cnrs   Université de Toulouse
With cedram.org

Table of contents for this issue | Previous article | Next article
Anne Duval
Séries de $q$-factorielles, opérateurs aux $q$-différences et confluence
Annales de la faculté des sciences de Toulouse Sér. 6, 12 no. 3 (2003), p. 335-374, doi: 10.5802/afst.1052
Article PDF | Reviews MR 2030091 | Zbl 1096.33009 | 1 citation in Cedram

Bibliography

[1] Adams (C.R. ), Linear q-difference Equations, Bull. AMS (1931), 361-400. Article |  Zbl 0002.19103 |  JFM 57.0534.05
[2] Gasper (G. ), Elementary Derivations of Summation and Transformation Formulas for q-Series, Fields Inst. Comm. 14, p. 55-70 (1997).  MR 1448679 |  Zbl 0873.33013
[3] Gérard (R. ), Lutz ( D.A.), Convergent factorial series solutions of singular operator equations, Analysis 10, 99-145 (1990).  MR 1074828 |  Zbl 0712.39016
[4] Harris (W.A.) Jr., Analytic theory of difference equations in Analytic theory of differential equations, Lecture Notes in Mathematics, 183, Springer, Berlin 1971 46-58.  MR 390565 |  Zbl 0232.39001
[5] Jackson ( F.H. ), q-difference Equations, Am. J. Math. 32, p. 305-315 (1910).  MR 1506108 |  JFM 41.0502.01
[6] Nörlund ( N.-E. ), Leçons sur les séries d'interpolation , Gauthier-Villars, Paris 1926.  JFM 52.0301.04
[7] Postnikov ( M. ), Leçons de géométrie, Groupes et algèbres de Lie, Editions MIR 1985.  MR 831660
[8] Ramis (J.-P. ), About the growth of entire functions solutions of linear algebraic q-difference equations, Ann. Fac. Sciences de Toulouse, Série 6, 1, p. 53-94 (1992) Cedram |  MR 1191729 |  Zbl 0796.39005
[9] Sauloy (J. ), Systèmes aux q-différences singuliers réguliers : classification, matrice de connexion et monodromie, Ann. Inst. Fourier 50, p. 1021-1071 (2000 ). Cedram |  MR 1799737 |  Zbl 0957.05012
Search for an article
Search within the site
top