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Minkowski sums and Brownian exit times(∗)

Christer Borell (1)

ABSTRACT. — If C is a domain in Rn, the Brownian exit time of C
is denoted by TC . Given domains C and D in Rn this paper gives an
upper bound of the distribution function of TC+D when the distribution
functions of TC and TD are known. The bound is sharp if C and D are
parallel affine half-spaces. The paper also exhibits an extension of the
Ehrhard inequality.

RÉSUMÉ. — Si C est un domaine de Rn, le temps de sortie brownien
de C est noté TC . Donnant domaines C et D de Rn cet article montre
une borne supérieure pour la fonction de répartition de TC+D quand les
fonctions de répartition de TC et TD sont connues. En plus l’article exhibe
une généralisation de l’inégalité d’Ehrhard.

1. Introduction

Throughout W = (W (t))t�0 denotes Brownian motion in Rn and if C
is a domain in Rn,

TC = TWC = inf {t > 0; W (t) /∈ C}
is called the exit time from C. Below the notation Px [·] or Ex [·] indicates
that Brownian motion starts at the point x at time zero.

The main aim of this paper is to prove an inequality of the Brunn-
Minkowski type for distribution functions of Brownian exit times from do-
mains in Rn, such that equality occurs for parallel affine half-spaces. Here
perhaps the most interesting point is the fact that the set of all Brownian
paths {W (ω); TC > t} is not an affine half-space if C is an affine half-space
in Rn. Recall that affine half-spaces often turn out to be extremals for Gaus-
sian measures (see Ehrhard [5] and Carlen, Kerce [3]). In connection with
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our main result Theorem 1.1, the Bachelier formula for the distribution of
the maximum of real-valued Brownian motion (see e.g. Karatzas and Shreve
[6] , p. 96) plays an important part. Finally, to make comparisons with the
Ehrhard inequality (Ehrhard [4] , Borell [2]) we find it natural to extend
this inequality to more general linear combinations of sets.

Let us continue by giving some more definitions. First the so called vector
sum or Minkowski sum of two subsets A and B of Rn equals

A + B = {x + y; x ∈ A and y ∈ B} .

Moreover, if α > 0, the dilation αA = {αx; x ∈ A}.

In [1] I use a method based on the maximum principle for elliptic dif-
ferential equations to prove the following inequality for expected Brownian
exit times. Suppose C and D are bounded domains in Rn and x ∈ C, y ∈ D.
Then √

Ex+y [TC+D] �
√

Ex [TC ] +
√

Ey [TD]. (1.1)

Here equality occurs in many interesting cases. First recall that

Ex [TC ] =
∫ ∞

0

Px [TC > t] dt.

Therefore by the scaling property of Brownian motion√
Eαx [TαC ] = α

√
Ex [TC ], α > 0

and it follows that equality occurs in (1.1) if C is convex and D × {y} =
λ(C ×{x}) + (a, a) for appropriate λ > 0 and a ∈ Rn. In this paper we will
use a method similar to those in my papers [1] and [2] to prove inequalities
of the Brunn-Minkowski type for distribution functions of Brownian exit
times.

If H is an open affine half-space in Rn, the Bachelier formula for the
distribution of the maximum of real-valued Brownian motion yields

Px [TH > t] = Ψ(
d(x,Hc)√

t
), t > 0, x ∈ H

where d(x,Hc) = miny/∈H | x− y | and

Ψ(r) = 2
∫ r

0

exp(−λ2

2
)
dλ√
2π

, 0 � r �∞.
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The main aim of this paper is to prove the following

Theorem 1.1. — Suppose C and D are domains in Rn and
f :C → [0, 1] , g:D → [0, 1] , and h:C + D → [0, 1] continuous functions
such that

Ψ−1(h(x + y)) � Ψ−1(f(x)) + Ψ−1(g(y)), x ∈ C, y ∈ D. (1.2)

Then, if x ∈ C, y ∈ D, and t > 0,

Ψ−1(Ex+y [h(W (t));TC+D > t])

� Ψ−1(Ex [f(W (t));TC > t]) + Ψ−1(Ey [g(W (t));TD > t]). (1.3)

In particular,

Ψ−1(Px+y [TC+D > t]) � Ψ−1(Px [TC > t]) + Ψ−1(Py([TD > t]). (1.4)

Equality occurs in (1.4) if C and D are parallel affine half-spaces.

It is not obvious to the author that Theorem 1.1 implies (1.1).

Next we introduce some additional definitions. Below F denotes a real,
separable Fréchet space and γ a centered Gaussian measure on F , that is γ is
a Borel probability measure on F such that each bounded linear functional
on F has a centered Gaussian distribution. The Borel field in F is denoted
by B(F ). The definitions of Minkowski sums and dilations of subsets of F
are as in the special case F = Rn.

If

Φ(r) =
∫ r

−∞
exp(−λ2

2
)
dλ√
2π

, −∞ � r �∞,

and 0 < θ < 1, my paper [2] proves the so called Ehrhard inequality

Φ−1(γ(θA + (1− θ)B)) � θΦ−1(γ(A)) + (1− θ)Φ−1(γ(B))

for all A,B ∈ B(F ). As in the LataEla paper [8] we here follow the convention
that ∞−∞ = −∞+∞ = −∞.

The following result is slightly more informative than the Ehrhard in-
equality.

Theorem 1.2. — Suppose α, β > 0 are given. Then the inequality

Φ−1(γ(αA + βB) � αΦ−1(γ(A)) + βΦ−1(γ(B)) (1.5)
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is valid for all A,B ∈ B(F ) if

α + β � 1 and | α− β |� 1. (1.6)

Moreover, if γ is not a Dirac measure at origin and (1.5) is valid for all
A,B ∈ B(F ) then (1.6) holds.

Equality occurs in (1.5) if A and B are parallel affine half-spaces. If, in
addition, α + β = 1 equality occurs in (1.5) if A is convex and B = A.

To comment on a certain relation between Theorems 1.1 and 1.2 we
denote by C([0,∞[ ;Rn) the space of all continuous maps of [0,∞[ into Rn

equipped with its standard locally convex topology of uniform convergence
on compact subintervals of [0,∞[ . Furthermore, we will have the picture
that the identity map on C([0,∞[ ;Rn) gives a representation of Brownian
motion in Rn relative to Wiener measure on C([0,∞[ ;Rn). Now using the
shorthand notation Wx(t) = x + W (t) it follows that

[Wαx+βy(s) ∈ αC + βD, 0 < s � t]

⊇ α [Wx(s) ∈ C, 0 < s � t] + β [Wy(s) ∈ D, 0 < s � t] , α, β > 0

and, hence, by (1.5),

Φ−1(Pαx+βy [TαC+βD > t]) � αΦ−1(Px [TC > t]) + βΦ−1(Py [TD > t])
(1.7)

for all reals α and β satisfying (1.6). The inequality (1.4) is not weaker than
the inequality (1.7) with α = β = 1 since

Ψ(Ψ−1(a) + Ψ−1(b)) � Φ(Φ−1(a) + Φ−1(b)) (1.8)

for all 0 � a, b � 1, which follows from the fact that there is equality in
(1.4) when C and D are parallel affine half-spaces. In fact, strict inequality
holds in (1.8) for all 0 � a < 1, 0 � b < 1, such that (a, b) �= (0, 0). To
see this, suppose 0 � a � 1, 0 � b < 1 and let f(a) be the difference of
the members on the left-hand and right-hand side of (1.8). If b = 0, then
f(a) = a > 0 for all 0 < a < 1. Next suppose 0 < b < 1. The function f is
continuous and f(0) = b and f(1) = 0. Furthermore, if 0 < a < 1,

f ′(a) = exp(−Ψ−1(a)Ψ−1(b)− 1
2
(Ψ−1(b))2)

− exp(−Φ−1(a)Φ−1(b)− 1
2
(Φ−1(b))2).

If 1
2 � b < 1, then Φ−1(b) � 0 and since Ψ−1(y) > max(0,Φ−1(y)) if

0 < y < 1 we have that f ′(a) < 0 for all 0 < a < 1. Thus f is strictly
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decreasing and we get f(a) > 0 if 0 � a < 1. Next suppose 0 < b < 1
2 .

Then Φ−1(b) < 0 and it follows that f ′ is decreasing on ]0, 1[ . Thus f is
concave and, accordingly from this, f(a) > 0 if 0 � a < 1.

It does not seem to exist any natural counterpart of the inequality (1.4)
for linear combinations of sets as in (1.7). For example, the inequality

Ψ−1(P 1
2x+

1
2y

[
T 1

2C+ 1
2D

> t
]
) � 1

2
Ψ−1(Px [TC > t]) +

1
2
Ψ−1(Py([TD > t])

is not true in general. In fact, if that was the case we use the concavity of
Ψ to get

P 1
2x+

1
2y

[
T 1

2C+ 1
2D

> t
]
� 1

2
Px [TC > t] +

1
2
Py([TD > t] .

Now if C is convex and D = C we integrate over 0 � t < ∞ and have
that the expected exit time Ex [TC ] is a concave function of x ∈ C, which is
wrong for the plane domain

{
z ∈ C; 0 < arg z < π

4 and | z |< 1
}

(see my
paper [1], Example 3.1).

By passing note that if α = β = 1 in (1.5) and the function Φ−1 is
everywhere replaced by Ψ−1 the resulting inequality is false since, otherwise,
(1.8) would be an equality for all 0 < a, b < 1.

Next suppose F = Rn and γ = γn in Theorem 1.2. Then if C ∈ B(Rn)
is convex and A = B = C and α = β = r

2 �
1
2 in (1.5) we get the following

result by Sudakov and Tsirelson [9] of independent interest.

Corollary 1.1. — Suppose C ∈ B(Rn) is convex and H an open
affine half-space in Rn such that

γn(C) = γn(H).

Then
γn(rC) � γn(rH) if r � 1.

Stated otherwise,

Φ−1(γn(rC)) � rΦ−1(γn(C)) if r � 1.

See also Yurinsky´s book [10] and the early paper by Landau and Shepp
[7], which shows Corollary 1.1 in the special case γn(C) � 1

2 .

The present paper is organized as follows. In Section 2 we prove Theorem
1.1. Finally, Section 3 is devoted to a (partly sketchy) proof of Theorem 1.2.
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2. Proof of Theorems 1.1

By monotone convergence there is no loss of generality to assume that
C and D are finite unions of open cubes with edges parallel to the coor-
dinate axes. In addition, given δ ∈ ]0, 1[, we may assume f :C → [0, δ] and
g:D → [0, δ] are continuous functions with compact supports in C and D,
respectively. Finally, there is no loss of generality to assume that h possesses
compact support in C + D and

h : C + D →
[
0,Ψ(2Ψ−1(δ))

]
.

Now for each q = f, g, h, set

uq(t, x) = Ex

[
q(W (t)); TDom q > t

]
for every t � 0 and every x belonging to the closure of Dom q, where Dom
q denotes the domain of definition of q. Moreover, set

Uq = Ψ−1(uq)

and introduce the continuous function

V (t, x, y) = Uh(t, x + y)− Uf (t, x)− Ug(t, y)

defined for all t � 0 and x ∈ C̄, y ∈ D̄. We will prove that V (t, x, y) � 0,
which implies (1.3).

The construction shows that V (0, x, y) � 0 for all x ∈ C̄, y ∈ D̄.
Furthermore, if x ∈ C and y ∈ ∂D, then V (t, x, y) � 0 if and only if
uh(t, x + y) � uf (t, x). The latter inequality is obvious since

uf (t, x) = E [f(x + W (t));x + W (s) ∈ C, 0 < s � t]

� E [h(x + W (t) + y); x + W (s) + y ∈ C + y, 0 < s � t]

� E [h(x + W (t) + y); x + W (s) + y ∈ C + D, 0 < s � t] = uh(t, x + y).

In a similar way, it follows that V (t, x, y) � 0 if x ∈ ∂C and y ∈ D. In the
next step we will show that V (t, x, y) is a solution of a certain parabolic
differential equation and the non-negativity of V (t, x, y) then follows from
the maximum principle.

Recall that Ψ(a) = 2Φ(a) − 1, 0 � a � ∞, so that Ψ′(a) = 2ϕ(a),
0 � a < ∞, where ϕ(a) = Φ′(a) if a ∈R. Moreover, if q = f, g, h we have
in the interior of Dom uq that

∂uq
∂t

=
1
2
∆uq
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and, as uq = Ψ(Uq),
∂uq
∂t

= 2ϕ(Uq)
∂Uq
∂t

,

∇uq = 2ϕ(Uq)∇Uq
and

∆uq = 2ϕ(Uq)(∆Uq − Uq | ∇Uq |2)
Thus

∂Uq
∂t

=
1
2
∆Uq −

1
2
Uq | ∇Uq |2 .

To simplify notation, from now on let

ξ = (t, x), η = (t, y), and ς = (t, x + y)

so that, if t > 0, x ∈ C and y ∈ D,

∇xV = (∇Uh)(ς)− (∇Uf )(ξ),

∇yV = (∇Uh)(ς)− (∇Ug)(η),

∆xV = (∆Uh)(ς)− (∆Uf )(ξ),

∆yV = (∆Uh)(ς)− (∆Ug)(η)

and ∑
1�i�n

∂2V

∂xi∂yi
= (∆Uh)(ς).

Thus introducing the differential operator

E =
1
2

{
∆x −

∑
1�i�n

∂2

∂xi∂yi
+ ∆y

}

we get

EV =
1
2
{(∆Uh)(ς)− (∆Uf )(ξ)− (∆Ug)(η)} .

Note here that the quadratic form

Q(r1, ..., rn, s1, ..., sn) =
∑

1�i�n
r2
i −

∑
1�i�n

risi +
∑

1�i�n
s2
i

is positive semi-definite. From the above

EV =
∂Uh
∂t

(ς) +
1
2
Uh(ς) | (∇Uh)(ς) |2
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−∂Uf
∂t

(ξ)− 1
2
Uf (ξ) | (∇Uf )(ξ) |2

−∂Ug
∂t

(η)− 1
2
Ug(η) | (∇Ug)(η) |2

or
EV =

∂V

∂t
+ Ω(t, x, y)

with
Ω(t, x, y) =

1
2
Uh(ς) | (∇Uh)(ς) |2 −

1
2
Uf (ξ) | (∇Uf )(ξ) |2

−1
2
Ug(η) | (∇Ug)(η) |2 .

Here
| (∇Uf )(ξ) |2=| (∇Uh)(ς) |2

+
∑

1�i�n

{
∂Uf
∂xi

(ξ) +
∂Uh
∂xi

(ς)
} {

∂Uf
∂xi

(ξ)− ∂Uh
∂xi

(ς)
}

and
| (∇Ug)(η) |2=| (∇Uh)(ς) |2

+
∑

1�i�n

{
∂Ug
∂xi

(η) +
∂Uh
∂xi

(ς)
} {

∂Ug
∂xi

(η)− ∂Uh
∂xi

(ς)
}
.

From the above equations it follows that

Ω(t, x, y) =
1
2
| (∇Uh)(ς) |2 V − b(t, x, y) · ∇(x,y)V

for an appropriate function b(t, x, y). Moreover,

EV + b(t, x, y) · ∇(x,y)V =
∂V

∂t
+

1
2
| (∇Uh)(ς) |2 V.

The non-negativity of V (t, x, y) now follows from the maximum princi-
ple. For completeness we give a direct proof here. Let T ∈ ]0,∞[ be fixed. We
know that the function V (t, x, y) is non-negative on ({0}×(C×D))∪([0, T ]×
∂(C×D)). Therefore, if V (t, x, y) < 0 at some point (t, x, y) ∈ [0, T ]×(C̄×D̄)
there exists a strictly positive number ε such that the function εt+V (t, x, y)
possesses a strictly negative minimum in [0, T ]× (C̄ × D̄) at a certain point
ς0 = (t0, x0, y0) ∈ ]0, T ]× (C ×D). But then

V (ς0) < 0,
∂V

∂t
(ς0) � −ε, ∇(x,y)V (ς0) = 0, and EV (ς0) � 0.

and we have got a contradiction. This proves the inequality (1.3).
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The inequality (1.4) follows by choosing f = g = h = 1 in (1.3).
Furthermore, the distribution function of Brownian exit time from an affine
half-space shows that equality occurs in (1.4) if C and D are parallel affine
half-spaces. This completes the proof of Theorem 1.1.

3. A sketchy proof of Theorem 1.2

Let

dγn(x) = exp(−1
2
| x |2) dx√

2π
n

be the canonical Gauss measure in Rn.

First suppose α, β > 0 and

Φ−1(γn(αA + βB)) � αΦ−1(γn(A)) + βΦ−1(γn(B))

for all A,B ∈ B(Rn). We claim that (1.6) holds.

To see this suppose C ∈ B(Rn) is convex, symmetric, and
0 < γn(C) < 1

2 . Then

Φ−1(γn((α + β)C)) � αΦ−1(γn(C)) + βΦ−1(γn(C))

Now, if α + β < 1 it follows that (α + β)C ⊆ C and we get

Φ−1(γn(C)) � αΦ−1(γn(C)) + βΦ−1(γn(C))

or
0 � (α + β − 1)Φ−1(γn(C))

which is a contradiction. On the other hand if | α− β |> 1 we get a contra-
diction as follows. Depending on symmetry there is no loss of generality to
assume that β − α > 1. Then

Rn \ C ⊇ αC + β(Rn \ C)

and we get

Φ−1(γn(Rn \ C)) � αΦ−1(γn(C)) + βΦ−1(γn(Rn \ C))

or
−Φ−1(γn(C)) � αΦ−1(γn(C))− βΦ−1(γn(C))
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since Φ−1(1− y) = −Φ−1(y) for all 0 < y < 1. Thus

0 > (α + 1− β)Φ−1(γn(C))

which is a contradiction.

To prove that (1.6) implies that (1.5) is valid for all A,B ∈ B(F ) there
is no loss of generality to assume F = Rn and γ = γn. Most parts of the
proof may be arranged in a similar way as the proof of Theorem 1.1 above
and, moreover, we may proceed almost in the same manner as in my proof
of Ehrhard’s inequality [2] (replace the pair (θ, 1− θ) by (α, β) and replace
the differential operator

E =
1
2

{
∆x + 2

∑
1�i�n

∂2

∂xi∂yi
+ ∆y

}

by the differential operator

Enew=
1
2

{
∆x +

1− α2 − β2

αβ

∑
1�i�n

∂2

∂xi∂yi
+ ∆y

}
.

Finally, note that if, α, β > 0, the differential operator Enew is semi-elliptic
if and only if α + β � 1 and| α− β |� 1). The details are omitted here.

Acknowledgement. The author is very grateful to the referee for point-
ing out an error in an earlier version of this paper.
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