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Short-time heat flow and functions
of bounded variation in RV®
MICHELE MIRANDA JR (V)| DIEGO PALLARA (D),
FaBIO PARONETTO (), MARC PREUNKERT (?)
ABSTRACT. — We prove a characterisation of sets with finite perimeter

and BV functions in terms of the short time behaviour of the heat semi-
group in RY. For sets with smooth boundary a more precise result is
shown.

RESUME. — On prouve une caractérisation des ensembles avec périmétre
fini et des fonctions & variation bornée en termes du comportement du
semi-groupe de la chaleur dans R au voisinage de t = 0. On prouve aussi
un résultat plus précis pour les ensembles avec frontiere assez réguliere.

1. Introduction

Sets with finite perimeter have been introduced by E. De Giorgi in the
fifties (see [5], [6]), as a part of the theory of functions of bounded variation,
in order to deal with geometric variational problems and have proved to
be very useful in several contexts. The first researches of De Giorgi were
connected with the investigations of R. Caccioppoli, and in fact sets with
finite perimeter are also called Caccioppoli sets. Let us refer to [2] for the
properties of sets with finite perimeter and BV functions. De Giorgi’s orig-
inal definition of the perimeter of a (measurable) set £ C R was based on
the heat semigroup (7'(t))s=0 in RY, because of its regularising effects, and
can be phrased as follows:

P(E) = }E}% VT (t)XEl L1 (mY)

(*) Recu le 21 février 2005, accepté le 22 juin 2005
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where xpg denotes the characteristic function of E. We denote by
pn : RY x RN x Ry — R the Gauss-Weierstrass kernel, defined by

1 _le—y|?

pn(x,y,t) = We T

so that T(t)u(z) = [g~ pn (2, y, t)u(y)dy for every u € L'(RN).

In [8] M. Ledoux investigated in a different perspective some connections
between the heat semigroup (7'(t))i=0 on L*(R"™) and the isoperimetric
inequality, observing that the L?-inequality

ITOxelz@y) < ITExslL2@y) t=0 (1.1)

for all sets E with smooth boundary with the same volume | E| as the ball B
implies the isoperimetric inequality. By the self-adjointness of the operators
T(t) and

IT()xE72mey = (T(E)xE, T()xE) = (T(2t)XE, XE), (1.2)

the behaviour of (T(t)xx, xE) is related to the L?-norm of T'(t)x g, where
we use the notation (f,g) = [g~ fgdz whenever the integral is finite. Notice
that (1.1) can be easily deduced from the Riesz-Sobolev inequality (see e.g.
[9, Theorem 3.7])

/ f(w)g(x—y)h(y)dxdy</ [ (@)g" (x—y)h*(y)dzdy, (1.3)
RN xRN

RN xRN

where ¢* denotes the spherical symmetrisation of ¢. Taking f = h = xg
and g = ¢* = pn (-, -, t) in (1.3), so that f* = h* = y g, the inequality (1.1)
follows immediately:

IT®)xElT2@myy = (T2xE XE)

xB(@)xB(W)pN (2, y, 2t)dxdy

N
T
z
X
=
z

(T(2t)xB,xB) = ITt)xB72 @

In [8] an important point has been the formula

lim /5 (T(0)x5, x5:) = P(B), (1.4)
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where B is a ball, and the inequality

ST (t)xp, <) < P(E) for every t > 0, (1.5)
which has been generalised in [12] for all E C RY such that either E or
its complementary set E° has a finite volume (otherwise, both terms are
infinite). If E and B have the same volume, from the elementary relation

|E| =({T(t)xe, xE) + (T(t)xE, xpe)  foreveryt >0
and (1.2) it follows that the L% inequality (1.1) is equivalent to

(Tt)xE,xE) = {(T({t)xB> XB) for every t > 0,

and the semigroup inequality (1.1) implies the isoperimetric inequality for
Caccioppoli sets in RY . In connection with these results, it seems to be inter-
esting to pursue the investigation of the relationships between the perimeter
of a set and the short-time behaviour of the heat semigroup. The asymptotic
expansion of the heat semigroups on regular manifolds or submanifolds has
been deeply investigated (see e.g. [7], and also [10]), and in fact a localised
version of (1.4) can be proved for sets with smooth boundary (i.e., such that
the unique projection property in a tubular neighbourhood of the boundary
holds), see Theorem 2.1. This result is in fact stronger than (1.4) itself, see
Theorem 2.4. In Section 3 we prove that equality (1.4) holds true not only
for smooth sets, but for all Caccioppoli sets B. Our proof is based upon
the measure-theoretic properties of the reduced boundary. We also show
that the finiteness of the limit on the left hand side characterises sets of
finite perimeter. Let us point out that the same characterisation of finite
perimeter sets is also proved, following a different approach based on the
study of the behaviour of the difference quotients of u, in the papers [3], [4],
[11] (see also [1]), where convolution kernels more general than the Gauss-
Weierstrass one are considered. Our approach is more geometric in spirit,
and gives directly the optimal constants.

Section 4 is devoted to some remarks concerning the short-time be-
haviour of the heat semigroup for general BV functions. Recalling that
u € BV(RY) if u € L*(RY) and its distributional gradient is a (R"-
valued) Radon measure with finite total variation given by

|Dul(RY) = sup{ /R udivgde: g€ [CHRMY, lglimmm <1},

we show that the equality

vF

Ny _ i VT _
| Dul(R )—}g% N lu(z) — u(y)|pn (z,y,t)drdy

- 127 —



Michele Miranda Jr, Diego Pallara, Fabio Paronetto, M. Preunkert

holds. Since P(E) = |Dxg|(R") if u = xg, the above equality is equivalent
to (1.4), and the finiteness of the right hand side characterises the BV
functions. As a consequence, defining (as in [14]) the interpolation space

1
(L'(RY), D(A)) 12,00 = {U e L'(RM): sup, _tHT(t)u_uHLl(RN) < +OO},

0<t<
(1.6)
we have that BV(RY) C (L'(RY), D(A))1 /2,00 and, from a known charac-
terisation of the above interpolation space, an embedding theorem for BV
into a Besov space follows.

Notation . — We denote by H* the k-dimensional Hausdorff measure (which
coincides with the classical measure for k-dimensional smooth submani-
folds). For every measure p and measurable set F, we denote by ul E the
restriction measure, i.e., uL E(B) = u(E N B) for all measurable B. For E
measurable and ¢ € [0, 1] we denote by E* the set of points of density ¢, i.e.,
we set

ENB
reE — limM

=t. 1.7
2B, 7

Recall that the essential boundary of E is 0*E = RN \ (E° U E'), and
the reduced boundary FE is defined as follows. For E C RY such that
XE € BVioe(RY), i.e., E has locally finite perimeter, x € supp|Dxg| belongs
to FFE if the limit
_ Dxp(By(z))
ve(zr) = lim ————
P = 8 D el (B, ()

exists in RY and satisfies |vg(z)| = 1. The function vg : FE — SN~1is
called the generalised inner normal to E, and, see e.g. [2, Theorem 3.59], for
every © € FE the hyperplane 7, = {y : y - vg(z) = 0} is the approzimate
tangent plane to FE at z, i.e.,

lim N1,1/E¢(“";y)dy=/ﬂ o) dH M y) V€ CuRY). (L8)

0—0 o
Moreover, see e.g. [2, Theorem 3.78],
HN-YO*E\ FE)=0. (1.9)

and, as a consequence, the distributional derivative of xg is given by the
R"-valued measure

Dxg =veHN'LFE, HN"YFE)=P(E). (1.10)
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2. Diffusion for regular sets

In this section we study the short-time behaviour of T'(¢t)xa for sets A
with smooth boundary. By smooth we mean the minimal regularity ensuring
the unique projection property in a tubular neighbourhood of the boundary.
To this end, the Lipschitz continuity of the unit normal vector field is the
natural requirement. We say that A C R is uniformly C*'-regular if there
are o, L > 0 such that for every p € 0A the set A U B,y(p) is the graph of
a Cb! function ¢ with ||V4)||s < L. Setting

A% = {x € A°: dist(z,04) <8},  A.:={xe A:dist(z,04) <&}
(2.1)
for §,e > 0, we prove the following theorem.

THEOREM 2.1. — Let A C RN be uniformly C'-regular. Let A. and
A% be an inner and outer tubular neighborhood of DA defined in (2.1). Then
for every continuous ¢ : RN — R with compact support the equality

. s _
lim /T (T(t)xa.. xas) = / pdHV
t=0y ¢ 2A

holds.

Equality (1.4) for uniformly C':l-regular sets follows easily from The-
orem 2.1 (see Theorem 2.4). Our proof of Theorem 2.1 is based on a pre-
liminary one-dimensional computation and then on a partition of unity ar-
gument, reflecting the physical insight that for short time the heat flow is
approximately “transversal” to the boundary.

The first step in the proof of Theorem 2.1 is the one-dimensional com-
putation below.

LEMMA 2.2. — Fiz §,e > 0, and for t > 0 define the functions f; by

1 /9
fi(z) = %/0 X{—cartai =<0y (1) AT, z < 0. (2.2)
Then fi > fs for every 0 <t < s and

%irr(l) fe(z) = —V22z, z<0.

Proof.— In order to compute the integral in (2.2), notice that the inte-
grand is nonzero if and only if

rel,=0,0]N[—e—V2tz —V2t2],
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and that the interval I; is

[—e—V2tz,0] if 2 < min{—e/V2t,—5/v2t},
I = [ ) ] ifze[—s/\/Q_,—é/\/ﬂ],
P [ —e— V2tz, —V202] if z € [<0/V2t, —e /2],

[0, —v/2tz] if 2 > max{—e/v2t,—6/v2t}.

Notice that only one between the second and third possibility for I, may
occur, according to the relative size of € and §. Consequently, since

1
fi(z) = %Ut‘,
we have
(§48)/Vt+v2z —oo <z <min{—e/V2t,—6//2t},
£i(2) = min{e, 0} /vt min{— 5/\/_,—(5/\/_}<z
f < max{—=/v/%, —6/V3}
V22 max{—¢e/v2t,—6/v/2t} < 2 <0,
and the assertion follows immediately. O

In order to fix the notation to be used in the proof of Theorem 2.1, let us
recall the geometric properties of smooth boundaries which we are going to
use. We refer e.g. to [15, Section 1.2] for a detailed discussion on the subject.

PROPOSITION 2.3. — Let A C RY be a uniformly CY'-reqular set.
Then, there are €,§ > 0 such that the maps

i) QA x[0,8] = A%, (p,d) > p+d-v(p)
i) 0Ax[0,e] = A,  (p,d)—p—d-v(p),

where v(p) is the outward unit normal to A at p, are Ot -diffeomorphisms.

Moreover, for every n > 0 there is a locally finite covering V = (V;) of
0A and CY! diffeomorphisms

¥ : D; — Vi, D, open subset of RN ™!
such that

|Dv(p)| <n peV;
|DYi(§) — Ri| <n £eD;

for suitable linear maps R;. For every V; and v; define
Vi€, 0) == i(§) + ov(1i(§)) , §€D;,0€ (—¢,0).
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Short-time heat flow and functions of bounded variation in R
Denoting by U; the open set
Ui = \Ifl (.DZ X (—6,5))7
the family U = (U;) turns out to be a covering of A. U A%, and
DY, — L < (2.4)

for every i, where L; are orthogonal maps such that |L;en —v| < n

Proof of Theorem 2.1.— Recall that we denote by py the Gauss-Weierstrass
kernel. We divide the proof in three steps.

Step 1 - We first consider the case when A = {z € RY : zy < 0}, so that
we have

AS =RN71x(0,0), A.=RN7!x(—¢,0)
and ¢ independent of z . Denoting x = (2', ) (where 2’ = (z1,...,2n_1) €
RN?l) observe that pN(‘Ta Y, t) = pN—l(xla yla t)pl (xNa YN, t) and take ¥ =
o(2') in C.(RN~1). Then we have

T
\/;/ / pn(z,y,t)p(z) dy de =
AS J AL
s
= \/j_/ / prl(xlvylvt)pl(xvaNﬂt)SD(x/) dydiﬂ
tJas Ja,
T
=/ ?/ / py—1(2’, Y t)p(a’)
RN-1 JRN-1

0
/ / pr(xN, YN, t) dyn dxy dy’ dz’
0 —€

gy
= (/ @(fl)dxl)\/;/ / PN, yn,t) dyn dey.
RN-1 0 —&

Let us now consider only ﬁf; drn fEE p1(zN,yn,t) dyy in the last line
above: taking the new variable z = (yy — zn)/v/2t we obtain

é 0
T
\/—//Pl(xmyzv,t)dyzvdxz\r:
t 0 —&
—2%/2
_\/ tdzd
\/7/ 75\/7@1\] 9 Zaxr N

1
:ﬁ/ /Re_zz/QX(fs,m(\/?_tz+xN)dzd;uN
0
10y [ Va5
= o7 e ” - 2tz + xn) day dz.
@[m / X(-20)( N)day
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By Lemma 2.2,

1 6
lim — _ 2tz +xn)dry = —2,
50 \/ﬁ /0 X( E,O)( N) N

and then, by the monotone convergence theorem we conclude that

lim \/7/ / pn (2, y,t)(z) dy dx 7/ o(z")dx'. (2.5)
t—0 AS RN-1

Step 2 - Take now a function ¢ € C.(R”") and denote by A the same set as
in Step 1. Notice that

w(r) = sup lo(z',zn) — p(2',0)] =0 as7—0. (2.6)

(', zn)ERN 1 x[—7,7]

We can then write

\/7//16/ pn (2, y,t)p(z) dy de =
-5 /. /A (o () + (o) = (e’ 0)] dy

By Step 1 we have that

i[5 [ [ v tew 0 dyde= [ ot 0
t—0 t A5 J A, RN-1

It remains to prove that

w5 (e dlele) — o Odyds 0. ()

As done in Step 1 we obtain, denoting by K the projection of supp ¢ on
{r e RN |2y =0}

’\/E/ / pr (@, y, ) [p(x) — p(2',0)] dy dz| <
\/7/ / /_E o(@",0)|p1(zN, yn, t)dyndz ydx'
\/7/ / / lo(z) — (2’ ;0)x(—e.0)(y N)%dylvdx]vdwl

\/_/ / / P(2',0)|X(—e.0) (TN + V2t2)e =2 zdn yda’
- 132 -
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where in the last equality we have set z = (yn — zn)/V2L.
Now fix ¢ > 0: then we can find zy < 0 for which

’/ 2/2dz <0 (2.8)

Going on estimating, from above we derive, for —v/2tzy < 9,

‘\/E/As/ pzv(x,y,t)[@(x)—go(:c’,())}dydx’g

:\/—// /“P («',0)]x(— 5o(x1v+\/_tz) 22/2dedzdx’+
\/—///“P o', 0)]x eo($N+\/_tz) ~2/24y ndzds’

gw(d)/K Z:O %ezg/zdzdxur/[(/z:w(\/Ezo)&\/;)efﬂdzdx/

where w is defined in (2.6) and f; is as in Lemma 2.2. By Lemma 2.2 we
know that f;(z) — —v/2z and f; < f, for 0 < t < 5. Then we infer, also by
(2.8),

tlir(?+ w(é)/K - %622/2dzdx'—w(5)|K|/O,ozeZQ/dedx'<w(5)K|a.

Since |%e_22/2\ < |ze=/2| and w(—v/2tzg) converges uniformly to 0 as
t — 0+, we finally obtain (2.7).

Step 3 - Now we consider a uniformly C'''-regular set A, fix a function
¢ € C.(R"™) and use the notation in Proposition 2.3. Assume at first that
the support of ¢ is contained in a fixed U; (this hypothesis can easily be
removed by a partition of unity argument). Since for every i € N, z € U;

the function py(z,y,t)/Vt goes to 0 as t — 0 for every y € A. \ U;, by
dominated convergence we have

1im,/f/ d:v/ pn(z,y,t)p(z) dy
t—=0\ T Jys A,
. [T
= lim —/ da:/ N (z,y,t)e(z) dy.
t—0 t A‘;ﬂUi A:NU;

Since the index i is fixed, we may drop this index everywhere, and write the
kernel py(z,y,t), * € A NU and y € A. N U, using the new variables in
D x [0,4] and D x [—¢,0], i.e., we may write
y=Y(z,r) z€D,rel0d],
_\Il(gag) €€D7QE[_€’O]
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so that

P(z) = (&) + DY(E) - (z = &) + 0|z — &),
v((2)) = v($(8)) + Dr(e(€)) - [DP(8) - (2 — )] + o]z —¢€])-

Then, using these equalities, we obtain

/ / N (z,y,t)p(z) dy de =
A5

/ / (2.7), (6, 0), 1) p(16(2) + rv((2)))dz dr dé dg
Dx(0,6) /Dx(— sO)

(2.9)

where we have defined

P ((2,7), (€ 0)t) = pn (T(2,7), U(E, 0),1)| D (2, 7)|[| DY(E, 0)] -
By (2.4), we have

|DY(E; o)
|DY(z,r)|

“1rom  mDbxCed 210
and consequently

IDUY(z)|=14+0(n) and |[Dy Yz)|=1+0(n) inU. (2.11)
Then, writing

U(z,7) = V(S 0)+[DY—L|((z,7)—=(&, 0))+L((2,7)= (&, 0))+o(|(z,7)—(&; 0)])

for the orthogonal map L given by Proposition 2.3, we can compute, using
(2.4),

W (z,7) — (5, >|2

=|Ip (2,7) = (£,0)) + L((2,7) — (€, 0)) + o(|(z,7) — (&, )
= |(z, > < o) (1+0(n)

_ N2
and consequently py (\Il(z,r), U(E 0),t) = m exp {_W}
(1+ O(n)) by which finally

oy (W), 06,0, 0) = e exp ST O (1 o)
PN s 1) y0)s (47Tt)N/2 p At n)-

Then from the above equality and (2.10) we derive

f//pny, x)dydr =

—aom T L e o e oo i
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Taking the limit as ¢ — 0, by Step 2 and (2.11) we obtain

lim\/E/ dm/ pn(z,y, t)p(z) dy
t—0 t AS A,

— (1+0()) / H(T(E,0))de

D

— (1+0(n) / P(0(E))de

D

— (1+0(n) / (@) [ Dy (@) [dH ()

0ANU

= (1 + O(n))/ o(x)dHN ()

0ANU

which concludes the proof. O

Of course, for sets with smooth boundary, equality (1.4) can be deduced
from Theorem 2.1.

THEOREM 2.4. — Let A C RYN be a compact subset with C*-boundary
0A. Then
. m
lim 7 (T(t)xa,xac) = P(A)

holds.
Proof.— From the elementary relations
(T(t)xA, xa5) + (T(t)xAl, Xac\as) = (T(t)xa., xae),
(T(t)xa. xae) + (T(t)xa\a, xac) = (T(t)xa,xac)
it follows that
(T(t)xa.,xas) < (T(t)xa.,xae),
(T(t)xa.,xac) < (T(t)xa,xac)
and therefore, together with (1.5)

T (TW)a, xas) < \/§ (T, xae) < PA).

t
Then by this last inequality and Theorem 2.1 it follows that

. ™ .. ™
Py =ty [T @@ <timigt [T Ox8 )
< limsup [ 2 (T(t)va xas) < P(A). O
t—0
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Remark 2.5. — Since for compact subsets A C RY with smooth bound-
ary OA the perimeter P(A) and the (N —1)-dimensional Hausdorff measure
HN=1(DA) coincide (cf [2, Proposition 3.62]), we also have

. ™ _
lim /5 (T(t)xa, xac) = KV (0A).
3. Diffusion for Caccioppoli sets

In this section we ShOW that a measurable set £ C RY has finite perime-
ter if and only if \/_ t)xE, XEe) is bounded. To begin with, let us study
the short-time behav10ur of T'(t) with respect to two arbitrary sets of finite
perimeter. Recall that for F with finite perimeter v denotes the generalised
(or measure-theoretic) inner unit normal to the reduced boundary.

THEOREM 3.1. — Let E,F C R" be sets of finite perimeter. Then the
following equality holds:

lim \/§<XE —TW)xE,XF) = /}‘EmfF ve(z) - ve(x)dHN"1(z).  (3.1)

t—0
Proof. — Since

¢
Tt)xeg — XE = / AT(s)xgds,
0

we have

(T'(t)XE — XE:XF) = /0 (AT (s)xE, xF)ds.

Moreover, by (1.10), integrating by parts we obtain

(AT (s)xE,xF) = RNAT(S)XE(@XF(JC)W

= VT(s)xe(z) - dDxr(z)
RN

= 7/ VT (s)xe(z) - ve(z)dHN " (z).
FF

Notice that, if we define for every z € FF and s > 0 the measures

E—x
dsx: Nl— )
How = L (ﬁ)
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we have
6_% (x —vy) 6_%
VT(s)xp(z) = /E Vo | Gz | 0= - /E 5o e
1 el
= 2 - (47r)N/2z 2.
1 o2l /4

dps . (2).
Moreover, setting, for every z € FE,
H,p)={z€RY 1 2. vp(z) > 0},

the existence of the approximate tangent plane for x € FE, see (1.8), implies
that the measures p, ., are locally weakly® convergent as s — 0 to the
measure

due, = LN L H,

E(:E)7

and also

. o212 /4 eml=lF/4
lim RNz~VF($)Wst,w(Z) :/HuE(m)Z'VF(”“") (47T)N‘/z‘dz-

Summing up, we can write

\/§<XE ~TOner) = [ ol @),

where g : FF x (0,4+00) is given by

\/? v e o
t) = - . S, T )
o0:0) =T [ 57 Jo Gy P
and by (1.9) we have

T
. _ N/2
tl_lgi gla,t)=3 @mN?2 Jy,
0 for z € (E°U E') N FF,

z - I/F(I)€7|Z|2/4dz forx € FENFF

where EY, E' are defined according to (1.7). Since

VT

)] <
ot )1 < e .

|z\e*‘z‘2/4dz =cn,
N
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we can apply Lebesgue dominated convergence theorem and obtain

3 lim \/E<XE —T(t)xe, XF)

(47) N/2 / / 2 vp(e)e I dzd N (x)
FENFF

Hy g ()

@)z ve(z eV P A aHN 1 (¢
e [ [ st e ve)e s o)

e

= / ve(z) - ve(z)dHN 1 (2),
FENFF
because vp(z) = (ve(x) - vr(z))vp(z) for HNl-ae. 2 € FEN FF and

Vs

—|z1?/4 7, _ N-1)/2
e z-vg(x)e Mz = 2(4m) N/ VreFE. O

v (z)

Remark 3.2. — Notice that if |F'\ E| = 0 in the preceding statement,
then vg(z) = vr(x) for HVl-a.e. x € FEN FF, hence the equality

lim %XE — T(t)xe, xr) = HN Y (FENFF) (3.2)

holds.

As a special case, we may take E' = F' in the above theorem, and obtain
the following result, which generalises formula (1.4).

THEOREM 3.3. — Let E C RN be a set of finite perimeter; then the
following equality holds

lim | [ ST (0)xs. x5e) = P(E). (3.3)

Proof. — Since || T(t)xel 1 (g~y = |E| for all t > 0, inserting F' = E in
(3.2) we obtain

(xe —T(t)xe,xE) = (X — T(t)XE,1 — XE) = (T (t)XE, XE)
and the assertion follows. O

Let us now prove the reverse implication of Theorem 3.3.
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THEOREM 3.4. — Let E C RY be a set such that either E or E° has
finite measure, and

T c
lim inf M < 4o00.

t—0t+ \/E

Then E has finite perimeter.

Proof. — Assume that |E| < +00. We can write

1 1 L
Vi) = (4m)N/2/R /RN /RN Xpe()xe(x + Viye W dyde
1 P
NEEd /RN (X (@)~ xB@)Xs gz, () drdy
1

= G /RN o—lul?/4 (|E| —|En(E -~ \/511)|) dy

- m [ EAE — Vi)l
- / ple v/ [EAE Vi)l
2402 s Ve
where EAF = (EUF)\ (ENF) . Then, if we define
|[EA(E — tv)]

IDycel = Hmiat ==

from the previous estimate we get that

eIl /4 |[EA(E — Viy)|
Vily

— 2 . .
/N lyle™ /4Dy xldy < htmégf/N ly dy < +oc.
R - R

Noticing that

2
/ lyle /4Dy )y xeldy = CN/ |DyxE|dv,
RN SN-1

we have proved that

/ |[Dyxeldy < +o0.
SN—1

This implies that the function v + |D,xg| is finite for a.e. v € SN~1; in
particular, there exist M > 0 and an orthonormal system of coordinates
v1,...,vN of Lebesgue points of |D, x| such that

|Dy,xe| <M, Vi=1,...,N.
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Without loss of generality, we can assume that v; = e;; now, if ¢ € CL(RY),
the function
o(x +te;) — p(x)

or(x) = ”

is uniformly convergent to 9;¢(x). This implies that

[ xe@dio@s = lim [ xe(yon()ds,
RN t—0t RN

But
/RN xEe(x)o:(x)dx = /RN xE(r — te;) _ XE(x)qﬁ(x)dx’
hence
’/RN XE(2)d(2)dz| < ||¢||OO|EA(€—+M)|.
From this it follows that
|EA(E + tes)|

‘/RN XE(7)0;¢(z)dx

< [@lloo lim int ;

= [¢ll<|Dixsl < Ml|¢lso-

In the end, we have proved that
| xp@div oa)de < NMoll, Y6 € CLRY)
RN

and then yg € BV(RY). O
Remark 3.5. — Given E with finite perimeter and setting f(z,t) =
T(t)xe(z) — xp(r), we have [y fdr =0 for all t > 0, hence [gy ftdz =
Jg~ fdx. Since fT = (T(t)xg — XE)XE- We obtain
IT()xE — xellr @y = 2T ()xE, XEe) (3.4)

and therefore from equality (3.3) we deduce
R
P(E) = }E% 2—\/£||T(t)XE — XEllLr @&~ (3.5)

Moreover, since by [12, Proposition 8] /7 /t||T(t)xe — x&ll L @m~) < P(E)
for all ¢ > 0, the limit in (3.5) is in fact a supremum.
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4. Diffusion for BV functions

In this section we apply the results of the preceding one to general BV
functions and prove a characterisation of BV functions which generalises
Theorems 3.3 and 3.4. Let us recall the coarea formula, which is repeat-
edly used in the sequel (see e.g. [2, Theorem 3.40] for details). For every
u € LY(RY) the following equality holds:

Dul(RY) = [ P({u> )y (4.1)
R
and both sides are finite if and only if u € BV(RY).

THEOREM 4.1. — Let u € BV(RY); then the following equality holds:

Dul(RY) =i % [ ju(e) = )l oty

Proof.— From (3.4), (3.5) and the coarea formula (4.1), setting
E, = {u > 7} and noting that, for almost every =,y € RY

/R Ixs, () — xs, ()] = Ju(z) — u(y)], (4.2)

we get by Remark 3.5

D) = [ PEarz [ L5 rxe - e ldsr
2\[/ /RNxR Ixer(y) — XE, (2)|pNn (2, Y, t)dedydT

- 2\[ RN RN lu(x) — u(y)|pn (2, y, t)dzdy.

For the reverse inequality, from the Fatou Lemma and from the fact that

Xe, (@)xe. (y) #0 iff 7 <min{u(z),u(y)},

WV

we have that
|Du|(RN) = / )dT = / hm — T(t)xE, () XEe (x)dzdr
t=0 \[ RV .

< liminf VT / | Oeels) = e ), (e, dodydr
RN xRN

= liminf ~— \/_

mipt 7 [ (uly) —min{u(e), u(y) Do .y, Odady.
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But then the assertion follows, since min{u(z),u(y)} = $[u(z) + u(y) —
u(z) —u(y)l]. O

The following result is the reverse implication of Theorem 4.1 and is
indeed a corollary of Theorem 3.4.

PROPOSITION 4.2. — Let u € LY(RY) be such that

lim inf —/ —u(y)| pn(x,y, t)dzdy < +00; (4.3)
=0 RN ><RN

then u € BV(RY).

Proof.— Using (4.2) and setting again E,; = {u > 7}, we can write

[ u@) — u) oyl dady
RN xRN

- / / e (@) — xi. (8)) o (2, , t)dadydr
R JRN xRN

Since (T(t)xE, XEe) = 0 (see Remark 3.5) by the above equality and (4.3)
we get

1
0 < liminf — (T(t)xp., Yge Ydr < liminf Y
/lgrgn \/E< (t)XE,, Xpe )dT < Hnm/\[ X B, XEe )dT

R
< hmmf—/ / IxE. () — x&, (v)|pN (2, y, t)dedydr < +00.
RN xRN

In particular, by Theorem 3.4, for a.e. 7 € R the set E, has finite perimeter
and the limit }in%%<T(t)XE, » X E$> exists. Then by the coarea formula and

Theorem 3.3,

Dul®RY) = [ P(B)ir - hm\f (T@)xE. xre Yir

RtO

< liminfy/— / —u(y)|pn(z,y, t)drdy < +o0
=0 RN><RN
that is, u € BV(RY).

Let us add a further result concerning BV functions, which in some
sense is a complement of Theorem 3.1. In order to state it, let us recall
some properties of u € BV (RY). Setting

u”(z) = inf {t € [—o0,40o0] : ;i_r)l’(l) o N {u>t}N By(x)| = 0} ,
u(xr) = sup {t € [—o0,+0o0] : £l)ii‘% o NM{u<t}n By(z)| = O} .
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and S, = {z € RY : v/(z) < uV(x)}, a Borel unit vector field v, is defined
HN~1-a.e. in S, in such a way that the measure Du, restricted to S,, can
be represented as Dul_S, = (u" — u")vy, HN 1L S,, see e.g. [2, Theorem
3.78].

THEOREM 4.3. — Let u,v € BV(RY)N L2(RY), or u,v € BV(RY),
v e LXRN). Then

lim ﬁ(u —T(t)u,v) = / (" —u™) (WY — ")y - vpdHN L
=0 Vi 5.NS,

The previous identity makes also sense for any u,v € BVioo(RYN) without
the assumption to be L2, possibly having on both sides infinite value.

Proof.— Set E. = {u > 7} and F, = {v > o}. Notice that
€ FE, = 1€ [u"(z),u’ (2)].

Then if = is a Lebesgue point either for u or for v, we have either

/ XFE, (x)dr =0 or / xrF, (z)do = 0.
R R

Moreover, since for HYt-a.e. € S, and o € (v"(z),vY(x)) there holds
x € FF,, we get

/ / ve, - vp,dHYN "tdrdo
RxR JFE NFF,
:// /I/ET~Z/F6X]:FUdO'dHN71dT
RJFE; /R

= / / (0¥ — Mg, v dHNdr
R JFE.NS,

:/ /( —UA)VET'VUX}‘ETdeHN_l
s, JR

oV
= / (" —u™) (v — vy - vy dHN L O
SuNSy

Remark 4.4. — An immediate consequence of (1.2) and Theorem 4.3 is
the following equality:

T(#)u, (1)) = [S T O IR

E
g 72 (G0) — ¢
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In fact,

VT = jmﬁ U, V) — u,v
lim 2= ((w0) = (TOuT(O) = fim T (o) = (TAu.v))

t—0

lim — ({(u — T(2t)u,v)).

fim Y (= T(20))
Remark 4.5. — The interpolation space (L'(RN), D(A))1 /2,00 defined

in (1.6) coincides with the Besov space Bi/ozo(RN) (see [13, Theorem 4*]).

From Theorem 4.1 it follows that the BV-norm is stronger than the B} / 2 (RN)
norm, because clearly

7@ =l < [ (o) = oo, tdody
RN xRN

for every ¢t > 0. On the other hand, Remark 3.5 shows that in the above

estimate the equality holds if w = xg and P(F) is finite. Let us point out

an example showing that (L'(R™),D(A))1/s,0c is larger than BV (RY).

Taking N = 1 and using the following norm, which is equivalent to the

natural norm in the above interpolation space (see [14, Theorem 1.13.6.1])

Ta(t) —1)?
[(T'4(?) t) ull 1 (r) <o

[ull = sup
o<t

where in our case Au = u’ and T'4(¢) is the translation semigroup T4 (t)u(z) =
u(x +1), it is easily seen that the function u(x) = log|x|-x(-1,1)(x) belongs
to LY(R) and to (L*(R), D(A))1 /2,00, but u does not belong to BV (R).
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