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Short-time heat flow and functions
of bounded variation in RN (∗)

Michele Miranda Jr (1), Diego Pallara (1),
Fabio Paronetto (1), Marc Preunkert (2)

ABSTRACT. — We prove a characterisation of sets with finite perimeter
and BV functions in terms of the short time behaviour of the heat semi-
group in RN . For sets with smooth boundary a more precise result is
shown.

RÉSUMÉ. — On prouve une caractérisation des ensembles avec périmètre
fini et des fonctions à variation bornée en termes du comportement du
semi-groupe de la chaleur dans RN au voisinage de t = 0. On prouve aussi
un résultat plus précis pour les ensembles avec frontière assez régulière.

1. Introduction

Sets with finite perimeter have been introduced by E. De Giorgi in the
fifties (see [5], [6]), as a part of the theory of functions of bounded variation,
in order to deal with geometric variational problems and have proved to
be very useful in several contexts. The first researches of De Giorgi were
connected with the investigations of R. Caccioppoli, and in fact sets with
finite perimeter are also called Caccioppoli sets. Let us refer to [2] for the
properties of sets with finite perimeter and BV functions. De Giorgi’s orig-
inal definition of the perimeter of a (measurable) set E ⊂ RN was based on
the heat semigroup (T (t))t�0 in RN , because of its regularising effects, and
can be phrased as follows:

P (E) = lim
t→0
‖∇xT (t)χE‖L1(RN ),
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where χE denotes the characteristic function of E. We denote by
pN : RN ×RN ×R+ → R the Gauss-Weierstrass kernel, defined by

pN (x, y, t) :=
1

(4πt)N/2
e−
|x−y|2

4t ,

so that T (t)u(x) =
∫
RN pN (x, y, t)u(y)dy for every u ∈ L1(RN ).

In [8] M. Ledoux investigated in a different perspective some connections
between the heat semigroup (T (t))t�0 on L2(RN ) and the isoperimetric
inequality, observing that the L2-inequality

‖T (t)χE‖L2(RN ) � ‖T (t)χB‖L2(RN ) t � 0 (1.1)

for all sets E with smooth boundary with the same volume |E| as the ball B
implies the isoperimetric inequality. By the self-adjointness of the operators
T (t) and

‖T (t)χE‖2L2(RN ) = 〈T (t)χE , T (t)χE〉 = 〈T (2t)χE , χE〉, (1.2)

the behaviour of 〈T (t)χE , χE〉 is related to the L2-norm of T (t)χE , where
we use the notation 〈f, g〉 =

∫
RN fgdx whenever the integral is finite. Notice

that (1.1) can be easily deduced from the Riesz-Sobolev inequality (see e.g.
[9, Theorem 3.7])
∫
RN×RN

f(x)g(x−y)h(y)dxdy �
∫
RN×RN

f∗(x)g∗(x−y)h∗(y)dxdy, (1.3)

where φ∗ denotes the spherical symmetrisation of φ. Taking f = h = χE
and g = g∗ = pN (·, ·, t) in (1.3), so that f∗ = h∗ = χB , the inequality (1.1)
follows immediately:

‖T (t)χE‖2L2(RN ) = 〈T (2t)χE , χE〉

=
∫
RN×RN

χE(x)χE(y)pN (x, y, 2t)dxdy

�
∫
RN×RN

χB(x)χB(y)pN (x, y, 2t)dxdy

= 〈T (2t)χB , χB〉 = ‖T (t)χB‖2L2(RN )

In [8] an important point has been the formula

lim
t→0

√
π

t
〈T (t)χB , χBc〉 = P (B), (1.4)
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where B is a ball, and the inequality√
π

t
〈T (t)χE , χEc〉 � P (E) for every t � 0, (1.5)

which has been generalised in [12] for all E ⊂ RN such that either E or
its complementary set Ec has a finite volume (otherwise, both terms are
infinite). If E and B have the same volume, from the elementary relation

|E| = 〈T (t)χE , χE〉+ 〈T (t)χE , χEc〉 for every t � 0

and (1.2) it follows that the L2-inequality (1.1) is equivalent to

〈T (t)χE , χEc〉 � 〈T (t)χB , χBc〉 for every t � 0,

and the semigroup inequality (1.1) implies the isoperimetric inequality for
Caccioppoli sets in RN . In connection with these results, it seems to be inter-
esting to pursue the investigation of the relationships between the perimeter
of a set and the short-time behaviour of the heat semigroup. The asymptotic
expansion of the heat semigroups on regular manifolds or submanifolds has
been deeply investigated (see e.g. [7], and also [10]), and in fact a localised
version of (1.4) can be proved for sets with smooth boundary (i.e., such that
the unique projection property in a tubular neighbourhood of the boundary
holds), see Theorem 2.1. This result is in fact stronger than (1.4) itself, see
Theorem 2.4. In Section 3 we prove that equality (1.4) holds true not only
for smooth sets, but for all Caccioppoli sets B. Our proof is based upon
the measure-theoretic properties of the reduced boundary. We also show
that the finiteness of the limit on the left hand side characterises sets of
finite perimeter. Let us point out that the same characterisation of finite
perimeter sets is also proved, following a different approach based on the
study of the behaviour of the difference quotients of u, in the papers [3], [4],
[11] (see also [1]), where convolution kernels more general than the Gauss-
Weierstrass one are considered. Our approach is more geometric in spirit,
and gives directly the optimal constants.

Section 4 is devoted to some remarks concerning the short-time be-
haviour of the heat semigroup for general BV functions. Recalling that
u ∈ BV (RN ) if u ∈ L1(RN ) and its distributional gradient is a (RN -
valued) Radon measure with finite total variation given by

|Du|(RN ) = sup
{∫

RN

u div gdx : g ∈ [C1
c (R

N )]N , ‖g‖L∞(RN ) � 1
}
,

we show that the equality

|Du|(RN ) = lim
t→0

√
π

2
√
t

∫
RN×RN

|u(x)− u(y)|pN (x, y, t)dxdy
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holds. Since P (E) = |DχE |(RN ) if u = χE , the above equality is equivalent
to (1.4), and the finiteness of the right hand side characterises the BV
functions. As a consequence, defining (as in [14]) the interpolation space

(L1(RN ), D(∆))1/2,∞ =
{
u ∈ L1(RN ) : sup

0<t<1

1√
t
‖T (t)u−u‖L1(RN ) < +∞

}
,

(1.6)
we have that BV (RN ) ⊂ (L1(RN ), D(∆))1/2,∞ and, from a known charac-
terisation of the above interpolation space, an embedding theorem for BV
into a Besov space follows.

Notation . — We denote byHk the k-dimensional Hausdorff measure (which
coincides with the classical measure for k-dimensional smooth submani-
folds). For every measure µ and measurable set E, we denote by µ E the
restriction measure, i.e., µ E(B) = µ(E ∩B) for all measurable B. For E
measurable and t ∈ [0, 1] we denote by Et the set of points of density t, i.e.,
we set

x ∈ Et ⇐⇒ lim
�→0

|E ∩B�(x)|
|B�|

= t. (1.7)

Recall that the essential boundary of E is ∂∗E = RN \ (E0 ∪ E1), and
the reduced boundary FE is defined as follows. For E ⊂ RN such that
χE ∈ BVloc(RN ), i.e., E has locally finite perimeter, x ∈ supp|DχE | belongs
to FE if the limit

νE(x) := lim
�→0

DχE(B�(x))
|DχE |(B�(x))

exists in RN and satisfies |νE(x)| = 1. The function νE : FE → SN−1 is
called the generalised inner normal to E, and, see e.g. [2, Theorem 3.59], for
every x ∈ FE the hyperplane πx = {y : y · νE(x) = 0} is the approximate
tangent plane to FE at x, i.e.,

lim
�→0

1
�N−1

∫
E

φ
(x− y

�

)
dy =

∫
πx

φ(y)dHN−1(y) ∀ φ ∈ Cc(RN ). (1.8)

Moreover, see e.g. [2, Theorem 3.78],

HN−1(∂∗E \ FE) = 0. (1.9)

and, as a consequence, the distributional derivative of χE is given by the
RN -valued measure

DχE = νEHN−1 FE, HN−1(FE) = P (E). (1.10)
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2. Diffusion for regular sets

In this section we study the short-time behaviour of T (t)χA for sets A
with smooth boundary. By smooth we mean the minimal regularity ensuring
the unique projection property in a tubular neighbourhood of the boundary.
To this end, the Lipschitz continuity of the unit normal vector field is the
natural requirement. We say that A ⊂ RN is uniformly C1,1-regular if there
are �, L > 0 such that for every p ∈ ∂A the set ∂A ∪ B�(p) is the graph of
a C1,1 function ψ with ‖∇ψ‖∞ � L. Setting

Aδ := {x ∈ Ac : dist(x, ∂A) � δ}, Aε := {x ∈ A : dist(x, ∂A) � ε}
(2.1)

for δ, ε > 0, we prove the following theorem.

Theorem 2.1. — Let A ⊂ RN be uniformly C1,1-regular. Let Aε and
Aδ be an inner and outer tubular neighborhood of ∂A defined in (2.1). Then
for every continuous ϕ : RN → R with compact support the equality

lim
t→0

√
π

t
〈T (t)χAε , ϕχAδ〉 =

∫
∂A

ϕdHN−1

holds.

Equality (1.4) for uniformly C1,1-regular sets follows easily from The-
orem 2.1 (see Theorem 2.4). Our proof of Theorem 2.1 is based on a pre-
liminary one-dimensional computation and then on a partition of unity ar-
gument, reflecting the physical insight that for short time the heat flow is
approximately “transversal” to the boundary.

The first step in the proof of Theorem 2.1 is the one-dimensional com-
putation below.

Lemma 2.2. — Fix δ, ε > 0, and for t > 0 define the functions ft by

ft(z) :=
1√
t

∫ δ

0

χ{−ε�r+
√

2t z�0}(r) dr, z � 0. (2.2)

Then ft � fs for every 0 < t < s and

lim
t→0

ft(z) = −
√

2 z, z � 0.

Proof. — In order to compute the integral in (2.2), notice that the inte-
grand is nonzero if and only if

r ∈ It = [0, δ] ∩ [−ε−
√

2t z,−
√

2t z],
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and that the interval It is

It =




[− ε−
√

2tz, δ] if z � min{−ε/
√

2t,−δ/
√

2t} ,
[0, δ] if z ∈ [−ε/

√
2t,−δ/

√
2t] ,

[− ε−
√

2tz,−
√

2tz] if z ∈ [−δ/
√

2t,−ε/
√

2t] ,
[0,−

√
2tz] if z � max{−ε/

√
2t,−δ/

√
2t} .

Notice that only one between the second and third possibility for It may
occur, according to the relative size of ε and δ. Consequently, since

ft(z) =
1√
t
|It| ,

we have

ft(z) =




(δ + ε)/
√
t+
√

2z −∞ < z � min{−ε/
√

2t,−δ/
√

2t} ,
min{ε, δ}/

√
t min{−ε/

√
2t,−δ/

√
2t} � z

� max{−ε/
√

2t,−δ/
√

2t} ,
−
√

2 z max{−ε/
√

2t,−δ/
√

2t} � z � 0 ,

and the assertion follows immediately. �

In order to fix the notation to be used in the proof of Theorem 2.1, let us
recall the geometric properties of smooth boundaries which we are going to
use. We refer e.g. to [15, Section I.2] for a detailed discussion on the subject.

Proposition 2.3. — Let A ⊂ RN be a uniformly C1,1-regular set.
Then, there are ε, δ > 0 such that the maps

i) ∂A× [0, δ]→ Aδ, (p, d) �→ p+ d · ν(p)
ii) ∂A× [0, ε]→ Aε, (p, d) �→ p− d · ν(p),

where ν(p) is the outward unit normal to ∂A at p, are C1,1-diffeomorphisms.

Moreover, for every η > 0 there is a locally finite covering V = (Vi) of
∂A and C1,1 diffeomorphisms

ψi : Di → Vi , Di open subset of RN−1

such that
|Dν(p)| � η p ∈ Vi
|Dψi(ξ)−Ri| � η ξ ∈ Di (2.3)

for suitable linear maps Ri. For every Vi and ψi define

Ψi(ξ, �) := ψi(ξ) + �ν(ψi(ξ)) , ξ ∈ Di , � ∈ (−ε, δ).
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Denoting by Ui the open set

Ui := Ψi
(
Di × (−ε, δ)

)
,

the family U = (Ui) turns out to be a covering of Aε ∪Aδ, and

|DΨi − Li| < η (2.4)

for every i, where Li are orthogonal maps such that |LieN − ν| � η.

Proof of Theorem 2.1. — Recall that we denote by pN the Gauss-Weierstrass
kernel. We divide the proof in three steps.

Step 1 - We first consider the case when A = {x ∈ RN : xN < 0}, so that
we have

Aδ = RN−1 × (0, δ) , Aε = RN−1 × (−ε, 0)

and ϕ independent of xN . Denoting x = (x′, xN ) (where x′ = (x1, . . . , xN−1) ∈
RN−1) observe that pN (x, y, t) = pN−1(x′, y′, t)p1(xN , yN , t) and take ϕ =
ϕ(x′) in Cc(RN−1). Then we have√

π

t

∫
Aδ

∫
Aε

pN (x, y, t)ϕ(x) dy dx =

=
√
π

t

∫
Aδ

∫
Aε

pN−1(x′, y′, t)p1(xN , yN , t)ϕ(x′) dy dx

=
√
π

t

∫
RN−1

∫
RN−1

pN−1(x′, y′, t)ϕ(x′)

∫ δ

0

∫ 0

−ε
p1(xN , yN , t) dyN dxN dy′ dx′

=
( ∫

RN−1
ϕ(x′)dx′

)√
π

t

∫ δ

0

∫ 0

−ε
p1(xN , yN , t) dyN dxN .

Let us now consider only
√
π
t

∫ δ
0
dxN

∫ 0

−ε p1(xN , yN , t) dyN in the last line
above: taking the new variable z = (yN − xN )/

√
2t we obtain√

π

t

∫ δ

0

∫ 0

−ε
p1(xN , yN , t) dyN dxN =

=
√
π

t

∫ δ

0

∫ −xN√
2t

−ε−xN√
2t

e−z
2/2

2
√
πt

√
2t dz dxN

=
1√
2t

∫ δ

0

∫
R

e−z
2/2χ(−ε,0)(

√
2tz + xN ) dz dxN

=
1√
2t

∫ 0

−∞
e−z

2/2

∫ δ

0

χ(−ε,0)(
√

2tz + xN ) dxN dz.
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By Lemma 2.2,

lim
t→0

1√
2t

∫ δ

0

χ(−ε,0)(
√

2tz + xN ) dxN = −z,

and then, by the monotone convergence theorem we conclude that

lim
t→0

√
π

t

∫
Aδ

∫
Aε

pN (x, y, t)ϕ(x) dy dx =
∫
RN−1

ϕ(x′)dx′. (2.5)

Step 2 - Take now a function ϕ ∈ Cc(RN ) and denote by A the same set as
in Step 1. Notice that

ω(τ) := sup
(x′,xN )∈RN−1×[−τ,τ ]

|ϕ(x′, xN )− ϕ(x′, 0)| → 0 as τ → 0. (2.6)

We can then write√
π

t

∫
Aδ

∫
Aε

pN (x, y, t)ϕ(x) dy dx =

=
√
π

t

∫
Aδ

∫
Aε

pN (x, y, t)
[
ϕ(x′, 0) + (ϕ(x)− ϕ(x′, 0))

]
dy dx .

By Step 1 we have that

lim
t→0

√
π

t

∫
Aδ

∫
Aε

pN (x, y, t)ϕ(x′, 0) dy dx =
∫
RN−1

ϕ(x′, 0)dx′ .

It remains to prove that

lim
t→0

√
π

t

∫
Aδ

∫
Aε

pN (x, y, t)[ϕ(x)− ϕ(x′, 0)] dy dx = 0 . (2.7)

As done in Step 1 we obtain, denoting by K the projection of supp ϕ on
{x ∈ RN |xN = 0}
∣∣∣
√
π

t

∫
Aδ

∫
Aε

pN (x, y, t)[ϕ(x)− ϕ(x′, 0)] dy dx
∣∣∣ �

�
√
π

t

∫
K

∫ δ

0

∫ 0

−ε
|ϕ(x)− ϕ(x′, 0)|p1(xN , yN , t)dyNdxNdx′

=
√
π

t

∫
K

∫ δ

0

∫
R

|ϕ(x)− ϕ(x′, 0)|χ(−ε,0)(yN )
e−|xN−yN |

2/4t

(4πt)1/2
dyNdxNdx

′

=
1√
2t

∫
K

∫ δ

0

∫ 0

−∞
|ϕ(x)− ϕ(x′, 0)|χ(−ε,0)(xN +

√
2tz)e−z

2/2dzdxNdx
′
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where in the last equality we have set z = (yN − xN )/
√

2t.
Now fix σ > 0: then we can find z0 < 0 for which

∣∣∣
∫ z0

−∞
ze−z

2/2dz
∣∣∣ < σ . (2.8)

Going on estimating, from above we derive, for −
√

2tz0 � δ,
∣∣∣
√
π

t

∫
Aδ

∫
Aε

pN (x, y, t)[ϕ(x)− ϕ(x′, 0)] dy dx
∣∣∣ �

=
1√
2t

∫
K

∫ z0

−∞

∫ δ

0

|ϕ(x)− ϕ(x′, 0)|χ(−ε,0)(xN +
√

2tz)e−z
2/2dxNdzdx

′ +

+
1√
2t

∫
K

∫ 0

z0

∫ δ

0

|ϕ(x)− ϕ(x′, 0)|χ(−ε,0)(xN +
√

2tz)e−z
2/2dxNdzdx

′

� ω(δ)
∫
K

∫ z0

−∞

ft(z)√
2
e−z

2/2dzdx′ +
∫
K

∫ 0

z0

ω(−
√

2tz0)
ft(z)√

2
e−z

2/2dzdx′

where ω is defined in (2.6) and ft is as in Lemma 2.2. By Lemma 2.2 we
know that ft(z)→ −

√
2z and ft � fs for 0 < t < s. Then we infer, also by

(2.8),

lim
t→0+

ω(δ)
∫
K

∫ z0

−∞

ft(z)√
2
e−z

2/2dzdx′=−ω(δ)|K|
∫ z0

−∞
ze−z

2/2dzdx′<ω(δ)|K|σ .

Since | ft(z)√
2
e−z

2/2| � |ze−z2/2| and ω(−
√

2tz0) converges uniformly to 0 as
t→ 0+, we finally obtain (2.7).
Step 3 - Now we consider a uniformly C1,1-regular set A, fix a function
ϕ ∈ Cc(RN ) and use the notation in Proposition 2.3. Assume at first that
the support of ϕ is contained in a fixed Ui (this hypothesis can easily be
removed by a partition of unity argument). Since for every i ∈ N, x ∈ Ui
the function pN (x, y, t)/

√
t goes to 0 as t → 0 for every y ∈ Aε \ Ui, by

dominated convergence we have

lim
t→0

√
π

t

∫
Aδ
dx

∫
Aε

pN (x, y, t)ϕ(x) dy

= lim
t→0

√
π

t

∫
Aδ∩Ui

dx

∫
Aε∩Ui

pN (x, y, t)ϕ(x) dy.

Since the index i is fixed, we may drop this index everywhere, and write the
kernel pN (x, y, t), x ∈ Aδ ∩ U and y ∈ Aε ∩ U , using the new variables in
D × [0, δ] and D × [−ε, 0], i.e., we may write

y = Ψ(z, r) z ∈ D , r ∈ [0, δ] ,
x = Ψ(ξ, �) ξ ∈ D , � ∈ [−ε, 0] .
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so that

ψ(z) = ψ(ξ) +Dψ(ξ) · (z − ξ) + o(|z − ξ|) ,
ν(ψ(z)) = ν(ψ(ξ)) +Dν(ψ(ξ)) ·

[
Dψ(ξ) · (z − ξ)

]
+ o(|z − ξ|) . (2.9)

Then, using these equalities, we obtain∫
Aδ

∫
Aε

pN (x, y, t)ϕ(x) dy dx =
∫
D×(0,δ)

∫
D×(−ε,0)

p̃N
(
(z, r), (ξ, �), t

)
ϕ(ψ(z) + rν(ψ(z)))dz dr dξ d�

where we have defined

p̃N
(
(z, r), (ξ, �), t

)
= pN

(
Ψ(z, r),Ψ(ξ, �), t)|DΨ(z, r)||DΨ(ξ, �)| .

By (2.4), we have

|DΨ(ξ, �)| = 1 +O(η) in D × (0, δ) ,
|DΨ(z, r)| = 1 +O(η) in D × (−ε, 0) (2.10)

and consequently

|DΨ−1(x)| = 1 +O(η) and |Dψ−1(x)| = 1 +O(η) in U . (2.11)

Then, writing

Ψ(z, r) = Ψ(ξ, �)+[DΨ−L]((z, r)−(ξ, �))+L((z, r)−(ξ, �))+o(|(z, r)−(ξ, �)|)
for the orthogonal map L given by Proposition 2.3, we can compute, using
(2.4),

∣∣Ψ(z, r)−Ψ(ξ, �)
∣∣2

=
∣∣[DΨ− L]((z, r)− (ξ, �)) + L((z, r)− (ξ, �)) + o(|(z, r)− (ξ, �)|)

∣∣2
= |(z, r)− (ξ, �)|2

(
1 +O(η)

)

and consequently pN
(
Ψ(z, r),Ψ(ξ, �), t) = 1

(4πt)N/2
exp

{
−|(z − ξ, r − �)|

2

4t

}
(
1 +O(η)

)
by which finally

p̃N
(
Ψ(z, r),Ψ(ξ, �), t) =

1
(4πt)N/2

exp
{
−|(z − ξ, r − �)|

2

4t

}(
1 +O(η)

)
.

Then from the above equality and (2.10) we derive√
π

t

∫
Aδ

∫
Aε

pN (x, y, t)ϕ(x) dy dx =

=
(
1 +O(η)

)√π

t

∫
D×(0,δ)

∫
D×(−ε,0)

pN
(
(z, r), (ξ, �), t

)
ϕ(Ψ(ξ, �))dξ d� dz dr .
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Taking the limit as t→ 0, by Step 2 and (2.11) we obtain

lim
t→0

√
π

t

∫
Aδ
dx

∫
Aε

pN (x, y, t)ϕ(x) dy

=
(
1 +O(η)

) ∫
D

ϕ(Ψ(ξ, 0))dξ

=
(
1 +O(η)

) ∫
D

ϕ(ψ(ξ))dξ

=
(
1 +O(η)

) ∫
∂A∩U

ϕ(x)|Dψ−1(x)|dHN−1(x)

=
(
1 +O(η)

) ∫
∂A∩U

ϕ(x)dHN−1(x)

which concludes the proof. �

Of course, for sets with smooth boundary, equality (1.4) can be deduced
from Theorem 2.1.

Theorem 2.4. — Let A ⊂ RN be a compact subset with C1,1-boundary
∂A. Then

lim
t→0

√
π

t
〈T (t)χA, χAc〉 = P (A)

holds.

Proof. — From the elementary relations

〈T (t)χAε , χAδ〉+ 〈T (t)χAε , χAc\Aδ〉 = 〈T (t)χAε , χAc〉,
〈T (t)χAε , χAc〉+ 〈T (t)χA\Aε , χAc〉 = 〈T (t)χA, χAc〉

it follows that

〈T (t)χAε , χAδ〉 � 〈T (t)χAε , χAc〉,
〈T (t)χAε , χAc〉 � 〈T (t)χA, χAc〉

and therefore, together with (1.5),√
π

t
〈T (t)χAε , χAδ〉 �

√
π

t
〈T (t)χA, χAc〉 � P (A).

Then by this last inequality and Theorem 2.1 it follows that

P (A) = lim
t→0

√
π

t
〈T (t)χAε , χAδ〉 � lim inf

t→0

√
π

t
〈T (t)χA, χAc〉

� lim sup
t→0

√
π

t
〈T (t)χA, χAc〉 � P (A). �
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Remark 2.5. — Since for compact subsets A ⊂ RN with smooth bound-
ary ∂A the perimeter P (A) and the (N−1)-dimensional Hausdorff measure
HN−1(∂A) coincide (cf [2, Proposition 3.62]), we also have

lim
t→0

√
π

t
〈T (t)χA, χAc〉 = HN−1(∂A).

3. Diffusion for Caccioppoli sets

In this section we show that a measurable set E ⊂ RN has finite perime-
ter if and only if

√
π/t〈T (t)χE , χEc〉 is bounded. To begin with, let us study

the short-time behaviour of T (t) with respect to two arbitrary sets of finite
perimeter. Recall that for E with finite perimeter νE denotes the generalised
(or measure-theoretic) inner unit normal to the reduced boundary.

Theorem 3.1. — Let E,F ⊂ RN be sets of finite perimeter. Then the
following equality holds:

lim
t→0

√
π

t
〈χE − T (t)χE , χF 〉 =

∫
FE∩FF

νE(x) · νF (x)dHN−1(x). (3.1)

Proof. — Since

T (t)χE − χE =
∫ t

0

∆T (s)χEds,

we have

〈T (t)χE − χE , χF 〉 =
∫ t

0

〈∆T (s)χE , χF 〉ds.

Moreover, by (1.10), integrating by parts we obtain

〈∆T (s)χE , χF 〉 =
∫
RN

∆T (s)χE(x)χF (x)dx

= −
∫
RN

∇T (s)χE(x) · dDχF (x)

= −
∫
FF
∇T (s)χE(x) · νF (x)dHN−1(x).

Notice that, if we define for every x ∈ FE and s > 0 the measures

dµs,x = LN
(
E − x√

s

)
,
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we have

∇T (s)χE(x) =
∫
E

∇x


 e−

|x−y|2
4s

(4πs)N/2


 dy = −

∫
E

(x− y)
2s

e−
|x−y|2

4s

(4πs)N/2
dy

=
1

2
√
s

∫
E−x√
s

e−|z|
2/4

(4π)N/2
zdz.

=
1

2
√
s

∫
RN

e−|z|
2/4

(4π)N/2
zdµs,x(z).

Moreover, setting, for every x ∈ FE,

HνE(x) =
{
z ∈ RN : z · νE(x) � 0

}
,

the existence of the approximate tangent plane for x ∈ FE, see (1.8), implies
that the measures µs,x are locally weakly∗ convergent as s → 0 to the
measure

dµx = LN HνE(x),

and also

lim
s→0

∫
RN

z · νF (x)
e−|z|

2/4

(4π)N/2
dµs,x(z) =

∫
HνE(x)

z · νF (x)
e−|z|

2/4

(4π)N/2
dz.

Summing up, we can write
√
π

t
〈χE − T (t)χE , χF 〉 =

∫
FF

g(x, t)dHN−1(x),

where g : FF × (0,+∞) is given by

g(x, t) =
√
π

t

∫ t

0

1
2
√
s

∫
RN

e−|z|
2/4

(4π)N/2
z · νF (x)dµs,x(z)ds,

and by (1.9) we have

lim
t→0+

g(x, t)=




√
π

(4π)N/2

∫
HνE(x)

z · νF (x)e−|z|
2/4dz for x ∈ FE ∩ FF

0 for x ∈
(
E0 ∪ E1

)
∩ FF,

where E0, E1 are defined according to (1.7). Since

|g(x, t)| �
√
π

(4π)N/2

∫
RN

|z|e−|z|2/4dz = cN ,
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we can apply Lebesgue dominated convergence theorem and obtain

∃ lim
t→0

√
π

t
〈χE − T (t)χE , χF 〉

=
√
π

(4π)N/2

∫
FE∩FF

∫
HνE(x)

z · νF (x)e−|z|
2/4dzdHN−1(x)

=
√
π

(4π)N/2

∫
FE∩FF

∫
HνE(x)

(νE(x) · νF (x))(z · νE(x))e−|z|
2/4dzdHN−1(x)

=
∫
FE∩FF

νE(x) · νF (x)dHN−1(x),

because νF (x) = (νE(x) · νF (x))νE(x) for HN−1-a.e. x ∈ FE ∩ FF and

√
π

(4π)N/2

∫
HνE(x)

z · νE(x)e−|z|
2/4dz = 2(4π)(N−1)/2 ∀ x ∈ FE. �

Remark 3.2. — Notice that if |F \ E| = 0 in the preceding statement,
then νE(x) = νF (x) for HN−1-a.e. x ∈ FE ∩ FF , hence the equality

lim
t→0

√
π

t
〈χE − T (t)χE , χF 〉 = HN−1(FE ∩ FF ) (3.2)

holds.

As a special case, we may take E = F in the above theorem, and obtain
the following result, which generalises formula (1.4).

Theorem 3.3. — Let E ⊂ RN be a set of finite perimeter; then the
following equality holds

lim
t→0

√
π

t
〈T (t)χE , χEc〉 = P (E). (3.3)

Proof. — Since ‖T (t)χE‖L1(RN ) = |E| for all t � 0, inserting F = E in
(3.2) we obtain

〈χE − T (t)χE , χE〉 = 〈χE − T (t)χE , 1− χEc〉 = 〈T (t)χE , χEc〉

and the assertion follows. �

Let us now prove the reverse implication of Theorem 3.3.
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Theorem 3.4. — Let E ⊂ RN be a set such that either E or Ec has
finite measure, and

lim inf
t→0+

〈T (t)χE , χEc〉√
t

< +∞.

Then E has finite perimeter.

Proof. — Assume that |E| < +∞. We can write

1√
t
〈T (t)χE , χEc〉 =

1
(4π)N/2

√
t

∫
RN

∫
RN

χEc(x)χE(x+
√
ty)e−|y|

2/4dydx

=
1

(4π)N/2
√
t

∫
RN

e−|y|
2/4

∫
RN

(
χE−

√
ty(x)− χE(x)χE−√ty(x)

)
dxdy

=
1

(4π)N/2
√
t

∫
RN

e−|y|
2/4

(
|E| − |E ∩ (E −

√
ty)|

)
dy

=
1

2(4π)N/2
√
t

∫
RN

e−|y|
2/4|E�(E −

√
ty)|dy

=
1

2(4π)N/2

∫
RN

|y|e−|y|2/4 |E�(E −
√
ty)|√

t|y|
dy,

where E�F = (E ∪ F ) \ (E ∩ F ) . Then, if we define

|DνχE | = lim inf
t→0+

|E�(E − tν)|
t

,

from the previous estimate we get that
∫
RN

|y|e−|y|2/4|Dy/|y|χE |dy � lim inf
t→0+

∫
RN

|y|e−|y|2/4 |E�(E −
√
ty)|√

t|y|
dy < +∞.

Noticing that
∫
RN

|y|e−|y|2/4|Dy/|y|χE |dy = CN

∫
SN−1

|DνχE |dν,

we have proved that ∫
SN−1

|DνχE |dν < +∞.

This implies that the function ν �→ |DνχE | is finite for a.e. ν ∈ SN−1; in
particular, there exist M > 0 and an orthonormal system of coordinates
ν1, . . . , νN of Lebesgue points of |DνχE | such that

|DνiχE | �M, ∀i = 1, . . . , N.
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Without loss of generality, we can assume that νi = ei; now, if φ ∈ C1
c (R

N ),
the function

φt(x) =
φ(x+ tei)− φ(x)

t

is uniformly convergent to ∂iφ(x). This implies that

∫
RN

χE(x)∂iφ(x)dx = lim
t→0+

∫
RN

χE(x)φt(x)dx.

But ∫
RN

χE(x)φt(x)dx =
∫
RN

χE(x− tei)− χE(x)
t

φ(x)dx,

hence ∣∣∣∣
∫
RN

χE(x)φt(x)dx
∣∣∣∣ � ‖φ‖∞ |E�(E + tei)|

t
.

From this it follows that
∣∣∣∣
∫
RN

χE(x)∂iφ(x)dx
∣∣∣∣ � ‖φ‖∞ lim inf

t→0+

|E�(E + tei)|
t

= ‖φ‖∞|DiχE | �M‖φ‖∞.

In the end, we have proved that
∫
RN

χE(x)div φ(x)dx � NM‖φ‖∞, ∀φ ∈ C1
c (R

N ),

and then χE ∈ BV (RN ). �

Remark 3.5. — Given E with finite perimeter and setting f(x, t) =
T (t)χE(x)− χE(x), we have

∫
RN fdx = 0 for all t � 0, hence

∫
RN f

+dx =∫
RN f

−dx. Since f+ = (T (t)χE − χE)χEc we obtain

‖T (t)χE − χE‖L1(RN ) = 2〈T (t)χE , χEc〉 (3.4)

and therefore from equality (3.3) we deduce

P (E) = lim
t→0

√
π

2
√
t
‖T (t)χE − χE‖L1(RN ). (3.5)

Moreover, since by [12, Proposition 8] 1
2

√
π/t‖T (t)χE−χE‖L1(RN ) � P (E)

for all t > 0, the limit in (3.5) is in fact a supremum.
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4. Diffusion for BV functions

In this section we apply the results of the preceding one to general BV
functions and prove a characterisation of BV functions which generalises
Theorems 3.3 and 3.4. Let us recall the coarea formula, which is repeat-
edly used in the sequel (see e.g. [2, Theorem 3.40] for details). For every
u ∈ L1(RN ) the following equality holds:

|Du|(RN ) =
∫
R

P ({u > τ})dτ, (4.1)

and both sides are finite if and only if u ∈ BV (RN ).

Theorem 4.1. — Let u ∈ BV (RN ); then the following equality holds:

|Du|(RN ) = lim
t→0

√
π

2
√
t

∫
RN×RN

|u(x)− u(y)|pN (x, y, t)dxdy.

Proof. — From (3.4), (3.5) and the coarea formula (4.1), setting
Eτ = {u > τ} and noting that, for almost every x, y ∈ RN∫

R

|χEτ (x)− χEτ (y)|dτ = |u(x)− u(y)|, (4.2)

we get by Remark 3.5

|Du|(RN ) =
∫
R

P (Eτ )dτ �
∫
R

√
π

2
√
t

∫
RN

|T (t)χEτ − χEτ |dxdτ

�
√
π

2
√
t

∫
R

∫
RN×RN

|χEτ (y)− χEτ (x)|pN (x, y, t)dxdydτ

=
√
π

2
√
t

∫
RN×RN

|u(x)− u(y)|pN (x, y, t)dxdy.

For the reverse inequality, from the Fatou Lemma and from the fact that

χEτ (x)χEτ (y) �= 0 iff τ < min{u(x), u(y)},

we have that

|Du|(RN ) =
∫
R

P (Eτ )dτ =
∫
R

lim
t→0

√
π√
t

∫
RN

T (t)χEτ (x)χEcτ (x)dxdτ

� lim inf
t→0

√
π√
t

∫
R

∫
RN×RN

(χEτ (y)− χEτ (y)χEτ (x))pN (x, y, t)dxdydτ

= lim inf
t→0

√
π√
t

∫
RN×RN

(u(y)−min{u(x), u(y)})pN (x, y, t)dxdy.
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But then the assertion follows, since min{u(x), u(y)} = 1
2 [u(x) + u(y) −

|u(x)− u(y)|]. �

The following result is the reverse implication of Theorem 4.1 and is
indeed a corollary of Theorem 3.4.

Proposition 4.2. — Let u ∈ L1(RN ) be such that

lim inf
t→0

1√
t

∫
RN×RN

|u(x)− u(y)| pN (x, y, t)dxdy < +∞ ; (4.3)

then u ∈ BV (RN ).

Proof. — Using (4.2) and setting again Eτ = {u > τ}, we can write∫
RN×RN

|u(x)− u(y)| pN (x, y, t)dxdy

=
∫
R

∫
RN×RN

|χEτ (x)− χEτ (y)| pN (x, y, t)dxdydτ .

Since 〈T (t)χE , χEc〉 � 0 (see Remark 3.5) by the above equality and (4.3)
we get

0 �
∫
R

lim inf
t→0

1√
t

〈
T (t)χEτ , χEcτ

〉
dτ � lim inf

t→0

∫
R

1√
t

〈
T (t)χEτ , χEcτ

〉
dτ

� lim inf
t→0

1√
t

∫
RN×RN

∫
R

|χEτ (x)− χEτ (y)| pN (x, y, t)dxdydτ < +∞ .

In particular, by Theorem 3.4, for a.e. τ ∈ R the set Eτ has finite perimeter
and the limit lim

t→0

1√
t

〈
T (t)χEτ , χEcτ

〉
exists. Then by the coarea formula and

Theorem 3.3,

|Du|(RN ) =
∫
R

P (Eτ )dτ =
∫
R

lim
t→0

√
π

t

〈
T (t)χEτ , χEcτ

〉
dτ

� lim inf
t→0

√
π

t

∫
RN×RN

|u(x)− u(y)| pN (x, y, t)dxdy < +∞

that is, u ∈ BV (RN ). �

Let us add a further result concerning BV functions, which in some
sense is a complement of Theorem 3.1. In order to state it, let us recall
some properties of u ∈ BV (RN ). Setting

u∨(x) = inf
{
t ∈ [−∞,+∞] : lim

�→0
�−N |{u > t} ∩B�(x)| = 0

}
,

u∧(x) = sup
{
t ∈ [−∞,+∞] : lim

�→0
�−N |{u < t} ∩B�(x)| = 0

}
.
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and Su = {x ∈ RN : u∧(x) < u∨(x)}, a Borel unit vector field νu is defined
HN−1-a.e. in Su in such a way that the measure Du, restricted to Su, can
be represented as Du Su = (u∨ − u∧)νuHN−1 Su, see e.g. [2, Theorem
3.78].

Theorem 4.3. — Let u, v ∈ BV (RN ) ∩ L2(RN ), or u, v ∈ BV (RN ),
v ∈ L∞(RN ). Then

lim
t→0

√
π√
t
〈u− T (t)u, v〉 =

∫
Su∩Sv

(u∨ − u∧)(v∨ − v∧)νu · νvdHN−1.

The previous identity makes also sense for any u, v ∈ BVloc(RN ) without
the assumption to be L2, possibly having on both sides infinite value.

Proof. — Set Eτ = {u > τ} and Fσ = {v > σ}. Notice that

x ∈ FEτ ⇒ τ ∈ [u∧(x), u∨(x)].

Then if x is a Lebesgue point either for u or for v, we have either
∫
R

χFEτ (x)dτ = 0 or
∫
R

χFFσ (x)dσ = 0.

Moreover, since for HN−1-a.e. x ∈ Sv and σ ∈ (v∧(x), v∨(x)) there holds
x ∈ FFσ, we get
∫
R×R

∫
FEτ∩FFσ

νEτ · νFσdHN−1dτdσ

=
∫
R

∫
FEτ

∫
R

νEτ · νFσχFFσdσdHN−1dτ

=
∫
R

∫
FEτ∩Sv

(v∨ − v∧)νEτ · νvdHN−1dτ

=
∫
Sv

∫
R

(v∨ − v∧)νEτ · νvχFEτ dτdHN−1

=
∫
Su∩Sv

(u∨ − u∧)(v∨ − v∧)νu · νvdHN−1. �

Remark 4.4. — An immediate consequence of (1.2) and Theorem 4.3 is
the following equality:

lim
t→0

√
π√
2t

(〈u, v〉 − 〈T (t)u, T (t)v〉) =
∫
Su∩Sv

(u∨−u∧)(v∨− v∧)νu ·νvdHN−1.
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In fact,

lim
t→0

√
π√
2t

(〈u, v〉 − 〈T (t)u, T (t)v〉) = lim
t→0

√
π√
2t

(〈u, v〉 − 〈T (2t)u, v〉)

= lim
t→0

√
π√
2t

(〈u− T (2t)u, v〉) .

Remark 4.5. — The interpolation space (L1(RN ), D(∆))1/2,∞ defined
in (1.6) coincides with the Besov space B1/2

1,∞(RN ) (see [13, Theorem 4∗]).

From Theorem 4.1 it follows that theBV -norm is stronger than theB1/2
1,∞(RN )

norm, because clearly

‖T (t)u− u‖L1(RN ) �
∫
RN×RN

|u(x)− u(y)|pN (x, y, t)dxdy

for every t > 0. On the other hand, Remark 3.5 shows that in the above
estimate the equality holds if u = χE and P (E) is finite. Let us point out
an example showing that (L1(RN ), D(∆))1/2,∞ is larger than BV (RN ).
Taking N = 1 and using the following norm, which is equivalent to the
natural norm in the above interpolation space (see [14, Theorem 1.13.6.1])

‖u‖ = sup
0<t<1

‖(TA(t)− I)2u‖L1(R)

t
<∞,

where in our caseAu = u′ and TA(t) is the translation semigroup TA(t)u(x) =
u(x+ t), it is easily seen that the function u(x) = log |x| ·χ(−1,1)(x) belongs
to L1(R) and to (L1(R), D(∆))1/2,∞, but u does not belong to BV (R).

Bibliography

[1] L. Ambrosio. — Transport equation and Cauchy problem for BV vector fields,
Invent. Math. 158, p. 227-260 (2004).

[2] L. Ambrosio, N. Fusco, D. Pallara. — Functions of Bounded Variation and
Free Discontinuity problems, Oxford U. P., 2000.
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