cnrs   Université de Toulouse
With cedram.org

Table of contents for this issue | Previous article | Next article
Matthias Erbar; Jan Maas; Prasad Tetali
Discrete Ricci Curvature bounds for Bernoulli-Laplace and Random Transposition models
Annales de la faculté des sciences de Toulouse Sér. 6, 24 no. 4: Numéro Spécial : Conférence “Talking Across Fields” du 24 au 28 mars 2014 à l’Institut de Mathématiques de Toulouse (2015), p. 781-800, doi: 10.5802/afst.1464
Article PDF

Résumé - Abstract

We calculate a Ricci curvature lower bound for some classical examples of random walks, namely, a chain on a slice of the $n$-dimensional discrete cube (the so-called Bernoulli-Laplace model) and the random transposition shuffle of the symmetric group of permutations on $n$ letters.

Bibliography

[1] Ambrosio (L.), Gigli (N.), and Savaré (G.).— Metric measure spaces with Riemannian Ricci curvature bounded from below. Duke Math. J., 163(7) p. 1405-1490 (2014).  MR 3205729 |  Zbl 1304.35310
[2] Bakry (D.) and Émery (M.).— Diffusions hypercontractives. In Séminaire de probabilités, XIX, 1983/84, volume 1123 of Lecture Notes in Math., pages 177-206. Springer, Berlin (1985). Numdam |  MR 889476 |  Zbl 0561.60080
[3] Bobkov (S. G.) and Tetali (P.).— Modified logarithmic Sobolev inequalities in discrete settings. J. Theoret. Probab., 19(2) p. 289-336 (2006).  MR 2283379 |  Zbl 1113.60072
[4] Caputo (P.), Dai Pra (P.), and Posta (G.).— Convex entropy decay via the Bochner-Bakry-Emery approach. Ann. Inst. Henri Poincaré Probab. Stat., 45(3) p. 734-753, (2009). Numdam |  MR 2548501 |  Zbl 1181.60142
[5] Chow (S.-N.), Huang (W.), Li (Y.), and Zhou (Z.).— Fokker-Planck equations for a free energy functional or Markov process on a graph. Arch. Ration. Mech. Anal., 203(3) p. 969-1008 (2012).  MR 2928139 |  Zbl 1256.35173
[6] Diaconis (P.) and Saloff-Coste (L.).— Logarithmic Sobolev inequalities for finite Markov chains. Ann. Appl. Probab., 6(3) p. 695-750 (1996).  MR 1410112 |  Zbl 0867.60043
[7] Diaconis (P.) and Shahshahani (M.).— Generating a random permutation with random transpositions. Z. Wahrsch. Verw. Gebiete, 57(2) p. 159-179 (1981).  MR 626813 |  Zbl 0485.60006
[8] Diaconis (P.) and Shahshahani (M.).— Time to reach stationarity in the Bernoulli-Laplace diffusion model. SIAM J. Math. Anal., 18(1) p. 208-218 (1987).  MR 871832 |  Zbl 0617.60009
[9] Erbar (M.) and Maas (J.).— Ricci curvature of finite Markov chains via convexity of the entropy. Arch. Ration. Mech. Anal., 206(3) p. 997-1038 (2012).  MR 2989449 |  Zbl 1256.53028
[10] Erbar (M.) and Maas (J.).— Gradient flow structures for discrete porous medium equations. Discrete Contin. Dyn. Syst., 34(4) p. 1355-1374 (2014).  MR 3117845 |  Zbl 1275.49084
[11] Gao (F.) and Quastel (J.).— Exponential decay of entropy in the random transposition and Bernoulli-Laplace models. Ann. Appl. Probab., 13(4) p. 1591-1600 (2003).  MR 2023890 |  Zbl 1046.60003
[12] Gigli (N.) and Maas (J.).— Gromov-Hausdorff convergence of discrete transportation metrics. SIAM J. Math. Anal., 45(2) p. 879-899 (2013).  MR 3045651 |  Zbl 1268.49054
[13] Goel (S.).— Modified logarithmic Sobolev inequalities for some models of random walk. Stochastic Process. Appl., 114(1) p. 51-79 (2004).  MR 2094147 |  Zbl 1074.60080
[14] Gozlan (N.), Melbourne (J.), Perkins (W.), Roberto (C.), Samson (P-M.), and Tetali (P.).— Working Group in New directions in mass transport: discrete versus continuous. AIM SQuaRE report, October (2013).
[15] Gozlan (N.), Roberto (C.), Samson (P.-M.), and Tetali (P.).— Displacement convexity of entropy and related inequalities on graphs. Probability Theory and Related Fields, 160, p. 47-94 (2014).  MR 3256809
[16] Lee (T.-Y.) and Yau (H.-T.).— Logarithmic Sobolev inequality for some models of random walks. Ann. Probab., 26(4) p. 1855-1873 (1998).  MR 1675008 |  Zbl 0943.60062
[17] Lott (J.) and Villani (C.).— Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. (2), 169(3) p. 903-991 (2009).  MR 2480619 |  Zbl 1178.53038
[18] Maas (J.).— Gradient flows of the entropy for finite Markov chains. J. Funct. Anal., 261(8) p. 2250-2292 (2011).  MR 2824578 |  Zbl 1237.60058
[19] Mielke (A.).— A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems. Nonlinearity, 24(4) p. 1329-1346 (2011).  MR 2776123 |  Zbl 1227.35161
[20] Mielke (A.).— Geodesic convexity of the relative entropy in reversible Markov chains. Calc. Var. Partial Differential Equations, 48(1) p. 1-31 (2013).  MR 3090532 |  Zbl 1282.60072
[21] Ollivier (Y.).— Ricci curvature of Markov chains on metric spaces. J. Funct. Anal., 256(3) p. 810-864 (2009).  MR 2484937 |  Zbl 1181.53015
[22] Ollivier (Y.).— A survey of Ricci curvature for metric spaces and Markov chains. Adv. Stud. Pure Math., 57, p. 343-381 (2010).  MR 2648269 |  Zbl 1204.53035
[23] Sammer (M.D.).— Aspects of mass transportation in discrete concentration inequalities. PhD thesis, Georgia Institute of Technology (2005).  MR 2707115
[24] Sturm (K.-Th.).— On the geometry of metric measure spaces. I and II. Acta Math., 196(1) p. 65-177 (2006).  MR 2237206 |  Zbl 1106.53032
Search for an article
Search within the site
top