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Embedded eigenvalues and resonances
of Schrödinger operators with two channels(∗)

Xue Ping Wang(1)

ABSTRACT. — In this article, we give a necessary and sufficient condi-
tion in the perturbation regime on the existence of eigenvalues embedded
between two thresholds. For an eigenvalue of the unperturbed operator
embedded at a threshold, we prove that it can produce both discrete eigen-
values and resonances. The locations of the eigenvalues and resonances are
given.

RÉSUMÉ. — Dans cet article, nous donnons dans le régime de perturbation
une condition nécessaire et suffisante sur l’existence de valeurs propres
plongées entre les deux seuils. Pour une valeur propre de l’opérateur non-
perturbé plongée à un seuil, nous démontrons qu’elle peut engendrer à la
fois des valeurs propres discrètes et des résonances.

1. Introduction

In this work, we study the spectral properties of two-channel type
Schrödinger operators of the form

P =
(
−∆ + E1 0

0 −∆ + E2

)
+ V (x), in L2(Rd;C2), (1.1)

where E1 < E2, x ∈ Rd, V (x) is a 2× 2 Hermitian matrix-valued function:

V (x) =
(
V1(x) V12(x)
V21(x) V2(x)

)
, V (x)∗ = V (x).

Assume V (x) is −∆-compact. The unperturbed operator

P0 =
(
−∆ + E1 + V1(x) 0

0 −∆ + E2 + V2(x)

)
(1.2)
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may have eigenvalues embedded in the interval [E1, E2] which is contained
in the continuous spectrum of P0. We want to study what happens to these
eigenvalues under the off-diagonal perturbation. The perturbation of em-
bedded eigenvalues has its origin in quantum mechanics and quantum field
theory. See [5, 15]. A well-known example in quantum mechanics is the
operator of the helium atom given by

Hβ = H0 + βW in L2(R6), (1.3)

where W = 1
|x1−x2| , x1, x2 ∈ R3, and

H0 = −∆x1 −
2
|x1|

−∆x2 −
2
|x2|

. (1.4)

The spectrum of H0 is composed of the eigenvalues {− 1
n2 − 1

m2 ;n,m ∈ N∗}
and the continuous spectrum

σess(H0) = [−1,∞[.

The eigenvalues − 1
n2 − 1

m2 with n,m � 2 are embedded in the continuum.
It is believed that these embedded eigenvalues produce resonances of the
helium, which are relevant to the allure of scattering cross-section near the
thresholds {− 1

n2 }. See [15]. In [17], it is proved that Hβ has no eigenvalues
in ]− 1

2 − ε0,− 1
2 + ε0[ in some symmetry reduced subspace, if the integral

I =
∫
R6

1
|x1 − x2|

ψ(x1) ψ(x2)φ(x1)η(x2)dx1dx2 �= 0 (1.5)

where φ and ψ are eigenfunctions of −∆y − 2
|y| associated with eigenvalues

−1 and − 1
4 , respectively, η a confluent hypergeometric function. By method

of complex dilation, one sees that the eigenvalue of H0 at − 1
2 dissolves into

a resonance of Hβ for β > 0 small. The resonances of the helium atom near
thresholds are not yet fully understood. Note that the spectral analysis of
Hβ between the first two thresholds −1 and − 1

4 can be reduced to a non-
linear spectral problem with leading term given by(

−∆− 1− 2
|x| βC(x)

βC(x)∗ (−∆− 1
4 − 2

|x| )I4

)
, x ∈ R3,

where C(x) = O( 1
|x|2 ) is a 1×4 matrix arising from interaction between scat-

tering channels associated with energies −1 and − 1
4 . Therefore, two-channel

type Schrödinger operators may be considered as a simplified model of N -
body Schrödinger operators.
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To simplify notation, we take E1 = 0 and E2 = E0 > 0. Consider the
operator

P = P0 + β
(

0 V12

V21 0

)
, in L2(Rd;C2),

where the unperturbed operator is

P0 =
(
P1 0
0 P2

)

with P1 = −∆ + V1(x) and P2 = −∆ + E0 + V2(x) and the off-diagonal
part is considered as perturbation. β is a real small parameter in Sections
3 and 4, and is fixed to be 1 in Sections 2 and 5. We assume that V is a
Hermitian matrix valued function satisfying

(x · ∇)kVj and (x · ∇)kV12 are −∆-compact on Rd for k = 0, 1 and j = 1, 2
(1.6)

and for x large enough,

|Vj(x)| � C〈x〉−ρj , |V12(x)| � C〈x〉−ρ0 (1.7)

for some ρj > 0, j = 0, 1, 2, where 〈x〉 = (1+ |x|2)1/2. The spectral property
of the unperturbed operator P0 is similar to that of H0, while the off-
diagonal part in V can be regarded as interaction between channels. In par-
ticular, the discrete spectrum of −∆+E0+V2 in [0, E0[ becomes eigenvalues
of P0 embedded in its continuous spectrum. We shall show that under some
conditions, the eigenvalues of P0 embedded in the interval ]0, E0[ dissolve
into resonances under the off-diagonal perturbation, while the eigenvalue
zero of P0 can partly be shifted to the left to become discrete spectrum and
partly to the right to induce resonances of P (β).

Let us describe briefly the results of this work on weak perturbation.
Denote Rj(z) = (Pj − z)−1, j = 0, 1, 2. For a ∈ C, r > 0, set D(a, r) =
{z ∈ C; |z − a| < r}. The result for dilation-analytic potential is easy to
state (and to prove). If e ∈]0, E0[ is an eigenvalue of P2 with multiplicity m
and ϕk, 1 � k � m, the orthonormal eigenfunctions of P2 associated with
e. Set

A1(z) = (< R1(z)V12ϕk, V12ϕl >)1�k,l�m (1.8)

for z > 0. Under the condition (1.6), assume in addition that V is dilation
analytic. The function z → χ1(λ, z) = det(A1(z)− λ) extends holomorphi-
cally in z from the upper half complex plane into a small complex neighbor-
hood of e. Let {λ1, · · · , λk} be the set of zeros of the function λ→ χ(λ, e),
and νl the multiplicity of λl,

∑k
l=1 νl = m. We show that for some ε0 > 0
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and β0 > 0 small enough, there exists C > 0 such that for β ∈]0, β0], the
eigenvalues and resonances of P (β) in D(e, ε0) are located in

∪kl=1D(e− β2λl, C|β|2+2/νl),

and the total multiplicity of eigenvalues and resonances of P (β) in
D(e − β2λl, C|β|2+2/νl) is equal to νl. See Theorem 4.3. In particular, if
for some l

λl is not real, (1.9)

the eigenvalues of P (β) are absent in a small disk D(e− β2λl, ε0β
2), ε0 > 0

small, and there are νl resonances, zk(β), of P (β) given by

zk(β) = e− β2λl +O(|β|2+2/νl). (1.10)

Note that the imaginary part of the limiting value, A1(e + i0), of the ma-
trix A1(z) at e exists and is positive, and that the condition (1.9) implies
λl > 0. If the matrix A1(e+i0) has no real eigenvalues, P (β) has no eigen-
values in [e− ε0, e+ ε0] and its resonances in D(e, ε0) are all given by (1.10).
Note that the condition (1.9) can be compared with (1.5) and the Fermi
golden rule assumption used in [6] in the study of Pauli-Fierz operators in
quantum field theory.

When the potential V is not dilation analytic, the problem is more subtle
and the condition ρ0 > 1

2 is needed. A detailed analysis enables us to give
in Section 3 a necessary and sufficient condition on the existence or non-
existence of embedded eigenvalues of the perturbed operator P (β) (The-
orem 3.6), which implies the absence of embedded eigenvalues of P (β) in
[e − ε0, e + ε0] if the matrix A1(e + i0) has no real eigenvalues. To study
the perturbation of the threshold eigenvalue zero of P0, we need ρ0 > 1 and
ρ1 > 2. If zero is an eigenvalue of P2, we assume that ρ1 > 2 and that zero
is a regular point of P1 in the sense of Jensen-Kato [13]; and if zero is an
eigenvalue of P1, we need ρ1 > 3 and assume that zero is in resolvent of P2

and is not a resonance of P1 in the sense of [13]. The spectral properties of
P (β) near 0 are then determined by a Hermitian matrix A0 defined similarly
as above with z = 0. We prove that the positive eigenvalues of A0 give rise
to discrete eigenvalues of P (β), while, under some additional conditions, its
negative ones generate resonances. See Theorems 3.7, 3.8 and 4.5. As an
application, we show that if P0 � 0 and if zero is an eigenvalue of P1 or P2

with multiplicity m, P (β) has m strictly negative eigenvalues near zero, so
long as V12 is non zero and β �= 0 small enough. See the example given at
the end of Section 3.

Perturbation of embedded eigenvalues has a long history. Here, we only
mention that this subject is studied in abstract setting in [10, 11], for second
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order differential operators in [2, 3, 20] and for Hamiltonians of quantum
field theory in [5, 6]. Two-channel type operators present some particulari-
ties and are studied more recently in [14] in abstract setting. The main
concern of [14] is perturbation of eigenvalues embedded at the thresholds.
Under the positive definiteness assumption of some operator, they proved
for the threshold 0 that there are no eigenvalues of the perturbed operator
in an interval like ]−Cβ2, δ0[. They also proved the absence of eigenvalues
outside the thresholds if some reduced operator is positive definite. Clearly,
the positive definiteness of A1(e+ i0) implies that A1(e+ i0) has no real
eigenvalues. Resonances are not studied in [14]. Perturbation of two-cluster
threshold resonance of N -body Schrödinger operators is studied in [24].

The plan of this work is as follows. In Section 2, we study the decay
of eigenfunctions associated with eigenvalues in ]0, E0[. Sections 3 and 4
are devoted to weak perturbation. In Section 3, we study the perturbation
of embedded eigenvalues in [0, E0[ of the unperturbed operator and give
conditions on the existence and non-existence of embedded eigenvalues of
the perturbed operator. The resonances are studied in Section 4. To study
the resonances generated by eigenvalue zero of P0, we have to study mero-
morphic extension of dilated operators in weighted spaces. In Section 5, we
prove that if the off-diagonal part of V decays more slowly than its diagonal
part, then E0 is not an accumulating point of eigenvalues of P = P (1).

Notation . — For s ∈ R and k ∈ Z, we denote by L2,s and Hk,s the
weighted-L2 and weighted-Sobolev spaces L2(〈x〉2sdx) and Hk(〈x〉2sdx), re-
spectively, and by L(s; s′) and L(k, s; k′, s′) the space of bounded operators
from L2,s to L2,s′ and from Hk,s to Hk′,s′ , respectively. By the multiplicity
of an eigenvalue, we mean in this work its algebraic multiplicity. Resonance
at the threshold is taken in the sense of Jensen-Kato [13] which is not a
pole, but an essential singularity of the resolvent.

2. Decay of eigenfunctions

In this section, the coupling constant β plays no role and is fixed to
be 1. Let P = P (1). Under the conditions (1.6) and (1.7), by methods of
spectral analysis for N -body Schrödinger operators ([3, 7]), one can show
that there is no embedded eigenvalue of P in ]E0,∞[. However, the same
arguments can not be used for E ∈]0, E0[, due to the particular structure
of two-channel operators.
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Lemma 2.1. — Under the condition (1.6), the point spectrum σpp(P )
of P is discrete in ]0, E0[.

Proof. — To adapt the well-known Mourre’s method to two-channel
type operators under the condition (1.6), we only work with the first equa-
tion. For A0 = (x · ∇ + ∇ · x)/(2i), the following Mourre’s estimate holds
for any λ > 0:

iEλ(P1)[P1, A0]Eλ(P1) � Eλ(P1)(λ+K)Eλ(P1) (2.1)

where Eλ(P1) denotes the spectral projection of P1 onto the interval
]λ− δ, λ+ δ[ with 0 < δ < λ/2, and K is a compact operator. If µ ∈]0, E0[
is an accumulating point of σpp(P )∩]0, E0[, one can find a sequence of nor-
malized eigenfunctions uj = (vj , wj) with Puj = λjuj with λj → µ and uj
converges weakly to zero. uj is bounded in H2(Rd;C2). We claim that

lim inf
j

‖Eµ(P1)vj‖ � c0 > 0. (2.2)

In fact, by the first equation of the system{
(P1 − λj)vj + V12wj = 0
(P2 − λj)wj + V21vj = 0 (2.3)

one deduces that

‖(1− Eµ(P1))vj‖ = ‖(P1 − λj)−1(1− Eµ(P1))V12wj‖ → 0, j →∞.

So, if lim infj ‖Eµ(P1))vj‖ → 0, we can extract a subsequence of {vj}, still
denoted by {vj}, such that ‖vj‖ → 0. Then, ‖wj‖ → 1 and wj ⇀ 0. The
second equation of (2.3) shows that for ε0 > 0 such that −E0 + µ+ ε0 < 0,
there is some j0 ∈ N such that

< (−∆ + V2)wj , wj >� (−E0 + µ+ ε0)‖wj‖2,

for all j � j0. This is impossible because −∆ + V2 can only have a finite
number of eigenvalues in ]−∞,−E0 + µ+ ε0]. We can now apply standard
argument to obtain a contradiction. On one hand, one has

< iEµ(P1)[P1, A0]Eµ(P1)vj , vj >= 2 < A0Eµ(P1)vj , Eµ(P1)V12wj >→ 0,

since ‖A0Eµ(P1)vj‖ is bounded and ‖Eµ(P1)V12wj‖ → 0. On the other
hand, (2.1) for λ = µ implies that

lim
j→∞

< iEµ(P1)[P1, A0]Eµ(P1)vj , vj >� µ lim inf ‖Eµ(P1)vj‖2 � µc20 > 0.

This contradiction proves that µ can not be an accumulating point of
σpp(P )∩]0, E0[. �
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To study the decay of eigenfunctions associated with eigenvalues in
]0, E0[, we need an additional condition on V1

(x · ∇x)jV1 is −∆-bounded for some m � 2 and for 2 � j � m. (2.4)

The idea used in the proof of the part (c) of the following result is due
to Nicolas Lerner.

Theorem 2.2. — Assume (1.6), (1.7) with ρ0 > 1
2 . Let λ ∈]0, E0[ be an

eigenvalue of P and u = (u1, u2) ∈ H2(Rd;C2) an associated eigenfunction.

(a). Assume (2.4) for some m � 2. Then u ∈ L2,s for any s < m−2+ρ0.

(b). Assume (2.4) for all m and ρ0 � 1. Then, for any 0 < γ <
√
E0 − λ,

eγ|x|u ∈ L2(Rd;C2).

(c). Assume (2.4) for allm, ρ1 � 1 and that V12(x) = V21(x) is of compact
support. Then u1 is of compact support.

Proof. — Under the conditions of (a), it is well-known that the positive
eigenvalues of P1 are absent and the limiting absorption principle holds at
any positive energy E > 0. Let u = (u1, u2). Then, (P − λ)u = 0 can be
written as {

(P1 − λ)u1 + V12u2 = 0
(P2 − λ)u2 + V21u1 = 0 (2.5)

Let Rj(z) = (Pj − z)−1, z �∈ σ(Pj). Since λ > 0 is not an eigenvalue of P1

and u1 ∈ L2, one has
lim
ε→0

εR1(λ± iε)u1 = 0.

It follows that {
u1 = −R1(λ± i0)(V12u2)
(P2 − λ)u2 −K(λ)u2 = 0

where
K(λ) = V21R1(λ+ i0)V12 (2.6)

is a compact operator on L2, since ρ0 > 1/2. In particular, we do not need
to distinguish the two boundary values R1(λ ± i0)(V12u2) and can simply
write R1(λ)(V12u2) = R1(λ±i0)(V12u2). We need the following result which
is our basic tool to prove the decay of eigenfunctions. See also the proof of
Theorem 3.6.
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Lemma 2.3. — Under the conditions of Theorem 2.2 (a), one has

‖〈x〉s−1R1(λ)(V12u2)‖ � Cs‖〈x〉sV12u2‖ (2.7)

for any 1/2 < s < m− 1 such that 〈x〉sV12u2 ∈ L2.

Proof. — Recall the following microlocal resolvent estimates proved in
[12] for smooth symbol-like potentials, and in [21] for potentials satisfying
(1.6) and (2.4):

‖〈x〉s−1b∓(x,D)R1(λ± i0)〈x〉−s‖ � C, 1
2
< s < m− 1, (2.8)

where b±(x,D) are bounded pseudo-differential operators with symbols b±
supported in {(x, ξ);±x · ξ > −µ0|x|} for some µ0 > 0 depending only on
λ > 0. Let χ ∈ C∞0 (R) which is equal to 1 in a neighborhood of λ. Then,

‖〈x〉s(1− χ(P1))R1(λ)(V12u2)‖ � Cs‖〈x〉sV12u2‖

and χ(P1) = χ(−∆) + R with R ∈ L(s, s + ρ1) for any s, |s| � m. See
Lemma A.1 in [21]. On the support of χ(|ξ|2), we can construct a partition
of unity

b+(x, ξ) + b−(x, ξ) = 1

with b± bounded symbols satisfying the support properties needed in (2.8).
Applying (2.8) to

χ(−∆)R1(λ)(V12u2) = (b−(x,D)χ(−∆)R1(λ+ i0)
+b+(x,D)χ(−∆)R1(λ− i0))V12u2,

we obtain

‖〈x〉s−1f(−∆)R1(λ)(V12u2)‖ � Cs‖〈x〉sV12u2‖ (2.9)

for any 1/2 < s < m− 1. This proves

‖〈x〉s−1R1(λ)(V12u2)‖ � Cs{‖〈x〉sV12u2‖+ ‖〈x〉s−1−ρ1R1(λ)(V12u2)‖}
(2.10)

for any 1/2 < s < m − 1. For each fixed s > 1
2 , repeatedly applying (2.10)

k times with k the smallest integer such that s− 1− kρ1 < − 1
2 , we obtain

(2.7). �

Let us continue the proof of (a). For a Lipschitz function, F , on Rd, one
has

‖∇(eFφ)‖2 +
∫
Rd

(E0 + V2 − λ− |∇F |2)|eFφ|2dx

= �
{
< eF [(P2 − λ−K(λ))φ, eFφ >+< e2F (K(λ)φ), φ >

}
, (2.11)
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for φ ∈ C∞0 . By an argument of density, we deduce for bounded Lipschitz
function F and for u2 ∈ H1(Rd) such that (P2 − λ)u2 = K(λ)u2 that

‖∇(eFu2)‖2 +
∫
Rd

(E0 + V2 − λ− |∇F |2)|eFu2|2dx (2.12)

= �
{∫

Rd
e2F (K(λ)u2)u2 dx

}
.

Take F = Fs,σ as

F = ln
(

1 + 〈x〉
1 + 〈x〉/σ

)s

, s > 0, σ > 1.

We can check that |∇F (x)| � s/(1 + 〈x〉). So for any ε > 0, one has for
R � ε

s
|∇F (x)| � ε, |x| > R.

Set BR = {x ∈ Rd; |x| < R}. Let χ1 be a smooth cut-off function with
χ1(x) = 1 on BR; 0 outside B2R and 0 � χ1(x) � 1. Since V2 is −∆-
compact, one has for any ε > 0, there exists Cε > 0 such that∫

BR

|V2||eFu2|2dx � ε

∫
Rd
|∇(χ1e

Fu2)|2dx+ Cε
∫
B2R

|eFu2|2dx

� ε

∫
Rd
|∇(eFu2)|2dx+ C(ε, R)

∫
B2R

|eFu2|2dx.

Taking 0 < ε < 1/2 and R > 1 large enough such that

sup
|x|�R

|V2(x)| � ε2,

il follows from (2.12) that

1
2
‖∇(eFu2)‖2 + (E0 − λ− 2ε2)

∫
Rd\BR

|eFu2|2dx (2.13)

� (s2 + C(ε, R))
∫
B2R

|eFu2|2dx+ �
{∫

Rd
e2F (K(λ)u2)u2 dx

}
.

Since u is normalized and λ < E0, taking ε > 0 suitably small, we obtain
an Agmon-type energy estimate

‖∇(eFu2)‖2 + ‖eFu2‖2 � C ′ + �
{∫

Rd
e2F (K(λ)u2)u2 dx

}
. (2.14)

Here C ′ is independent of σ. An direct calculation shows that sup e2F is
bounded uniformly in σ.
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Since ρ0 > 1/2, by (2.7), K(λ)u2 ∈ L2,s0 for s0 = 2ρ0 − 1 > 0. We can
apply (2.14) with F = Fs,σ, s = s1 = (2ρ0 − 1)/2, σ > 1. Taking σ → ∞,
we obtain

u2 ∈ L2,s1 .

With this new property on u2, applying (2.7) with s = s1 + ρ0 (if s1 + ρ0
< m − 1), one sees that K(λ)u2 ∈ L2,3s1 . Then, we can apply (2.14) with
s = 2s1 which gives

u2 ∈ L2,2s1 .

We can repeat these arguments and each time, we gain an additional decay
of the order s1. This proves by induction that

u2 ∈ L2,s, ∀s < m− 1. (2.15)

Equation (2.7) shows that u1 ∈ L2,s−1+ρ0 . This proves (a).

To prove (b), we take

F = ln (1 + γ〈x〉/σ)σ , 0 < γ <
√
E0 − λ, σ > 1.

Making use of the decay properties of u obtained above, similarly to (2.14),
one can show

‖∇(eFu2)‖2 + ‖eFu2‖2 � C(λ, γ) + �
{∫

Rd
e2F (K(λ)u2)u2 dx

}
, (2.16)

uniformly in σ > 1.

We need the following estimate proved in [3]. Let ξ = (1+γ〈x〉/σ)σ. For
any ν > 0, there exists k > 0 and K a compact operator such that

‖ξφ‖ � k‖〈x〉ξ(P1 − ν)φ‖+ ‖K(ξφ)‖, φ ∈ C∞0 , (2.17)

uniformly in σ > 1. Since λ > 0 is not an eigenvalue of P1, one can prove
that for some k1 > 0,

‖ξφ‖ � k1‖〈x〉ξ(P1 − λ)φ‖, φ ∈ C∞0 , (2.18)

uniformly in σ > 1. By an argument of density, (2.18) remains true if ξφ
and 〈x〉ξ(P1 − λ)φ are both in L2. By (a), when (2.4) is satisfied for all
m � 2, u ∈ L2,s for any s > 0. We can apply (2.18) and obtain

‖eFR1(λ)(V12u2)‖ � k1‖〈x〉eFV12u2‖ (2.19)

uniformly in σ > 1. Evaluating the integral according to |x| � R and
|x| > R, R > 1, one obtains from (2.19) that

‖eFK(λ)u2‖ � C‖eF 〈x〉−ρ0R1(λ)(V12u2)‖
� CR + CR−ρ0‖eFR1(λ)(V12u2)‖
� CR + CR−ρ0‖eF 〈x〉V12u2‖.
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When ρ0 � 1, we can take R >> 1 so that (2.16) gives

‖∇(eFu2)‖2 + ‖eFu2‖2 � C ′(λ, γ) (2.20)

uniformly in σ > 1. Taking σ →∞, we obtain the exponential decay of u2.
The same estimate for u1 can be derived from (2.19).

(c). The eigenvalue problem Pu = λu with λ ∈]0, E0[ can be written as{
(−∆ + V1 − E1)u1 + V12u2 = 0
(−∆ + V2 − E2)u2 + V21u1 = 0 (2.21)

where u = (u1, u2) and E1 = λ > 0, E2 = λ−E0 < 0. We need the following
estimate (Proposition 14.7.1, [9]):

‖|x|2+σ(∆ + E1)w‖2L2(dx) � 4(σ + 1)E1‖|x|σ+1w‖2L2(dx), w ∈ C∞0 (Rd).
(2.22)

for any σ > −1. Let R0 > 0 be such that supp V12 ⊂ {x; |x| < R0}.
Choose χ ∈ C∞ with supp χ ⊂ {|x| > R1}, R1 > R0 and χ(x) = 1 for
|x| � R2 > R1. By Theorem 2.2 (b), u ∈ H2 ∩ L2,s for any s > 0. By an
argument of limit, we can apply (2.22) to χu1 for any σ > 0. Since χV12 = 0,
(2.21) implies that

(∆ + E1)(χu1) = V1χu1 + [∆, χ]u1.

Applying (2.22), we obtain

σ′‖|x|σ+1χu1‖2 � ‖|x|σ+2[∆, χ]u1‖2 + ‖|x|σ+2χV1u1‖2 (2.23)

where σ′ = 4(σ + 1)E1. Since V1(x) = O(|x|−1) on supp χ,

‖|x|σ+2χV1u1‖2 � C‖|x|σ+1χu1‖2

with C > 0 independent of σ. This gives

(σ′ − C)‖|x|σ+1χu1‖2 � ‖|x|σ+2[∆, χ]u1‖2.

Take σ large enough so that σ′ > C. Let R3 > R2. One has

(σ′ − C)
∫
|x|>R3

||x|σ+1− d2 u1|2dx �
∫
R1�|x|�R2

||x|σ+2− d2 [∆, χ]u1|2dx

(2.24)
or

(σ′ − C)R2(σ+1)
3

∫
|x|>R3

|u1|2dx � R2(σ+2)
2

∫
R1�|x|�R2

|[∆, χ]u1|2dx (2.25)
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which implies

(σ′ −C)
(
R3

R2

)2(σ+1) ∫
|x|>R3

|u1|2dx � R2
2

∫
R1�|x|�R2

|[∆, χ]u1|2dx. (2.26)

Note that the right hand side of the above estimate is independent of σ. Let
R3 > R2 > R1 > R0 be fixed. Taking σ →∞, we obtain

∫
|x|>R3

|u1|2dx = 0,
which implies that supp u1 ⊂ {|x| � R3} for any R3 > R0. �

It is well-known ([7]) that if an eigenfunction, v, of an N -body
Schrödinger operator decays super-exponentially: ∀γ > 0, eγ|x|v ∈ L2, then
v = 0. Theorem 2.2 (c) shows that the first component of an eigenfunction
of two-channel type Schrödinger operators may decay super-exponentially.
Since the reduced scalar equation satisfied by the first component, u1, of an
eigenfunction u of two-channel operators is not local, we can not conclude
u1 = 0 even if it is of compact support.

3. Weak perturbation of embedded eigenvalues

Throughout this Section, we assume the conditions (1.6), (1.7) with
ρ0 >

1
2 and (2.4) with m = 2. We want to study the embedded eigenvalues

of P0 under weak off-diagonal perturbation. Consider the operator P (β) in
the form

P (β) = P0 + β
(

0 V12

V21 0

)

where β > 0 is a small parameter. For z > 0, the equation (P (β)−z)u = v
is equivalent with {

(P1 − z)u1 + βV12u2 = v1

(P2 − z)u2 + βV21u1 = v2

The solution of the above system can be written as{
u1 = Q1(z, β)v1 − βQ1(z, β)V12R2(z)v2

u2 = −βR2(z)V21Q1(z, β)v1 +R2(z)(1 + β2V21Q1(z, β)V12R2(z))v2

where Rj(z) = (Pj − z)−1, j = 1, 2, and

Q1(z, β) = R1(z)(1− β2K2(z)R1(z))−1 (3.1)

K2(z) = V12R2(z)V21. (3.2)
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One obtains

R(z, β) =

(
Q1(z, β) −βQ1(z, β)V12R2(z)

−βR2(z)V21Q1(z, β) R2(z)(1 + β2V21Q1(z, β)V12R2(z))

)

(3.3)
where R(z, β) = (P (β)− z)−1.

Proposition 3.1. — Let 0 < a < b < E0 and

D = {z = E + iε ∈ C;E ∈ [a, b] with dist (E, σ(P2)) � ε0, ε ∈]0, 1]}

for some ε0 > 0. Then there exists β0 > 0 such that if ρ0 > 1
2 and

0 < β � β0, R(z, β) : L2,s × L2 → H2,−s × H2, s > 1
2 , extends conti-

nuously to D and is uniformly bounded in β.

Proof. — The limiting absorption principle for P1 says that R1(z) de-
fined for z > 0 extends continuously for z ∈ D as operator in L(s,−s),
s > 1

2 . If ρ0 > 1
2 and 1

2 < s < ρ0,

β2K2(z)R1(z) : L2,s → L2,2ρ0−s ⊂ L2,s

is uniformly bounded by Cβ2. In particular, for β0 small, 1−β2K2(z)R1(z) :
L2,s → L2,s is invertible with uniformly bounded inverse. This shows that
Q1(z, β) = R1(z)(1−β2K2(z)R1(z))−1 : L2,s → H2,−s is uniformly bounded
and extends continuously to D. �

Let e be an eigenvalue with multiplicity m of P2 in ]0, E0[ such that
d(e, σ(P2) \ {e}) � 2ε0, ε0 > 0, and ϕi, i = 1, · · · ,m, orthonormal eigen-
functions of P2 associated with e. Let D+(e, ε0) = {z = E + iε ∈ C; ε ∈
]0, 1], |ν −E| � ε0}. We want to construct the inverse of a Grushin problem
associated to P (β) on D+(e, ε0). Let Π denote the orthogonal projection of
L2 onto the eigenspace of P2 associated with e. Denote Π′ = 1 − Π and
P ′2 = Π′P2Π′. Set

R′(z, β) =

(
Q′1(z, β) −βQ′1(z, β)V12R

′
2(z)

−βR′2(z)V21Q
′
1(z, β) R′2(z)(1 + β2V21Q

′
1(z, β)V12R

′
2(z))

)

(3.4)
where R′2(z) = (P ′2 − z)−1Π′ and

Q′1(z, β) = R1(z)(1− β2K ′2(z)R1(z))−1, (3.5)

K ′2(z) = V12R
′
2(z)V21. (3.6)
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For z ∈ D+(e, ε0), one has

(P (β)− z)R′(z, β) =

(
1 0

βΠV21Q
′
1(z, β) Π′ − β2ΠV21Q

′
1(z, β)V12R

′
2(z)

)
.

Let us study the Grushin problem associated to the operator

P(z, β) =

(
P (β)− z E0

+

E0
− 0

)
: H2(Rd;C2)× Cm → L2(Rd;C2)× Cm,

(3.7)
where

E0
+ : Cm � (c1, · · · , cm) −→ (0,

m∑
j=1

cjϕj) ∈ H2(Rd;C2),

E0
− : L2(Rd;C2) � (u, v) −→ (< ϕ1, v >, · · · , < ϕm, v >) ∈ Cm.

Let

B =

(
0 0

βΠV21Q
′
1(z, β) −β2ΠV21Q

′
1(z, β)V12R

′
2(z)

)
,

C = (P (β)− z)E0
+.

Then, the inverse R(z, β) of P(z, β) is given by

R(z, β) =

(
R′(z)(1−B) E0

+ −R′(z)(1−B)C

E0
−(1−B) −E0

−(1−B)C

)

≡
(

E(z, β) E+(z, β)

E−(z, β) E+−(z, β)

)
.

In particular,

E+−(z, β) = E0
−,2(z − e+ β2V21Q

′
1(z, β)V12)E0

+,2 (3.8)

where E0
+,2 : Cm � (c1, · · · , cm) → v =

∑m
j=1 cjϕj and E0

−,2 is its adjoint.
From (3.8), il follows that

R(z, β) = E(z, β)− E+(z, β)E+−(z, β)−1E−(z), z > 0. (3.9)

See also [8, 19, 22].

Lemma 3.2. — For s > 1
2 , Q′1(E + i0, β) exists in L(L2,s;L2,−s) for

s > 1
2 and is Hölder continuous in E with |E − e| � ε0, uniformly in

β ∈]0, β0].

– 192 –



Embedded eigenvalues and resonances

Proof. — By the assumption on e,K ′2(z) = V12R
′
2(z)V21 is continuous in

z ∈ D+(e, ε0) as operator from L2 to L2,2ρ0 . Since R1(E+i0) : L2,s → L2,−s

exists and is Hölder continuous in E > 0 if s > 1
2 ,

K ′2(z)R1(z) : L2,s → L2,2ρ0−s ⊂ L2,s

is uniformly bounded and the limiting value K ′2(E)R1(E + i0) exists in
L(L2,s;L2,−s) for 1

2 < s < ρ0 and |E−e| � ε0. In particular, for 0 < β � β0

with β0 small enough 1−β2K2(E)R1(E+ i0) : L2,s → L2,s is invertible and

Q1(E + i0, β) = R1(E + i0)(1− β2K2(E)R1(E + i0))−1 : L2,s → L2,−s

exists and is Hölder continuous in E with |E − e| � ε0, uniformly
in β. �

Corollary 3.3 Let β0 > 0 be small and s > 1
2 . The operators

E(z, β) : L2,s × L2 → H2,−s(Rd)×H2(Rd)
E+(z, β) : C

m → H2,−s(Rd)×H2(Rd)
E−(z, β) : L2,s(Rd)× L2(Rd) → C

m

E+−(z, β) : C
m → C

m

are holomorphic in z with z > 0 and extend continuously in z ∈ D+(e, ε0)
uniformly with respect to β ∈]0, β0].

Definition. — We call E ∈ R a generalized eigenvalue of P (β) if equa-
tion (P (β) − E)u = 0 admits a non trivial solution u ∈ L2,−s(Rd;C2) for
any s > 1

2 if E �= 0, E0, and for any s > 1 if E = 0 or E0.

Theorem 3.4. — Let ε0 > 0 and β0 > 0 be small.

(a). Let E ∈ [e− ε0, e+ ε0]. Then, E is a generalized eigenvalue of P (β)
for β ∈]0, β0] if and only if

det E+−(E + i0, β) = 0. (3.10)

(b). Let

A(z) = (< R1(z)V12ϕi, V12ϕj >)1�i,j�m, z ∈ D+(e, ε0). (3.11)

Assume that the matrix A(e+ i0) has no real eigenvalues. Then P (β)
has no eigenvalues in [e− ε0, e+ ε0] for any β ∈]0, β0]. The resolvent
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R(z, β) : L2,s × L2 → H2,−s × H2, s > 1
2 , extends continuously to

D+(e, ε0) and satisfies

‖R(E + i0, β)‖L(s;−s) � Csβ−2 (3.12)

uniformly in |E − e| � ε0 and 0 < β � β0.

Proof. — (a). From the relations P(z)R(z, β) = 1 on L2 andR(z, β)P(z)
= 1 on H2, Corollary 3.3 shows that these equations extend continuously
up to [e− ε0, e+ ε0] in appropriately weighted spaces. One obtains

(P (β)− z)E+(z, β) + E0
+E+−(z, β) = 0 (3.13)

E−(z, β)(P (β)− z) + E+−(z, β)E0
− = 0 (3.14)

for z ∈ D(e, ε0). If E ∈ [e − ε0, e + ε0] is an generalized eigenvalue of P (β)
and w = (u, v) �= 0 a generalized eigenfunction associated with E, (3.14)
shows that E+−(E+ i0, β)E0

−w = 0. Since E(E+ i0, β)(P (β)−E)+E+(E+
i0, β)E0

− = 1 as operator from H2,−s to H2,−s for any s > 1
2 , it follows

that E+(E + i0, β)E0
−w = w and E0

−w = (< v, ϕ1 >, · · · , < v, ϕm >) �= 0.
Therefore, det E+−(E + i0, β) = 0. Conversely, if det E+−(E + i0, β) = 0
and c ∈ C

m \ {0} is in the kernel of E+−(E + i0, β), (3.13) shows that
(P (β) − E)w = 0 where w = E+(E + i0, β)c ∈ H2,−s ×H2 for any s > 1

2 .
Since E0

−w = E0
−E+(E + i0, β)c = c �= 0, w is non zero. Therefore, E is a

generalized eigenvalue of P (β).

(b). One has

Q′1(z, β) = R1(z) + β2R1(z)K ′2(z)R1(z)(1− β2K ′2(z)R1(z))−1.

By Lemma 3.2,

Q′1(z, β) = R1(z) +O(β2), β → 0,

in L(L2,s, L2,−s) for 1
2 < s < ρ0, uniformly in z = E + iε ∈ D+ . One has

E+−(E + i0, β) = E − e+ β2(A(E + i0) +O(β2))
= E − e+ β2(A(e+ i0) + o(1) +O(β2))

uniformly in E near e. Here o(1) = A(E + i0) − A(e + i0) → 0 as E → e.
Suppose now A(e + i0) has no real eigenvalues. Then, there exists c0 > 0
such that

‖(λ+A(e+ i0))−1‖ � c0, ∀λ ∈ R.
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Set E = e+ β2E1(β), E1(β) ∈ R. One sees that

E+−(E+i0, β) = β2(E1(β)+A(e+i0))[1+(E1(β)+A(e+i0))−1(o(1)+O(β2))]

is an invertible matrix for E near e and β small enough. This proves that
det E+−(E+i0, β) �= 0. Part (a) shows that P (β) has no generalized eigenva-
lues, therefore no eigenvalues in the usual sense, in [e−ε0, e+ε0] for ε0 small
enough. The above argument shows also that ‖E+−(E+i0, β)−1‖ = O(β−2),
β → 0. (3.12) follows from (3.9). �

Corollary 3.5. — Let 0 < a < b < E0 et let {E1, · · · , EN} denote the
discrete spectrum of P2 in [a, b]. Denote by mj the multiplicity of Ej and
by ϕ(j)

k , 1 � k � mj orthonormal eigenfunctions of P2 associated with Ej.
Assume that the matrices

Aj = (< R1(Ej + i0)V12ϕ
(j)
k , V12ϕ

(j)
l >)1�k,l�mj have no real eigenvalues

(3.15)
for j = 1, · · · , N . Then there exists δ0 > 0 and β0 > 0 such that P (β) has
no eigenvalues embedded in [a− δ0, b+ δ0] for all β ∈]0, β0].

Proof. — Let 0 < δ0 < dist(σ(P2)\{E1, · · · , EN}, [a, b]) be small enough.
Then, [a − δ0, b + δ0] ⊂ I0 ∪ (∪Nj=1Ij) where I0 = {E ∈ [a − δ0,
b + δ0]; dist(E, σ(P2) � ε0} and Ij = {E; |E − Ej | � ε0} with ε0 > 0
small enough. We need only to apply Proposition 3.1 to P (β) over I0 and
Theorem 3.4 (b) with e = Ej over Ij for j = 1, · · · , N . �

From the proof of Theorem 3.4, one sees that if E is a generalized eigen-
value of P (β) near e, then dim ker(P (β)−E) = dim ker E+−(E+ i0, β). One
may expect that generalized eigenvalues of P (β) outside the thresholds 0 and
E0 are always eigenvalues of P (β) in the usual sense. Indeed, an argument
used in [1] allows to prove that if V is short range (i.e., V (x) = O(|x|−1−ε),
ε > 0), then E > 0 is a generalized eigenvalue if and only if E is an eigen-
value of P (β) in the usual sense. Here we prove the following

Theorem 3.6. — With the notation of Theorem 3.4, let E ∈ [e−ε0, e+
ε0] and β ∈]0, β0]. Assume (2.4) with m = 3. Then, E is an eigenvalue of
P (β) if and only if det E(E+i0, β) = 0. If E ∈ [e−ε0, e+ε0] is an eigenvalue
of P (β), its multiplicity is equal to dim ker E+−(E + i0, β).

Proof. — By Theorem 3.4 (a), it is sufficient to prove that if
det E(E + i0, β) = 0, E is an eigenvalue of P (β). The proof of Theorem 3.4
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(a) shows that if c ∈ ker E+−(E + i0, β) with c = (c1, · · · , cm) ∈ Cm \ {0},
u = E+(E + i0, β)c is a generalized eigenfunction of P (β) associated with
E. We want to prove that u ∈ H2. Let ψ =

∑m
j=1 cjϕj . Then,

 < V12ψ,Q
′
1(E + i0, β)V12ψ >=  < c, E+−(E + i0, β)c >= 0. (3.16)

Note that Q′1(z, β) = 1
2i (Q

′
1(z, β)−Q′1(z, β) is given by

Q′1(z, β) = Q′1(z, β)(z + β2K ′2(z))Q′1(z, β).
Since K ′2(z) � 0 for z > 0, one has Q′1(z, β) � 0 for z > 0. It follows
from Lemma 3.2 that < f,Q′1(E + i0, β)f >� 0 for any f ∈ L2,s, s > 1

2 .
(3.16) implies then Q′1(E + i0, β)V12ψ = 0, or equivalently,

Q′1(E + i0, β)V12ψ = Q′1(E − i0, β)V12ψ (3.17)

in L2,−s for any s > 1
2 . Note that

Q′1(E ± i0, β) = R1(E ± i0) + β2R1(E ± i0)K ′2(E)Q′1(E ± i0, β).
Making use of (2.8), one has

b∓(x,D)R1(E ± i0)V12ψ ∈ L2,s, ∀ s < 1, and

‖〈x〉s−1b∓(x,D)R1(E ± i0)K ′2(E)〈x〉−s+2ρ0‖ � C, ∀ 1
2
< s < 2,

where b± are bounded symbols with support properties of (2.8). Using
(3.17), we can decompose

Q′1(E + i0, β)V12ψ = (b−(x,D)Q′1(E + i0, β) + b+(x,D)Q′1(E − i0, β)
+RQ′1(E + i0, β))V12ψ

with R ∈ L(s, s + ρ1), for |s| � 3. By the argument used in the proof of
Lemma 2.3, we obtain that

‖〈x〉sQ′1(E + i0, β)V12ψ‖ � Cs(1 + ‖〈x〉s−s0Q′1(E + i0, β)V12ψ‖)
for any − 1

2 < s < 1, where s0 = min{ρ1, 2ρ0 − 1}. Since s0 > 0, we can
repeatedly apply the above estimate to obtain that Q′1(E±i0, β)V12ψ ∈ L2,s

for any s < 1. Note that u = E+(E + i0)c = E0
+c − R′(E + i0)(C − BC)c

with
(C −BC)c = (βV12ψ, β

2ΠV21Q
′
1(E + i0, β)V12ψ).

Since R′2(E)Π = 0, using (3.4), we can calculate that

E+(E + i0)c = (−βQ′1(E + i0, β)V12ψ, ψ + β2R′2(E)V21Q
′
1(E + i0, β)V12ψ)

From the above estimate on Q′1(E + i0, β)V12ψ, one deduces easily that
u ∈ H2. Therefore, E is an eigenvalue of P (β) in the usual sense. The other
assertions in Theorem 3.6 are immediate. �
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The method presented above can be applied to studying the perturbation
of eigenvalues of P0 at the thresholds 0 and E0. See [14] for results on the
non-existence of perturbed eigenvalues in various situations. Here we give a
result on the location of eigenvalues of P (β) near 0. In the remaining part
of this section, we assume that d � 3 and ρ1 > 2.

When zero is a regular point (i.e., neither eigenvalue nor resonance) of
P1 in the sense of [13], R1(z) defined for z > 0 extends continuously up
to the real axis near zero as operator from L2,s to L2,−s for any s > 1 and
the limiting value R1(0) of R1(z) at 0 is symmetric as unbounded operator
in L2. See [13], and also [23] for a unified treatment in a geometric setting
for d � 2. We have the following

Theorem 3.7. — Assume that ρ0 > 1, ρ1 > 2 and that zero is a regular
point of P1 and an eigenvalue of multiplicity m of P2. Let ϕj, j = 1, · · · ,m,
be associated orthonormal eigenfunctions of P2. Suppose the matrix

A1 = (< R1(0)V12ϕi, V12ϕj >)1�i,j�m (3.18)

has k strictly positive eigenvalues, λj, 1 � j � k, counted with their multi-
plicity. Then, there exists ε0 > 0 and β0 > 0 such that for β ∈]0, β0], P (β)
has at least k eigenvalues, counted with their multiplicity, λj(β), in ]− ε0, 0[
verifying

λj(β) = −λjβ2 + o(β2), 1 � j � k. (3.19)

In particular, if A1 is positive definite, P (β) has exactly m eigenvalues in
]− ε0, ε0[ given by (3.19) with k = m.

Proof. — Under the conditions of Theorem 3.7, Corollary 3.3 holds for
e = 0 and s > 1. The same arguments as those used for the proof of
Theorem 3.4 (a) show that for E ∈]−ε0, ε0[, (P (β)−E)u = 0 has a solution
u ∈ H2,−s for any s > 1 if and only if det E+−(E + i0, β) = 0. Recall that
for ε0 > 0 small enough, the spectrum of P1 in [−ε0, 0[ is void and that
R1(E+ i0) = R1(E) is symmetric for E ∈ [−ε0, 0]. By (3.8) with e = 0, one
has for E ∈ [−ε0, 0]

E+−(E + i0, β) = E + β2A(E) + β4B(E, β)

where

A(E) = (< R1(E)V12ϕi, V12ϕj >)1�i,j�m and

B(E, β) = (< R1(E)K ′2(E)Q′1(E, β)V12ϕi, V12ϕj >)1�i,j�m
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are Hermitian matrices. Let λ0 > 0 be an eigenvalue of A1 with multiplicity
m0. Since B(E, β) is continuous in E and analytic in β2 near 0, the finite
dimensional perturbation theory affirms that for each E ∈ [−ε0, 0], there
are m0 eigenvalues, µj(E, β), of A(E) + β2B(E, β), counted according to
their multiplicity, which are analytic in β2 near 0 verifying

µj(E, β) = µj(E) +
∞∑
k=1

β2kµjk(E), j = 1, · · · ,m0, (3.20)

where µj(E) are eigenvalues of A(E) converging to λ0 as E → 0. In particu-
lar, for β0 > 0 small enough, fj(E, β) = E + β2µj(E, β) verifies
fj(−ε0, β) < 0 and fj(0, β) = λ0 + O(β2) > 0. Since fj(E, β) is contin-
uous and real, it has at least one zero E = λj(β) in ]− ε0, 0[ verifying

λj(β) = −β2µj(λj(β), β).

(3.20) gives
λj(β) = −β2(λ0 + o(1)), β → 0. (3.21)

Let vj(E, β) be orthonormal eigenvectors of A(E) + β2B(E, β) associated
with the eigenvalues µj(E, β), j = 1, · · · ,m0. Then uj(β) = vj(λj(β), β) is in
the kernel of E+−(λj(β)+ i0, β), j = 1, · · · ,m0. When λj(β) = λk(β), uj(β)
and uk(β) are orthogonal. As in the proof of Theorem 3.4, one can show that
these uj(β)’s give rise tom0 linearly independent generalized eigenfunctions
of P (β) associated with generalized eigenvalues λj(β), j = 1, · · · ,m0. Notice
that the interval ] − ε0, 0[ is contained in spectral gap of P1 and P2 and
that for z = E ∈] − ε0, 0[, the inverse of Grushin problem constructed
before exists as operators in L2. In particular, since λj(β) < 0, E(λj(β) +
i0, β)uj(β) ∈ H2 is an eigenfunction of P (β) in the usual sense. Therefore,
from a positive eigenvalue of multiplicity m0 of A1, we can construct m0

independent eigenfunctions of P (β). The first part of Theorem 3.7 is proved.
By (3.9), P (β) has at most m eigenvalues in ]− ε0, ε0[, counted according to
their multiplicity. Thus, if A0 is positive definite, all these eigenvalues are
given by (3.19) with k = m. �

When 0 is an exceptional point of P1 (an eigenvalue and/or a res-
onance of P1), to be simple, we assume that 0 �∈ σ(P2). For d � 3,
G0 = limz→0,�z>0(−∆ − z)−1 exists as operator from H−1,s to H1,−s for
any s > 1. In the following, take s ∈]1,min{ρ0, ρ1/2}[, ρ0 > 1, ρ1 > 2.
The kernel, K, of (1 + G0V1) in H1,−s(Rd) is spanned by the resonant
states and eigenfunctions of P1 associated with zero. Let F denote the
range of (1 + G0V1) in H1,−s(Rd). By the Fredholm theory, one can show
that H1,−s(Rd) = K ⊕ F and that the restriction of (1 + G0V1) on F is
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invertible with bounded inverse. Let m = dimK. One can choose a basis
ϕ1, · · ·, ϕm of K satisfying < ϕi,−V1ϕj >= δij . Here < ·, · > is the L2-
product which is used as (H1,−s, H−1,s) dual product. Then the projection
Q from K ⊕F → K is given by

Qf =
m∑
j=1

< −V1ϕj , f > ϕj , f ∈ H1,−s.

Let Q′ = 1 − Q : H1,−s → H1,−s. One can show that for |z| small and
z > 0,

T ′1 = (Q′(1 +R0(z)V1)Q′)−1Q′ (3.22)

exists and is uniformly bounded in L(1,−s; 1,−s) for any 1 < s < ρ1/2.
Write P (β) as

P (β) = P0 + Vβ , where P0 =
(
−∆ 0
0 P2

)
, Vβ =

(
V1 βV12

βV21 0

)
.

Set R0(z) = (P0 − z)−1 and Hr = L2,r ⊕ L2, r ∈ R. As map from Hs to
H−s, R0(z) defined for z > 0 extends continuously up to the real axis
near 0 for any s > 1. One has

R(z, β) = (1 +R0(z)Vβ)−1R0(z), z > 0.

Set

W (z, β) = 1 +R0(z)Vβ =
(

1 +R0(z)V1 βR0(z)V12

βR2(z)V21 1

)

and

U ′(z) =
(
T ′1 0
0 1

)
.

On H−s, one has

W (z, β)U ′(z) =

(
Q′ 0

0 1

)
+B (3.23)

with

B =

(
B11 βR0(z)V12

βR2(z)V21T
′
1 0

)
(3.24)

where B11 = Q(1 + R0(z)V1)T ′1 = Q(R0(z) − G0)V1)T ′1. As operator from
L2,−s to L2,−s, one has

B11 = O(|z|ε), if s > 1, ρ1 > 2; B11 = O(|z|1/2), if s > 3/2, ρ1 > 3. (3.25)
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Consider the Grushin problem associated with the operator

W =

(
W (z, β) ε0+

ε0− 0

)
: H−s ⊕ Cm → H−s ⊕ Cm (3.26)

where

ε0+ : Cm � c = (c1, · · · , cm) → (
m∑
j=1

cjϕj , 0) ∈ H−s (3.27)

ε0− : H−s � (u, v) → (< −V1ϕ1, u >, · · · , < −V1ϕm, u >) ∈ Cm. (3.28)

Using

U =

(
U ′(z) ε0+

ε0− 0

)

as an approximate inverse, one can show W is invertible and

W−1 =

(
U ′(z)(1 +B)−1 ε0+ − U ′(z)(1 +B)−1W (z, β)ε0+
ε0−(1 +B)−1 −ε0−(1 +B)−1W (z, β)ε0+

)

≡
(
ε(z, β) ε+(z, β)

ε−(z, β) ε+−(z, β)

)
.

W−1 defined for z > 0 extends continuously in z up to R near 0 as operator
onH−s⊕Cm. By standard arguments in Grushin problems, one obtains that

W (z, β)−1 = ε(z, β)− ε+(z, β)ε+−(z, β)−1ε−(z, β) (3.29)

and the singularities of W (z, β)−1 is determined by those of ε+−(z, β)−1.
By elementary but lengthy calculations, one has

ε+−(z, β) (3.30)
= ε0−,1{(1−B11)[1 + β2R0V12R2V21T

′
1(1−B11)](1 +R0V1)

−β2(1−B11)R0V12R2V21 +O(β3)}ε0+,1
= ε0−,1{(1−B11)(1 +R0V1)− β2R0V12R2V21 +O(β2|z|ε + β3)}ε0+,1

where ε0+,1 : Cm � (c1, · · · , cm) →
∑m

j=1 cjϕj ∈ L2,−s and ε0−,1 is its formal
adjoint. In the above reduction leading to (3.30), we only used s > 1. Thus,
ρ0 > 1 ρ1 > 2 are sufficient.

We examine ε+−(z, β) in the case d = 3. The case d � 4 can be treated
similarly. In the case d = 3

R0(z) = G0 + iz1/2G1 +O(|z|1/2+ε) : L2,s → L2,−s, s > 3/2, (3.31)
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for some ε > 0. Suppose now that ρ1 > 3 and zero is an eigenvalue, but
not a resonance of P1. Using (3.31) and the condition ρ1 > 3, one can show
that the matrix elements of ε+−(z, β) are given by

ε+−(z, β)ij (3.32)
= < −V1ϕi, R0(z)V1ϕj > −β2 < ϕi, V12R2(z)V21ϕj >

+O(|z|1+ε + β2|z|ε + β3)
= −z < ϕi, ϕj > −β2 < ϕi, V12R2(0)V21ϕj >

+O(|z|1+ε + β2|z|ε + β3)

uniformly in |z| and β near 0 with z > 0. Remark that for λ < 0 and
λ near 0, the boundary value ε+−(λ, β) of ε+−(z, β) at λ is self-adjoint.
Let φj , j = 1, · · · ,m be an orthonormal basis of the zero eigenspace of P1.
Let M be the transfer matrix from {φ1, · · · , φm} to {ϕ1, · · · , ϕm} and let
ε̃+−(λ, β) = (M−1)∗ε+−(λ, β)M−1. Then one has

ε̃+−(λ, β) = −λ− β2A2 +O(|λ|1+ε) +O(β2|λ|ε) +O(β3). (3.33)

where
A2 = (< φi, V12R2(0)V21φj >)i,j

By the perturbation theory of self-adjoint matrices, one can show as in the
proof of Theorem 3.7 that if λ0 > 0 is an eigenvalue of A2 with multiplicity k,
then for β > 0 small enough there exists λ(j)(β) = −β2λ0+o(β2), j = 1, · · ·,
and vj ∈ Cm linearly independent such that ε+−(λ(j)(β), β)vj = 0. Using
the inverse of the Grushin problem, one has: uj = ε+(λ(j)(β), β)vj ∈ H−s
and (P (β) − λ(j)(β))uj = 0, j = 1, · · · , k. Since λ(j)(β) < 0, we can derive
from a priori energy estimate and the ellipticity of −∆ that uj ∈ H2. Thus
P (β) has at least k eigenvalues verifying λ(β) = −β2λ0 + o(β2). Summing
up, we have proved the following

Theorem 3.8. — Assume that d = 3, ρ0 > 1 and ρ1 > 3. Suppose
that zero is an eigenvalue of multiplicity m, but not a resonance, of P1 and
that 0 ∈ ρ(P2). Let φj, j = 1, · · · ,m be orthonormal eigenfunctions of P1

associated with zero. Assume that the matrix

A2 = (< R2(0)V21φi, V21φj >)1�i,j�m (3.34)

has k strictly positive eigenvalues, νj, 1 � j � k, counted according to
their multiplicity. Then, there exists ε0 > 0 and β0 > 0 such that for β ∈
]0, β0], P (β) has at least k eigenvalues, νj(β), counted according to their
multiplicity, in ]− ε0, 0[ verifying

νj(β) = −νjβ2 + o(β2), 1 � j � k. (3.35)
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In particular, if A2 is positive definite, P (β) has exactly m eigenvalues in
]− ε0, ε0[ all given by (3.35) with k = m.

Theorem 3.8 can be compared with the results of [14] in abstract setting.
If specified to the present case, their results say that if the matrix A2 is
positive definite and if the orthogonal projection onto the zero eigenspace
is continuous from H−1,s to H−1,s for some appropriate s, then P (β) has
no eigenvalues in some small interval of the form ]− δ1β2, δ0[. Note that in
many problems arising from quantum physics, it is important to prove the
existence of eigenvalues. The following example may be of interest in this
connexion.

Example. — Assume that V12 = V21 is non-trivial i.e., V12(x) �= 0 for x
in some non-empty open set, and that ρ0 > 1, ρ1 > 2. Suppose that P1 � 0
and that 0 is a regular point for P1 ( which is satisfied if V1 � 0). Let
0 be an eigenvalue of P2 with multiplicity m. The matrix A1 defined by
(3.18) is then positive. We claim that it is in fact positive definite. In fact,
if zero is an eigenvalue of A1, let c = (c1, · · · , cm) �= 0 be an associated
eigenvector: A1c = 0. Set ψ =

∑
cjV12ϕj . Then, ψ is rapidly decreasing

in x and < R1(0)ψ,ψ >= 0. Since < R1(0)u, u >� 0 for any u ∈ L2,s,
s > 1, we obtain R1(0)ψ = 0 in L2,−s. It follows that ψ =

∑
cjV12ϕj = 0,

or v(x) =
∑
cjϕj(x) = 0 in a non-trivial open set where V12(x) is non

zero. Since v is an eigenfunction of P2 associated with the eigenvalue zero,
the unique continuation theorem for P2 ([9]) implies that v = 0. This is
impossible, because c �= 0 and {ϕ1, · · · , ϕm} are orthonormal. This proves
that all eigenvalues of A1 are strictly positive. Theorem 3.7 implies that for
ε0 > 0 and β0 > 0 small enough, the operator

P (β) =
(
P1 0
0 P2

)
+ β

(
0 V12

V21 0

)

thas exactly m eigenvalues λj(β) in ] − ε0, ε0[ verifying λj(β) = −β2(λj +
o(1)) as β → 0, where λj > 0, j = 1, · · · ,m, are eigenvalues of the matrix
A1. Similarly, if P2 = −∆ + V2 + E0 > 0 and if 0 is an eigenvalue of
multiplicity m, but not a resonance of P1, and ρ0 > 1, ρ1 > 3, one can
show as above that the matrix A2 is positive definite for any non-trivial V12

and Theorem 3.8 can be applied. We conclude that for β > 0 small enough,
P (β) has exactly m negative eigenvalues in ]− ε0, ε0[ satisfying (3.35).

The method developed above can also be applied to study the case where
zero is resonance, but not an eigenvalue of P1.
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4. Resonances generated by the channel interaction

It is natural to expect that the eigenvalues of P0 in ]0, E0[ dissolve into
resonances of P (β) when the potential is analytic. Here we use the elemen-
tary analytic dilation method of [4] to study these resonances. See [8, 18, 19]
for more advanced resonance theory.

Let U(θ) : f → e−dθ/2f(e−θx), f ∈ L2(Rd), θ ∈ R. We keep the no-
tation of Section 3 and denote by X(θ) the operator obtained from an
operator X by dilation: X(θ) = U(θ)−1XU(θ). Assume that Vi, i = 1, 2,
and Vij are dilation analytic, that is, there exists some α > 0 such that
Vi(θ) = Vi(x, θ), Vij(θ) = Vij(x, θ) defined for θ real extend to holomor-
phic families of −∆-compact operators for θ ∈ C with |θ| < α. Then,
Pj(θ) and P (β, θ) are holomorphic families of type (A) in the sense of Kato.
Resonances are complex eigenvalues of dilated operators for θ ∈ C with
0 < θ < α. In particular, it is well-known that

σess(P1(θ)) = e−2θ
R+, σess(P2(θ)) = E0 + e−2θ

R+

σd(P1(θ)) ⊂ σpp(P1) ∪ {z ∈ C;−2θ < arg z < 0},
σd(P2(θ)) ⊂ σpp(P2) ∪ {z ∈ C;−2θ < arg(z − E0) < 0}.

Since P1 has no positive eigenvalues, for θ > 0, the spectrum of P0(θ)
in {z ∈ C; 0 < �z < E0,−2θ < arg z � 0, arg(z − E0) < −2θ} is
discrete and σd(P0(θ))∩]0, E0[= σd(P2)∩]0, E0[. Let e be an eigenvalue of
P2 in ]0, E0[ such that dist(e, σ(P2) \ {e}) = 2ε0 > 0. For θ > 0 small
enough, e is the only point of σ(P0(θ)) in D(e, δ0) = {z ∈ C; |�z − e|
< ε0,−δ0 < z < 1}, where δ0 > 0 depends on e and θ. For ε > 0 small
enough and θ ∈ C with |θ| < α, we can define the spectral projection
associated to e by

Π(θ) = − 1
2πi

∫
|z−e|=ε

(P2(θ)− z)−1 dz.

θ → Π(θ) is a holomorphic family of projections and Π(0) = Π. Therefore,
rank Π(θ) is constant and is equal to m for all θ as above. It is clear that
R′2(z, θ) = U(θ)−1R′2(z)U(θ) defined for θ real and z in a complex neigh-
borhood of e can be extended to a holomorphic family of bounded operators
on L2 in z near e and θ ∈ C with |θ| < α. By (3.9), we have for z > 0
and θ ∈ R,

R(z;β, θ) = E(z, β, θ)− E+(z, β, θ)E+−(z, β, θ)−1E−(z, β, θ), (4.1)

where E(z, β, θ), E±(z, β, θ) and E+−(z, β, θ) are the dilated operators.
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Proposition 4.1. —

Let E1(z, β, θ) = E+(z, β, θ)E+−(z, β, θ)−1E−(z, β, θ).

(a). E(z, β, θ) defined for z with z > 0 and θ ∈ R extends to a holo-
morphic family of bounded operators in (θ, z) with 0 < θ < α and
z ∈ D(e, δ0).

(b). E1(z, β, θ) defined for z with z > 0 and θ ∈ R extends meromorphi-
cally in (θ, z) with 0 < θ < α and z ∈ D(e, δ0). E1(z, β, θ) has a pole
at z0 ∈ D(e, δ0) if and only if F(z0, β, θ) = 0, where

F(z, β, θ) = det Π(θ)(z − e+ β2V21(θ)Q′1(z, β, θ)V12(θ))Π(θ). (4.2)

Proof. — (a). Since P1(θ) has no spectrum near e, R1(z, θ) has a holo-
morphic extension in (θ, z) with 0 < θ < α and z ∈ D(e, δ0) where
δ0 = δ0(θ) > 0. For β ∈ C with |β| < β0, β0 > 0 small enough, one
sees that as bounded operator-valued function,

Q′1(z, β, θ) = R1(z, θ)(1− β2V12(θ)R′2(z, θ)V21(θ)R1(z, θ))−1

is holomorphic in (z, β, θ) with |β| < β0, 0 < θ < α and z ∈ D(e, δ0).
Using the formula

E(z, β, θ) = R′(z, β, θ) (4.3)

×
(

1 0
βΠ(θ)V21(θ)Q′1(z, β, θ) 1 + β2Π(θ)V21(θ)Q′1(z, β, θ)V12(θ)R′2(z, θ)

)
,

E(z, β, θ) defined for z with z > 0 and θ ∈ R extends to a holomorphic
family in (θ, z) with 0 < θ < α and z ∈ D(e, δ0).

(b). Note that

E0(z, β, θ) = Π(θ)(z − e+ β2V21(θ)Q′1(z, β, θ)V12(θ))Π(θ)

is of finite rank and is holomorphic in (β, θ, z) for β near 0 in C, θ and z as
above. Therefore, its inverse as operator on the range of Π(θ) is meromorphic
in the same region. The meromorphic extension of E1(z, θ) follows from the
expression

E1(z, β, θ) = (1− E(z, β, θ)(P (β, θ)− z))Π(θ)E0(z, β, θ)−1Π(θ)(1−B(θ)).

As in the proof of Theorem 3.4 (a), one can show that z0 ∈ D(e, δ0) is a
pole of z → E1(z, β, θ) if and only if F(z0, β, θ) = 0. �
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It follows from Proposition 4.1 that R(z, β, θ) has a meromorphic ex-
tension for (θ, z) with 0 < θ < α and z ∈ D(e, δ0) and z0 is a pole
of R(z, β, θ) in D(e, δ0) if and only if F(z0, β, θ) = 0. If z > 0 and
θ = θ′, E0(z, β, θ) and E0(z, β, θ′) are unitarily equivalent. Consequently,
det E0(z, β, θ) = det E0(z, β, θ′). Since E0(z, β, θ) is holomorphic in (θ, z),
F(z, β, θ) is independent of θ for z ∈ D(e, δ0) and gives a holomorphic ex-
tension of F(z, β, 0) from the upper half-complex plane into D(e, δ0). Con-
sequently, we obtain the following

Corollary 4.2. — For any 0 < θ < α fixed, z → F(z, β, 0) defined
for z > 0 extends holomorphically into z ∈ D(e, δ0) and z(β) ∈ D(e, δ0) is
a pole of z → R(z, β, θ) if and only if F(z(β), β, 0) = 0.

Theorem 4.3. — Assume (1.6) and that Vi, and Vij are dilation ana-
lytic. Let

A(z) = (< R1(z)V12ϕi, V12ϕj >)1�i,j�m, z > 0. (4.4)

Then F0(λ, z) = det(A(z) − λ), λ ∈ C, has a holomorphic extension in
z ∈ D(e, δ0). Let λ1, · · · , λk denote the zeros of λ → F0(λ, e) and νj the
multiplicity of λj,

∑k
j=1 νj = m. Let θ > 0 be fixed. For β small enough,

R(z, β, θ) has in all m poles, counted according to their multiplicity, in
D(e, δ0) and for each j, there are νj ones verifying z(β) = e − β2λj

+O(β2+ 2
νj ).

Proof. — For z > 0, the eigenvalues of A(z) are the same as those of
the operator ΠV21R1(z)V12Π on the range of Π. Therefore,

F0(λ, z) = det(A(z)− λ) = det Π(V21R1(z)V12 − λ)Π.

By dilation analyticity of V , one sees as above that for fixed θ with θ > 0,
E0(z, β, θ) extends holomorphically in (z, β) for β near 0 and z ∈ D(e, δ0),
satisfying

E0(z, β, θ) = Π(θ)(z − e+ β2V21(θ)R1(z, θ)V12(θ) +O(β4))Π(θ). (4.5)

It follows that

F(z, β, θ) = β2(F0((e− z)β−2, z, θ) +O(β2))

where
F0(λ, z, θ) = det Π(θ)(V21(θ)R1(z, θ)V12(θ)− λ)Π(θ). (4.6)
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Note that F0(λ, z, θ) defined for z > 0 and θ ∈ R extends holomorphically
in (z, θ) for 0 < θ < α and z ∈ D(e, δ0) and is independent of θ. It gives
a natural holomorphic extension of F0(λ, z) from z > 0 into D(e, δ0). Let
F (w, β) = β−2F(e− β2w, β, 0). Then,

F (w, β) = det(A(e− β2w)− w) +O(β2), (4.7)

uniformly in w with |w − eβ−2| < δ0|β|−2. Remark that w is a zero of
F (w, 0) if and only if it is an eigenvalue of A(e). Let λj , j = 1, · · · , k, be
eigenvalues of A(e) with multiplicity νj . In a small neighborhood of λj ,

F (w, 0) = (w − λj)νjGj(w),

where Gj(w) is holomorphic and Gj(w) �= 0 for z near λ. Since

F (w, β) = (w − λj)νjGj(w) +O(β2)

for w in any β-independent compact domain, Rouch’s Theorem shows that
for β small enough, the equation F (w, β) = 0 in w has exactly νj solu-
tions (counted according to their multiplicity), wl,j(β), near λj satisfying
wl,j(β) = λj + O(|β|2/νj ). By (4.7), all zeros of z → F(z, β, 0) = β2F ((e−
z)β−2, β) in D(e, δ0) are of the form zl,j(β) = e − β2λj + O(|β|2+2/νj ),
1 � j � k, 1 � l � νj . According to Corollary 4.2, these zl,j(β) are all the
poles of R(z, β, θ) in D(e, δ0). �

As a consequence of Theorem 4.3, if the matrix A(e) has no real eigen-
values, all the poles of z → R(z, β, θ) in D(e, δ0) are resonances of P (β).
By following the analyticity in β, one can show the resonances of P (β) near
an eigenvalue, λ0, of multiplicity ν of the matrix A(e) are given by Puiseux
series of the form

z(β) = e− β2λ0 +
∞∑
k=1

Ckβ
2+ 2k

ν .

This is to compare with the scalar case (see [10, 11]) where the similar
Puiseux series for resonances are of the form e+

∑∞
k=1Bkβ

k
ν . This difference

may be explained in noticing that the poles of the resolvent of two channel
operators are formally determined by the operator-valued function z →
(P2 − z − β2V21R1(z)V12)−1.

Concerning the resonances generated by eigenvalues embedded at the
thresholds, we only give a result corresponding to Theorem 3.7. The follow-
ing lemma may be known and we only sketch its proof.
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Lemma 4.4. — Assume V1 is dilation analytic, ρ1 > 2 and d � 3. Then
0 is not an accumulating point of the resonances of P1, that is, for any θ
with 0 < θ < α, there exists ε0 > 0 such that there is no resonance of P1

in {z ∈ C;−2θ < arg z < 0, 0 < �z < ε0}.

Proof. — Under the conditions of Lemma, F (θ) = U(θ)−1G0V1U(θ)
defined for θ real extends to a holomorphic family of compact operators in
L(−s,−s), 1 < s < ρ1/2, for θ ∈ C with |θ| < α. The dimension, m � 0,
of kernel of 1 + F (θ) is independent of θ. Note that (−e−2θ∆ − z)−1 is
uniformly bounded in L(s,−s) , s > 1, for z ∈ D0, where

D0 = {z;(e2θz) > 0, |�z| < δ0}
for some δ0 > 0 small enough. Studying a Grushin problem for 1+(−e−2θ∆
− z)−1V1(θ) constructed on the kernel of 1 + F (θ) for z ∈ D0, one can
show that z → (1 + (−e−2θ∆− z)−1V1(θ))−1 has at most m poles in D0 as
operator from L2,s to L2,−s, s > 1. The same is true for z → (P1(θ)− z)−1

= (1+ (−e−2θ∆− z)−1V1(θ))−1(−e−2θ∆− z)−1. In particular, there are no
resonances of P1 in {z ∈ C;−2θ < arg z < 0, 0 < �z < ε0} if ε0 > 0 is
taken small enough. �

To study the resonances of P (β) near 0 induced by the zero eigenvalue
of P2, we keep the notation and conditions of Theorem 3.7 and assume
in addition that d = 3, ρ1 > 3 and that V is dilation analytic. The case
d � 4 can be studied in the same way. Since zero is a regular point of P1,
as operators from L2,s to L2,−s, s > 3

2 , one has the asymptotic expansions

(−∆− z)−1 = G0 + i
√
zG1 + o(|z| 12 ), (4.8)

R1(z) = R
(0)
1 + i

√
zR

(1)
1 + o(|z| 12 ), with (4.9)

R
(0)
1 = G0(1 + V1G0)−1, R

(1)
1 = (1 +G0V1)−1G1(1 + V1G0)−1

for z > 0 and �z small. Here the branch of
√
z is chosen such that its

imaginary part is positive when z > 0. Set a = (a1, · · · , am) ∈ Cm where

aj =
1

2
√
π

∫
R3

((1 + V1G0)−1V12ϕj)(x) dx, j = 1, · · · ,m. (4.10)

Let a⊥ denote the subspace of Cm orthogonal to a. a is identified with an
m× 1 matrix.

Theorem 4.5. — Under the conditions of Theorem 3.7, assume in ad-
dition that d = 3, ρ1 > 3 and that V is dilation analytic. Let λ0 be a negative
eigenvalue of multiplicity k of the matrix A1 defined by (3.18). Assume that

E0 ∩ a⊥ = {0} (4.11)
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where E0 is the eigenspace of A1 associated with λ0. Then, there exists ε > 0
and β0 > 0 such that for β ∈]0, β0], P (β) has exactly k resonances, zj(β),
in a small disk {|z + λ0β

2| < εβ2} verifying

zj(β) = −λ0β
2 − icjβ3 + o(β3) (4.12)

with cj > 0 for 1 � j � k.

Proof. — Although 0 is always an essential singularity of R1(z, θ),
Lemma 4.4 and the condition on P1 imply that for 0 � θ < α, z → R1(z, θ)
has no pole for z ∈ D0 and is uniformly bounded in L(s,−s) for s > 1.
Therefore for β > 0 small, we can make the same reduction as in Theorem
4.3 with e = 0 and obtain (4.1) for z ∈ D0. The same proof as Corollary 3.3
shows that for s > 1

E(z, β, θ) : L2,s × L2 → H2,−s(Rd)×H2(Rd)
E+(z, β, θ) : C

m → H2,−s(Rd)×H2(Rd)
E−(z, β, θ) : L2,s(Rd)× L2(Rd) → C

m

E+−(z, β, θ) : C
m → C

m

are uniformly bounded in z ∈ D0 and β near 0 for each fixed θ, and are
holomorphic in (θ, z) for θ with θ > 0 and z ∈ D0 for each fixed β. The
proof of Theorem 4.3 shows that as operator in L(s,−s) with s > 1, z0 is
a pole of z → (P (θ) − z)−1 in D0 if and only if z0 is a zero of F(z, β, θ)
= det Π(θ)(z+β2V21(θ)Q′1(z, β, θ)V12(θ))Π(θ). Since F(z, β, θ) = F(z, β, 0)
for z > 0, the zeros of F(z, β, θ) and F(z, β, 0) in D0 are the same. By
(4.9),

F(z, β, 0) = det{z + β2(A1 + iz1/2aa∗ + o(|z|1/2)) +O(|β|4)}

for z ∈ D0 and β small. Now let λ0 < 0 be an eigenvalue of multiplicity k
of A1. Since A1 and aa∗ are self-adjoint, A1 + iz1/2aa∗ has k eigenvalues,
λj(z), near λ0 which are holomorphic in the parameter κ = iz1/2 near 0.
One has

λj(z) = λ0 + iz1/2νj +O(|z|), z → 0. (4.13)

From (4.11), one deduces that νj = | < a, u0 > |2 > 0, where u0 is an
eigenvector of A1 associated with λ0. Since z → F(z, β, 0) is holomorphic
and verifies F(z, β, 0) = det{z + β2(A1 + iz1/2aa∗)} + o(β2|z| 12 ) in D0, it
can be shown that in a small disk {|z+λ0β

2| < εβ2}, F(z, β, 0) has k zeros
zj(β), j = 1, · · · , k, verifying

zj(β) = −λ0β
2 − iνj

√
−λ0β

3 + o(β3)

as β → 0. (4.12) is proved with cj = νj
√
−λ0 > 0. �
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When (4.11) fails, one has to study high order terms in β of the function
z → F(z, β, 0) to see if its zeros near −λ0β

2 are real.

5. Absence of embedded eigenvalues near E0

In this section, we give a result in the case where the off-diagonal part
is stronger at the infinity compared with the diagonal part of the potential.
Let β = 1 and P = P (1). In addition to (1.6), (1.7) with ρ0 > 1

2 and ρj > 1,
j = 1, 2, and (2.4) on V1 with m = 3, we assume that outside some compact
of Rd, for some constants 0 < c1 < c2

c1〈x〉−ρ0 � |V12(x)| � c2〈x〉−ρ0 , (5.1)

and
|V2(x)| � C0|V12(x)|2, C0 <

1
E0
. (5.2)

We also need the following condition to control some commutators:

|∂αxV12(x)| � C〈x〉−ρ0−|α|, |α| � 2 (5.3)

for x outside some compact. Note that V12 may be complex-valued and
P0 may have an infinite number of eigenvalues embedded in ]0, E0[ accu-
mulating at E0 from below. The following result shows that most of them
disappear under the off-diagonal perturbation.

Theorem 5.1. — Under the above assumptions on V , E0 is not an
accumulating point of eigenvalues of P .

Proof. — Suppose by absurd that there is an infinite number of eigen-
values λj ∈]0, E0[, j = 0, 1, 2 · · ·, such that

0 < λ0 � λ1 � · · · , λj → E0, j →∞.

Let uj = (vj , wj) be associated eigenfunctions. Using the Mourre’s estimate
for P1 at E0, one can show as in the proof of Lemma 2.1 that limj→∞ vj = 0.
We can thus normalize uj by ‖wj‖ = 1 and wj ⇀ 0 as j → ∞. Equation
(P − λj)uj = 0 is equivalent with

(P2(λj)wj = 0, vj = −R1(λj)(V12wj), (5.4)

where P2(λj) = P2 −K(λj)− λj and

R1(λj)(V12wj) = R1(λj ± i0)(V12wj),
K(λj)wj = V21R1(λj)(V12wj).
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Remark that as in Section 2, the choice of sign in R1(λj ± i0) is irrelevant
here. This fact combined with microlocal resolvent estimates of [22] allows
us to estimate various terms below resulting from R1(λj)(V12wj). Since the
argument is the same as that used in the proof of Lemma 2.3, we will not
repeat it here. Let ε0 = min{ρ1 − 1, 2ρ0 − 1}. One has

0 = < P2(λj)wj , wj >
= ‖∇wj‖2 + (E0 − λj)+ < V2wj , wj > − < K(λj)wj , wj >
> ‖∇wj‖2+ < V2wj , wj > − < K(λj)wj , wj > . (5.5)

Since

− < K(λj)wj , wj >=< vj , V12wj >= λj‖vj‖2− < vj , P1vj >,

one gets

‖∇wj‖2+ < V2wj , wj > +λj‖vj‖2− < vj , P1vj >< 0 (5.6)

for all j. The main task is to estimate ‖vj‖2 and < vj , P1vj > uniformly in
j large.

To estimate ‖vj‖2, take χ ∈ C∞0 (]− δ, δ[) with 0 � χ � 1 and χ(s) = 1
on [−δ/2, δ/2], 0 < δ < λ0/2. One has

‖vj‖2 � ‖χ(P1)vj‖2 = ‖χ(P1)R1(λ)(V12wj)‖2

� 1
|λj − δ|2

‖χ(P1)(V12wj)‖2

=
1

|λj − δ|2
(‖V12wj‖2 − |<(1− χ(P1)2)(V12wj), V12wj > |).(5.7)

Since 1− χ2 is equal to 0 over [−δ/2, δ/2], from the relation

(1− χ(P1)2)P−1
1 = (1− χ(P1)2)(P1 + i)−1 − i(1− χ(P1)2)P−1

1 (P1 + i)−1

one deduces easily that

‖(1− χ(P1)2)P−1
1 ‖L(L2,H2) �

C

δ
, (5.8)

for some C > 0 independent of δ. Making use of the equation P2(λj)wj = 0,
one obtains

P1(V12wj) = [−∆, V12]wj + V12P1wj

= [−∆, V12]wj + V12((V1 − V2) +K(λj)− E0 + λj)wj .
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Lemma 2.3 shows that

‖|V12|2R1(λj)(V12wj)‖ � C‖〈x〉−2ρ0+1V12wj‖

uniformly in j. Since [−∆, V12] = O(〈x〉−1−ρ0)∇ + O(〈x〉−2−ρ0), it follows
from (5.8) that

| < (1− χ(P1)2)(V12wj), V12wj > |

� C1

δ2
(‖〈x〉−ρ0−1wj‖2 + ‖〈x〉−2ρ0+1V12wj‖2 + (E0 − λj)2‖(V12wj)‖2),

where C1 is independent of δ and j. Since λj → E0, this proves that for any
ε > 0,

| < (1− χ(P1)2)(V12wj), V12wj > | �
C1

δ2
(ε‖V12wj‖2 + C‖〈x〉−ε0−ρ0wj‖2)

for all j � j0 large enough. It follows from (5.7) that for j � j0,

‖vj‖2 �
1

|λj − δ|2
(

(1− C1ε

δ2
)‖V12wj‖2 − Cδ‖〈x〉−ε0−ρ0wj‖2

)
. (5.9)

To estimate the term < P1vj , vj > uniformly in j large, remark that for
any ν > 0, decomposing 〈x〉−ν into two parts according to whether |x| is
sufficiently large or not, and applying (2.8) to the compactly support part
with appropriately chosen sign ±, one can show as in Lemma 2.3 that for
any ε > 0, there exists Cε > 0 such that

‖〈x〉−νvj‖ � ε‖vj‖+ Cε‖〈x〉−ε0−ρ0wj‖ (5.10)

for all j. Using (5.4), we can write < vj , P1vj > as

< vj , P1vj >= (5.11)
(λj − E0)‖vj‖2+ < vj , R1(λj) {([V12,∆] + V12(V1 − V2)}wj + |V12|2vj > .

By (2.8) and (5.10),

| < vj , |V12|2vj > | � ε‖vj‖2 + Cε‖〈x〉−ε0−ρ0wj‖2,
| < vj , R1(λj)V12(V1 − V2)wj > | � ε‖vj‖2 + Cε‖〈x〉−ε0−ρ0wj‖2.

It remains to study the term < vj , R1(λj)[V12,∆]wj >. Introduce the cut-
offs χ1 ∈ C∞(Rd) with support outside some ball of radius R with R large
enough, and χ2 ∈ C∞0 (]E0 − δ, E0 + δ[), δ > 0, which are equal to 1 in a
slightly smaller domain. Then for all j � j0 large enough such that λj >
E0 − δ/2, one has

| <vj , (1− χ2(P1))R1(λj)[V12,∆]wj> |� ε‖vj‖2 + Cε,δ‖〈x〉−1−ρ0wj‖2,
| <vj , χ2(P1)R1(λj)(1− χ1(x))[V12,∆]wj> |� ε‖vj‖2 + Cε‖〈x〉−ε0−ρ0wj‖2.
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Consider the term

< vj , χ2(P1)R1(λj)χ1(x)[V12,∆]wj > .

By the assumptions on V12, V12(x) �= 0 for |x| > R and R > 1 large enough
and

[V12,∆] = ∇O(〈x〉−1)V12 +O(〈x〉−2−ρ0).

One has

χ1(x)[V12,∆]wj = χ1(x)O(〈x〉−1)∇(P1 − λj)vj +O(〈x〉−2−ρ0)wj .

The term related to O(〈x〉−2−ρ0)wj is estimated by

| < vj , χ2(P1)R1(λj)O(〈x〉−2−ρ0)wj > | � ε‖vj‖2 + Cε‖〈x〉−ε0−ρ0wj‖2.

Since χ2(P1)∇ is bounded and χ1 is supported far away from 0, one can
write

χ2(P1)R1(λj)χ1(x)O(〈x〉−1)∇(P1 − λj)vj (5.12)
= χ2(P1)(χ1(x)O(〈x〉−1)∇vj +R1(λj)[χ1(x)O(〈x〉−1)∇, P1]vj .

Note that [χ1(x)O(〈x〉−1)∇, P1] is a second order differential operator with
coefficients decaying like O(|x|−2). The method of the proof for Lemma 2.3
allows us to show that

| < vj , χ2(P1)R1(λj)[χ1(x)O(〈x〉−1)∇, P1]vj > | � C‖〈x〉−ε0vj‖2,

uniformly in j. It follows that

| < vj , χ2(P1)R1(λj)χ1(x)O(〈x〉−1)∇(P1 − λj)vj > |
� ε‖vj‖2 + Cε‖〈x〉−1vj‖2 + C‖〈x〉−ε0)vj‖2

� 2ε‖vj‖2 + C ′ε‖〈x〉−ε0−ρ0wj‖2,

uniformly in j. Summing up, we have proved that for any ε > 0, there exists
Cε and j0 such that

| < vj , P1vj > | � ε‖vj‖2 + Cε‖〈x〉−ε0−ρ0wj‖2, ∀j � j0. (5.13)

Since λj → E0 > 0 as j →∞, choosing appropriately ε, δ > 0, we obtain
from (5.6), (5.9) and (5.13) that for any η > 0, there exists Cη and j1 such
that

0 > ‖∇wj‖2+ < V2wj , wj > +λj‖vj‖2− < vj , P1vj >

� ‖∇wj‖2+ < V2wj , wj > +(λj − ε)‖vj‖2 − Cε‖〈x〉−ε0−ρ0wj‖2
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� ‖∇wj‖2+ < V2wj , wj >

+
λj − ε
|λj − δ|2

{(1− C1ε

δ2
)‖V12wj‖2 − Cδ‖〈x〉−ε0−ρ0wj‖2}

−Cε‖〈x〉−ε0−ρ0wj‖2

� ‖∇wj‖2+ < V2wj , wj > +
1− η
E0

‖V12wj‖2 − Cη‖〈x〉−ε0−ρ0wj‖2,

for all j � j1. For 0 < η < 1
E0
− C0 small enough, the conditions (5.1) and

(5.2) show that

Q(x) = V2(x) +
1− η
E0

|V12(x)|2 − Cη〈x〉−2ε0−2ρ0 > 0 (5.14)

for |x| large enough. The above estimate says that

< (−∆ +Q(x))wj , wj >< 0, ∀j � j1. (5.15)

This is impossible since by (5.14) the operator −∆ +Q(x) can only have a
finite number of negative eigenvalues, which implies that the space {v ∈ H2;
< (−∆ + Q(x))v, v >< 0} is of finite dimension. This proves that E0 can
not be an accumulating point of eigenvalues of P . �

We expect that if the condition (5.1) is satisfied globally (for all x in Rd),
P (β) has no eigenvalues in ]0, E0[ for β > 1 large enough. But we do not
go further in this direction, because this needs to develop other techniques.
The results of Sections 3 and 5 show that the off-diagonal perturbation
tends to eliminate eigenvalues of P0 embedded between the two thresholds
of two-channel type operators.
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