A. Sadullaev

On separately subharmonic functions (Lelong’s problem)

<http://afst.cedram.org/item?id=AFST_2011_6_20_S2_183_0>
On separately subharmonic functions
(Lelong’s problem)

A.Sadullaev

ABSTRACT. — The main result of the present paper is: every separately-subharmonic function $u(x, y)$, which is harmonic in y, can be represented locally as a sum two functions, $u = u^* + U$, where U is subharmonic and u^* is harmonic in y, subharmonic in x and harmonic in (x, y) outside of some nowhere dense set S.

RÉSUMÉ. — Le résultat essentiel de ce papier est le suivant: toute fonction séparément sous-harmonique $u(x, y)$ qui est harmonique en y peut être représentée localement comme la somme de deux fonctions $u = u^* + U$, où U est sous-harmonique et u^* est harmonique en y, sous-harmonique en x et harmonique en (x, y) en dehors d’une ensemble nulle part dense S.

1. Introduction

We will consider functions $u(x, y)$ of two groups of variables $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$. If u is separately harmonic, i.e., harmonic in x for fixed y and harmonic in y for fixed x, then u will be harmonic in both variables (Lelong [2], see also [1]). Lelong investigated also separately subharmonic functions, and proved a series of special results in this area. Here originates the question about subharmonicity of separately subharmonic functions.

(*) * Partially supported by the fundamental research of Khorezm Mamun Academy, Grant Vuzgorodok, 100174

(1) Mathematics department, National University of Uzbekistan, Vu Gorodok, 700174 Tashkent, Uzbekistan sadullaev@mail.ru
However, Wiegerinck, [3] (see also [4]) has shown that a separately subharmonic function need not to be subharmonic in general. He constructed a separately subharmonic function \(u(x, y) \) in the bidisk \(U^2 = \{|x| < 1\} \times \{|y| < 1\} \subset R_x^2 \times R_y^2 \approx \mathbb{C} \times \mathbb{C} \), which is not bounded above near 0.

The problem of subharmonicity of a separately subharmonic function \(u(x, y) \) that is in addition harmonic in \(y \), is still open.

In the present paper we will study the class of these functions. Let us begin by recalling the following well-known results:

1. If a separately subharmonic function is bounded above, then it is subharmonic (Lelong [2], Avanissian [5]);

2. If \(u^+ \in L^1_{loc} \), then \(u \) is subharmonic (Arsove [6]);

3. If \(u^+ \in L^p_{loc}, p > 0 \), then \(u \) is subharmonic (Riihentaus [7]);

4. There are also positive results under weak growth conditions (see [8], [9]).

We note that the conditions in the above results are not separated in \(x \) and \(y \). The following results demand separate conditions:

5. Suppose that \(u(x, y) \) is defined on the product domain \(B = B_1 \times B_2 \subset R_x^n \times R_y^m \). If \(u \) is subharmonic in \(x \) and harmonic in \(y \), then there are nowhere dense closed sets \(S_1 \subset B_1, S_2 \subset B_2 \) such that \(u \) is subharmonic in \(G = (B_1 \times B_2) \setminus (S_1 \times S_2) \) (Cegrell and Sadullaev [10]);

6. If \(u(x, y) \) real analytic, subharmonic in \(x \), and harmonic in \(y \), then \(u \) is subharmonic (Imomkulov [11]);

7. There exists a separately subharmonic function \(u(x, y) \), which is real analytic in \(x \), but which is not subharmonic (Cegrell and Sadullaev [10]);

8. If \(u(x, y) \) is \(C^2 \) and subharmonic in \(x \), harmonic in \(y \), then \(u \) is subharmonic (Kolodziej and Thorbjörnson [12]).

2. Results

Let \(u(x, y) \) be a separately subharmonic function in the product domain \(B = B_1 \times B_2 \), which is harmonic in \(y \). We will assume that \(u \) satisfies
this condition in a slightly larger domain \(\tilde{B} = \tilde{B}_1 \times \tilde{B}_2 \) such that \(\tilde{B} \supset \tilde{B} \). Then \(u(x, y) \) is subharmonic in a domain \(\tilde{B}_1 \times \tilde{B}_2 \setminus (S_1 \times S_2) \), where \(S_1 \subset \tilde{B}_1, S_2 \subset \tilde{B}_2 \) are closed, nowhere dense sets. Moreover, for every fixed \(y \in \tilde{B}_2 \) the Laplacian \(\Delta_x u(x, y) \) defines a positive distribution as follows

\[
F(\varphi) = \int_{\tilde{B}_1} u(x, y) \Delta_x \varphi(x) \, dx \quad \varphi \in C_0^\infty,
\]

thus for every test function \(\varphi(x) \in C_0^\infty(B_1) \), \(\text{supp} \varphi \subset B_1 \), \(\varphi \geq 0 \) we have \(F(\varphi) \geq 0 \). Hence, \(\Delta_x u(x, y) \) is a Borel measure, depending on the parameter \(y \).

Theorem 2.1. — For every test-function \(\varphi(x) \in C_0^\infty(B_1) \) \(F(\varphi) \) is harmonic in \(y \) for \(y \in B_2 \setminus S_2 \). Moreover, if \(\text{supp} \varphi \cap S_1 = \emptyset \) then \(F(\varphi) \) is harmonic in \(y \) for all \(y \in B_2 \).

We say that the measure \(\Delta_x u(x, y) \) has the harmonic property with respect to \(y \) in the domain \(G = (B_1 \times B_2) \setminus (S_1 \times S_2) \).

Proof. — The result 5) above states that \(u(x, y) \) is subharmonic and therefore \(u \) is locally bounded above in \(G = (B_1 \times B_2) \setminus (S_1 \times S_2) \). Hence the integral

\[
F(\varphi)(y) = \int_{B_1} \varphi(x) \Delta_x u(x, y) = \int_{B_1} u(x, y) \Delta_x \varphi(x)
\]

is harmonic in \(B_2 \setminus S_2 \). If \(\text{supp} \varphi \cap S_1 = \emptyset \), then this integral is harmonic in all \(B_2 \). □

Corollary 2.2 The measure \(F_E(y) = \int_E \Delta_x u(x, y) \) is harmonic in \(B_2 \) for any \(E \subset \subset B_1 \setminus S_1 \).

Corollary 2.3. — The total measure \(\|\Delta_x u(x, y)\|_{B_1} = \int_{B_1} \Delta_x u(x, y) \) is finite \((\neq \infty)\) for every fixed \(y \in B_2 \) and is harmonic function in \(B_2 \setminus S_2 \).

Theorem 2.4. — The function \(F_{B_1 \setminus S_1}(y) = \int_{B_1 \setminus S_1} \Delta_x u(x, y) \) is bounded and positive harmonic in \(B_2 \).

Proof. — Let us take an increasing sequence of compacts \(E_j \subset E_{j+1} \subset \subset B_1 \setminus S_1 \) such that \(\bigcup_j E_j = B_1 \setminus S_1 \). Then the functions \(F_{E_j}(y) = \int_{E_j} \Delta_x u(x, y) \)
are harmonic in B_2 and form an increasing sequence in j. By Harnack’s theorem either $F_{E_j}(y) \nearrow +\infty$ or $(F_{E_j})_j$ converges to a harmonic function. The first possibility is ruled out, because Corollary 2.3 provides a bound on the $F_{E_j}(y)$ for every $y \in B_2 \setminus S_2$.

Thus $\lim_{j \to \infty} F_{E_j}(y) = \int_{B_1 \setminus S_1} \Delta_x u(x, y)$ is harmonic in B_2, which completes the proof. □

Now we consider the potential

$$U(x, y) = \int_{B_1 \setminus S_1} K(x - w) \Delta_w u(w, y),$$

where K is the Newtonian kernel,

$$K(w) = \begin{cases}
\frac{1}{2\pi} \ln |w|, & \text{if } n = 2 \\
\frac{1}{(n - 2)\sigma_n |w|^{n-2}}, & \text{if } n > 2.
\end{cases}$$

The measure $\Delta_x u(x, y)$ has the harmonic property in $(B_1 \setminus S_1) \times B_2$. Moreover, for some constant C the total measure $\int_{B_1 \setminus S_1} \Delta_x u(x, y) \leq C$, $y \in B_2$. It follows that the integral $\int_{B_1 \setminus S_1} \varphi(w) \Delta_w u(w, y)$ is harmonic in y for every continuous function $\varphi \in C(\bar{B}_1)$. Let $K_j(w) \in C^\infty(\mathbb{R}^n)$ approximate K from above, $K_j(w) \downarrow K(w)$. Then for every fixed $x \in B_1$ we have

$$\int_{B_1 \setminus S_1} K_j(x - w) \Delta_w u(w, y) \downarrow \int_{B_1 \setminus S_1} K(x - w) \Delta_w u(w, y)$$

for $j \to \infty$, hence $U(x, y)$ is harmonic in y for fixed $x \in B_1$. Moreover, U is subharmonic in x and bounded above in $B_1 \times B_2$. It follows by the theorem of Lelong and Avanissian (1), that U is subharmonic in $B_1 \times B_2$.

Now we take the difference $u^*(x, y) = u(x, y) - U(x, y)$. The function $u^*(x, y)$ is separately subharmonic and is harmonic in y. Moreover, $u^*(x, y)$ is harmonic in x outside S_1. Thus we have

Theorem 2.5. — Every separately subharmonic function, which is harmonic in y, can locally be represented as a sum of two functions:

$$u(x, y) = u^*(x, y) + U(x, y),$$

where U is a subharmonic function and u^* is separately subharmonic and harmonic in y, such that the associated measure $\Delta_x u^*(x, y)$ is supported on S_1 for every fixed $y \in B_2$.

– 186 –
A. Sadullaev

Problem 2.6. — We finish our discussion by recalling an open problem on the definition of plurisubharmonic functions: in this definition one demands two conditions.

a. The function \(u(z) \) is upper semicontinuous;

b. For each complex line \(l \) the restriction \(u|_l \) is subharmonic.

The above results on separately subharmonic functions seem to indicate, that the condition a. may be implied by b. But this is still open.

Bibliography