = (R_i R_j)^{k_{i, j}} = 1$. J. London Math. Soc. 10, p. 21-25 (1935).  Zbl 0010.34202
[20] De Concini (C.), Procesi (C.), Salvetti (M.).— Arithmetic properties of the cohomology of braid groups. Topology 40, no. 4, p. 739-751 (2001).  MR 1851561 |  Zbl 0999.20046
[21] De Concini (C.), Procesi (C.), Salvetti (M.), Stumbo (F.).— Arithmetic properties of the cohomology of Artin groups. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28, no. 4, p. 695-717 (1999). Numdam |  MR 1760537 |  Zbl 0973.20025
[22] De Concini (C.), Salvetti (M.).— Stability for the cohomology of Artin groups. Adv. Math. 145, no. 2, p. 291-305 (1999).  MR 1704578 |  Zbl 0982.20036
[23] De Concini (C.), Salvetti (M.).— Cohomology of Coxeter groups and Artin groups. Math. Res. Lett. 7, no. 2-3, p. 213-232 (2000).  MR 1764318 |  Zbl 0972.20030
[24] De Concini (C.), Salvetti (M.), Stumbo (F.).— The top-cohomology of Artin groups with coefficients in rank-$1$ local systems over ${\sc Z}$. Special issue on braid groups and related topics (Jerusalem, 1995). Topology Appl. 78, no. 1-2, p. 5-20 (1997).  MR 1465022 |  Zbl 0878.55003
[25] Dehornoy (P.), Lafont (Y.).— Homology of Gaussian groups. Ann. Inst. Fourier (Grenoble) 53, no. 2, p. 489-540 (2003). Cedram |  MR 1990005 |  Zbl 1100.20036
[26] Deligne (P.).— Les immeubles des groupes de tresses généralisés. Invent. Math. 17, p. 273-302 (1972).  MR 422673 |  Zbl 0238.20034
[27] Dobrinskaya (N. È.).— The Arnol’d-Thom-Pham conjecture and the classifying space of a positive Artin monoid. (Russian) Uspekhi Mat. Nauk 57 (2002), no. 6(348), 181-182. Translation in Russian Math. Surveys 57, no. 6, p. 1215-1217 (2002).  MR 1991872 |  Zbl 1050.55008
[28] Ellis (G.), Sköldberg (E.).— The $K(\pi ,1)$ conjecture for a class of Artin groups. Comment. Math. Helv. 85, no. 2, p. 409-415 (2010).  MR 2595184 |  Zbl 1192.55011
[29] Fox (R.), Neuwirth (L.).— The braid groups. Math. Scand. 10, 119-126 (1962).  MR 150755 |  Zbl 0117.41101
[30] Fuks (D. B.).— Cohomology of the braid group mod 2. Funkcional. Anal. i Priložen. 4 (1970), no. 2, 62-73. Translation in Functional Anal. Appl. 4, p. 143-151 (1970).  MR 274463 |  Zbl 0222.57031
[31] Godelle (E.), Paris (L.).— $K(\pi ,1)$ and word problems for infinite type Artin-Tits groups, and applications to virtual braid groups. Math. Z. 272, no. 3, p. 1339-1364 (2012).  MR 2995171 |  Zbl pre06116871
[32] Hatcher (A.).— Algebraic topology. Cambridge University Press, Cambridge (2002).  MR 1867354 |  Zbl 1044.55001
[33] Hendriks (H.).— Hyperplane complements of large type. Invent. Math. 79, no. 2, p. 375-381 (1985).  MR 778133 |  Zbl 0564.57016
[34] Landi (C.).— Cohomology rings of Artin groups. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 11, no. 1, p. 41-65 (2000).  MR 1797053 |  Zbl 0966.55012
[35] van der Lek (H.).— The homotopy type of complex hyperplane complements. Ph. D. Thesis, Nijmegen (1983).
[36] McCammond (J.), Sulway (R.).— Artin groups of Euclidean type. Preprint, arXiv:1312.7770
[37] Michel (J.).— A note on words in braid monoids. J. Algebra 215, no. 1, p. 366-377 (1999).  MR 1684142 |  Zbl 0937.20017
[38] Okonek (C.).— Das $K(\pi ,\,1)$-Problem für die affinen Wurzelsysteme vom Typ $A_{n}$, $C_{n}$. Math. Z. 168, no. 2, p. 143-148 (1979).  MR 544701 |  Zbl 0427.14001
[39] Orlik (P.), Terao (H.).— Arrangements of hyperplanes. Grundlehren der Mathematischen Wissenschaften, 300. Springer-Verlag, Berlin (1992).  MR 1217488 |  Zbl 0757.55001
[40] Ozornova (V.).— Factorability, Discrete Morse Theory and a Reformulation of $K(\pi ,1)$-conjecture. Ph. D. Thesis, Bonn (2013).
[41] Paris (L.).— Universal cover of Salvetti’s complex and topology of simplicial arrangements of hyperplanes. Trans. Amer. Math. Soc. 340, no. 1, p. 149-178 (1993).  MR 1148044 |  Zbl 0805.57018
[42] Paris (L.).— Artin monoids inject in their groups. Comment. Math. Helv. 77, no. 3, p. 609-637 (2002).  MR 1933791 |  Zbl 1020.20026
[43] Salvetti (M.).— Topology of the complement of real hyperplanes in $\mathbb{C}^N$. Invent. Math. 88, no. 3, p. 603-618 (1987).  MR 884802 |  Zbl 0594.57009
[44] Salvetti (M.).— On the homotopy theory of complexes associated to metrical-hemisphere complexes. Discrete Math. 113, no. 1-3, p. 155-177 (1993).  MR 1212876 |  Zbl 0774.52007
[45] Salvetti (M.).— The homotopy type of Artin groups. Math. Res. Lett. 1, no. 5, p. 565-577 (1994).  MR 1295551 |  Zbl 0847.55011
[46] Salvetti (M.), Stumbo (F.).— Artin groups associated to infinite Coxeter groups. Discrete Math. 163, no. 1-3, p. 129-138 (1997).  MR 1428564 |  Zbl 0871.05031
[47] Segal (G.).— Configuration-spaces and iterated loop-spaces. Invent. Math. 21, p. 213-221 (1973).  MR 331377 |  Zbl 0267.55020
[48] Settepanella (S.).— A stability-like theorem for cohomology of pure braid groups of the series A, B and D. Topology Appl. 139, no. 1-3, p. 37-47 (2004).  MR 2051096 |  Zbl 1064.20052
[49] Settepanella (S.).— Cohomology of pure braid groups of exceptional cases. Topology Appl. 156, no. 5, p. 1008-1012 (2009).  MR 2498934 |  Zbl 1195.20055
[50] Spanier (E. H.).— Algebraic topology. Corrected reprint. Springer-Verlag, New York-Berlin (1981).  MR 666554 |  Zbl 0810.55001
[51] Tits (J.).— Le problème des mots dans les groupes de Coxeter. Symposia Mathematica (INDAM, Rome, 1967/68), Vol. 1, p. 175-185, Academic Press, London (1969).  MR 254129 |  Zbl 0206.03002
[52] Tits (J.).— Groupes et géométries de Coxeter. In Wolf Prize in Mathematics, Vol. 2, S. S. Chern and F. Hirzebruch, eds., World Scientific Publishing, River Edge, NJ, p. 740-754 (2001).
[53] Vaǐnšteǐn (F. V.).— The cohomology of braid groups. Funktsional. Anal. i Prilozhen. 12 (1978), no. 2, p. 72-73. Translation in Functional Anal. Appl. 12, no. 2, p. 135-137 (1978).  MR 498903
[54] Vinberg (E. B.).— Discrete linear groups that are generated by reflections. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 35, p. 1072-1112 (1971).  MR 302779 |  Zbl 0247.20054
Recherche d'un article
Recherche dans le site
haut