OULD AHMED IZID BIH ISSELKOU

The Lane-Emden Function and Nonlinear Eigenvalues Problems

<http://afst.cedram.org/item?id=AFST_2009_6_18_4_635_0>
The Lane-Emden Function and Nonlinear Eigenvalues Problems

ISSELKOU OULD AHMED IZID BIH(1)

RÉSUMÉ. — Nous considérons un problème aux valeurs propres, semi-linéaire elliptique, sur une boule de \mathbb{R}^n et montrons que ces valeurs et fonctions propres peuvent s’obtenir à partir de la fonction de Lane-Emden.

ABSTRACT. — We consider a semilinear elliptic eigenvalues problem on a ball of \mathbb{R}^n and show that all the eigenfunctions and eigenvalues, can be obtained from the Lane-Emden function.

1. Introduction

We consider the problem

\[
(P_\lambda^\alpha) \begin{cases}
\Delta u + \lambda (1 + u)^\alpha = 0, & \text{in } B_1 \\
u > 0, & \text{in } B_1 \\
u = 0, & \text{on } \partial B_1
\end{cases}
\]

where B_1 is the unit ball of \mathbb{R}^n, $n \geq 3$, $\lambda > 0$ and $\alpha > 1$.

This problem arises in many physical models like the nonlinear heat generation and the theory of gravitational equilibrium of polytropic stars (cf. [2] and [11]). It is well known (cf. [2], [10], [12]) that there exists a critical constant $\lambda^*(\alpha)$, such that (P_λ^α) admits, at least, one solution if $0 < \lambda < \lambda^*(\alpha)$ and no solution if $\lambda > \lambda^*(\alpha)$. We deal here with these critical constants and the corresponding eigenfunctions.

(*) Reçu le 31/07/07, accepté le 20/01/08
(1) Faculté des Sciences et Techniques, B.P. 5026 Nouakchott, Mauritanie.
isselkou@univ-nkc.mr

– 635 –
Let ϕ be the Lane-Emden function (cf. [1], [5], [6], [15]) in the n-dimensional space and r_0 the first "zero" of ϕ, we show that

$$\lambda^*(\alpha) = \max_{r \in [0, r_0]} r^2 \phi^{\alpha-1}(r).$$

We use this formula to compute $\lambda^*(\alpha)$, when α is the Critical Sobolev Exponent. We also extend, to the subcritical case, an estimate of $\lambda^*(\alpha)$ given in [10] and show qualitative properties of the eigenfunctions.

In the Appendix, we show how to approximate ϕ, so one can use numerical approaches (Maple or Matlab) to get estimates of $\lambda^*(\alpha)$.

2. Scalings of the Lane-Emden function as solutions

When $0 < \lambda \leq \lambda^*(\alpha)$, it is known that any regular solution of (P^α_λ) is radial and the minimal one is stable and analytical (cf.[8], [12]).

Proposition 2.1. — Let u be a regular solution of (P^α_λ), then

$$u(r) = (1 + u(0)) \phi \left(\sqrt{\lambda}(1 + u(0))^{\frac{\alpha-1}{2}} r \right) - 1, \ \forall \ r \in [0, 1]$$

where ϕ is the Lane-Emden function, in the n-dimensional space.

Proof. — The Lane-Emden function (cf. [1], [5], [6], [15]) is the solution of

$$(L - E) \left\{
\frac{\phi''(r)}{r} + \frac{n-1}{r} \phi'(r) + \phi(r) |\phi(r)|^{\alpha-1} = 0, \\
\phi(0) = 1, \ \phi'(0) = 0.
\right\}$$

The proof of the proposition is quite immediate.

3. The Subcritical Case

Let us consider the problem (P^α_λ), with $1 < \alpha < \frac{n+2}{n-2}$. Let ϕ be the Lane-Emden function.

Proposition 3.1. — There exists $r_0 > 0$, such that $\phi(r_0) = 0$, $\phi(r) > 0$, $\forall r \in [0, r_0]$ and

$$\lambda^*(\alpha) = \max_{\rho \in [0, r_0]} \rho^2 \phi^{\alpha-1}(\rho).$$

We also have

$$\lambda^*(\alpha) \geq \frac{2}{(\alpha - 1)^2} (\alpha(n-2) - n), \ i f \ \frac{n}{n-2} < \alpha < \frac{n+2}{n-2}.$$
The Lane-Emden Function and Nonlinear Eigenvalues Problems

\textbf{Proof.} — As \(\phi(0) > 0 \), we infer that \(\phi > 0 \), on a maximal interval \([0, r_0[\). The problem
\[
\begin{aligned}
\begin{cases}
\Delta u + u^\alpha = 0, & \text{in } \mathbb{R}^n \\
u > 0, & \text{in } \mathbb{R}^n
\end{cases}
\end{aligned}
\]
does not admit a solution (cf.\([4]\)), so we infer that \(r_0 < \infty \) and \(\phi(r_0) = 0 \).

Let us put
\[
\psi_\rho(r) = \frac{\phi(\rho r) - \phi(\rho)}{\phi(\rho)}, \quad \forall \ r \in [0, 1],
\]
with \(0 < \rho < r_0 \), then \(\psi_\rho \) is a solution of \((P^\alpha_\lambda)\), with \(\lambda = \rho^{2\alpha - 1}(\rho) \). We infer that
\[
\max_{\rho \in [0, r_0]} \rho^2 \phi_{\alpha - 1}(\rho) \leq \lambda^* (\alpha).
\]
Let us suppose that
\[
\max_{\rho \in [0, r_0]} \rho^2 \phi_{\alpha - 1}(\rho) < \lambda^* (\alpha),
\]
if \(u_{\lambda^*(\alpha)} \) is the unique solution of \((P^\alpha_\lambda^*(\alpha))(cf.\([10]\))\), one can use Proposition
1 to show that
\[
\begin{aligned}
u_{\lambda^*(\alpha)}(r) &= \left(1 + u_{\lambda^*(\alpha)}(0)\right) \left(\frac{\phi \left(\lambda^*(\alpha)\right)^{\frac{1}{2}} \left(1 + u_{\lambda^*(\alpha)}(0)\right)^{\frac{\alpha - 1}{2}} r}{1 + u_{\lambda^*(\alpha)}(0)}\right).
\end{aligned}
\]
Let us put \(\rho_{\lambda^*(\alpha)} = \left(\lambda^*(\alpha)\right)^{\frac{1}{2}} \left(1 + u_{\lambda^*(\alpha)}(0)\right)^{\frac{\alpha - 1}{2}} \). As \(u_{\lambda^*(\alpha)} \geq 0 \), we infer that \(\rho_{\lambda^*(\alpha)} < r_0 \). As \(u_{\lambda^*(\alpha)}(1) = 0 \), we infer that
\[
\frac{1}{1 + u_{\lambda^*(\alpha)}(0)} = \phi \left(\lambda^*(\alpha)\right)^{\frac{1}{2}} \left(1 + u_{\lambda^*(\alpha)}(0)\right)^{\frac{\alpha - 1}{2}}.
\]
So we get
\[
u_{\lambda^*(\alpha)}(r) = \frac{\phi(\rho_{\lambda^*(\alpha)} r) - \phi(\rho_{\lambda^*(\alpha)})}{\phi(\rho_{\lambda^*(\alpha)})} \quad \text{and} \quad \lambda^*(\alpha) = \left(\rho_{\lambda^*(\alpha)}\right)^2 \phi_{\alpha - 1}(\rho_{\lambda^*(\alpha)}).
\]
The last equality leads to a contradiction.

To prove the last statement, we use the fact that the maximum here is achieved at a unique \(r_\alpha \) (see the next lemma). So we get
\[
\phi'(r_\alpha) = -\frac{2}{(\alpha - 1)r_\alpha} \phi(r_\alpha), \quad \text{and}
\]
\[
\phi_{\alpha - 3}(r_\alpha) \left(2\phi^2(r_\alpha) + 4r_\alpha(\alpha - 1)\phi(r_\alpha)\phi'(r_\alpha) + (\alpha - 1)r_\alpha^2 \left(\phi'(r_\alpha)\right)^2 + \phi(r_\alpha)\phi''(r_\alpha)\right) \leq 0.
\]
We first replace $\phi''(r_\alpha)$ by its value from $(L - E)$ and then $\phi'(r_\alpha)$, from the previous equality, to get

$$\phi^{\alpha-1}(r_\alpha) \left(- (\alpha - 1) \lambda^*(\alpha) + 2(n - 4) + 4\frac{\alpha - 2}{\alpha - 1}\right) \leq 0.$$

Simplifying, one gets the estimate.

Remark 3.2. — The last statement in Proposition 2 is also true for $\alpha \geq \frac{n + 2}{n - 2}$, with the same proof, provided that $\sup_{r \in \mathbb{R}_+} r^2 \phi^{\alpha-1}(r)$ is attained (see the next Proposition 6); this has been proved in [10], using sophisticated arguments.

Lemma 3.3. — Let us put $g(r) = r^2 \phi^{\alpha-1}(r)$, $r \in [0, r_0]$, there exists $\rho_0 \in [0, r_0]$ such that g is increasing on $[0, \rho_0]$ and decreasing on $[\rho_0, r_0]$.

Proof. — Let ρ be an arbitrary positive constant with $\rho < r_0$, then, as we have already mentioned ψ_ρ is a solution of (P_γ^α), where $\gamma = g(\rho)$. As $g'(r) = r \phi^{\alpha-2}(r) (2 \phi(r) + (\alpha - 1) r \phi'(r))$, we infer that g is increasing on a maximal interval $I_0 \subset [0, r_0]$ with $0 \in I_0$.

Using Proposition 2, there exists $\rho_0 \in [0, r_0]$, such that $g(\rho_0) = \max_{r \in [0, r_0]} g(r) = \lambda^*(\alpha)$. This ρ_0 is unique, otherwise, if there exists $\lambda \in (0, r_0]$, such that $g(\lambda) = \max_{r \in [0, r_0]} g(r) = \lambda^*(\alpha)$, then ψ_{ρ_0} and ψ_λ are both solutions of the problem $(P_{\lambda^*(\alpha)}^\alpha)$. As ϕ is decreasing on $[0, r_0]$, we infer that $\psi_{\rho_0}(0) = \frac{1 - \phi(\rho_0)}{\phi(\rho_0)} \neq \frac{1 - \phi(\lambda)}{\phi(\lambda)} = \psi_\lambda(0)$. So we get two different solutions of the problem $(P_{\lambda^*(\alpha)}^\alpha)$. This leads to a contradiction (cf. [10]).

As $g(r_0) = 0$, we infer that $I_0 \neq [0, r_0]$. Let us put $\delta = \sup I_0$. The function g can’t be constant on a nontrivial interval $J \subset [\delta, r_0]$, for if $g(r) = c$ in J, then for every $\lambda \in J$, ψ_λ is a solution of (P_{c}^α). As $\psi_{\lambda_1}(0) \neq \psi_{\lambda_2}(0)$, if $\lambda_1, \lambda_2 \in J$ and $\lambda_1 \neq \lambda_2$, we infer that the problem (P_{c}^α) admits an infinity of solutions. This leads again to a contradiction (cf. [10]).

So if g is not decreasing on $[\delta, r_0]$, then there exists β_1 and β_2 with $r_0 > \beta_2 > \beta_1 > \delta$, such that g is decreasing on $[\delta, \beta_1]$ and increasing on $[\beta_1, \beta_2]$. Let us put $c_0 = \min(g(\beta_1), g(\beta_2))$, then $c_0 > g(\beta_1)$. Let us choose $c \in]g(\beta_1), c_0[$, so the problem $g(t) = c$ admits at least three different solutions $\lambda_i \in [0, \beta_2]$, $1 \leq i \leq 3$. As $\psi_{\lambda_i}(0) \neq \psi_{\lambda_j}(0)$, if $i \neq j$, $1 \leq i, j \leq 3$, we obtain three solutions for the problem (P_{c}^α). So we get a contradiction.

We conclude that g is increasing on $[0, \delta]$, decreasing on $[\delta, r_0]$ and $\delta = \rho_0$.

Proposition 3.4. — If $\lambda = \lambda^*(\alpha)$, there exists a unique $\rho_{\lambda^*(\alpha)} \in [0, r_0]$, such that
The Lane-Emden Function and Nonlinear Eigenvalues Problems

\[\lambda^*(\alpha) = \left(\rho_{\lambda^*(\alpha)} \right)^2 \phi^{\alpha - 1}(\rho_{\lambda^*(\alpha)}) \] and the unique solution \(u_{\lambda^*(\alpha)} \) of \((P^\alpha_{\lambda^*(\alpha)}) \)

is

\[u_{\lambda^*(\alpha)}(r) = \frac{\phi(\rho_{\lambda^*(\alpha)} r) - \phi(\rho_{\lambda^*}(\alpha))}{\phi(\rho_{\lambda^*(\alpha)})} = \psi_{\rho_{\lambda^*(\alpha)}}(r), \quad \forall \ r \in [0, 1]. \]

When \(0 < \lambda < \lambda^*(\alpha) \), there exist exactly two constants \(r_\lambda \) and \(\rho_\lambda \), such that \(0 < r_\lambda < \rho_{\lambda^*(\alpha)} < \rho_\lambda < r_0 \), \(\lambda = r_\lambda^2 \phi^{\alpha - 1}(r_\lambda) = r_\lambda^2 \phi^{\alpha - 1}(\rho_\lambda) \)

and the only two solutions of \((P^\alpha_\lambda) \) are

\[u_\lambda = \psi_{r_\lambda}, \quad v_\lambda = \psi_{\rho_\lambda}; \]

the minimal one (cf. [2]) is \(u_\lambda, \lim_{\lambda \to 0} u_\lambda = 0 \) in \(C^0(B_1) \) and

\[\lim_{\lambda \to 0} v_\lambda(r) = \infty, \quad \forall \ r \in [0, 1]. \]

Proof. — Using Proposition 2 and Lemma 1, one infers that the only solution of \((P^\alpha_{\lambda^*(\alpha)}) \) is \(\psi_{\rho_0} \). We put \(\rho_{\lambda^*(\alpha)} = \rho_0 \). If \(0 < \lambda < \lambda^*(\alpha) \), using the lemma again, we infer that \(g(t) = \lambda \) admits exactly two solutions \(r_\lambda \) and \(\rho_\lambda \), with \(0 < r_\lambda < \rho_{\lambda^*(\alpha)} < \rho_\lambda < r_0 \). Let us put \(u_\lambda = \psi_{r_\lambda} \) and \(v_\lambda = \psi_{\rho_\lambda} \), \(u_\lambda(0) \neq v_\lambda(0) \). These two functions \(u_\lambda \) and \(v_\lambda \) are solutions of the the problem \((P^\alpha_\lambda) \), which admits only two ones (cf. [10]).

As \(\phi \) is decreasing on \([0, r_0] \), one can verify that \(u_\lambda(0) < v_\lambda(0) \), so we infer that the minimal solution (cf. [2]) is \(u_\lambda \).

As \(\lambda = r_\lambda^2 \phi^{\alpha - 1}(r_\lambda) = r_\lambda^2 \phi^{\alpha - 1}(\rho_\lambda), \) \(0 < r_\lambda < \rho_{\lambda^*(\alpha)} < \rho_\lambda < r_0 \), we get

\[\lim_{\lambda \to 0} r_\lambda = 0, \quad \lim_{\lambda \to 0} \rho_\lambda = r_0, \quad \lim_{\lambda \to 0} u_\lambda(r) = \lim_{r_\lambda \to 0} \frac{\phi(r_\lambda r) - \phi(\rho_\lambda)}{\phi(\rho_\lambda)} - 1 = 0, \quad \text{and} \quad \lim_{\lambda \to 0} v_\lambda(r) = \lim_{r_\lambda \to 0} \frac{\phi(r_\lambda r) - \phi(\rho_\lambda)}{\phi(\rho_\lambda)} = \phi(r_\lambda r) \left(\lim_{r_\lambda \to 0} \frac{1}{\phi(\rho_\lambda)} \right) = \infty, \quad \forall \ r \in [0, 1]. \]

4. The Critical Sobolev Exponent Case

In this section, we suppose that \(\alpha = \frac{n+2}{n-2} \) and \(n \geq 3 \).

Let us consider the following problem

\[(P^\alpha) \left\{ \begin{array}{ll} \Delta u + u^\alpha = 0, & \text{in } \mathbb{R}^n \\ u > 0, & \text{in } \mathbb{R}^n. \end{array} \right. \]

Remark 4.1. — Every radially symmetrical solution of \((P^\alpha) \) verifies \(\lim_{r \to \infty} u(r) = 0 \) (cf. [9]).

Following the method of Pohozaev in [14], the problem

\[(Q^\alpha) \left\{ \begin{array}{ll} u''(r) + \frac{n-1}{r} u'(r) + u^\alpha(r) = 0, & \forall \ r > 0 \\ u > 0, \ u(0) = 1, \ u'(0) = 0 \end{array} \right. \]

admits a solution \(\phi \).
Lemma 4.2. — Let \(u \) be a radially symmetrical regular solution of \((P^\alpha)\), then
\[
u(r) = u(0) \phi \left(u(0) \frac{\alpha-1}{2} r \right).
\]

Proof. — This proof is immediate.

Lemma 4.3. — Let us put \(g(r) = r^2 \phi^{\alpha-1}(r), \ r \in \mathbb{R}_+ \), then there exists \(r_0 > 0 \), such that \(g \) is increasing on \([0, r_0]\), decreasing on \([r_0, \infty[\), with \(\lim_{r \to \infty} g(r) = 0 \).

Proof. — As we have already mentioned, \(g \) is increasing near 0. Let us assume that \(g \) is nondecreasing on \([0, \infty[\), then we have two possibilities
\[
\lim_{r \to \infty} g(r) = \infty \text{ or } \lim_{r \to \infty} g(r) = c, \quad 0 < c < \infty.
\]
For every \(\rho > 0 \), \(\psi_\rho \) is a solution of \((P^\alpha_\gamma)\), with \(\gamma = \rho^2 \phi^{\alpha-1}(\rho) = g(\rho) \). We infer (cf. [2], [10]) that \(g(r) \leq \lambda^*(\alpha), \ \forall \ r > 0 \), so the first limit becomes impossible.

In the second case, we have two subcases: \(c \) is achieved or not.

If \(c \) is not achieved, then \(\forall \ l \) such that \(0 < l < c \), there exists \(r_l > 0 \) such that \(g(r_l) = l \). One can verify that \(\forall \ 0 < l < c \), the problem \((P^\alpha_l)\) admits the solution \(\psi_{r_l} \), so we infer that \(c \leq \lambda^*(\alpha) \). Let \(u \) be a radially symmetrical solution (cf. [2], [10] and [3]) of \((P^\alpha_0)\). As in the proof of Proposition 2, one can verify that
\[
u = \psi_\rho, \ \rho = \sqrt{c} \left(1 + u(0) \right)^{\frac{\alpha-1}{2}} \text{ and } \frac{1}{1 + u(0)} = \phi(\rho).
\]
As \(c = \rho^2 \phi^{\alpha-1}(\rho) = g(\rho) \), we get a contradiction.

Let us suppose that \(c \) is achieved, as \(g \) is assumed to be nondecreasing, there exists \(r_0 \) such that \(g(r) = c, \ \forall \ r \geq r_0 \). Let us choose, an arbitrary constant \(\rho > 0 \) such that \(\rho \geq r_0 \). The function \(\psi_\rho \) is a solution of the problem \((P^\alpha_\gamma)\), where \(\gamma = \rho^2 \phi^{\alpha-1}(\rho) = g(\rho) = c, \ \forall \ \rho \geq r_0 \). This means that this problem, with such a \(\gamma \), admits an infinity of solutions \(\psi_\rho \); this leads to a contradiction (cf. [2], [10]). So \(g \) is not nondecreasing on \([0, \infty[\). As \(g \) can’t be constant on a nontrivial interval, we deduce that there exists positive constants \(r_1 \) and \(r_2 \), such that \(r_1 < r_2 \), with \(g \) is increasing on \([0, r_1]\) and decreasing on a maximal interval \([r_1, r_2]\). Let us suppose that \(g \) increases again on \([r_2, r_3]\), with \(r_2 < r_3 \). If \(\gamma \in \text{[}\ g(r_2), \min (g(r_1), g(r_3))\text{[} \), then \(g(r) = \gamma \) admits, at least, three roots, so the problem \((P^\alpha_\gamma)\) admits, at least, three solutions; this gives again a contradiction (cf. [10]).
Finally, we get the existence of \(r_0 > 0 \), such that \(g \) is increasing on \([0, r_0]\) and decreasing on \([r_0, \infty[\). As \(g > 0 \), we infer that \(\lim_{r \to \infty} g(r) = c_0 \geq 0 \). If \(c_0 > 0 \), then for every \(c \in]0, c_0[\), there exists a unique \(\rho_c \in \mathbb{R}_+ \), verifying \(g(\rho_c) = c \). As \(c < \lambda^*(\alpha) \), the problem \((P^\alpha_c)\) admits exactly two solutions (cf. [10]). One of these two solutions is \(\psi_{\rho_c} \). Let \(u_c \) be the other one, then, using Proposition 2 again, we get

\[
u_c(r) = \psi_\gamma, \quad \gamma = c^{\frac{1}{2}} (1 + u_c(0))^{\frac{\alpha - 1}{2}} = c^{\frac{1}{2}} \phi^{1 - \alpha} \left(c^{\frac{1}{2}} (1 + u_c(0))^{\frac{\alpha - 1}{2}} \right).
\]

So we infer that \(c = g(\gamma) \). As the two solutions are different, \(\rho_c \neq \gamma \) and \(\gamma \) is another root of \(g(r) = c \). This gives a contradiction and proves that necessarily \(c = 0 \). This ends the proof of the lemma.

PROPOSITION 4.4. — **Let us assume** \(\alpha = \frac{n+2}{n-2}, \ n \geq 3 \), **then**

\[
\lambda^*(\alpha) = \max_{r \in [0, \infty[} g(r).
\]

Proof. — Let \(\gamma = g(\rho) = \rho^2 \phi^{\alpha - 1}(\rho), \rho \in \mathbb{R}_+ \), we have seen that \(\psi_\rho \) is a solution of \((P^\alpha_\gamma)\). So we infer that \(g(\rho) \leq \lambda^*(\alpha) \), \(\forall \rho \in \mathbb{R}_+ \).

Let us suppose that

\[
\max_{r \in [0, \infty[} g(r) < \lambda^*(\alpha)
\]

and let \(u \) be the unique solution (cf. [10]) of \((P^\alpha_{\lambda^*(\alpha)})\). As in the proof of Proposition 2, we get that \(u = \psi_\rho \) and \(\lambda^*(\alpha) = g(\rho) \). This gives a contradiction.

PROPOSITION 4.5. — **We have** \(\lambda^*(\alpha) = \frac{n(n-2)}{4} \). **There exists a unique** \(r_{\lambda^*(\alpha)} = \sqrt{n(n-2)} \), **such that** \(\lambda^*(\alpha) = r_{\lambda^*(\alpha)}^2 \phi^{\alpha - 1}(r_{\lambda^*(\alpha)}) \) **and a unique solution of** \((P^\alpha_{\lambda^*(\alpha)})\)

\[
u_{\lambda^*(\alpha)} = \psi_{r_{\lambda^*(\alpha)}}.
\]

If \(0 < \lambda < \lambda^*(\alpha) \), **there exist exactly two constants**

\[
r_{\lambda} = \frac{1 - \frac{2\lambda}{n(n-2)}}{(n(n-2))^{-1} \sqrt{2\lambda}} \quad \text{and} \quad \rho_{\lambda} = \frac{1 - \frac{2\lambda}{n(n-2)} + \sqrt{1 - \frac{4\lambda}{n(n-2)}}}{(n(n-2))^{-1} \sqrt{2\lambda}}
\]

such that \(0 < r_{\lambda} < r_{\lambda^*(\alpha)} < \rho_{\lambda}, \ \lambda = g(r_{\lambda}) = g(\rho_{\lambda}) \) **and the only two solutions of** \((P^\alpha_{\lambda})\) **are**

\[
u_{\lambda} = \psi_{r_{\lambda}} \quad \text{and} \quad \nu_{\lambda} = \psi_{\rho_{\lambda}},
\]

the minimal one (cf. [2]) **is** \(u_\lambda; \lim_{\lambda \to 0} u_\lambda = 0, \ \text{in} \ C^0(\overline{B_1}) \) **and** \(\lim_{\lambda \to 0} u_\lambda(r) = r^{2-n} - 1, \ \forall \ r \in [0, 1] \).
Proof. — One can use Lemma 3 to get the existence (and the uniqueness) of $r_{\lambda^*(\alpha)} = r_0$, r_λ and ρ_λ. It is then easy to verify that $\psi_{r_{\lambda^*(\alpha)}}$ is a solution of $(P_{\lambda^*(\alpha)}^\alpha)$, $u_\lambda = \psi_{r_\lambda}$ and $v_\lambda = \psi_{\rho_\lambda}$ are solutions of (P_λ^α). The problem (P_α) admits only two solutions (cf. [10]), as ϕ is decreasing on \mathbb{R}_+, one can verify that $u_\lambda(0) < v_\lambda(0)$, so $u_\lambda \neq v_\lambda$. We conclude that u_λ and v_λ are the only solutions of (P_α) and the minimal one (cf. [2]) is u_λ.

Let us compute the constants $r_{\lambda^*(\alpha)}$, r_λ and ρ_λ.

It is well known (cf. [13]) that, if $\alpha = \frac{n+2}{n-2}$, the problem (Q^α) admits the continuum of spherically symmetrical "instantons"

$$u_\gamma(r) = \gamma^{\frac{n+2}{2}} (n(n-2))^{\frac{n+2}{4}} (\gamma^2 + r^2)^{-\frac{2n}{2}} \cdot \gamma > 0.$$

Let us fix $\gamma > 0$, so $u_\gamma(0) = \gamma^{\frac{2-n}{2}} (n(n-2))^{\frac{n+2}{4}}$. Using Lemma 2, we get the expression of the Lane-Emden function

$$\phi(r) = \frac{1}{u_\gamma(0)} u_\gamma (u_\gamma(0)^{-\frac{n-2}{2}} r) = \left(1 + \frac{r^2}{n(n-2)} \right)^{\frac{2-n}{2}}.$$

As $\alpha - 1 = \frac{n+2}{n-2} - 1 = \frac{4}{n-2}$, we infer that

$$g(r) = r^2 \phi^{\alpha-1}(r) = r^2 \left(1 + \frac{r^2}{n(n-2)} \right)^{-2}.$$

Using Proposition 4, a direct calculation gives

$$\lambda^*(\alpha) = \max_{r>0} r^2 \left(1 + \frac{r^2}{n(n-2)} \right)^{-2} = r^2 \left(1 + \frac{r^2}{n(n-2)} \right)^{-2} \bigg|_{r=r_{\lambda^*(\alpha)} = \sqrt{n(n-2)}} = \frac{n(n-2)}{4}.$$

In [7], the previous constant has been computed, using the Pohozaev Identity. If $0 < \lambda < \lambda^*(\alpha)$, the equation $g(r) = \lambda$ admits two positive roots

$$r_\lambda = \sqrt{1 - \frac{2\lambda}{n(n-2)} - \sqrt{1 - \frac{4\lambda}{n(n-2)}}} \quad \text{and} \quad \rho_\lambda = \sqrt{1 - \frac{2\lambda}{n(n-2)} + \sqrt{1 - \frac{4\lambda}{n(n-2)}}}.$$

This gives us $u_\lambda = \psi_{r_\lambda}$ and $v_\lambda = \psi_{\rho_\lambda}$; as $r_\lambda < \rho_\lambda$, we get $u_\lambda(0) < v_\lambda(0)$, so u_λ is the minimal solution.
As \(\lambda = r^2 \phi^{\alpha-1}(r_\lambda) = \rho^2 \phi^{\alpha-1}(\rho_\lambda) \), 0 < \(r_\lambda < \lambda^*(\alpha) < \rho_\lambda < \infty \), one can verify that
\[\lim_{\lambda \to 0} r_\lambda = 0, \lim_{\lambda \to 0} \rho_\lambda = \infty, \lim_{\lambda \to 0} u_\lambda = 0, \text{ in } C^0(B_1) \text{ and} \]
\[\lim_{\lambda \to 0} \psi_\lambda(0) = \lim_{\rho_\lambda \to \infty} \frac{\phi(\rho_\lambda r)}{\phi(\rho_\lambda)} = 1 = r^{2-n} - 1, \forall r \in [0,1]. \]

5. The Supercritical Case

We consider here the case \(\alpha > \frac{n+2}{n-2}, n \geq 3 \). Let us put
\[f(\alpha) = \frac{4\alpha}{\alpha - 1} + 4\sqrt{\frac{\alpha}{\alpha - 1}}, \forall \alpha > 1. \]
Let’s first detail a condition, \(f(\alpha) > n - 2 \), used in [10].

Lemma 5.1. — If \(3 \leq n \leq 10 \) and \(\alpha > \frac{n+2}{n-2} \) or \(n > 10 \) and \(\frac{n+2}{n-2} < \alpha < \frac{n-2\sqrt{n-1}}{n-2\sqrt{n-1}+4} \), then \(f(\alpha) > n - 2 \). If \(n > 10 \) and \(\frac{n-2\sqrt{n-1}}{n-2\sqrt{n-1}+4} \leq \alpha \), then \(f(\alpha) \leq n - 2 \).

Proof. — Let us put \(p(t) = 4t^2 + 4t \) and \(u = \sqrt{\frac{\alpha}{\alpha - 1}} \), so we get \(f(\alpha) = p(u) \). The only positive root of \(p(t) = n - 2 \), is \(t_0 = \frac{\sqrt{n-1}-1}{\sqrt{2}} \) and the equation \(u = \frac{\sqrt{n-1}-1}{\sqrt{2}} \) has the only solution \(\alpha_0 = \frac{n-2\sqrt{n-1}}{n-2\sqrt{n-1}+4} \). But \(\alpha_0 > 0 \), if and only if \(n > 10 \).

For every \(\alpha > \frac{n+2}{n-2} \), we have \(\alpha > 1 \) so we get \(\sqrt{\frac{\alpha}{\alpha - 1}} > 1 > \frac{\sqrt{n-1}-1}{\sqrt{2}} \), if \(3 \leq n \leq 10 \). We infer that \(f(\alpha) > n - 2 \), if \(3 \leq n \leq 10 \).

If \(n > 10 \), we have \(\alpha_0 > \frac{n+2}{n-2} > 1 \), one can verify that if \(\frac{n+2}{n-2} < \alpha < \alpha_0 \), then \(f(\alpha) > n - 2 \) and \(f(\alpha) \leq n - 2 \), if \(\alpha \geq \alpha_0 \).

Proposition 5.2. — Let us put \(\lambda_s = \frac{2}{(\alpha-1)^2} (\alpha(n-2) - n) \).
If \(3 \leq n \leq 10 \) and \(\frac{n+2}{n-2} < \alpha \) or \(n > 10 \) and \(\frac{n+2}{n-2} < \alpha < \frac{n-2\sqrt{n-1}}{n-2\sqrt{n-1}+4} \) then
\[\lambda^*(\alpha) = \max_{\mathbb{R}^+_+} g(r), \lambda^*(\alpha) > \lambda_s \text{ and } \phi(r) \sim \lambda_s^{\frac{1}{2-\alpha}} r^{\frac{2}{1-\alpha}}, \text{ as } r \to \infty. \]

If \((\rho_i) \) is an increasing sequence of positive reals, such that \((\psi_{\rho_i}) \) are solutions of \((P^n_{\lambda_s}) \) and \(\lim_{i \to \infty} \rho_i = \infty \), then \(\lim_{i \to \infty} \psi_{\rho_i}(r) = \lambda_s^{\frac{1}{2-\alpha}} (r^{\frac{2}{1-\alpha}} - 1), \forall r \in [0,1]. \)
If $n > 10$ and $\frac{n-2\sqrt{n-1}}{n-2\sqrt{n-1}-4} \leq \alpha$ then

$$
\lambda^*(\alpha) = \sup_{\mathbb{R}_+^s} g(r) = \lambda_s \text{ and } \phi(r) \sim \lambda_s^{\frac{1}{\alpha-1}} r^{\frac{2}{1-\alpha}}, \text{ as } r \to \infty.
$$

If (λ_i) is an increasing positive sequence such that $\lim_{i \to \infty} \lambda_i = \lambda_s$ and $\forall i, w_i$ is the unique solution of $(P_{\lambda_i}^\alpha)$, then

$$
\lim_{i \to \infty} w_i(r) = \lambda_s^{\frac{1}{\alpha-1}} (r^{\frac{2}{1-\alpha}} - 1), \forall r \in [0, 1].
$$

Proof. — As in the proof of Proposition 4, one can verify that $\lambda^*(\alpha) = \sup_{\mathbb{R}_+^s} g(r)$, where $g(r) = r^2 \phi^{\alpha-1}(r)$.

If $(3 \leq n \leq 10$ and $\frac{n+2}{n-2} < \alpha)$ or $(n > 10$ and $\frac{n+2}{n-2} < \alpha < \frac{n-2\sqrt{n-1}}{n-2\sqrt{n-1}-4})$, using Lemma 4, we get $f(\alpha) > n - 2$. So we can use Theorem 1 in [10] to infer that $\lambda^*(\alpha) > \lambda_s$, $(P_{\lambda^*(\alpha)}^\alpha)$ admits a unique solution and $(P_{\lambda_i}^\alpha)$ admits an infinity of solutions. Using the unique solution $u_{\lambda^*(\alpha)}$ of $(P_{\lambda^*(\alpha)}^\alpha)$, one can deduce from Proposition 1 that $u_{\lambda^*(\alpha)} = \psi_\rho$, where $\rho \in \mathbb{R}_+^s$ and $g(\rho) = \lambda^*(\alpha)$. We conclude that the supremum is achieved and $\lambda^*(\alpha) = \max_{\mathbb{R}_+^s} g(r)$.

Let us suppose that

$$
a = \liminf_{r \to \infty} g(r) < A = \limsup_{r \to \infty} g(r).
$$

For every $\lambda \in [a, A]$, the equation $g(r) = \lambda$ admits a sequence of roots (r_i), with $\lim_{i \to \infty} r_i = \infty$. As for every i, ψ_{r_i} is a solution of $(P_{\lambda_i}^\alpha)$, we get an infinity of solutions for this problem; but an infinity of solutions exists only when $\lambda = \lambda_s$ (cf. [10]). We get a contradiction and infer that

$$
a = A = \lambda_s = \lim_{r \to \infty} g(r), \text{ so } \phi(r) \sim \lambda_s^{\frac{1}{\alpha-1}} r^{\frac{2}{1-\alpha}}, \text{ as } r \to \infty.
$$

If (ρ_i) is an increasing sequence of positive constants, such that (ψ_{ρ_i}) are solutions of $(P_{\lambda_i}^\alpha)$ and $\lim_{i \to \infty} \rho_i = \infty$, then one can use the previous asymptotic behavior of ϕ to get $\lim_{i \to \infty} \psi_{\rho_i}(r) = \lambda_s^{\frac{1}{\alpha-1}} (r^{\frac{2}{1-\alpha}} - 1), \forall r \in [0, 1]$.

If $n > 10$ and $\frac{n-2\sqrt{n-1}}{n-2\sqrt{n-1}-4} \leq \alpha$, we get from Lemma 4 that $f(\alpha) \leq n - 2$. Using [10] again, we infer that $\lambda^*(\alpha) = \lambda_s$, (P_{λ}^α) admits a unique solution for every $\lambda \in [0, \lambda^*(\alpha)]$. As the function g is increasing near $r = 0$, we infer that g is increasing on a nontrivial open interval $I \subset \mathbb{R}_+^s$. For, on one hand, if g decreases on a nontrivial open interval $I \subset \mathbb{R}_+^s$, then the equation $g(r) = \lambda$ admits at least two roots $r_1 < r_2$, if $\lambda \in \min_I g(r), \max_I g(r)$, and ψ_{r_1} and ψ_{r_2} are solutions of (P_{λ}^α).
with \(\psi_{r_1}(0) \neq \psi_{r_2}(0) \), this violates the uniqueness result of [10]. On another hand, the function \(g \) can’t be constant on a nontrivial interval, otherwise we get an infinity of solutions for some \(\lambda \). One can then see that
\[
\lim_{r \to \infty} g(r) = \sup_{\mathbb{R}_+^*} g(r) = \lambda^*(\alpha); \quad \lambda^*(\alpha) = \lambda_s \text{ (cf. [10])}.
\]

So \(\phi(r) \sim \lambda_s^{1-\frac{\alpha}{2}} r^{\frac{2}{1-\alpha}} \), as \(r \to \infty \).

Using this asymptotic behavior, one can show the last statement of the proposition.

Let us put
\[
(Q_\alpha^r) \begin{cases}
\Delta u + \lambda(1 + u)^\alpha = 0, & \text{in } B_{r_0} \\
u > 0, & \text{in } B_{r_0} \\
u = 0, & \text{on } \partial B_{r_0}
\end{cases}
\]
where \(B_{r_0} = \{ x \in \mathbb{R}^n, \|x\| < r_0 \} \). For every solution \(u \) of \((Q_\alpha^r) \), we put \(v(r) = u(r_0 r) \) for every \(r \in [0, 1] \). Let \(\lambda^*_{r_0}(\alpha) \), be the maximal eigenvalue of \((Q_\alpha^r) \).

Lemma 5.3. — A function \(u \) is a solution of \((Q_\alpha^r) \), if and only if \(v \) is a solution of \((P_{r_0}^\alpha) \). In particular, we get \(\lambda^*_{r_0}(\alpha) = r_0^2 \lambda^*(\alpha) \).

Proof. — The proof is easy.

Remark 5.4. — According to the previous lemma, the results obtained here for \((P_{r_0}^\alpha) \) (on the unit ball \(B_1 \)), can be easily stated for \((Q_\alpha^r) \) (on any ball \(B_{r_0} \)).

6. Appendix

Let \(S_{i}^k \) be the set of all the \((k-i) \)-selections of \(\{1, \ldots, i\} \) and \(s(j) \) the multiplicity of the element \(j \), \(1 \leq j \leq i \). If \(u \) is a analytical solution of \((P_{r_0}^\alpha) \), with \(u(r) = \Sigma_{k=0}^\infty a_k r^k \) near \(r = 0, r_0 \) the convergence radius of this series, then

Proposition 6.1. —
\[
\forall \ k \geq 0, \ a_{2k+1} = 0, \quad a_2 = \frac{\lambda}{n-2}(1 + a_0)^\alpha \left(\frac{1}{n} - \frac{1}{2} \right)
\]
and \(\forall \ k > 1 \),
\[
a_{2k} = \frac{\lambda}{n-2} \left(\frac{1}{2k+n-2} - \frac{1}{2k} \right) \times \\
\Sigma_{i=1}^{k-1} (1 + a_0)^{\alpha-i} \frac{1}{i!} \Pi_{p=0}^{i-1} (\alpha - p) \Sigma_{s \in S_{i-1}^k} \Pi_{j=1}^{i} a_{2(1+s(j))}.
\]
Isselkou Ould Ahmed Izid Bihn

Proof. — Let us choose \(0 < r \leq \rho < r_0\), by standard integrations, we get

\[
 u(r) - u(\rho) = \frac{\lambda}{n-2} \times \left(r^{2-n} - \rho^{2-n} \right) \int_0^r t^{n-1}(1 + u(t))^\alpha dt + \int_\rho^r (t - \rho^{2-n} t^{n-1})(1 + u(t))^\alpha dt.
\]

Let us point out that

\[
 (1 + u(r))^\alpha = (1 + u(0) - u(0) + u(r))^\alpha
\]

\[
 = (1 + u(0))^{\alpha} \left(1 + \frac{u(r) - u(0)}{1 + u(0)} \right)^{\alpha} = (1 + a_0)^{\alpha} \left(1 + \sum_{i=1}^\infty \frac{a_i}{1 + a_0} r^i \right)^{\alpha},
\]

we infer that

\[
 (1 + u(r))^\alpha = (1 + a_0)^{\alpha} \left(1 + \sum_{j=1}^\infty \frac{\alpha(\alpha - 1)\ldots(\alpha - j + 1)}{j!} \left(\sum_{i=1}^\infty \frac{a_i}{1 + a_0} r^i \right)^j \right).
\]

All these series are uniformly convergent on \([0, \rho]\). If we put \((1 + u(r))^\alpha = \sum_{j=0}^\infty c_j r^j\), we get

\[
 u(r) = \frac{\lambda}{n-2} \left(r^{2-n} - \rho^{2-n} \right) \int_0^r t^{n-1} \sum_{j=0}^\infty c_j t^j dt + \int_\rho^r (t - \rho^{2-n} t^{n-1}) \sum_{j=0}^\infty c_j t^j dt
\]

\[
 = \frac{\lambda}{n-2} \left(\sum_{j=0}^\infty c_j \frac{r^{2+j}}{j+n} - \sum_{j=0}^\infty c_j \frac{\rho^{2-n} r^{j+n}}{j+n} + \sum_{j=0}^\infty c_j \frac{\rho^{j+2}}{j+2} - \sum_{j=0}^\infty c_j \frac{\rho^{j+2}}{j+n} \right)
\]

\[
 + \frac{\lambda}{n-2} \left(-\sum_{j=0}^\infty c_j \frac{r^{j+2}}{j+2} + \sum_{j=0}^\infty c_j \frac{\rho^{2-n} r^{j+n}}{j+n} \right)
\]

\[
 = \frac{\lambda}{n-2} \left(\sum_{j=2}^\infty c_{j-2} \frac{r^j}{j+n-2} + \sum_{j=0}^\infty c_j \frac{\rho^{j+2}}{j+2} - \sum_{j=0}^\infty c_j \frac{\rho^{j+2}}{j+n} - \sum_{j=2}^\infty c_{j-2} \frac{r^j}{j} \right).
\]

We finally obtain

\[
 (2) \quad u(r) = \frac{\lambda}{n-2} \left(\sum_{j=2}^\infty c_{j-2} \left(\frac{1}{j+n-2} - \frac{1}{j} \right) r^j + \sum_{j=0}^\infty c_j \rho^{j+2} \left(\frac{1}{j+2} - \frac{1}{j+n} \right) \right).
\]

Using the previous identity, we obtain

\[
 a_1 = 0, \quad \forall \, k > 1, \quad a_k = \frac{\lambda}{n-2} \left(\frac{1}{k+n-2} - \frac{1}{k} \right) c_{k-2}.
\]
Using (1), we get
\[c_0 = (1 + a_0)^\alpha, \quad c_1 = \alpha (1 + a_0)^{\alpha - 1} a_1 = 0 \]
and
\[\forall k > 1, \quad c_k = (1 + a_0)^\alpha \sum_{j=1}^{k} \frac{1}{j!} \prod_{p=0}^{j-1} (\alpha - p) \frac{1}{(1 + a_0)^j} \sum_{s \in S_k^j} \prod_{i=1}^{j} a_{1 + s(i)} \]
\[= \sum_{j=1}^{k} \frac{1}{j!} \prod_{p=0}^{j-1} (\alpha - p) (1 + a_0)^{\alpha - j} \sum_{s \in S_k^j} \prod_{i=1}^{j} a_{1 + s(i)}. \]
Using the previous relation and the fact that \(a_1 = 0 \), one can verify (by induction) that \(a_{2k+1} = 0, \forall k > 0 \). We then obtain from (2) and the expression of \(c_k \)
\[a_{2k} = \frac{\lambda}{n - 2} \left(\frac{1}{2k + n - 2} - \frac{1}{2k} \right) c_{2k-2} \]
\[= \frac{\lambda}{n - 2} \left(\frac{1}{2k + n - 2} - \frac{1}{2k} \right) \sum_{j=1}^{k-1} \frac{1}{j!} \prod_{p=0}^{j-1} (\alpha - p) (1 + a_0)^{\alpha - j} \sum_{s \in S_{k-1}^j} \prod_{i=1}^{j} a_{2(1 + s(i))}. \]
\[\forall j \in [1, k - 1], \quad \text{Card}(S_{k-1}^j) = C_k^{j-1}. \]
Let us put
\[d_2 = \frac{1}{2n} \quad \text{and} \quad \forall k > 1, \]
\[d_{2k} = \frac{1}{(2k + n - 2)(2k)} \sum_{i=1}^{k-1} \frac{1}{i!} \prod_{p=0}^{i-1} (\alpha - p) \sum_{s \in S_{k-1}^i} \prod_{j=1}^{i} d_{2(1 + s(j))}, \]
then

Lemma 6.2. \(- a_{2k} = (-1)^k \lambda^k (1 + a_0)^{k(\alpha - 1) + 1} d_{2k}, \forall k > 1. \)

Proof.
\[a_4 = \frac{\alpha \lambda^2}{(n - 2)^2} = (1 + a_0)^{2\alpha - 1} \left(\frac{1}{n + 2} - \frac{1}{4} \right) \left(\frac{1}{n} - \frac{1}{2} \right) \]
\[= \lambda^2 (1 + a_0)^{2\alpha - 1} \frac{1}{4(n + 2)} \frac{\alpha}{2n} = \lambda^2 (1 + a_0)^{2(\alpha - 1) + 1} \frac{1}{4(n + 2)} \frac{\alpha}{2n}. \]
\[d_4 = \frac{1}{4(n + 2)} \sum_{i=1}^{k-1} \frac{1}{i!} \prod_{p=0}^{i-1} (\alpha - p) \sum_{s \in S_i^j} \prod_{j=1}^{i} d_{2(1 + s(j))} \]
\[= \frac{\alpha}{4(n + 2)} d_2 = \frac{1}{4(n + 2)} \frac{\alpha}{2n}. \]
so we infer that the formula is true for \(k = 2 \). Let us suppose it true for every \(j \), such that \(2 \leq j \leq k \). From Proposition 7, we have

\[
a_{2(k+1)} = \frac{\lambda}{n-2} \left(\frac{1}{2k+n} - \frac{1}{2(k+1)} \right) \sum_{j=1}^{\lambda} \frac{1}{j!} \Pi_{p=0}^{j-1} (\alpha - p) (1 + a_0)^{\alpha - j} \sum_{s \in S_k^j} \Pi_{i=1}^j a_2(1 + s(i))
\]

\[
= \frac{-\lambda}{(2(k+1) + n - 2)(2(k+1))} \sum_{j=1}^{\lambda} \frac{1}{j!} \Pi_{p=0}^{j-1} (\alpha - p) (1 + a_0)^{\alpha - j} \sum_{s \in S_k^j} \Pi_{i=1}^j a_2(1 + s(i)) \cdot
\]

\(\forall j \in [1,k], \forall s \in S_k^j, \) if \(i \in [1,j] \), then \(1 \leq 1 + s(i) \leq k \),

so one can use the hypothesis to get \(\forall i \in [1,j] \),

\[
a_{2(1 + s(i))} = (-1)^{1+s(i)} \lambda^{1+s(i)} (1 + a_0)^{(s(i)+1)(\alpha-1)+1} d_2(1 + s(i))
\]

We then obtain

\[
\Pi_{i=1}^j a_{2(1+s(i))} = (-1)^j \lambda^j (1 + a_0)^{\alpha j + (\alpha - 1)(k-j)} \Pi_{i=1}^j d_2(1 + s(i))
\]

\[
= (-1)^j \lambda^j (1 + a_0)^{\alpha j + (\alpha - 1)s(i)} \Pi_{i=1}^j d_2(1 + s(i)).
\]

But for every \(s \in S_k^j \), we have \(\Sigma_{i=1}^j s(i) = k - j \).

We infer that

\[
\Pi_{i=1}^j a_{2(1+s(i))} = (-1)^k \lambda^k (1 + a_0)^{\alpha j + (\alpha - 1)(k-j)} \Pi_{i=1}^j d_2(1 + s(i))
\]

\[
= (-1)^k \lambda^k (1 + a_0)^{(\alpha-1)k+j} \Pi_{i=1}^j d_2(1 + s(i)).
\]

Substituting in the expression of \(a_{2(k+1)} \), we obtain

\[
a_{2(k+1)} = (-1)^{k+1} \lambda^{k+1} (1 + a_0)^{k(\alpha-1)+\alpha} \frac{1}{(2(k+1) + n - 2)(2(k+1))} \times \]

\[
\Sigma_{j=1}^{\lambda} \frac{1}{j!} \Pi_{p=0}^{j-1} (\alpha - p) \sum_{s \in S_k^j} \Pi_{i=1}^j d_2(1 + s(i))
\]

\[
= (-1)^{k+1} \lambda^{k+1} (1 + a_0)^{(k+1)(\alpha-1)+1} \frac{1}{(2(k+1) + n - 2)(2(k+1))} \times \]

\[
\Sigma_{j=1}^{\lambda} \frac{1}{j!} \Pi_{p=0}^{j-1} (\alpha - p) \sum_{s \in S_k^j} \Pi_{i=1}^j d_2(1 + s(i)).
\]

\[
= (-1)^{k+1} \lambda^{k+1} (1 + a_0)^{(k+1)(\alpha-1)+1} d_2(k+1).
\]
Let us compute the first terms of the Lane-Emden function,
\[\phi(r) = \sum_{i=0}^{\infty} a_{2i} r^{2i}, \]
near \(r = 0 \), where \(a_0 = 1 \), and
\[a_{2i} = (-1)^i 2^{i(\alpha - 1) + 1} d_{2i}, \quad \forall i > 1. \]

\[d_0 = 1; \quad d_2 = \frac{1}{2n}; \quad d_4 = \frac{1}{4(n+2)} \alpha d_2 = \frac{\alpha}{(2n)(4(n+2))}; \]
\[d_6 = \frac{1}{6(n+4)} \left(\alpha d_4 + \frac{1}{2} \alpha(\alpha - 1) d_2^2 \right) = \frac{1}{6(n+4)} \left\{ \frac{\alpha^2}{(2n)(4(n+2))} + \frac{\alpha(\alpha - 1)}{2(2n)^2} \right\}; \]
\[d_8 = \frac{1}{8(n+6)} \left(\alpha d_6 + \alpha(\alpha - 1) d_4 d_2 + \frac{\alpha(\alpha - 1)(\alpha - 2)}{6} d_2^3 \right) \]
\[= \frac{1}{8(n+6)} \left\{ \frac{\alpha^3}{(2n)(4(n+2))(6(n+4))} + \frac{\alpha^2(\alpha - 1)}{2(2n)^2(6(n+4))} + \frac{\alpha^2(\alpha - 1)}{2(2n)^2(4(n+2))} \right. \]
\[+ \frac{\alpha(\alpha - 1)(\alpha - 2)}{6(2n)^3} \left\} \right; \]
\[d_{10} = \frac{1}{10(n+8)} \left\{ \alpha d_8 + \frac{\alpha(\alpha - 1)}{2} (2d_2 d_6 + d_4^3) + \frac{\alpha(\alpha - 1)(\alpha - 2)}{6} d_2^2 d_4 + \frac{\alpha(\alpha - 1)(\alpha - 2)(\alpha - 3)}{24} d_2^4 \right\} \]
\[= \frac{1}{10(n+8)} \left\{ \frac{\alpha^4}{(2n)(4(n+2))(6(n+4))(8(n+6))} + \frac{\alpha^3(\alpha - 1)}{2(2n)^2(6(n+4))(8(n+6))} \right. \]
\[+ \frac{\alpha^3(\alpha - 1)}{(2n)^2(4(n+2))(8(n+6))} + \frac{\alpha^2(\alpha - 1)(\alpha - 2)}{6(2n)^3(8(n+6))} + \frac{\alpha^3(\alpha - 1)}{(2n)^2(4(n+2))(6(n+4))} \]
\[+ \frac{\alpha^2(\alpha - 1)^2}{2(2n)^3(6(n+4))} + \frac{\alpha^3(\alpha - 1)}{2(2n)^2(4(n+2))^2} + \frac{\alpha^2(\alpha - 1)(\alpha - 2)}{2(2n)^3(4(n+2))} \]
\[+ \frac{\alpha(\alpha - 1)(\alpha - 2)(\alpha - 3)}{24(2n)^4} \left\} \right. \].

Acknowledgement. — This work has been partially supported by the Swedish Scientific Programme (ISP).
Isselkou Ould Ahmed Izid Bihn

Bibliography