Mathématiques

Bernard Dacorogna, Pierre Maréchal
Convex $\mathrm{SO}(N) \times \mathrm{SO}(n)$-invariant functions and refinements of von Neumann's inequality

Tome XVI, $\mathrm{n}^{\mathrm{o}} 1$ (2007), p. 71-89.
http://afst.cedram.org/item?id=AFST_2007_6_16_1_71_0
© Université Paul Sabatier, Toulouse, 2007, tous droits réservés.
L'accès aux articles de la revue «Annales de la faculté des sciences de Toulouse Mathématiques» (http://afst.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://afst.cedram. org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques

Convex $\operatorname{SO}(\mathrm{N}) \times \mathrm{SO}(\mathrm{n})$-invariant functions and refinements of von Neumann's inequality ${ }^{(*)}$

Bernard Dacorogna ${ }^{(1)}$, Pierre Maréchal ${ }^{(2)}$

Abstract

A function f on $M_{N \times n}(\mathbb{R})$ which is $\mathrm{SO}(N) \times \operatorname{SO}(n)$ invariant is convex if and only if its restriction to the subspace of diagonal matrices is convex. This results from Von Neumann type inequalities and appeals, in the case where $N=n$, to the notion of signed singular value.

RÉSuMÉ. - Une fonction f sur $M_{N \times n}(\mathbb{R})$ qui est $\mathrm{SO}(N) \times \mathrm{SO}(n)$-invariante est convexe si et seulement si sa restriction au sous-espace des matrices diagonales est convexe. Ceci résulte de variantes de l'inégalité de Von Neumann et fait appel, dans le cas où $N=n$, à la notion de valeur singulière signée.

1. Introduction

A function $f: M_{n}(\mathbb{R}) \rightarrow[-\infty, \infty]$ is said to be $\mathrm{SO}(n) \times \mathrm{SO}(n)$-invariant if

$$
\forall \xi \in M_{n}(\mathbb{R}), \forall Q, R \in \mathrm{SO}(n), \quad f\left(Q \xi R^{t}\right)=f(\xi)
$$

The specification of an $\mathrm{SO}(n) \times \mathrm{SO}(n)$-invariant function f is easily seen to be equivalent to that of a function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ which is invariant under permutation of the components and under change of sign of an even number of components. We will be mostly concerned with following fact:

An $\mathrm{SO}(n) \times \mathrm{SO}(n)$-invariant function f is convex if and only if its restriction to $D_{n}(\mathbb{R})$, the subspace of $M_{n}(\mathbb{R})$ of diagonal matrices, is convex.

This was established by Dacorogna and Koshigoe [4] in the case $n=2$, and later by Vincent [17] in the general case, as a consequence of the convexity

[^0]theorem of Kostant [7]. An analogous statement, for convex $\mathrm{O}(n) \times \mathrm{O}(n)$ invariant functions, is well known (see Dacorogna and Marcellini [3] ; see also Ball [1] and Le Dret [9]).

On the other hand, Von Neumann's trace inequality, namely,

$$
\begin{equation*}
\operatorname{tr}\left(\xi \eta^{t}\right) \leqslant \sum_{k=1}^{n} \lambda_{k}(\xi) \lambda_{k}(\eta) \tag{1.1}
\end{equation*}
$$

where $\lambda_{1}(\xi) \leqslant \ldots \leqslant \lambda_{n}(\xi)$ denote the increasingly ordered singular values of ξ, can be significantly refined. On denoting by $\mu_{1}(\xi), \ldots, \mu_{n}(\xi)$ the signed singular values, that is,

$$
\mu_{1}(\xi):=\operatorname{sgn}(\operatorname{det} \xi) \lambda_{1}(\xi) \quad \text { and } \quad \mu_{k}(\xi):=\lambda_{k}(\xi) \quad \text { for } \quad k \geqslant 2
$$

the following holds:

$$
\begin{equation*}
\operatorname{tr}\left(\xi \eta^{t}\right) \leqslant \sum_{k=1}^{n} \mu_{k}(\xi) \mu_{k}(\eta) \tag{1.2}
\end{equation*}
$$

This inequality, which was first established by Rosakis [13], is strictly more stringent than that of Von Neumann, and contains it as an immediate consequence.

The purposes of this paper are the following. First, we give a variant of Rosakis' proof of Inequality (1.2). This variant is self-contained, in the sense that it does not use Von Neumann's inequality. Second, we establish the link between Inequality (1.2) and the above mentioned result on convex $\mathrm{SO}(n) \times \mathrm{SO}(n)$-invariant functions. Our strategy relies mostly on convex duality rather than Lie theoretic arguments (as in Vincent [17]). Third, we consider analogous results for rectangular matrices. In the latter case, the notion of signed singular value does not make sense, but the notions of $\mathrm{O}(N) \times \mathrm{O}(n)$-invariance and $\mathrm{SO}(N) \times \mathrm{SO}(n)$-invariance coincide when $N \neq n$ (see Proposition 2.2 below). A rectangular version of Von Neumann's trace inequality then allows to establish the desired properties.

We now introduce some notation. We denote by $M_{N \times n}(\mathbb{R})$ and $D_{N \times n}(\mathbb{R})$ the space of $(N \times n)$-matrices and the subspace of diagonal $(N \times n)$-matrices, respectively. (A matrix $M=\left(m_{i j}\right) \in M_{N \times n}(\mathbb{R})$ is said to be diagonal if $m_{i j}=0$ whenever $i \neq j$.) If $N=n$, we write $M_{n}(\mathbb{R})=M_{N \times n}(\mathbb{R})$ and $D_{n}(\mathbb{R})=D_{N \times n}(\mathbb{R})$. We denote by $\langle\cdot, \cdot\rangle$ the standard scalar product in $M_{N \times n}(\mathbb{R}):$

$$
\langle M, N\rangle=\sum_{j=1}^{N} \sum_{k=1}^{n} M_{j k} N_{j k}=\operatorname{tr}\left(M N^{t}\right)=\operatorname{tr}\left(M^{t} N\right)
$$

For all $\mathbf{x} \in \mathbb{R}^{n}$, we denote by $\operatorname{diag}_{N \times n}(\mathbf{x})$ the diagonal matrix in $M_{N \times n}(\mathbb{R})$ whose diagonal elements are the components of \mathbf{x}. In the square case $(N=$ n), we will often write diag $=\operatorname{diag}_{N \times n}$.

For all $m \in \mathbb{N}^{*}$, we denote by $\mathrm{GL}(m), \mathrm{O}(m)$ and $\mathrm{SO}(m)$ the group of all invertible ($m \times m$)-matrices, the subgroup of all orthogonal matrices and the subgroup of all orthogonal matrices with determinant 1, respectively. We denote by $\Pi(m)$ the subgroup of $\mathrm{O}(m)$ which consists of the matrices having exactly one nonzero entry per line and per column which belongs to $\{-1,1\}$, by $\Pi_{e}(m)$ the subgroup of $\Pi(m)$ which consists of the matrices having an even number of entries equal to -1 , and by $\mathrm{S}(m)$ the subgroup of $\Pi_{e}(m)$ of all permutation matrices. Notice that $\Pi_{e}(m)$ is the subgroup generated by the permutation matrices and $\operatorname{diag}_{m \times m}(-1,-1,1, \ldots, 1)$, and that

$$
\operatorname{card} \Pi_{e}(m)=2^{m-1} m!
$$

Notice also that $\mathrm{GL}(m), \mathrm{O}(m), \mathrm{SO}(m), \Pi(m), \Pi_{e}(m)$ and $\mathrm{S}(m)$ are stable under transposition.

2. Preliminaries

We consider functions of matrices in $M_{N \times n}(\mathbb{R})$ either in the square case $(N=n)$ or in the rectangular case $(N \neq n)$. In the latter case, we will always assume that $N>n$, the opposite case being entirely analogous.

Throughout, we will write, for all $\xi \in M_{N \times n}(\mathbb{R})$,

$$
\boldsymbol{\lambda}(\xi)=\left(\lambda_{1}(\xi), \ldots, \lambda_{n}(\xi)\right) \quad \text { and } \quad \boldsymbol{\mu}(\xi)=\left(\mu_{1}(\xi), \ldots, \mu_{n}(\xi)\right)
$$

Recall that, for all $\xi \in M_{N \times n}(\mathbb{R})$, we can find $Q \in \mathrm{O}(N)$ and $R \in \mathrm{O}(n)$ such that

$$
\xi=Q \Lambda R^{t} \quad \text { where } \quad \Lambda:=\operatorname{diag}_{N \times n}\left(\lambda_{1}(\xi), \ldots, \lambda_{n}(\xi)\right)
$$

(see [6], Theorem 7.3.5). It is clear that, in the square case ($N=n$), we may choose Q and R in $\mathrm{SO}(n)$ provided that $\lambda_{1}(\xi)$ is replaced by $\mu_{1}(\xi)$ in Λ.

Given a subgroup G of $\mathrm{GL}(N)$ and a subgroup H of $\mathrm{GL}(n)$, we say that a function $f: M_{N \times n}(\mathbb{R}) \rightarrow[-\infty, \infty]$ is $G \times H^{t}$-invariant if

$$
\forall \xi \in M_{N \times n}(\mathbb{R}), \forall Q \in G, \forall R \in H, \quad f\left(Q \xi R^{t}\right)=f(\xi)
$$

All subgroups G, H encountered in this paper are stable under transposition, so we will equivalently speak of $G \times H$-invariance. For example, a function $f: M_{N \times n}(\mathbb{R}) \rightarrow[-\infty, \infty]$ is $\mathrm{O}(N) \times \mathrm{O}(n)$-invariant if

$$
\forall \xi \in M_{N \times n}(\mathbb{R}), \forall Q \in \mathrm{O}(N), \forall R \in \mathrm{O}(n), \quad f\left(Q \xi R^{t}\right)=f(\xi)
$$

Given any subgroup G of $\operatorname{GL}(n)$, we say that a function $g: \mathbb{R}^{n} \rightarrow[-\infty, \infty]$ is G-invariant if

$$
\forall \mathbf{x} \in \mathbb{R}^{n}, \forall M \in G, \quad g(M \mathbf{x})=g(\mathbf{x})
$$

It is customary to refer to $\mathrm{S}(n)$-invariant functions as symmetric functions.
The following proposition is an immediate consequence of the Singular Value Decomposition (see [6], Theorem 7.3.5, for example).

Proposition 2.1. -
(i) Let $f: M_{n}(\mathbb{R}) \rightarrow[-\infty, \infty]$. Then f is $\mathrm{SO}(n) \times \mathrm{SO}(n)$-invariant if and only if f satisfies

$$
f=f \circ \operatorname{diag} \circ \boldsymbol{\mu}
$$

and $g:=f \circ$ diag is then the unique $\Pi_{e}(n)$-invariant function such that $f=g \circ \boldsymbol{\mu}$.
(ii) Let $f: M_{N \times n}(\mathbb{R}) \rightarrow[-\infty, \infty]$, where $N \geqslant n$. Then f is $\mathrm{O}(N) \times \mathrm{O}(n)-$ invariant if and only if f satisfies

$$
f=f \circ \operatorname{diag}_{N \times n} \circ \boldsymbol{\lambda},
$$

and $g:=f \circ \operatorname{diag}_{N \times n}$ is then the unique $\Pi(n)$-invariant function such that $f=g \circ \boldsymbol{\lambda}$.

It is clear that, if $N=n$, the notions of $\mathrm{O}(N) \times \mathrm{O}(n), \mathrm{SO}(N) \times \mathrm{O}(n)$ and $\mathrm{O}(N) \times \mathrm{SO}(n)$-invariance coincide, but differ from that of $\mathrm{SO}(N) \times \mathrm{SO}(n)$ invariance. However, if $N \neq n$, all four notions do coincide:

Proposition 2.2. - Let $f: M_{N \times n}(\mathbb{R}) \rightarrow[-\infty, \infty]$, where $N>n$. Then the following are equivalent.
(i) f is $\mathrm{O}(N) \times \mathrm{O}(n)$-invariant;
(ii) f is $\mathrm{SO}(N) \times \mathrm{SO}(n)$-invariant.

Proof. - Obviously, we need only prove that (ii) implies (i). We will see that, if f is $\operatorname{SO}(N) \times \operatorname{SO}(n)$-invariant, then $f=f \circ \operatorname{diag}_{N \times n} \circ \boldsymbol{\lambda}$. The conclusion will then follow from Proposition 2.1.

Let $\xi \in M_{N \times n}(\mathbb{R})$. By the Singular Value Decomposition, there exists $U \in \mathrm{O}(N), V \in \mathrm{O}(n)$ such that

$$
\xi=U \Lambda V^{t}, \quad \text { where } \quad \Lambda:=\operatorname{diag}_{N \times n}\left(\lambda_{1}(\xi), \ldots, \lambda_{n}(\xi)\right)
$$

Convex $\mathrm{SO}(\mathrm{N}) \times \mathrm{SO}(\mathrm{n})$-invariant functions and refinements of von Neumann's inequality

For all $m \geqslant 1$, let $H_{m}:=\operatorname{diag}(-1,1 \ldots, 1)$ and $K_{m}:=\operatorname{diag}(1, \ldots, 1,-1)$ in $M_{m}(\mathbb{R})$.

- If $U \in \operatorname{SO}(N)$ and $V \in \operatorname{SO}(n)$, then

$$
\begin{equation*}
f(\xi)=f(\Lambda)=\left(f \circ \operatorname{diag}_{N \times n} \circ \boldsymbol{\lambda}\right)(\xi) \tag{2.1}
\end{equation*}
$$

- If $U \in \mathrm{O}(N) \backslash \mathrm{SO}(N)$ and $V \in \mathrm{O}(n) \backslash \mathrm{SO}(n)$, we may write $\Lambda=$ $H_{N} \Lambda H_{n}$, so that $U \Lambda V^{t}=\left(U H_{N}\right) \Lambda\left(V H_{n}\right)^{t}$, where $U H_{N} \in \mathrm{SO}(N)$ and $V H_{n} \in \operatorname{SO}(n)$. Thus Equation (2.1) holds.
- If $U \in \mathrm{O}(N) \backslash \mathrm{SO}(N)$ and $V \in \mathrm{SO}(n)$, we may write $\Lambda=K_{N} \Lambda$, so that $U \Lambda V^{t}=\left(U K_{N}\right) \Lambda V^{t}$, where $U K_{N} \in \mathrm{SO}(N)$. Thus Equation (2.1) holds.
- If $U \in \mathrm{SO}(N)$ and $V \in \mathrm{O}(n) \backslash \mathrm{SO}(n)$, we may write $\Lambda=H_{N} K_{N} \Lambda H_{n}$, so that $U \Lambda V^{t}=\left(U H_{N} K_{N}\right) \Lambda\left(V H_{n}\right)^{t}$, where $U H_{N} K_{N} \in \mathrm{SO}(N)$ and $V H_{n} \in \operatorname{SO}(n)$. Thus Equation (2.1) holds.

Thus we have shown that $f=f \circ \operatorname{diag}_{N \times n} \circ \boldsymbol{\lambda}$.

3. Von Neumann type inequalities

This section is devoted to Von Neumann type Inequalities (see Theorem 3.3 below). Our strategy is inspired by Rosakis' paper [13]. It combines a variational argument and the resolution of some discrete optimization problem. The main advantage of our proof is that we get the classical von Neumann inequality as a by product, while Rosakis uses it in his proof. We will need the following technical results.

Lemma 3.1. -
(i) Let $D \in M_{n}(\mathbb{R})$ be diagonal, with diagonal entries whose absolute values are pairwise distinct. If $M \in M_{n}(\mathbb{R})$ is such that both $M D$ and $D M$ are symmetric, then M is diagonal.
(ii) Let $D \in M_{N \times n}(\mathbb{R})$ be diagonal $(N>n)$, with nonzero diagonal entries whose absolute values are pairwise distinct. If $M \in M_{n \times N}(\mathbb{R})$ is such that both $M D$ and $D M$ are symmetric, then M is diagonal.

Proof. -
(i) Let $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$. Assuming that $M D$ and $D M$ are symmetric, we have

$$
M D^{2}=D M^{t} D=D^{2} M
$$

where D^{2} is diagonal and has pairwise distinct diagonal entries. Now, for all $i, j \in\{1, \ldots, n\}$,

$$
\left(M D^{2}\right)_{i j}=M_{i j} d_{j}^{2} \quad \text { and } \quad\left(D^{2} M\right)_{i j}=d_{i}^{2} M_{i j}
$$

If $i \neq j$, then $d_{i}^{2} \neq d_{j}^{2}$, which shows that $M_{i j}=0$.
(ii) Let us write $D^{t}=[\Delta ; Z]$, with $\Delta=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ and $Z=0 \in$ $M_{n \times(N-n)}(\mathbb{R})$. Assuming that $M D$ and $D M$ are symmetric, we have

$$
M D D^{t}=D^{t} M^{t} D^{t}=D^{t} D M
$$

On writing $M=\left[M_{1} ; M_{2}\right]$ with $M_{1} \in M_{n}(\mathbb{R})$ and $M_{2} \in M_{n \times(N-n)}(\mathbb{R})$, the above equation says that

$$
M_{1} \Delta^{2}=\Delta^{2} M_{1} \quad \text { and } \quad \Delta^{2} M_{2}=0
$$

Part (i) then implies that M_{1} is diagonal, and since Δ^{2} is diagonal with nonzero diagonal entries, we have $M_{2}=0$.

The following proposition may be regarded as a primary version of Inequality (1.2), for diagonal matrices.

Proposition 3.2. - Let $b_{1}, \ldots, b_{n} \in \mathbb{R}$ satisfy $\left|b_{1}\right| \leqslant b_{2} \leqslant \ldots \leqslant b_{n}$. Let $a_{1}, \ldots, a_{n} \in \mathbb{R}$, and let τ be a permutation of $\{1, \ldots, n\}$ such that $\left|a_{\tau(1)}\right| \leqslant$ $\ldots \leqslant\left|a_{\tau(n)}\right|$.
(i) If $\prod_{j=1}^{n} a_{j} \geqslant 0$, then $a_{1} b_{1}+\cdots+a_{n} b_{n} \leqslant\left|a_{\tau(1)}\right| b_{1}+\ldots+\left|a_{\tau(n)}\right| b_{n}$;
(ii) if $\prod_{j=1}^{n} a_{j}<0$, then $a_{1} b_{1}+\cdots+a_{n} b_{n} \leqslant-\left|a_{\tau(1)}\right| b_{1}+\ldots+\left|a_{\tau(n)}\right| b_{n}$.

In other words, if \mathbf{b} belongs to the set

$$
\Gamma_{e}:=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}| | x_{1} \mid \leqslant x_{2} \leqslant \ldots \leqslant x_{n}\right\}
$$

then

$$
\max _{M \in \Pi_{e}(n)}\langle M \mathbf{a}, \mathbf{b}\rangle=\langle\boldsymbol{\mu}(\operatorname{diag} \mathbf{a}), \mathbf{b}\rangle
$$

Convex $\mathrm{SO}(\mathrm{N}) \times \mathrm{SO}(\mathrm{n})$-invariant functions and refinements of von Neumann's inequality

Proof. - The case $n=2$ is straightforward. It says that, if $\left|b_{1}\right| \leqslant b_{2}$ and if $\tau \in \mathrm{S}(2)$ is such that $\left|a_{\tau(1)}\right| \leqslant\left|a_{\tau(2)}\right|$, then
(i') $a_{1} a_{2} \geqslant 0$ implies $a_{1} b_{1}+a_{2} b_{2} \leqslant\left|a_{\tau(1)}\right| b_{1}+\left|a_{\tau(2)}\right| b_{2}$, and
(ii') $a_{1} a_{2}<0$ implies $a_{1} b_{1}+a_{2} b_{2} \leqslant-\left|a_{\tau(1)}\right| b_{1}+\left|a_{\tau(2)}\right| b_{2}$.

We will use these rules to prove the result in the general case. The given permutation τ will be decomposed as a well chosen product of transpositions, each of them giving rise to an inequality via (i') or (ii'). For example, assuming that $\left|a_{k}\right| \geqslant\left|a_{k+1}\right|$ for some k, we can write, if $a_{k} a_{k+1} \geqslant 0$,

$$
\begin{align*}
& a_{1} b_{1}+\cdots+a_{k} b_{k}+a_{k+1} b_{k+1}+\cdots+a_{n} b_{n} \\
& \quad \leqslant a_{1} b_{1}+\cdots+\left|a_{k+1}\right| b_{k}+\left|a_{k}\right| b_{k+1}+\cdots+a_{n} b_{n} \tag{3.1}
\end{align*}
$$

or, if $a_{k} a_{k+1}<0$,

$$
\begin{align*}
& a_{1} b_{1}+\cdots+a_{k} b_{k}+a_{k+1} b_{k+1}+\cdots+a_{n} b_{n} \\
& \quad \leqslant a_{1} b_{1}+\cdots-\left|a_{k+1}\right| b_{k}+\left|a_{k}\right| b_{k+1}+\cdots+a_{n} b_{n} . \tag{3.2}
\end{align*}
$$

Since the b_{k} will keep the same place throughout, we will symbolize inequalities such as (3.1), (3.2) by

$$
\begin{align*}
\left(a_{1}, \ldots, a_{k}, a_{k+1}, \ldots, a_{n}\right) & \rightarrow\left(a_{1}, \ldots,\left|a_{k+1}\right|,\left|a_{k}\right|, \ldots, a_{n}\right) \tag{3.3}\\
\left(a_{1}, \ldots, a_{k}, a_{k+1}, \ldots, a_{n}\right) & \rightarrow\left(a_{1}, \ldots,-\left|a_{k+1}\right|,\left|a_{k}\right|, \ldots, a_{n}\right) \tag{3.4}
\end{align*}
$$

respectively.
We first consider the case where $b_{1}>0$. Suppose that $\prod_{j=1}^{n} a_{j} \geqslant 0$. Clearly,

$$
\left(a_{1}, \ldots, a_{n}\right) \rightarrow\left(\left|a_{1}\right|, \ldots,\left|a_{n}\right|\right) .
$$

Now, $\left|a_{\tau(n)}\right|$ can migrate rightward by means of a transposition of type (3.3). Thus

$$
\left(\left|a_{1}\right|, \ldots,\left|a_{n}\right|\right) \rightarrow\left(\left|a_{1}\right|, \ldots,\left|a_{\tau(n)-1}\right|,\left|a_{\tau(n)+1}\right|, \ldots,\left|a_{n-1}\right|,\left|a_{\tau(n)}\right|\right)
$$

Repeating this process with $\left|a_{\tau(n-1)}\right|,\left|a_{\tau(n-2)}\right|$ and so on will give rise to the desired inequality. Suppose next that $\prod_{j=1}^{n} a_{j}<0$. In this case, we decide to replace all but one of the negative a_{j} by their absolute values: for example, if a_{k} is negative,

$$
\left(a_{1}, \ldots, a_{n}\right) \rightarrow\left(\left|a_{1}\right|, \ldots,\left|a_{k-1}\right|,-\left|a_{k}\right|,\left|a_{k+1}\right|, \ldots,\left|a_{n}\right|\right)
$$

Now we let $\left|a_{\tau(n)}\right|$ migrate rightward, using either a transposition of type (3.3) or a transposition of type (3.4) according to the signs of the elements under
consideration. Each transposition leaves one negative element. Repeating this process with $\left|a_{\tau(n-1)}\right|,\left|a_{\tau(n-2)}\right|$ and so on will eventually sort the $\left|a_{j}\right|$ according to τ, and give rise to

$$
\begin{aligned}
& \left(\left|a_{1}\right|, \ldots,\left|a_{k-1}\right|,-\left|a_{k}\right|,\left|a_{k+1}\right|, \ldots,\left|a_{n}\right|\right) \\
& \quad \rightarrow \quad\left(\left|a_{\tau(1)}\right|,\left|a_{\tau(2)}\right|, \ldots,-\left|a_{\tau(l)}\right|, \ldots,\left|a_{\tau(n-1)}\right|,\left|a_{\tau(n)}\right|\right)
\end{aligned}
$$

Finally, it is clear that the minus sign is allowed to migrate leftward, since all elements are now sorted increasingly. Therefore,

$$
\begin{aligned}
& \left(\left|a_{\tau(1)}\right|,\left|a_{\tau(2)}\right|, \ldots,-\left|a_{\tau(l)}\right|, \ldots,\left|a_{\tau(n-1)}\right|,\left|a_{\tau(n)}\right|\right) \\
& \quad \rightarrow \quad\left(-\left|a_{\tau(1)}\right|,\left|a_{\tau(2)}\right|, \ldots,\left|a_{\tau(n)}\right|\right)
\end{aligned}
$$

and we are done.
Finally, the case where $b_{1}<0$ is easily obtained from the above strategy by observing that $a_{1} b_{1}+\cdots+a_{n} b_{n}=\left(-a_{1}\right)\left(-b_{1}\right)+a_{2} b_{2}+\cdots+a_{n} b_{n}$.

We are now ready to prove the main theorem of this section.
Theorem 3.3. -
(i) Let $\xi, \eta \in M_{n}(\mathbb{R})$. Then

$$
\max _{Q, R \in S O(n)}\left\{\operatorname{tr}\left(Q \xi R^{t} \eta^{t}\right)\right\}=\sum_{j=1}^{n} \mu_{j}(\xi) \mu_{j}(\eta)
$$

Consequently, $\operatorname{tr}\left(\xi \eta^{t}\right) \leqslant \sum_{j=1}^{n} \mu_{j}(\xi) \mu_{j}(\eta)$.
(ii) Let $\xi, \eta \in M_{N \times n}(\mathbb{R})$ where $N \geqslant n$. Then

$$
\max _{\substack{Q \in \mathrm{O}(N) \\ R \in \mathrm{O}(n)}}\left\{\operatorname{tr}\left(Q \xi R^{t} \eta^{t}\right)\right\}=\sum_{j=1}^{n} \lambda_{j}(\xi) \lambda_{j}(\eta)
$$

Consequently, $\operatorname{tr}\left(\xi \eta^{t}\right) \leqslant \sum_{j=1}^{n} \lambda_{j}(\xi) \lambda_{j}(\eta)$.
Proof. -
(i) As already said, the beginning of our proof follows the one of Rosakis [13]. Observe first that we can assume that η satisfies

$$
\begin{equation*}
\eta=\operatorname{diag}\left(\mu_{1}(\eta), \ldots, \mu_{n}(\eta)\right) \tag{3.5}
\end{equation*}
$$

As a matter of fact, suppose that the result is proved in this case. Let ζ be any element of $M_{n}(\mathbb{R})$, and let $U, V \in \mathrm{SO}(n)$ be such that $\zeta=U M V^{t}$, with $M:=\operatorname{diag}\left(\mu_{1}(\zeta), \ldots, \mu_{n}(\zeta)\right)$. For all $Q, R \in \operatorname{SO}(n)$,

$$
\operatorname{tr}\left(Q \xi R^{t} \zeta^{t}\right)=\operatorname{tr}\left(Q \xi R^{t} V M U^{t}\right)=\operatorname{tr}\left(\left(U^{t} Q\right) \xi\left(R^{t} V\right) M\right)
$$

Since $U^{t} \mathrm{SO}(n)=\mathrm{SO}(n) V=\mathrm{SO}(n)$, we see that

$$
\begin{aligned}
\max _{Q, R \in S O(n)}\left\{\operatorname{tr}\left(Q \xi R^{t} \zeta^{t}\right)\right\} & =\max _{Q_{1}, R_{1} \in S O(n)}\left\{\operatorname{tr}\left(Q_{1} \xi R_{1}^{t} M\right)\right\} \\
& =\sum_{j=1}^{n} \mu_{j}(\xi) \mu_{j}(M) \\
& =\sum_{j=1}^{n} \mu_{j}(\xi) \mu_{j}(\zeta)
\end{aligned}
$$

where the second equality results from the fact that M satisfies Condition (3.5).

Notice that we can also assume, in addition to Condition (3.5), that η satisfies $\left|\mu_{1}(\eta)\right|<\mu_{2}(\eta)<\ldots<\mu_{n}(\eta)$, since a continuity argument will then allow to extend the result to the case of wide inequalities.
Since $\mathrm{SO}(n) \times \mathrm{SO}(n)$ is compact and the function $(Q, R) \mapsto \operatorname{tr}\left(Q \xi R^{t} \eta^{t}\right)$ is continuous, there exist $Q_{0}, R_{0} \in \mathrm{SO}(n)$ such that

$$
\begin{equation*}
\operatorname{tr}\left(Q_{0} \xi R_{0}^{t} \eta^{t}\right)=\max _{Q, R \in S O(n)}\left\{\operatorname{tr}\left(Q \xi R^{t} \eta^{t}\right)\right\} \tag{3.6}
\end{equation*}
$$

We will prove that Q_{0} and R_{0} must be such that $Q_{0} \xi R_{0}^{t}$ is diagonal. Let A and B be skew-symmetric matrices, that is, $A^{t}=-A$ and $B^{t}=-B$. For all $t \in \mathbb{R}$, let

$$
Q(t):=e^{t A} Q_{0} \quad \text { and } \quad R(t):=e^{t B} R_{0}
$$

Clearly, $Q(t)$ and $R(t)$ are in $\mathrm{SO}(n)$, and the function

$$
\varphi(t):=\operatorname{tr}\left(Q(t) \xi R(t)^{t} \eta^{t}\right)
$$

is differentiable. The optimality condition (3.6) implies that $t=0$ maximizes φ. Consequently,

$$
0=\varphi^{\prime}(0)=\operatorname{tr}\left(A Q_{0} \xi R_{0}^{t} \eta^{t}\right)+\operatorname{tr}\left(Q_{0} \xi R_{0}^{t} B^{t} \eta^{t}\right)
$$

We have therefore shown that, for all skew-symmetric matrices A and B,

$$
\begin{aligned}
& \operatorname{tr}\left(A Q_{0} \xi R_{0}^{t} \eta^{t}\right)=\left\langle A,\left(Q_{0} \xi R_{0}^{t} \eta^{t}\right)^{t}\right\rangle=0, \\
& \operatorname{tr}\left(\eta^{t} Q_{0} \xi R_{0}^{t} B^{t}\right)=\left\langle\left(\eta^{t} Q_{0} \xi R_{0}^{t}\right), B\right\rangle=0 .
\end{aligned}
$$

Recall that $M_{n}(\mathbb{R})$ is the orthogonal direct sum of $S_{n}(\mathbb{R})$ and $A_{n}(\mathbb{R})$, the subspaces of symmetric and skew-symmetric matrices, respectively. Therefore, the above conditions tell us that $Q_{0} \xi R_{0}^{t} \eta^{t}$ and
$\eta^{t} Q_{0} \xi R_{0}^{t}$ must be symmetric. Lemma 3.1(i) then implies that $Q_{0} \xi R_{0}^{t}$ is diagonal. We have shown so far that

$$
\max _{Q, R \in S O(n)}\left\{\operatorname{tr}\left(Q \xi R^{t} \eta^{t}\right)\right\}=\operatorname{tr}\left(Q_{0} \xi R_{0}^{t} \eta^{t}\right)
$$

where $Q_{0}, R_{0} \in \mathrm{SO}(n)$ are such that $Q_{0} \xi R_{0}^{t}$ is diagonal. It remains to see that Q_{0} and R_{0} are such that

$$
Q_{0} \xi R_{0}^{t}=\operatorname{diag}\left(\mu_{1}(\xi), \ldots, \mu_{n}(\xi)\right)
$$

But this is an immediate consequence of Proposition 3.2.
(ii) The case where $N=n$, which results immediately from Part (i), corresponds to Von Neumann's inequality itself. Thus, let us assume that $N>n$. The argument is analogous to that of Part (i), so we merely outline the main steps. We can assume that η satisfies

$$
\begin{equation*}
\eta=\operatorname{diag}_{N \times n}\left(\lambda_{1}(\eta), \ldots, \lambda_{n}(\eta)\right) \tag{3.7}
\end{equation*}
$$

with $0<\lambda_{1}(\eta)<\ldots<\lambda_{n}(\eta)$, the case of wide inequalities being deduced by a passage to the limit. The compactness of $\mathrm{O}(N) \times \mathrm{O}(n)$ and the continuity of the function $(Q, R) \mapsto \operatorname{tr}\left(Q \xi R^{t} \eta^{t}\right)$ imply the existence of $Q_{0} \in \mathrm{O}(N)$ and $R_{0} \in \mathrm{O}(n)$ such that

$$
\begin{equation*}
\operatorname{tr}\left(Q_{0} \xi R_{0}^{t} \eta^{t}\right)=\max _{\substack{Q \in \mathrm{O}(N) \\ R \in \mathrm{O}(n)}}\left\{\operatorname{tr}\left(Q \xi R^{t} \eta^{t}\right)\right\} \tag{3.8}
\end{equation*}
$$

The same variational argument as that of Part (i), together with Lemma 3.1(ii), shows that Q_{0} and R_{0} must be such that $Q_{0} \xi R_{0}^{t}$ is diagonal. Finally, it is clear that, among all diagonal $(N \times n)$-matrices ξ^{\prime} with prescribed singular values $\lambda_{1}(\xi), \ldots, \lambda_{n}(\xi)$, the matrix

$$
\operatorname{diag}_{N \times n}\left(\lambda_{1}(\xi), \ldots, \lambda_{n}(\xi)\right)
$$

maximizes $\operatorname{tr}\left(\xi^{\prime} \eta^{t}\right)$. Thus we must have

$$
Q_{0} \xi R_{0}^{t}=\operatorname{diag}_{N \times n}\left(\lambda_{1}(\xi), \ldots, \lambda_{n}(\xi)\right)
$$

and the result follows.

Observe that, in the square case,

$$
-\operatorname{tr}\left(\xi \eta^{t}\right)=\operatorname{tr}\left(-\xi \eta^{t}\right) \leqslant \sum_{j} \lambda_{j}(-\xi) \lambda_{j}(\eta)=\sum_{j} \lambda_{j}(\xi) \lambda_{j}(\eta)
$$

Convex $\mathrm{SO}(\mathrm{N}) \times \mathrm{SO}(\mathrm{n})$-invariant functions and refinements of von Neumann's inequality so that

$$
\left|\operatorname{tr}\left(\xi \eta^{t}\right)\right| \leqslant \sum_{j} \lambda_{j}(\xi) \lambda_{j}(\eta)
$$

for all $\xi, \eta \in M_{n}(\mathbb{R})$. It is worth noticing that the analogous inequality for signed singular values holds as well if n is even.

Corollary 3.4. - Let $\xi, \eta \in M_{n}(\mathbb{R})$. If n is even, then

$$
\begin{equation*}
\left|\operatorname{tr}\left(\xi \eta^{t}\right)\right| \leqslant \sum_{j} \mu_{j}(\xi) \mu_{j}(\eta) \tag{3.9}
\end{equation*}
$$

If n is odd, Inequality (3.9) is false in general.
Proof. - If n is even, then $\operatorname{det}(-\xi)=\operatorname{det} \xi$ and $\mu_{j}(-\xi)=\mu_{j}(\xi)$ for all $j=1, \ldots, n$. Since $\operatorname{tr}\left(-\xi \eta^{t}\right)=-\operatorname{tr}\left(\xi \eta^{t}\right)$, we conclude that both $\operatorname{tr}\left(\xi \eta^{t}\right)$ and $-\operatorname{tr}\left(\xi \eta^{t}\right)$ are majorized by $\sum_{j} \mu_{j}(\xi) \mu_{j}(\eta)$.

If n is odd, counterexamples are easy to construct. For example, if $n=3$, let $\xi:=\operatorname{diag}(-1,1,1)$ and $\eta:=\operatorname{diag}(1,-1,-1)$. Then $\operatorname{tr}\left(\xi \eta^{t}\right)=-3$ and $\sum_{j} \mu_{j}(\xi) \mu_{j}(\eta)=1$.

4. Invariance and convexity

In this section and the following, we refer to notions pertaining to convex analysis. Our reference books for these sections are those by Hiriart-Urruty and Lemaréchal [5] and by Rockafellar [14].

Recall that if G is a subgroup of $\mathrm{GL}(n)$, then the set $G^{t}:=\left\{M^{t} \mid M \in G\right\}$ is also a subgroup of $\mathrm{GL}(n)$.

Lemma 4.1. - Let $g: \mathbb{R}^{n} \rightarrow[-\infty, \infty]$ and let G be any subgroup of $\mathrm{GL}(n)$. Consider the following statements:
(i) g is G-invariant;
(ii) g^{\star} is G^{t}-invariant.

Then (i) implies (ii), and the converse is true if g is closed proper convex.
Proof. - Suppose that g is G-invariant, and let $M \in G$. Then

$$
\begin{aligned}
g^{\star}\left(M^{t} \boldsymbol{\xi}\right) & =\sup \left\{\left\langle M^{t} \boldsymbol{\xi}, \mathbf{x}\right\rangle-g(\mathbf{x}) \mid \mathbf{x} \in \mathbb{R}^{n}\right\} \\
& =\sup \left\{\langle\boldsymbol{\xi}, M \mathbf{x}\rangle-g(M \mathbf{x}) \mid \mathbf{x} \in \mathbb{R}^{n}\right\} \\
& =\sup \left\{\langle\boldsymbol{\xi}, \mathbf{y}\rangle-g(\mathbf{y}) \mid \mathbf{y} \in \mathbb{R}^{n}\right\} \\
& =g^{\star}(\boldsymbol{\xi}) .
\end{aligned}
$$

Thus g^{\star} is G^{t}-invariant. If g is closed proper convex, the converse follows dually, since $g^{\star \star}=g$ in this case.

Lemma 4.2. - Let $f: M_{N \times n}(\mathbb{R}) \rightarrow[-\infty, \infty]$, let G be a subgroup of $\mathrm{GL}(N)$, and let H be a subgroup of $\mathrm{GL}(n)$. Consider the following statements:
(i) f is $G \times H^{t}$-invariant;
(ii) f^{\star} is $G^{t} \times H$-invariant.

Then (i) implies (ii), and the converse is true if f is closed proper convex.
Proof. - Suppose that f is $G \times H^{t}$-invariant, and let $U \in G$ and $V \in H$. For all $\xi, X \in M_{N \times n}(\mathbb{R})$, we have

$$
\left\langle U^{t} \xi V, X\right\rangle=\operatorname{tr}\left(U^{t} \xi V X^{t}\right)=\operatorname{tr}\left(\xi V X^{t} U^{t}\right)=\left\langle\xi, U X V^{t}\right\rangle .
$$

Thus

$$
\begin{aligned}
f^{\star}\left(U^{t} \xi V\right) & =\sup \left\{\left\langle U^{t} \xi V, X\right\rangle-f(X) \mid X \in M_{n}(\mathbb{R})\right\} \\
& =\sup \left\{\left\langle\xi, U X V^{t}\right\rangle-f\left(U X V^{t}\right) \mid X \in M_{n}(\mathbb{R})\right\} \\
& =\sup \left\{\langle\xi, Y\rangle-f(Y) \mid Y \in M_{n}(\mathbb{R})\right\}
\end{aligned}
$$

since $X \mapsto U X V^{t}$ is bijective. Therefore, $f^{\star}\left(U^{t} \xi V\right)=f^{\star}(\xi)$, so that f^{\star} is $G^{t} \times H$-invariant. If f is closed proper convex, the converse follows dually, since $f^{\star \star}=f$ in this case.

Theorem 4.3. -

(i) Let $f: M_{n}(\mathbb{R}) \rightarrow(-\infty, \infty]$ be $\mathrm{SO}(n) \times \mathrm{SO}(n)$-invariant, and let $g: \mathbb{R}^{n} \rightarrow$ $(-\infty, \infty]$ be the unique $\Pi_{e}(n)$-invariant function such that $f=g \circ \boldsymbol{\mu}$. Then

$$
f^{\star}=g^{\star} \circ \boldsymbol{\mu} .
$$

(ii) Let $N \geqslant n$, let $f: M_{N \times n}(\mathbb{R}) \rightarrow(-\infty, \infty]$ be $\mathrm{O}(N) \times \mathrm{O}(n)$-invariant, and let $g: \mathbb{R}^{n} \rightarrow(-\infty, \infty]$ be the unique $\Pi(n)$-invariant function such that $f=g \circ \boldsymbol{\lambda}$. Then

$$
f^{\star}=g^{\star} \circ \boldsymbol{\lambda} .
$$

Convex $\mathrm{SO}(\mathrm{N}) \times \mathrm{SO}(\mathrm{n})$-invariant functions and refinements of von Neumann's inequality

Proof. -

(i) We have:

$$
\begin{aligned}
f^{\star}(\xi) & =\sup _{X \in M_{n}(\mathbb{R})}\{\langle\xi, X\rangle-f(X)\} \\
& =\sup _{X \in M_{n}(\mathbb{R})}\{\langle\xi, X\rangle-g(\boldsymbol{\mu}(X))\} \\
& =\sup _{X \in M_{n}(\mathbb{R})}\left\{\sup _{Q, R \in \operatorname{SO}(n)}\left\{\left\langle\xi,\left(Q X R^{t}\right)\right\rangle-g\left(\boldsymbol{\mu}\left(Q X R^{t}\right)\right)\right\}\right\}
\end{aligned}
$$

But
$\left\langle\xi,\left(Q X R^{t}\right)\right\rangle=\operatorname{tr}\left(\xi^{t} Q X R^{t}\right)=\operatorname{tr}\left(Q X R^{t} \xi^{t}\right) \quad$ and $\quad \boldsymbol{\mu}\left(Q X R^{t}\right)=\boldsymbol{\mu}(X)$ for all $Q, R \in \operatorname{SO}(n)$, so that, by Theorem 3.3(i), the inner supremum is equal to $\sum_{k=1}^{n} \mu_{k}(X) \mu_{k}(\xi)-g\left(\mu_{1}(X), \ldots, \mu_{n}(X)\right)$. Furthermore, $\boldsymbol{\mu}(X)$ runs over

$$
\Gamma_{e}=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}| | x_{1} \mid \leqslant x_{2} \leqslant \ldots \leqslant x_{n}\right\}
$$

as X runs over $M_{n}(\mathbb{R})$. Therefore,

$$
\begin{equation*}
f^{\star}(\xi)=\sup _{\mathbf{x} \in \Gamma_{e}}\{\langle\boldsymbol{\mu}(\xi), \mathbf{x}\rangle-g(\mathbf{x})\} \tag{4.1}
\end{equation*}
$$

On the other hand, let $\mathbf{y} \in \Gamma_{e}$. Then, for all \mathbf{x}^{\prime} in

$$
\Pi_{e}(n) \mathbf{x}=\left\{M \mathbf{x} \mid M \in \Pi_{e}(n)\right\}
$$

$g\left(\mathbf{x}^{\prime}\right)=g(\mathbf{x})$ and $\left\langle\mathbf{y}, \mathbf{x}^{\prime}\right\rangle \leqslant\langle\mathbf{y}, \mathbf{x}\rangle$ by Proposition 3.2, so that

$$
\begin{equation*}
g^{\star}(\mathbf{y}):=\sup _{\mathbf{x} \in \mathbb{R}^{n}}\{\langle\mathbf{y}, \mathbf{x}\rangle-g(\mathbf{x})\}=\sup _{\mathbf{x} \in \Gamma_{e}}\{\langle\mathbf{y}, \mathbf{x}\rangle-g(\mathbf{x})\} \tag{4.2}
\end{equation*}
$$

The result follows from Equations (4.1) and (4.2).
(ii) We have:

$$
\begin{aligned}
f^{\star}(\xi) & =\sup _{X \in M_{N \times n}(\mathbb{R})}\{\langle\xi, X\rangle-f(X)\} \\
& =\sup _{X \in M_{N \times n}(\mathbb{R})}\left\{\sup _{\substack{\begin{subarray}{c}{x \in(N) \\
R \in \mathrm{O}(n)} }}\end{subarray}}\left\{\left\langle\xi,\left(Q X R^{t}\right)\right\rangle-f\left(Q X R^{t}\right)\right\}\right\} \\
& =\sup _{X \in M_{N \times n}(\mathbb{R})}\left\{\sup _{\substack{Q \in \operatorname{O}(N) \\
R \in \mathrm{O}(n)}}\left\{\left\langle\xi,\left(Q X R^{t}\right)\right\rangle\right\}-f(X)\right\} .
\end{aligned}
$$

By Theorem 3.3(ii),

$$
\sup _{\substack{Q \in \mathrm{O}(N) \\ R \in \mathrm{O}(n)}}\left\{\left\langle\xi,\left(Q X R^{t}\right)\right\rangle\right\}=\sup _{\substack{Q \in \mathrm{O}(N) \\ R \in \mathrm{O}(n)}}\left\{\operatorname{tr}\left(Q X R^{t} \xi^{t}\right)\right\}=\sum_{k=1}^{n} \lambda_{k}(X) \lambda_{k}(\xi)
$$

Furthermore, $\boldsymbol{\lambda}(X)$ runs over

$$
\Gamma=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid 0 \leqslant x_{1} \leqslant \ldots \leqslant x_{n}\right\}
$$

as X runs over $M_{N \times n}(\mathbb{R})$. Therefore,

$$
\begin{equation*}
f^{\star}(\xi)=\sup _{\mathbf{x} \in \Gamma}\{\langle\boldsymbol{\lambda}(\xi), \mathbf{x}\rangle-g(\mathbf{x})\} \tag{4.3}
\end{equation*}
$$

On the other hand, let $\mathbf{y} \in \Gamma$. Then, for all \mathbf{x}^{\prime} in

$$
\Pi(n) \mathbf{x}=\{M \mathbf{x} \mid M \in \Pi(n)\}
$$

$g\left(\mathbf{x}^{\prime}\right)=g(\mathbf{x})$ and $\left\langle\mathbf{y}, \mathbf{x}^{\prime}\right\rangle \leqslant\langle\mathbf{y}, \mathbf{x}\rangle$, so that

$$
\begin{equation*}
g^{\star}(\mathbf{y}):=\sup _{\mathbf{x} \in \mathbb{R}^{n}}\{\langle\mathbf{y}, \mathbf{x}\rangle-g(\mathbf{x})\}=\sup _{\mathbf{x} \in \Gamma}\{\langle\mathbf{y}, \mathbf{x}\rangle-g(\mathbf{x})\} \tag{4.4}
\end{equation*}
$$

The result follows from Equations (4.3) and (4.4).

Remark 4.4. - The set of all transformations $\xi \mapsto U \xi V^{t}$ with $U, V \in$ $\mathrm{SO}(n)$, endowed with the composition, is obviously a group which is isomorphic to the product group $\mathrm{SO}(n) \times \mathrm{SO}(n)$. By abuse of notation, we may denote this group by $\mathrm{SO}(n) \times \mathrm{SO}(n)$. It results from Theorem 3.3 that the system $\left(M_{n}(\mathbb{R}), \mathrm{SO}(n) \times \mathrm{SO}(n)\right.$, diag $\left.\circ \boldsymbol{\mu}\right)$ satisfies:
(i) diag $\circ \boldsymbol{\mu}$ is $\mathrm{SO}(n) \times \mathrm{SO}(n)$-invariant;
(ii) for all $\xi \in M_{n}(\mathbb{R})$, there exists $(U, V) \in \mathrm{SO}(n) \times \mathrm{SO}(n)$ such that $\xi=U \operatorname{diag}(\boldsymbol{\mu}(\xi)) V^{t} ;$
(iii) for all $\xi, \eta \in M_{n}(\mathbb{R}), \operatorname{tr}\left(\xi \eta^{t}\right) \leqslant \operatorname{tr}(\operatorname{diag}(\boldsymbol{\mu}(\xi)) \operatorname{diag}(\boldsymbol{\mu}(\eta)))$.

According to Lewis' terminology [10], $\left(M_{n}(\mathbb{R}), \mathrm{SO}(n) \times \mathrm{SO}(n)\right.$, diag $\left.\circ \boldsymbol{\mu}\right)$ is a normal decomposition system. Our preceding results also show that, similarly, $\left(M_{N \times n}(\mathbb{R}), \mathrm{O}(N) \times \mathrm{O}(n), \operatorname{diag}_{N \times n} \circ \boldsymbol{\lambda}\right)$ is a normal decomposition system.

We are now ready to prove the main theorem.

Theorem 4.5. -
(A) Let $f: M_{n}(\mathbb{R}) \rightarrow(-\infty, \infty]$ be $\mathrm{SO}(n) \times \mathrm{SO}(n)$-invariant, and let $g: \mathbb{R}^{n} \rightarrow$ $(-\infty, \infty]$ be the unique $\Pi_{e}(n)$-invariant function such that $f=g \circ \boldsymbol{\mu}$. Then the following are equivalent:
(i) f is closed proper convex;
(ii) the restriction of f to $D_{n}(\mathbb{R})$, the subspace of $M_{n}(\mathbb{R})$ of diagonal matrices, is closed proper convex;
(iii) g is closed proper convex.
(B) Let $N>n$, let $f: M_{N \times n}(\mathbb{R}) \rightarrow(-\infty, \infty]$ be $\mathrm{SO}(N) \times \mathrm{SO}(n)$-invariant or, equivalently, $\mathrm{O}(N) \times \mathrm{O}(n)$-invariant, and let $g: \mathbb{R}^{n} \rightarrow(-\infty, \infty]$ be the unique $\Pi(n)$-invariant function such that $f=g \circ \boldsymbol{\lambda}$. Then the following are equivalent:
(i) f is closed proper convex;
(ii) the restriction of f to $D_{N \times n}(\mathbb{R})$, the subspace of $M_{N \times n}(\mathbb{R})$ of diagonal matrices, is closed proper convex;
(iii) g is closed proper convex.

Proof. -
(A) The fact that (i) implies (ii) is clear. The fact that (ii) implies (iii) results immediately from the equality $g=f \circ$ diag. Finally, suppose that (iii) holds. Then $g^{\star \star}=g$, and Theorem 4.3(i) implies that

$$
f^{\star \star}=g^{\star \star} \circ \boldsymbol{\mu}=g \circ \boldsymbol{\mu}=f,
$$

which shows that f is closed proper convex.
(B) The fact that (i) implies (ii) is clear. The fact that (ii) implies (iii) results immediately from the equality $g=f \circ \operatorname{diag}_{N \times n}$. Finally, suppose that (iii) holds. Theorem 4.3(ii) then implies that

$$
f^{\star \star}=g^{\star \star} \circ \boldsymbol{\lambda}=g \circ \boldsymbol{\lambda}=f,
$$

which shows that f is closed proper convex.

In the case of $\mathrm{O}(n) \times \mathrm{O}(n)$-invariant functions, the analogous statement can be derived in several ways from the above results.

Corollary 4.6. - Let $f: M_{n}(\mathbb{R}) \rightarrow(-\infty, \infty]$ be $\mathrm{O}(n) \times \mathrm{O}(n)$-invariant, and let $g: \mathbb{R}^{n} \rightarrow(-\infty, \infty]$ be the unique $\Pi(n)$-invariant function such that $f=g \circ \boldsymbol{\lambda}$. Then the following are equivalent:
(i) f is closed proper convex;
(ii) the restriction of f to $D_{n}(\mathbb{R})$ is closed proper convex;
(iii) g is closed proper convex.

Remark 4.7. - As a convex $\Pi(n)$-invariant function, the function g appearing in Theorem $4.5(\mathrm{~B})$ or in Corollary 4.6 must be such that each partial mapping

$$
x_{k} \mapsto g\left(x_{1}, \ldots, x_{n}\right), \quad k=1, \ldots, n
$$

is increasing on \mathbb{R}_{+}. As a matter of fact, for all $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ with $x_{1} \geqslant 0$,

$$
g\left(0, x_{2}, \ldots, x_{n}\right) \leqslant \frac{1}{2} g\left(-x_{1}, x_{2}, \ldots, x_{n}\right)+\frac{1}{2} g\left(x_{1}, x_{2}, \ldots, x_{n}\right)=g(\mathbf{x})
$$

and if $z>0$, we see, using the above inequality, that

$$
\begin{aligned}
g(\mathbf{x}) & \leqslant \frac{x_{1}}{x_{1}+z} g\left(x_{1}+z, x_{2}, \ldots, x_{n}\right)+\frac{z}{x_{1}+z} g\left(0, x_{2}, \ldots, x_{n}\right) \\
& \leqslant \frac{x_{1}}{x_{1}+z} g\left(x_{1}+z, x_{2}, \ldots, x_{n}\right)+\frac{z}{x_{1}+z} g\left(x_{1}+z, x_{2}, \ldots, x_{n}\right) \\
& =g\left(x_{1}+z, x_{2}, \ldots, x_{n}\right)
\end{aligned}
$$

Thus $x_{1} \mapsto g\left(x_{1}, \ldots, x_{n}\right)$ is increasing on \mathbb{R}_{+}, and the same reasoning holds for all other partial applications.

5. Concluding comments

The assumption of $\mathrm{SO}(N) \times \mathrm{SO}(n)$-invariance enables to reduce substantially the dimension of the objects whose convexity is studied. This appears clearly in Theorem 4.5, where the dimension is reduced from $N n$ to n.

It is worth noticing that the computation of the convex envelope of some $\mathrm{SO}(N) \times \mathrm{SO}(n)$-invariant function f also benefits from this dimension reduction, as one should expect.

Convex $\mathrm{SO}(\mathrm{N}) \times \mathrm{SO}(\mathrm{n})$-invariant functions and refinements of von Neumann's inequality
Theorem 5.1. -
(i) Let $f: M_{n}(\mathbb{R}) \rightarrow(-\infty, \infty]$ be $\mathrm{SO}(n) \times \mathrm{SO}(n)$-invariant, and let $g:=$ $f \circ$ diag. Let $C f$ and $C g$ denote the convex envelopes of f and g, respectively. Assume that the relationships $C f=f^{\star \star}$ and $C g=g^{\star \star}$ hold, which happens notably when f and g are finite. Then

$$
C f=C g \circ \boldsymbol{\mu}
$$

(ii) Let $N \geqslant n$, and let $f: M_{N \times n}(\mathbb{R}) \rightarrow(-\infty, \infty]$ be $\mathrm{O}(N) \times \mathrm{O}(n)$-invariant, and let $g:=f \circ \operatorname{diag}_{N \times n}$. Assume again that the relationships $C f=f^{\star \star}$ and $C g=g^{\star \star}$ hold. Then

$$
C f=C g \circ \boldsymbol{\lambda}
$$

Proof. - Immediate from Theorem 4.3.
Another noteworthy dimension reduction occurs in the computation of the inf-convolution of two convex invariant functions. If f_{1} and f_{2} are two extended real-valued functions on $M_{N \times n}(\mathbb{R})$, their inf-convolution is defined by

$$
\left(f_{1} \square f_{2}\right)(\xi)=\inf _{\eta \in M_{N \times n}(\mathbb{R})}\left\{f_{1}(\xi-\eta)+f_{2}(\eta)\right\}
$$

Recall that, in essence, inf-convolution and addition are dual operations. More precisely, if f_{1} and f_{2} are proper, then

$$
\left(f_{1} \square f_{2}\right)^{\star}=f_{1}^{\star}+f_{2}^{\star},
$$

and consequently the formula

$$
f_{1} \square f_{2}=\left(f_{1}^{\star}+f_{2}^{\star}\right)^{\star}
$$

holds whenever $f_{1} \square f_{2}=\left(f_{1} \square f_{2}\right)^{\star \star}$, that is, whenever $f_{1} \square f_{2}$ is closed proper convex. This duality, combined with Theorem 4.3, gives rise to the following result.

Theorem 5.2. -
(i) For $i=1,2$, let $f_{i}: M_{n}(\mathbb{R}) \rightarrow(-\infty, \infty]$ be closed proper convex and $\mathrm{SO}(n) \times \mathrm{SO}(n)$-invariant, and let $g_{i}:=f_{i} \circ$ diag. If f_{1} or f_{2} is infcompact, then

$$
\begin{equation*}
f_{1} \square f_{2}=\left(g_{1} \square g_{2}\right) \circ \boldsymbol{\mu} . \tag{5.1}
\end{equation*}
$$

(ii) Let $N \geqslant n$. For $i=1,2$, let $f_{i}=g_{i} \circ \boldsymbol{\lambda}: M_{N \times n}(\mathbb{R}) \rightarrow(-\infty, \infty]$ be closed proper convex and $\mathrm{O}(N) \times \mathrm{O}(n)$-invariant, and let $g_{i}:=$ $f_{i} \circ \operatorname{diag}_{N \times n}$. If f_{1} or f_{2} is inf-compact, then

$$
f_{1} \square f_{2}=\left(g_{1} \square g_{2}\right) \circ \boldsymbol{\lambda} .
$$

Proof. - We restrict attention to the first statement, the second one being analogous. Recall that, by definition, f_{i} is inf-compact if

$$
f_{i}(\xi) \rightarrow \infty \quad \text { as } \quad\|\xi\| \rightarrow \infty
$$

The relationships $f_{i}=g_{i} \circ \boldsymbol{\mu}$ and $g_{i}=f_{i} \circ$ diag imply that f_{i} is infcompact if and only if g_{i} is inf-compact. Note that the $\Pi_{e}(n)$-invariance of g_{i} and g_{i}^{\star} implies that $\operatorname{dom} g_{i}, \operatorname{dom} g_{i}^{\star}, \operatorname{dom} f_{i}$ and $\operatorname{dom} f_{i}^{\star}$ contain the origin. We may assume that $g_{i} \not \equiv 0, i=1,2$, for otherwise Equation (5.1) holds trivially. The $\Pi_{e}(n)$-invariance of g_{i}^{\star} then implies that int dom g_{i}^{\star} and $\operatorname{int} \operatorname{dom} f_{i}^{\star}$ contain the origin, and that g_{i}^{\star} and f_{i}^{\star} are continuous at the origin. By [8], Theorem 6.5.7, $g_{1} \square g_{2}$ and $f_{1} \square f_{2}$ are closed proper convex. Theorem 4.3 then implies that

$$
\begin{aligned}
f_{1} \square f_{2} & =\left(f_{1}^{\star}+f_{2}^{\star}\right)^{\star} \\
& =\left(g_{1}^{\star} \circ \boldsymbol{\mu}+g_{2}^{\star} \circ \boldsymbol{\mu}\right)^{\star} \\
& =\left(\left(g_{1}^{\star}+g_{2}^{\star}\right) \circ \boldsymbol{\mu}\right)^{\star} \\
& =\left(g_{1}^{\star}+g_{2}^{\star}\right)^{\star} \circ \boldsymbol{\mu} \\
& =\left(g_{1} \square g_{2}\right) \circ \boldsymbol{\mu} .
\end{aligned}
$$

Acknowledgements. - This work was performed while the second author was visiting professor at EPFL and we thank P. Metzener for interesting discussions. Moreover, after presenting Theorem 3.3(i) with our proof to Denis Serre, he found a new proof of the result. He will include it in the electronic version of his book [16].

Bibliography

[1] J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Archives For Rational Mechanics and Analysis, 63, p. 337-403 (1977).
[2] B. Dacorogna, Direct Methods in the Calculus of Variations, Springer-Verlag, 1989.
[3] B. Dacorogna, P. Marcellini, Implicit Partial Differential Equations, Birkhäuser, 1999.

Convex $\mathrm{SO}(\mathrm{N}) \times \mathrm{SO}(\mathrm{n})$-invariant functions and refinements of von Neumann's inequality
[4] B. Dacorogna, H. Koshigoe, On the different notions of convexity for rotationally invariant functions, Annales de la Faculté des Sciences de Toulouse, II(2), p. 163-184 (1993).
[5] J.-B. Hiriart-Urruty, C. Lemaréchal, Convex Analysis and Minimization Algorithms, I and II, Springer-Verlag, 1993.
[6] R. A. Horn, C. A. Johnson, Matrix Analysis, Cambridge University Press, 1985.
[7] B. Kostant, On convexity, the Weyl group and the Iwasawa decomposition, Annales Scientifiques de l'Ecole Normale Suprieure, 6, p. 413-455 (1973).
[8] P. J. Laurent, Approximation et Optimisation, Hermann, 1972.
[9] H. Le Dret, Sur les fonctions de matrices convexes et isotropes, Comptes Rendus de l'Académie des Sciences, Paris, Série 1, Mathématiques, 310, p. 617-620 (1990).
[10] A. Lewis, Group invariance and convex matrix analysis, SIAM Journal of Matrix Analysis and Applications, 17, p. 927-949 (1996).
[11] A. Lewis, Convex analysis on Cartan subspaces, Nonlinear Analysis, 42, p. 813820 (2000).
[12] A. Lewis, The mathematics of eigenvalue optimization, Mathematical Programming, Series B 97, p. 155-176 (2003).
[13] P. Rosakis, Characterization of convex isotropic functions, Journal of Elasticity, 49, p. 257-267 (1997).
[14] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.
[15] A. Seeger, Convex analysis of spectrally defined matrix functions, SIAM Journal on Optimization, 7(3), p. 679-696 (1997).
[16] D. Serre, Matrices: Theory and Applications, Grad. Text in Math. 216, SpringerVerlag, 2002. See also http://www.umpa.ens-lyon.fr/~serre/publi.html.
[17] F. Vincent, Une note sur les fonctions convexes invariantes, Annales de la Faculté des Sciences de Toulouse, p. 357-363 (1997).

[^0]: (*) Reçu le 24 mai 2005, accepté le 22 juin 2005
 (1) EPFL, CH-1015 Lausanne, Switzerland.
 bernard.dacorogna@epfl.ch.
 (2) Université Paul Sabatier, Institut de mathématiques, F-31062 Toulouse cedex 9, France. marechal@mip.ups-tlse.fr.

