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Stochastic calculus with respect to fractional
Brownian motion(∗)

David Nualart (1)

ABSTRACT. — Fractional Brownian motion (fBm) is a centered self-
similar Gaussian process with stationary increments, which depends on a
parameter H ∈ (0, 1) called the Hurst index. In this conference we will
survey some recent advances in the stochastic calculus with respect to
fBm. In the particular case H = 1/2, the process is an ordinary Brownian
motion, but otherwise it is not a semimartingale and Itô calculus cannot
be used. Different approaches have been introduced to construct stochastic
integrals with respect to fBm: pathwise techniques, Malliavin calculus,
approximation by Riemann sums. We will describe these methods and
present the corresponding change of variable formulas. Some applications
will be discussed.

RÉSUMÉ. — Le mouvement brownien fractionnaire (MBF) est un pro-
cessus gaussien centré auto-similaire à accroissements stationnaires qui
dépend d’un paramètre H ∈ (0, 1), appelé paramètre de Hurst. Dans cette
conférence, nous donnerons une synthèse des résultats nouveaux en calcul
stochastique par rapport à un MBF. Dans le cas particulier H = 1/2, ce
processus est le mouvement brownien classique, sinon, ce n’est pas une
semi-martingale et on ne peut pas utiliser le calcul d’Itô. Différentes ap-
proches ont été utilisées pour construire des intégrales stochastiques par
rapport à un MBF : techniques trajectorielles, calcul de Malliavin, ap-
proximation par des sommes de Riemann. Nous décrivons ces méthodes
et présentons les formules de changement de variables associées. Plusieurs
applications seront présentées.

1. Fractional Brownian motion

Fractional Brownian motion is a centered Gaussian process
B = {Bt, t � 0} with the covariance function

RH (t, s) = E(BtBs) =
1
2

(
s2H + t2H − |t − s|2H

)
. (1.1)
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The parameter H ∈ (0, 1) is called the Hurst parameter. This process was
introduced by Kolmogorov [21] and studied by Mandelbrot and Van Ness
in [24], where a stochastic integral representation in terms of a standard
Brownian motion was established.

Fractional Brownian motion has the following self-similar property: For
any constant a > 0, the processes

{
a−HBat, t � 0

}
and {Bt, t � 0} have the

same distribution.

From (1.1) we can deduce the following expression for the variance of
the increment of the process in an interval [s, t]:

E
(
|Bt − Bs|2

)
= |t − s|2H . (1.2)

This implies that fBm has stationary increments. Furthermore, by Kol-
mogorov’s continuity criterion, we deduce that fBm has a version with α-
Hölder continuous trajectories, for any α < H.

For H = 1
2 , the covariance can be written as R 1

2
(t, s) = t ∧ s, and the

process B is an ordinary Brownian motion. In this case the increments of
the process in disjoint intervals are independent. However, for H �= 1

2 , the
increments are not independent, and, furthermore, the fBm is not a semi-
martingale. Let r(n) := E [(Bt+1 − Bt) (Bn+1 − Bn)]. Then, r(n) behaves
as Cn2H−2, as n tends to infinity (long-memory process). In particular, if
H > 1

2 , then
∑

n |r(n)| = ∞ (long-range dependence) and if H < 1
2 , then,∑

n |r(n)| < ∞ (short-range dependence).

The self-similarity and long memory properties make the fractional Brow-
nian motion a suitable input noise in a variety of models. Recently, fBm
has been applied in connection with financial time series, hydrology and
telecommunications. In order to develop these applications there is a need
for a stochastic calculus with respect to the fBm. Nevertheless, fBm is nei-
ther a semimartingale nor a Markov process, and new tools are required in
order to handle the differentials of fBm and to formulate and solve stochastic
differential equations driven by a fBm.

There are essentially two different methods to define stochastic integrals
with respect to the fractional Brownian motion:

(i) A path-wise approach that uses the Hölder continuity properties of the
sample paths, developed from the works by Ciesielski, Kerkyacharian
and Roynette [7] and Zähle [37].

(ii) The stochastic calculus of variations (Malliavin calculus) for the fBm
introduced by Decreusefond and Üstünel in [13].
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Stochastic calculus with respect to the fractional Brownian motion and applications

The stochastic calculus with respect to the fBm permits to formulate
and solve stochastic differential equations driven by a fBm. The stochastic
integral defined using the Malliavin calculus leads to anticipative stochastic
differential equations, which are difficult to solve except in some simple
cases. In the one-dimensional case, the existence and uniqueness of a solution
can be recovered by using the change-of-variable formula and the Doss-
Sussmanm method (see [26]). In the multidimensional case, when H > 1

2 ,
the existence and uniqueness of a solution have been established in several
papers (see Lyons [22] and Nualart and Rascanu [28]). For H ∈ ( 1

4 , 1
2 ),

Coutin and Qian have obtained in [12] the existence of strong solutions and
a Wong-Zakai type approximation limit for multi-dimensional stochastic
differential equations driven by a fBm, using the approach of rough path
analysis developed by Lyons and Qian in [23]. The large deviations for these
equations have been studied by Millet and Sanz-Solé in [25].

The purpose of this talk is to introduce some of the recent advances in the
stochastic calculus with respect to the fBm and discuss several applications.

2. Stochastic integration
with respect to fractional Brownian motion

We first construct the stochastic integral of deterministic functions.

2.1. Wiener integral with respect to fBm

Fix a time interval [0, T ]. Consider a fBm {Bt, t ∈ [0, T ]} with Hurst
parameter H ∈ (0, 1). We denote by E the set of step functions on [0, T ].
Let H be the Hilbert space defined as the closure of E with respect to the
scalar product 〈

1[0,t],1[0,s]

〉
H = RH(t, s). (2.1)

The mapping 1[0,t] −→ Bt can be extended to an isometry between H and
the Gaussian space H1(B) associated with B. We will denote this isometry
by ϕ −→ B(ϕ), and we would like to interpret B(ϕ) as the Wiener integral
of ϕ ∈ H with respect to B and to write B(ϕ) =

∫ T

0
ϕdB. However, we

do not know whether the elements of H can be considered as real-valued
functions. This turns out to be true for H < 1

2 , but is false when H > 1
2

(see Pipiras and Taqqu [30], [31]).

The fBm has the following integral representation:

Bt =
∫ t

0

KH(t, s)dWs,
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where W = {Wt, t � 0} is an ordinary Wiener process and KH(t, s) is the
Volterra kernel given by

KH(t, s) = cH

[(
t

s

)H− 1
2

(t − s)H− 1
2 − (H − 1

2
)s

1
2−H

∫ t

s

uH− 3
2 (u − s)H− 1

2 du

]
,

(2.2)
if s < t and KH(t, s) = 0 if s � t. Here cH is the normalizing constant

cH =
[

(2H + 1
2 )Γ( 1

2 − H)
Γ( 1

2 + H)Γ(2 − 2H)

]1/2

.

The operator K∗
H : E →L2([0, T ]) defined by(

K∗
H1[0,t]

)
(s) = KH(t, s). (2.3)

is a linear isometry that can be extended to the Hilbert space H. In fact,
for any s, t ∈ [0, T ] we have, using (2.3) and (2.1),

〈
K∗

H1[0,t], K
∗
H1[0,s]

〉
L2([0,T ])

= 〈KH(t, ·), KH(s, ·)〉L2([0,T ])

=
∫ t∧s

0

KH(t, u)KH(s, u)du

= RH(t, s) =
〈
1[0,t],1[0,s]

〉
H .

This operator plays a basic role in the construction of a stochastic calculus
with respect to B.

If H > 1
2 , the operator K∗

H can be expressed in terms of fractional
integrals:

(K∗
Hϕ) (s) = cHΓ(H − 1

2
)s

1
2−H(IH− 1

2
T− uH− 1

2 ϕ(u))(s), (2.4)

and H is the space of distributions f such that s
1
2−HI

H− 1
2

0+ (f(u)uH− 1
2 )(s)

is a square integrable function. In this case, the scalar product in H has the
simpler expression

〈ϕ, ψ〉H = αH

∫ T

0

∫ T

0

|r − u|2H−2ϕrψududr,

where αH = H(2H−1), and H contains the Banach space |H| of measurable
functions ϕ on [0, T ] such that

‖ϕ‖2
|H| = αH

∫ T

0

∫ T

0

|ϕr| |ϕu| |r − u|2H−2
drdu < ∞. (2.5)
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Stochastic calculus with respect to the fractional Brownian motion and applications

We have the following continuous embeddings (see [31]):

L
1
H ([0, T ]) ⊂ |H| ⊂ H.

For H < 1
2 , the operator K∗

H can be expressed in terms of fractional
derivatives:

(K∗
Hϕ) (s) = dHs

1
2−H(D

1
2−H

T− uH− 1
2 ϕ(u))(s), (2.6)

where dH = cHΓ(H + 1
2 ). In this case, H = I

1
2−H

T− (L2) (see [13]) and

Cγ([0, T ]) ⊂ H

if γ > 1
2 − H.

As a consequence, we deduce the following transfer rule:

B(ϕ) = W (K∗
Hϕ), (2.7)

for any ϕ ∈ H.

2.2. Stochastic integrals of random processes

Suppose now that u = {ut, t ∈ [0, T ]} is a random process. By the
transfer rule (2.7) we can write∫ T

0

utdBt =
∫ T

0

(K∗
Hu)t dWt. (2.8)

However, even if the process u is adapted to the filtration generated by
the fBm (which coincides with the filtration generated by W ), the process
K∗

Hu is no longer adapted because the operator K∗
H does not preserves the

adaptability. Therefore, in order to define stochastic integrals of random
processes with respect to the fBm we need anticipating integrals.

In the case of an ordinary Brownian motion, the divergence operator
coincides with an extension of Itô’s stochastic integral to anticipating pro-
cesses introduced by Skorohod in [34]. Thus, we could use the Skorohod
integral in formula (2.8), and in that case, the integral

∫ T

0
utdBt coincides

with the divergence operator in the Malliavin calculus with respect to the
fBm B. The approach of Malliavin calculus to define stochastic integrals
with respect to the fBm has been introduced by Decreusefont and Üstünel
in [13], and further developed by several authors (Carmona and Coutin [6],
Alòs, Mazet and Nualart [3], Alòs and Nualart [4], Alòs, León and Nualart
[1], and Hu [18]).
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2.2.1. Stochastic calculus of variations with respect to fBm

Let B = {Bt, t ∈ [0, T ]} be a fBm with Hurst parameter H ∈ (0, 1). Let
S be the set of smooth and cylindrical random variables of the form

F = f(B(φ1), . . . , B(φn)), (2.9)

where n � 1, f ∈ C∞
b (Rn) (f and all its partial derivatives are bounded),

and φi ∈ H.

The derivative operator D of a smooth and cylindrical random variable
F of the form (2.9) is defined as the H-valued random variable

DF =
n∑

i=1

∂f

∂xi
(B(φ1), . . . , B(φn))φi.

The derivative operator D is then a closable operator from L2(Ω) into
L2(Ω;H). We denote by D

1,2 is the closure of S with respect to the norm

‖F‖1,2 =
√

E (F 2) + E
(
‖DF‖2

H

)
.

The divergence operator δ is the adjoint of the derivative operator. That
is, we say that a random variable u in L2(Ω;H) belongs to the domain of
the divergence operator, denoted by Dom δ, if

|E (〈DF, u〉H)| � cu ‖F‖L2(Ω)

for any F ∈ S. In this case δ(u) is defined by the duality relationship

E(Fδ(u)) = E (〈DF, u〉H) , (2.10)

for any F ∈ D
1,2.

We have D
1,2(H) ⊂Dom δ and for any u ∈ D

1,2(H)

E
(
δ(u)2

)
= E

(
‖u‖2

H

)
+ E

(〈
Du, (Du)∗

〉
H⊗H

)
, (2.11)

where (Du)∗ is the adjoint of (Du) in the Hilbert space H⊗H.

2.2.2. The divergence and symmetric integrals in the case H > 1
2

The following result (see [4]) provides a relationship between the diver-
gence operator and the symmetric stochastic integral introduced by Russo
and Vallois in [33].
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Proposition 2.1. — Let u = {ut, t ∈ [0, T ]} be a stochastic process in
the space D

1,2(H). Suppose that

E
(
‖u‖2

|H| + ‖Du‖2
|H|⊗|H|

)
< ∞

and ∫ T

0

∫ T

0

|Dsut| |t − s|2H−2
dsdt < ∞, a.s. (2.12)

Then the symmetric integral
∫ T

0
utdBt, defined as the limit in probability as

ε tends to zero of

(2ε)−1

∫ T

0

us(B(s+ε)∧T − B(s−ε)∨0)ds,

exists and we have∫ T

0

utdBt = δ(u) + αH

∫ T

0

∫ T

0

Dsut |t − s|2H−2
dsdt. (2.13)

Remark. — The symmetric integral can be replaced by the forward or
backward integrals in the above proposition.

Suppose that u = {ut, t ∈ [0, T ]} is a stochastic process satisfying the
conditions of Proposition 2.1. Then, we can define the indefinite integral∫ t

0
usdBs =

∫ T

0
us1[0,t](s)dBs and the following decomposition holds

∫ t

0

usdBs = δ(u1[0,t]) + αH

∫ t

0

∫ T

0

Drus |s − r|2H−2
drds.

The second summand in this expression is a process with absolutely contin-
uous paths. The first summand can be estimated using Meyer’s inequalities
for the divergence operator. For any p > 1, we denote by L

1,p
H is the set of

processes u ∈ D
1,p(H) such that

‖u‖p

L
1,p
H

:= E

(
‖u‖p

L1/H([0,T ])
+ ‖Du‖p

L1/H([0,T ]2)

)
< ∞. (2.14)

If u ∈ L
1,p
H with pH > 1 and

‖u‖p
1,p :=

∫ T

0

|E (us)|p ds +
∫ T

0

E

(∫ T

0

|Dsur|1/H
ds

)pH

dr < ∞
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then the indefinite divergence integral Xt =
∫ t

0
usδBs has a version with

γ-Hölder continuous trajectories and for all γ < H − 1
p and the following

maximal inequality holds

E

(
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

usδBs

∣∣∣∣
p
)

� C ‖u‖1,p .

2.2.3. Itô’s formula for the divergence integral

If F is a function of class C2, and H > 1
2 , the path-wise Riemann-

Stieltjes integral
∫ t

0
F ′(Bs)dBs exists for each t ∈ [0, T ] by the theory of

Young [36]. Moreover the following change of variables formula holds:

F (Bt) = F (0) +
∫ t

0

F ′(Bs)dBs. (2.15)

Suppose that F is a function of class C2(R) such that

max {|F (x)|, |F ′(x)|, |F ′′(x)|} � ceλx2
, (2.16)

where c and λ are positive constants such that λ < 1
4T 2H . Then, the process

F ′(Bt) satisfies the conditions of Proposition 2.1. As a consequence, we
obtain∫ t

0

F ′(Bs)dBs =
∫ t

0

F ′(Bs)δBs + αH

∫ t

0

∫ s

0

F ′′(Bs)(s − r)2H−2drds

=
∫ t

0

F ′(Bs)δBs + H

∫ t

0

F ′′(Bs)s2H−1ds. (2.17)

Therefore, putting together (2.15) and (2.17) we deduce the following Itô’s
formula for the divergence process

F (Bt) = F (0) +
∫ t

0

F ′(Bs)δBs + H

∫ t

0

F ′′(Bs)s2H−1ds. (2.18)

The following general version of Itô’s formula has been proved in [4]:

Theorem 2.2. — Let F be a function of class C2(R). Assume that
u = {ut, t ∈ [0, T ]} is a process locally in the space D

2,2(|H|) such that
the indefinite integral Xt =

∫ t

0
usδBs is a.s. continuous. Assume that ‖u‖2
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belongs to H. Then for each t ∈ [0, T ] the following formula holds

F (Xt) = F (0) +
∫ t

0

F ′(Xs)usδBs

+αH

∫ t

0

F ′′(Xs) us

(∫ T

0

|s − σ|2H−2

(∫ s

0

DσuθδBθ

)
dσ

)
ds

+αH

∫ t

0

F ′′(Xs)us

(∫ s

0

uθ (s − θ)2H−2
dθ

)
ds. (2.19)

Remark. — Taking the limit as H converges to 1
2 in Equation (2.19)

we recover the usual Itô’s formula for the the Skorohod integral proved by
Nualart and Pardoux [27].

The following result on the p-variation of the divergence integral has
been obtained by in [17]. Fix T > 0 and set tni := iT

n , where n is a positive
integer and i = 0, 1, . . . , n. Given a stochastic process X = {Xt, t ∈ [0, T ]}
and p � 1, we set

V p
n (X) :=

n−1∑
i=0

∣∣∣Xtn
i+1

− Xtn
i

∣∣∣p .

Theorem 2.3. — Let 1
2 < H < 1 and u ∈ L

1,1/H
H . Set Xt :=

∫ t

0
usδBs,

for each t ∈ [0, T ]. Then

V 1/H
n (X)n → ∞ −→

L1(Ω)
CH

∫ T

0

|us|1/H
ds, (2.20)

where CH := E
(
|B1|1/H

)
.

2.2.4. Stochastic integration with respect to fBm in the case H < 1
2

The extension of the previous results to the case H < 1
2 is not trivial

and new difficulties appear. For instance, the forward integral
∫ T

0
BtdBt in

the sense of Russo and Vallois does not exists, and one is forced to use
symmetric integrals. A counterpart of Proposition 2.1 in the case H < 1

2
and Itô’s formulae 2.18 and 2.19 have been proved in [1] for 1

4 < H < 1
2 .

The reason for the restriction 1
4 < H is the following. In order to define the

divergence integral
∫ T

0
F ′(Bs)δBs, we need the process F ′(Bs) to belong

to L2(Ω;H). This is clearly true, provided F satisfies the growth condition
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(2.16), because F ′(Bs) is Hölder continuous of order H − ε > 1
2 − H if

ε < 2H − 1
2 . If H � 1

4 , one can show (see [9]) that

P (B ∈ H) = 0,

and the space D
1,2(H) is too small to contain processes of the form F ′(Bt).

In [9] a new approach is introduced in order to extend the domain of
the divergence operator to processes whose trajectories are not necessarily
in the space H. The basic tool for this extension of the divergence operator
is the adjoint of the operator K∗

H in L2(0, T ) given by

(
K∗,a

H ϕ
)
(s) = dHsH− 1

2 D
1
2−H
0+

(
u

1
2−Hϕ(u)

)
(s).

Set H2 = (K∗
H)−1 (

K∗,a
H

)−1 (L2(0, T )) and denote by SH the space of smooth
and cylindrical random variables of the form

F = f(B(φ1), . . . , B(φn)), (2.21)

where n � 1, f ∈ C∞
b (Rn), and φi ∈ H2.

Definition 2.4. — Let u = {ut, t ∈ [0, T ]} be a measurable process
such that

E

(∫ T

0

u2
t dt

)
< ∞.

We say that u ∈ Dom∗δ if there exists a random variable δ(u) ∈ L2(Ω) such
that for all F ∈ SH we have∫

R

E(utK
∗,a
H K∗

HDtF )dt = E(δ(u)F ).

This extended domain of the divergence operator satisfies the following
elementary properties:

1. Domδ ⊂ Dom∗δ, and δ restricted to Domδ coincides with the diver-
gence operator.

2. If u ∈ Dom∗δ then E(u) belongs to H.

3. If u is a deterministic process, then u ∈ Dom∗δ if and only if u ∈ H.
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This extended domain of the divergence operator leads to the following
version of Itô’s formula for the divergence process, established by Cheridito
and Nualart in [9].

Theorem 2.5. — Suppose that F is a function of class C2(R) satisfying
the growth condition (2.16). Then for all t ∈ [0, T ], the process
{F ′(Bs)1[0,t](s)} belongs to Dom∗δ and we have

F (Bt) = F (0) +
∫ t

0

F ′(Bs)δBs + H

∫ t

0

F ′′(Bs)s2H−1ds. (2.22)

2.2.5. Local time and Tanaka’s formula for fBm

Berman proved in [5] that that fractional Brownian motion B = {Bt, t � 0}
has a local time lat continuous in (a, t) ∈ R × [0,∞) which satisfies the
occupation formula ∫ t

0

g(Bs)ds =
∫

R

g(a)lat da. (2.23)

for every continuous and bounded function g on R. Set

La
t = 2H

∫ t

0

s2H−1la(ds).

Then a → La
t is the density of the occupation measure

µ(C) = 2H

∫ t

0

1C(Bs)s2H−1ds,

where C is a Borel subset of R. As an extension of the Itô ’s formula (2.22),
the following result has been proved in [9]:

Theorem 2.6. — Let 0 < t < ∞ and a ∈ R. Then

1{Bs>a}1[0,t](s) ∈ Dom∗δ ,

and

(Bt − a)+ = (−a)+ +
∫ t

0

1{Bs>a}δBs +
1
2
La

t . (2.24)

This result can be considered as a version of Tanaka’s formula for the
fBm. In [11] it is proved that for H > 1

3 , the process 1{Bs>a}1[0,t](s) belongs
to Domδ and ( 2.24) holds.
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3. Fractional Bessel processes

Let B = {(B1
t , . . . , Bd

t ) , t � 0} be a d-dimensional fractional Brownian
motion with Hurst parameter H ∈ (0, 1). The fractional Bessel process
is defined by Rt =

√
(B1

t )2 + · · · + (Bd
t )2. If H > 1

2 and d � 2, as an
application of the multidimensional version of the Itô formula (2.18), one
obtains (see [17]):

Rt =
d∑

i=1

∫ t

0

Bi
s

Rs
δBi

s + H(d − 1)
∫ t

0

s2H−1

Rs
ds. (3.1)

For d = 1, Tanaka’s formula (2.24) says that (for any H ∈ (0, 1))

|Bt| =
∫ t

0

sign(Bs)δBs + L0
t . (3.2)

Assume H > 1
2 and set

Xt =




d∑
i=1

∫ t

0

Bi
s

Rs
δBi

s if d � 2

∫ t

0

sign(Bs)δBs if d = 1

. (3.3)

In the standard Brownian motion case, the process Xt is a one-dimensional
Brownian motion, as a consequence of Lévy’s characterization theorem. The
process Xt is H self-similar and it has the the same 1

H -finite variation as
the fBm. It is then natural to conjecture that Xt is a fBm. Some partial
results have been obtained so far:

It has been proved in [19] that Xt is not an Ft -fractional Brownian
motion, where Ft is the filtration generated by the fBm. Moreover, it is
proved in [19] that for H > 2/3 it does not have the long-range dependence
property and, as a consequence, it is not a fBm. In [14] it is proved that for
any Hurst parameter H ∈ (0, 1), H �= 1

2 , it is not possible for the process
Xt defined in (3.3) to be a fBm and to safisfy the equation

R2
t = 2

∫ t

0

RsδXs + nt2H .

– 74 –



Stochastic calculus with respect to the fractional Brownian motion and applications

4. Vortex filaments based on fBm

The observations of three-dimensional turbulent fluids indicate that the
vorticity field of the fluid is concentrated along thin structures called vor-
tex filaments. In his book Chorin [10] suggests probabilistic descriptions of
vortex filaments by trajectories of self-avoiding walks on a lattice. Flandoli
[15] introduced a model of vortex filaments based on a three-dimensional
Brownian motion. A basic problem in these models is the computation of
the kynetic energy of a given configuration.

Denote by u(x) the velocity field of the fluid at point x ∈ R
3, and let

ξ = curlu be the associated vorticity field. The kynetic energy of the field
will be

H =
1
2

∫
R3

|u(x)|2dx =
1
8π

∫
R3

∫
R3

ξ(x) · ξ(y)
|x − y| dxdy. (4.1)

We will assume that the vorticity field is concentrated along a thin tube
centered in a curve γ = {γt, 0 � t � T}. Moreover, we will choose a ran-
dom model and consider this curve as the trajectory of a three-dimensional
fractional Brownian motion B = {Bt, 0 � t � T}. This can be formally
expressed as

ξ(x) = Γ
∫

R3

(∫ T

0

δ(x − y − Bs)·Bsds

)
ρ(dy), (4.2)

where Γ is a parameter called the circuitation, and ρ is a probability measure
on R

3 with compact support.

Substituting (4.2) into (4.1) we derive the following formal expression
for the kynetic energy:

H =
∫

R3

∫
R3

Hxyρ(dx)ρ(dy), (4.3)

where the so-called interaction energy Hxy is given by the double integral

Hxy =
Γ2

8π

3∑
i=1

∫ T

0

∫ T

0

1
|x + Bt − y − Bs|

dBi
sdBi

t. (4.4)

We are interested in the following problems: Is H a well defined random
variable? Does it have moments of all orders and even exponential moments?
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In order to give a rigorous meaning to the double integral (4.4) let us
introduce the regularization of the function |·|−1 :

σn = |·|−1 ∗ p1/n, (4.5)

where p1/n is the Gaussian kernel with variance 1
n . Then, the smoothed

interaction energy

H
n
xy =

Γ2

8π

3∑
i=1

∫ T

0

(∫ T

0

σn(x + Bt − y − Bs) dBi
s

)
dBi

t, (4.6)

is well defined, where the integrals are path-wise Riemann-Stieltjes integrals.
Set

H
n =

∫
R3

∫
R3

H
n
xyρ(dx)ρ(dy). (4.7)

The following result has been proved in [29]:

Theorem 4.1. — Suppose that the measure ρ satisfies∫
R3

∫
R3

|x − y|1− 1
H ρ(dx)ρ(dy) < ∞. (4.8)

Let H
n
xy be the smoothed interaction energy defined by (4.6). Then H

n de-
fined in (4.7) converges, for all k � 1, in Lk(Ω) to a random variable H � 0
that we call the energy associated with the vorticity field (4.2).

If H = 1
2 , fBm B is a classical three-dimensional Brownian motion. In

this case condition (4.8) would be
∫
R3

∫
R3 |x − y|−1ρ(dx)ρ(dy) < ∞, which

is the assumption made by Flandoli [15] and Flandoli and Gubinelli [16].
In this last paper, using Fourier approach and Itô’s stochastic calculus, the
authors show that Ee−βH < ∞ for sufficiently small β.

The proof of Theorem 4.1 is based on the stochastic calculus of variations
with respect to fBm and the application of Fourier transform.
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