ANNALES

DE LA FACULTE
DES SCIENCES

Mathématiques

W. CHICKOUCHE, SERGE NICAISE
Regularity of the solution of some transmission problems in domains with
cuspidal point

Tome XVI, n° 3 (2007), p. 529-560.
<http://afst.cedram.org/item?id=AFST_2007_6_16_3_529_0>

© Université Paul Sabatier, Toulouse, 2007, tous droits réservés.

L’acces aux articles de la revue « Annales de la faculté des sci-
ences de Toulouse Mathématiques » (http://afst.cedram.org/), implique
I’accord avec les conditions générales d’utilisation (http://afst.cedram.
org/legal/). Toute reproduction en tout ou partie cet article sous quelque
forme que ce soit pour tout usage autre que I’utilisation a fin strictement
personnelle du copiste est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du
Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/



http://afst.cedram.org/item?id=AFST_2007_6_16_3_529_0
http://afst.cedram.org/
http://afst.cedram.org/legal/
http://afst.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/

Annales de la Faculté des Sciences de Toulouse Vol. XVI, n® 3, 2007
pp- 529-560

Regularity of the solution of some transmission
problems in domains with cuspidal points®)

W. CuikoucHe (U, S. Nicaisg (?)

ABSTRACT. — Regularity results for transmission problems in domains
with (outgoing) cuspidal points are considered. We prove in some special
but generic situations that the solution is piecewise in H?2.

RESUME. — Nous considérons des résultats de régularité des solutions
de problémes de transmission dans des domaines & points cuspides. Nous
démontrons que la solution est H? par morceaux dans des situations par-
ticuliéres mais génériques.

1. Introduction

In our days, regularity results for boundary value problems on nons-
mooth domains with a Lipschitz boundary are well known. These regularity
results are due to the singular points of the domain, i.e. corners, edges, etc...
[8, 4, 2], but also to the discontinuities of the coefficients of the operator (so
called transmission problems) [9, 11, 12]. Usually one obtains a decomposi-
tion of the (weak) solution into a regular part and a singular one, this last
one being related to the geometrical singularities of the boundary and/or
the discontinuities of the coefficients.

For domains with outgoing cusps (the boundary being not Lipschitz),
regularity results for boundary value problems with smooth coefficients were
obtained by different authors [6, 7, 10, 14, 5, 3, 1]. Roughly speaking since
the angle at the cusp is zero, we can expect good regularity of the solution,
which is mainly the results obtained by these authors for different domains
and operators. Surprisingly (to our knowledge) no regularity results exist
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for transmission problems on domains with cusps. We therefore fill this gap
and prove the piecewise H? regularity of the solution of the Laplace trans-
mission problem in dimension 2 in some particular situations. We finally
show that the 2D piecewise H? regularity directly yields the piecewise H?
edge regularity in three-dimensional domains. The extension of such results
to polyhedral domains with cusps requires more investigations and will be
the object of forthcoming works.

As a motivation of our results, let us consider the following “standard”
transmission problem [9, 11, 12]: Fix the finite cone C' = C; UCy UT', where

C1 = {(z,y) eR%0<r<1,—w <6 <0},
Cy = {(z,y) ER%0<7 < 1,0 <6 <ws},
I = {(z,0);0<z <1},

where (r,6) are the polar coordinates of (z,y) and w; > 0 and wy > 0 are
the respective opening of the cone Cy and Cs.

Let u € HE(C) be the variational solution of the following Dirichlet
interface problem for the Laplace operator:

—Aui = fz in CZ‘, 1= 172,
w =0 on 9C; \ T,
UL = Uso on T, (1.1)
P Ouy _ 5 Ouy onT
1 dy D2 By )

where f € L?(C), u; means the restriction of u to C;, i = 1,2 and p; and
po are two positive real numbers, supposed to be different.

It is well known [9, 11, 12] that u behaves like r*° near (0,0), where
Ag > 0 is the smallest positive root of

P2 cos(Aws) sin(Awy ) + p1 cos(Awq) sin(Awsz) = 0.

A careful analysis of this transcendental equation shows that Ao satisfies

™
Ao > —
0/2(.01’

if we assume that ws < w;. Consequently we get that
Ao — 00 as wi and wy — 0.
From the results from [9, 11, 12], we can expect good regularity proper-

ties of the solution of a problem similar to (1.1) on a domain with a cusp
at (0,0) (since it corresponds to the limit case wy = wy = 0).
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The proofs of our two-dimensional regularity results consist in three
main steps:
1. Asin [14, 6, 5, 3] we perform appropriate changes of variables to transform
the bounded domain into an infinite domain, similar to a strip.
2. We use a diadic covering to reduce the regularity problem to a bounded
domain.
3. We use regularity results for transmission problems on bounded domain
and prove uniform bounds.

The schedule of the paper is the following one: Section 2 recalls the
transmission problem we have in mind and gives the piecewise H? regularity
result for a straight interface. A similar result is obtained in section 3, when
the interface is curved. Finally using a standard Fourier transform technique
we show in section 4 the piecewise H? regularity for three-dimensional do-
mains with a cuspidal edge.

Let us finish this introduction with some notation used in the whole
paper: As usual, we denote by L?(.) the Lebesgue spaces and by H*(.),
s 2 0, the standard Sobolev spaces. The usual norm and seminorm of H*(D)
are denoted by || - ||s.p and |- |s,p. The space H{(£2) is defined, as usual, by
H} () == {v e H(Q)/v =0 on 9Q}.

2. Transmission problem in a domain with a cuspidal point:
Straight interface

Let U be the following bounded domain of the plane, with boundary
containing a turning point (or outgoing cusp):

U={(z,y) €R*%0 <z <a,p1(x) <y < p2(2)},
where ¢ and ¢, are two functions satisfying the conditions :

@1, 2 € C([0,a]) N C>(]0,d]),
p1 <0< g on|0,d,

©1(0) = ¢2(0) =0,
©1(0) = ¢5(0) = 0.

In addition we suppose that lir% 2‘:;—%3 is finite (it even may vanish). The
xr—

case lir% iig; = +o00 can be treated by exchanging the indices 1 and 2
xr—

below.
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P1

P2

Figure 1. — The domain U

U is actually divided into two parts U; and Us, separated by a straight
interface Yo, namely (see Fig 1)

Ui = {(z,y) eR%0 <z <a,p(z) <y <0},
Uy = {(z,y) eR}0<z<a,0<y<pzx)},
Yo = {(z,0) € R%0<x < a}.

In this section, we consider the variational solution u € H{(U) of the
following Dirichlet interface problem for the Laplace operator

—Aui = fz in Ul', 1= 1,2,

u; =0 on 9U; \ X,

Up = u2 on Eo, (21)
2

leig’;: =0 on X,

1=
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where f € L?(U), u; means the restriction of u to U;, i = 1,2 and p; and
po2 are two positive real numbers, supposed to be different. v; denotes the
unit normal vector to X directed outside U;. In other words, u € Hg(U) is
the unique solution of

/qu~Vvdx:/pfvdachEH(}(U),
U U

where the function p is defined by

_ p1 in Ula
p= P2 in UQ.

In this section we will show that the variational solution u of (2.1) has
the improved regularity PH?(U), where

PH*(U) :={u e H'(U) : u; € H*(U;),i = 1,2},
is the space of piecewise H? functions on U.
2.1. The change of variables

Following [14], we set

+oo

do Y
t=— / —\ 9: 9
pa(0) pa(

x

~

where @9 is extended to [a, 00) so that ¢9 remains positive and 1/p2 belongs
to L'(a, 00).

The image of U by this change of variables is the (semi-infinite) domain
Q=0 UQyUX, where

O = {(t,0) eR%:t < b,e(t) <0 <0},
Q = {(t0) eR¥t<b0<0<1},
L = {(t0)eR%1 <),
and
+oo d (x)
g Y1
b=— / N\ t) = .
o) T 0w
Let us set
'U(t79) = u(x,y), g(tv 9) = f(.%‘, y)7
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or more precisely

+oo —+oo

(- do Y o) = B do Y
u(z,y) = /cpa(a)’wz(x) » flmy) =y /

x x

Direct calculations yield

1 1
Dyui = _Devh D;ul = _ng’h

P2 v3
and
1 !
Dyu; = —Dyv; — y%Davh
P2 ¥2
1 !
Diul = Dm [—Dtvi — y—?ngi]
P2 ¥2
! 1 "2 9 2 /
= (p—ngi + —D.Dywv; —y P2¥2 T 2P2Ps 4@%02 Dov; + %Dngvi
¥2 ©2 2 ¥3
1 2
= o2 [vai + 6%95” Djv; — 2004 Diyv; — 05 Dy,
2
2
+ 0 <2<p’2 - sowfj) Dévi] .

Consequently problem (2.1) becomes

(—A + P)v; = p3g:(t,0) in Q;,i=1,2,

v; =0 on 0Q; \ &,

U1 = V2 on X, (2:2)
6’01 _ 81}2

P15 = P25 on 3,

where we have set

Pv = —020),” D2v + 200, D3v + ¢y Dyv — 6 (2(,0'22 — <p2<p'2') Dyv.

Since we are interested in regularity results on Sobolev spaces, it will
be convenient to study the effect of the same change of variables on these
functional spaces, in particular on L? spaces. In that case, we obviously
have the

LEMMA 2.1. — Fori=1,2, f; € L*(U;) if and only if pag; € L?(2;).
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In view of this Lemma, we define a new function w = ¢35 1y and a new
right-hand side h = pog € L2(U).

Now we look at the boundary value problem solved by w. Since we have

Dovi = @2Dow;, Djv; = 3 Dgw;,

Dy = paphw; + paDiw;,

Djv; = (@290'22 + 90390'2/) w; + 22y Dyw; + pa D} wi,
Djpv = Dy (p2Dowi) = 020y Dow; + pa Digwi,

problem (2.2) implies that
2
- {¢2D3wi + (205" + P38 )w; + 20205 Dyw; + w2 Diw;
2
+0%04" 02 Dgw; — 2005 (9205 Dow; + 02 Diyw;) — b (paphw; + paDyw;)
2
+0(2¢5" — <P290'2/)<P2D9w¢}
= @ggi (tv 9)

This equation is equivalent to
(—A + L)wl = hi,

where L is the differential linear operator of second order with bounded
coeflicients defined by

Lw = —paphw — phDyw + 0paph Dyw — 92<p’22D§w + 200, DZyw.
Summing up, we have established the following proposition

PROPOSITION 2.2. — There exists a differential linear operator of sec-
ond order with bounded coefficients L such that problem (2.1) is equivalent
to

(—A + L)wi = hi(t, 9) m Qi,

w; = 0 on 891 \ 2,

w] = Wa on X, (23)
D1 85'2;1 =p2 8522 on X,

where we have set h = pof and w = g@z_lu.

2.2. The reference problem
In this subsection we shall prove the following result
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THEOREM 2.3. — For f € L2(Q), there exists a unique solution u €
HY(Q) N PH?(Q) of the problem

—Au; = f; in £y,

U] = Uo on 3,
) 3

D155 = P25¢ on Y.

Proof.— This problem admits a unique variational solution u € Hg(£2)
(since Poincaré’s inequality remains valid in Q because it is bounded in the
direction of #). Note further that there exists a positive constant Cj such
that

2 2
ZPzHUzH%Qz < Co sznfz”gm (2.4)
i=1 i=1

In order to study the PH?(Q) regularity of the variational solution, we
used the technique of a dyadic covering.

Let (1;))—_., be a sequence of C*° functions on R such that

w1 if j—1+b<t<j+b
=00 if t<j—24b or t=j+1+b
and

0

> mi(t)=2o0n]—o0,b].

j=—00

Clearly we can take n;(t) = n(t — j —b), for an appropriate cut-off function
7 such that supp n = [-2,1] and n =1 on [-1,0].

Therefore the solution v can be written
10
j=—o00
and we have
—A(njui) = n; fi — njui — 20 Dyu; € L*(€).
Let us now set

u;p = nu, uij = ujlo;,

9; i f —nju—2n;Dyu, 9ij = ile.,
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Q; = Qn{t0) eR}j—2+b<t<t;}
Qi = Qn{t,0)ecR¥j-1+b<t<j+b},
Qi; = QN

Y, = {(t,0)j—-24+b<t <t}

Lip = {te®)j—2+b<t <t}

where t; = b+ min{j + 1,0} (t; =b+j+11if j <0 and t;x =b). It is clear
that u; belongs to HJ(Q;) and is solution of the transmission problem

—Auij = g” in QU’Z = 1,2,
ulj = U2j on Ej,

Ui 0“2J b))
p1 50 = P2 on 2.

Moreover for all j, u; belongs to PH?(Q;) since @; has a piecewise C?
boundary with convex angles at the exterior boundary and the angles of
Qi; at the interface X, are equal to 7/2 (see [9, 12]).

Moreover we take advantage of the following result which will be proved
later on. O

PROPOSITION 2.4. — There exists a positive constant C' independent of
7 such that

sz ‘uw”2 Qi S CZZ%HQWHO Qij° (2.5)

2
Thanks to this proposition, we are now able to estimate Y pilluill3 g, -
i=1

As u=wu; on Q; since n; = 1, we may write

2
> pilluill3 g,
=1
=> Zplz /|Do‘uw|2dtd0+/ |Vu]|2dtd0+/ |u; |*dtd6
J

=1 a|=2 4
21=29,na, Q; &

2
<D p > /|D°‘u”\ dtd9+/p|VuJ| dtd9+/p|uj| dtdo

i |= o Jal=2g

2
:ZEM
J =

j Qj
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Therefore, Proposition 2.4 leads to

2 2
> pilluil3 o, <D0 pillgiilso,,- (2.6)
i=1 J =1

By the definition of g;; we have

l9i3113.0,, = / n i — /i — 20, Dyus 2dede

and since n;(t) = n(t — j) we get

< Alleamy / F2+ / sl + / Dy ?

Qij Qij Qij

9i 113

Multiplying this identity by p; and summing up on ¢ and j, we obtain

ZZ% / 19341 dtd@—Z/plyal dtdf

J Q]
< 4||77||C2(R)Z /p|f\2dtd9+/p|u|2dtd9+/p|Vu|2dtd9
A (oF Qj Qj

Taking into account that @; = QJ 1UQJUQJ~+1 forj < 0and Qg = Q,lLJQO

implying a finite overlaping) and Q = U%__ Q- we conclude
Jj=—00%]
Zzpz / |gz]‘ dtdf < 12||77||C2(R)Zp1{“f1”09 + ”uz”lﬂ }
) 1=1
Qij

Finally, making use of (2.4) we arrive at

2
Z Zpi”gij o
joi=1

This estimate in (2.6) leads to

szHuz

where K = 12([n]|c2®)C(1 + Co).

< 12[|nll2 ) (1 + Co) Zplufl

i=1

szznleOQ (2.7)
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Remark 2.5. — The cut-off function n and also the constants C, Cy do
not depend on b, and consequently K is independent of b.

2.3. Proof of Proposition 2.4

The proof of Proposition 2.4 is based on three main steps that are sum-
marized in three Lemmas whose proofs are postponed to the end of this
subsection.

The first Lemma gives a bound for the norm of u;; in the space H'(Q;;)

(and mainly follows from Poincaré’s inequality).

LEMMA 2.6. — There exists a constant Cy (independent of j) such that

1
2

2 % 2
(Z pillui; ||%,Qi_7~> <G (Z pillgis ||3,Q7:_7'> : (2.8)
i=1 =1

To obtain (2.5), it remains to bound the L?—norm of the second derivatives
of u;;. We proceed as in section 3.3 of [4] where the Dirichlet problem for
the Laplace equation in a domain with turning points (without interface) is
considered.

For a fixed j, we set
V; = Dtuij, w; = Dguij 1= 1, 2. (29)
The functions v;, w; belong to H'(Q;;), and we approximate them by func-

tions belonging to H%(Q;;) in order to apply Theorem 3.1.1.2 of [4]. We
observe that

Ot s
u;; = 0 so 877 =0o0n 0Q;; \ ;.
In view of (2.9) this means
7'17)1'+T2wi:0 on aQ”\ZJ
On the interface ¥; we have
Oouy;  Ouo;
u1; = ug;  and consequently g;j = gtzj or v, = Vg,
E)ulj (97.L2j or w
= w1 = .
D1 20 D2 20 P1wi = pa2wa
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In summary (v;,w;) fulfils the following boundary and transmission condi-
tions

’UQZO for9:1,j72+b<t<tj,

w; =0 fort=4—-2+bt=t;, pt) <8<0,
wy =0 fort=7-240bt=1;,0<6<1,
T1v1 +w; =0 on Fj#,,

V] = U2,p1W1 = pawz O Xj.

LEMMA 2.7. — There exists a sequence of pairs of functions (vy ;, Wg,;)
€ PH*(Q;), k= 1,2,... such that
ki — Vi, W — Wi N Hl(Qij) as k — oo,

and satisfying

Vgo =0 for0=1,7-24+b<t<ty,

wg1 =0 fort=j—24+bt=1t;,p(t)<6<0,
wi,2 =0 fort=7—-2+bt=1;0<0<1,
T1Vk,1 + Towg,1 =0 onI';,,

Vg1 = Uk,2, P1W1,k = P2Wk,2  ON Xj.
(2.10)

Applying the identity (3.1.1.10) of [4] (valid in a domain  with a piece-
wise C? boundary) to the vector function Vi ; = (v, wy ;) we obtain

/ |Dtvk)1 + Dewk’1|2dtd9
Q1
- / HDt'Ulc,llQ + |D9wk,1|2 + 2thk’1D9U;€71} dtdf (2.11)
Q1

:/{diVT(Vk71)V(Vk71)T72(Vk71)TvT(Vk,1)V}dO’7 /(trB)(Vk,l)?,da,

o Lje

/ |Dt’Uk-,2 + Dgwk72|2dtd9

Q2;
— / [|Dtvk,2|2 + |D9wk,2|2 + 2thk72D9’l}k72} dtdo (212)
Q2;
= [ {dive(Vi,2) (Vi,2)7 — 2(Vie,2) 1V (Vi 2)0 } do,
X

— 540 —



Regularity of the solution of some transmission problems in domains with cuspidal points

where (Vi) means the tangential component of Vi ;, (Vi;), the normal
component of Vi ; and B is the second fundamental quadratic form along
the boundary of Q1. Moreover we recall that (2.10) implies that (Vi) = 0
on 9Qi; \ ¥j and (Vi1)p = (Vo) and p1 (Vi1), = p2 (Vi,2), on ;.

Adding (2.11) multiplied by p; and (2.12) multiplied by ps we obtain

2
Zpi /|Dtvk7i+D0wk,i|2dtd9
=1

Qij

- / [|Dyvr | + | Dowp,i|* + 2Dywy, i Dovg ;| dtdo
Qij

— / (tr B) (Vi1)2do.

Lje

Then, taking the limit in k£ we obtain

2
> pi / | Dyv; + Dow; |*dtdo

=1 Qij

— / [|Dyv;i|* + | Dyw;|* 4+ 2Dyw; Dy, | dtdf
Qij

::fplt/"umzaxva>3do,

Falso

and consequently, using (2.9) we have

2
> pi / |gij |2 dtd6 — / [|D}uij)* + |Djuij|> + 2| Dy Dousj|?] dtdd
=1 Qij Qij

_ duij o
—m/wmw%wa
Fj,w
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Since tr B is bounded by |¢"(¢)| at the point (¢, p(t)), this identity implies
that

2
Zpi/ [[D2us;[? + | D3us;|? + 2| D2yui;|?] dtdd
=1

N Qij
(2.13)
2 Ouy
< : j|%dtdd + p,C ()| 2 do.
oo [lasaiar+me [ 1700 rao
T Quy Ly
The claim follows if we can estimate the integral in I'; .
LEMMA 2.8. — There exists a positive constant Co independent of j
such that
8u1-
" t J 2d
[ 1115 e
Lje
2
1 1
<Oy piqer Y /|Dauij\2dtd9+e*5/|vuij|2dtd9 :
i=1

lol=2q;, Qij

for all € €]0,1].

This Lemma applied to (2.13) leads to

2
Zpi Z /\Dauij|2dtd9

= lal=2g,

2
1 1
<——~ pi{ Jij 2o +Che 2 Uqs 2 ,}, 2.14
o 2P lalba, + e lulig, g (219

where we chose € small enough so that 1 — Cyez > 0. The combination of
(2.8) and (2.14) implies (2.5).

2.3.1 Proof of Lemma 2.6

Integrating by parts (Au;;)u;; we obtain

- / (Auij)udtdf = / |Vui;|*dtdd — / Yij ZZ”dU
Qij Qij 9Qij K
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Taking into account the boundary and transmission conditions, we get
2 2
i=1 Qij i=1 Qij
Therefore, applying Cauchy-Schwarz’s inequality, we obtain

2 2
> pi / Vi *dtdd < pillgijllo.q., - llui
=1

=1 Qij

|0,Qij

2

2

2 2
< <Zpi|gij”(2),QU> (ZPHWjH%,Q,U) : (2.15)
=1 =1

On the other hand

1
2 2

2
<Zpi||uij||3,cgij> <Y pillVui
=1

i=1

2
0,Qi5°

thanks to Poincaré’s inequality. This estimate in (2.15) implies (2.8).

2.3.2 Proof of Lemma 2.7

We first recall a density result from [4]. Let © be a polygon of R? with
boundary T' = U}_,T';. We denote by G*(£2) the space of (v,w) € (H*(Q2))?
satisfying the following boundary conditions

;v + Bjw =0 onlj,j=1,---,n,

where (o, 3;) are n couples of real numbers such that a? + 5? # 0. Then
Lemma 4.3.1.2 of [4] can be formulated as follows:

LEMMA 2.9. — G?(Q) is dense in G* (Q) for the norm induced by H'(Q)x
HY(Q).

Following [9] (Proof of Lemma I1.2.2) we define two functions v, w on
Q; =Q1,;UX; UQ2; as follows

v{ v in Quy w{ prwr in Qq

ve in Qa2; pows in Qg ;.
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By definition (v, w) belongs to (H'(Q;))? and satisfies the boundary con-
ditions

v=0 foro=1,j-2+b<t<ty,
w=0 fort=j—2+bt=1t;, () <0<1,
av + pw =0 on I,

where (o, 8) = (71, 72). This shows that (v,w) € G*(Qj) (for appropriate
pairs (aj, 55)). Applylng Lemma 2.9 we deduce the existence of a sequence
of vector functions (vg,wy) € G*(Q;) such that vy, — v and wy — w in
H'(Q;) as k — co. Moreover (v, wy) € G*(Q;) means that

Vg, Wk € Hz(QJ)

v =0 for0=1,7j-2+b<t<ty,
wi =0 fort=7-2+0bt=1t;, ¢t)<0<1,
avg + Pwi =0 onl}j,,
By setting
(s
Vk,i = Vk Qij» Wk = —— Qij>»
Di

it is clear that vy, wi,; € HZ(Qij) and in addition vy; — v; and wy; —
w; in H'Y(Q;;) as k — oo. It remains to show that vy ;,wy; satisfies the
conditions (2.10). Indeed

vezlo=1 = (vklQy,) lo=1 =0,

wk,i|t:j72+b,tj = ( Q”) |t =j—2+b,t; =0,

TIVk1 + oW 1](4,0(1)) = TV, 1 + Tz—|Qlj>
(t,e(t))

D1
= (avk + ﬁwk|QU)(t o(t) = 0.
Finally, since vg, wy, belong to H'(Q;) we obtain

5= (kloy s, = (vklQa,)ls; = vkals;,

Vk,1

mwkals; = (wilg, s, = (wilg, ,)|s; = p2wk.2ls;.

2.3.3 Proof of Lemma 2.8

Firstly, we show that ¢”(t) is (uniformly) bounded. Indeed since ¢(t) =

:Z;Eg’ we have
Op Oz dp
/
t — —
(1) a2 1C0
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— () — e1(z) z),
()01( ) @2(1‘)@2( )
S0 = erse((1)
Ox
P1T 2
— @) - P - A@be + LD G
From this identity we deduce that
sup |¢"(t)] < oo. (2.16)
t€]—o00,0[
It therefore remains to estimate [ |%|2da. Since
Lje
Ouy; Ouy Ouy;
< =

we are reduced to estimate

/\v1|2d0 and /|w1|2d0.

Tje Tj.e

Let v* = (vi,v}) be the unit outward normal vector at a point (¢,6) of
the boundary of Q;;. It is clear that

! _ ©'(t) -1
et <w+wwkuwww>
We now define on @j, the function p as follows

u(t, 0) = Z/J(@)Uzl (t, (1) V(t.0) € @jy

where ¢(6) is a C* function in R such that

Fix for the moment an arbitrary function v € PH?(Q;). Leibniz’s rule

yields

%|vi|2u(1ﬁ,9)dtd9 =2 / vi%u(tﬁ)dtd&
Qij Qij
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On the other hand, applying Green’s formula we obtain
3| 2 u(t, 0)dtdd = lvg |2 u(t, 0) s (t, 0)do — 1220 0)ddo
69 Vi|” AT, - Vi :u'(v )VQ(a ) o |U1‘ 89(7 ) .
Qij 0Qi; Qij
These two identities give
/ lvs|u(t, )i (t, 0)do = 2 / v; Dgvith(0)va (t, o(t))dtdd
Qi Qij

+ / |vi|2% (W(0)va(t, o(t))) dtdo. (2.17)
Qij

Since on 6Q2j \Ej,

(@) =0 for 6 =1,
vi(t,0) =0 fort=j5—2+0bt=t;,
we have
/ ol u(t, )02 (¢, 6)dor = / oaPUA (oA, 0)do. (2.18)
8Q2j Ej

On the other hand, on 0Q1; \ E;
va(t,0) =0 fort=j—2+bt=t;,
and consequently

/ fon P u(t, ) (£, 0)dor =
0Q1;

/\mIQV%(t,sﬁ(t))Vzl(t,O)dU+ / o1 (v3 (¢, (1)) *do. (2.19)
25 v

Lje

We now distinguish the two following cases
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First case.— If v; = vy on X; (which is the case for v1 = Dyuqj,
ve = Dyug;) we get by adding (2.18) and (2.19) and using (2.17)

[ 1o @3t do

ij

2 o

~3 42 / v Db Ot o)t + [ foif g (6O (e, p(0) dedt
=1 Q” Q”

As

and
2 (V(OWwa(t, 9()) = ¥ (O)r5(t, (1)),

because vi (t, ¢(t)) does not depend on 6, it follows that
2
[ 1o @3t do
T

2
Z 2max (60 /|vz||ngz\dtd9+max1/) /\v,| dtdo
i=1

Q’L] QLJ

Then applying Cauchy-Schwarz’s inequality, we obtain

[ 1o (. 60)’ do

Tje

||7/’||01(R)Z /\vzl dtdo /\Devi|2dtd9

Qij Qij
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and then, by Young’s inequality

[ 1o Gt do

F]:‘P

||1/)||01(R>Z %/\ngz|2dtd9+(l+e 3) /|v1\ dtdo
Q] QTJ

As € €]0, 1], this inequality clearly implies that

[ 10 @3t do

2
< Cllleym Y %/|D9v,|2dtd0+e’%/|v¢\2dtd9 . (2:20)

Qij

with C' = 2.

Second case. — If p;v; = pavy on X, (which is the case for v1 = Dyuyj,
v = Dguy;), proceeding as in the first case but replacing v1 by pi1v1 and vo
by pava, we get

p [ ol (o) o

Lje

DY / 0Dy (pii ) (0) b (¢, o(t)) dtdo

Qij

+ / IUZIQC% ((0)v3(t, (t))) dtdd
Qij

2

20|l ) > P %/|ngz| dtdo + e3> / |v; |2 dtdd

—
' Qij Qij

N

This still proves (2.20) with C' > 0 depending on the ratio ps/p;.

Since /(1) = ¢ (2) = S eh(x), we get

a= sup [¢(t)]<oo
t€]—o00,0]
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and then [V21(t,<p(t))]2 = H(;,(t))Q > 1+1a2' As a consequence (2.20) be-
comes

2
/|v1|2da§0(1+Oz2)||chl(R)Z e%/|vui|2dtd0+e*%/|vi|2dtd0
=1

e - Qij Qij

Setting Ko = C(140?)[|¢||c1(r) and applying this estimation to v; = Dyuy;
and v; = Dgu;; respectively, we get

/ |Dtu1j |2d0'
FJ\«P

2

< KOZ e%/[\DfuijFHDfeu”} \dtd0+e*%/|Dtuij|2dtd0 ,
i=1 Qi Qij
/|Dgu1j\2da
FJ\«@
2
< Koy €2 / [|D7yuij|* + | Dy \dtd0+e*%/|Dguij|2dtd0
i=1 Qi Qij

These two estimates lead to
aulj 9
—|*do
[ 152
FJ‘N’

2
< 2K, Z e% / [|Dt2u”|2 + |D9uij\2 + 2|Dt29uij|2] dtdf
=1
Qij

e 3 / |V |2 dtdo
Qij

This last inequality with (2.16) leads to the estimation in Lemma 2.8.

2.4. Resolution of the transformed problem (2.3)

Thanks to Theorem 2.3 we deduce the following result
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THEOREM 2.10. — For a small enough, the operator
8u1 aUQ
B: HY Q)N PH?*(Q);uq = it
{UE o(2)N (Q);u1 = uz, ;1 50 P2 89}

— L*(Q):u— {(—A + L)Ui}i:1,2

s an tsomorphism.

Proof .— By Theorem 2.3, we know that the operator

ou ou

— LQ(Q) LU {—Aui}i:LQ

is an isomorphism. In addition, the estimation (2.7) guarantees that the
norm of A~! does not depend on a, since the constant K is independent
of a. On the other hand, it is clear that the norm of the operator L in
L (PH?*(Q),L*(2)) goes to 0 as a goes to 0. Consequently for a small
enough, this norm is less than the inverse of the norm of A. In other words,
A~'L is a strict contraction and it follows that B is an isomorphism. O

It remains to derive the derivability properties of u from the correspond-
ing ones of w.

2.5. The effect of the inverse change of variables

By definition we have w; = ¢, 'v;(t,0) = @5 "u;i(x,y). In view of the previ-
ous calculations (see subsection 2.1) we get

-1
Dow; = P9 Devi:Dyuiv

(p;ng'Ui = QDQDi’U,i.

Since w;, Dyw;, D3w; belongs to L*(€;), Lemma 2.1 implies that 05 2u;,
¢ 'Dyu; and DZu; belong to L*(U;). As D2u; = —f; + Dju; it follows
immediately that D2u; € L*(U;). It remains to check that D,u; and D2, u;
belong to L?(U;). Indeed

Dyw; = @3 (Di — paphw;)
= Dyu; + 0y Dov; — Phw,

then
Dyu; = Dyw; — 00y Dow; + phyw;.
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As we know that w;, Dyw;, Dow; € L*(§;), by Lemma 2.1 we conclude that
¢y ' Dyu; € L2(U;). Finally we have
Djy = Diy (¢35 uilz,y))
= Dt [@EIDOUz(%y)] :Dt-Dyuz
= @3 ' D2 u; + 0020y D2u;
= <P2Dg2cyui + b D3w;,
so that
@2 D2, u; = Diyw; — 0y Djw; € L*().
Applying Lemma 2.1, we deduce that D2, u; € L*(U;).

Summing up, we have established the following results.

PROPOSITION 2.11. — The regularity property w € PH?() implies
that Lpgzui, gp;lDwui, Lp;lDyui, D2u;, DZui, Diyui belong to L?(£2;).

THEOREM 2.12. —  The operator {u € Hy(U)NPH?*(U);u; = ug,

3“2 —

t P2y, = } — L*(U) : u v {—Au;}i=1,2 is an isomorphism.

du1

pla

Proof. — Direct consequence of Proposition 2.11, Theorem 2.10 and on
the regularity results about standard transmission problem (far from the
cuspidal point) [9, 12]. O

3. Transmission problem in a domain with a cuspidal point:
Curved interface

We consider the same problem (2.1) as in section 1, but here the interface
is not straight. We define U = Uy UUs U ¥, where Uy, Us and ¥ are given
by

Ul = {(xay) €R2;0<.’E<CL,Q01(ZL') <y<(p0(l’)},
Uy = {(z,y) e R}0 <z <a,p0(x) <y < pa(2)},
Yo = {(z,00(2));0 <2z <a},

where the functions ¢;, i = 0, 1, 2 satisfy the conditions

nc=(]0, a]),

al)

, al
¢0(0) = ¢1(0) = @2(0) 0,
©0(0) = ¢1(0) = ¢5(0) =
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Moreover, we suppose that lirrb % is finite and does not vanish.
xr—

Here contrary to the previous section we do not allow that this limit may
vanish. The main reason is the use of a lifting trace result in a strip (see
Theorem 3.2).

We shall study the regularity of the variational solution of (2.1) in that
case. For this purpose, we firstly make a change of variables in order to come
back to the case of straight interface. Unfortunately, we cannot directly take
advantage of the results from section 2, since this change of variables leads
also to a Dirichlet transmission problem but with nonhomogenous interface
conditions (corresponding to tangential derivatives, see below). Therefore,
we follow step by step the techniques from section 2 but with the necessary
adaptations.

We skip the proof of some results due to their similarity with some proofs
from section 2.

3.1. First change of variables

Let us set X = 2, Y = y — ¢o(x). The image of U by this change of
variables is the open set G = G; U Gy UT', where

Gi = {(X,)Y)eR%0< X <a,pi(z) —po(z) <Y <0},
Gy = {(X,)Y)eER%0< X <a,0<Y < @y(x)— po(z)},
I = {(X,0)eR%0< X <a}.
We set
UO(X,Y) = u(x,y),

fO(X7Y) = f(‘r7y)
Then we have u(z,y) = ug(z,y — @o(x)) and therefore

Dyu; = Dxug; — ¢pi(x)Dyug,,
Dguz = Dg(uo,i — @6(x)D§(YUO,i — Sﬁg(x)DYUO,i - 506(1')
[DxY?uo; — ¢p(x) Diuo,]

2 I N2 1" 1212
= Dxug,; — 2pqDxyug,i — pgDyuo,; + @y Dyuo,

Dyu; = Dywugyg,
2 2
Dyui = Dyuo,i.
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On the interface y = ¢p(x) we have

u vo(x)

1
v Dyt — ———Dyu.
vy 1+ (¢)(2))? 14 (p(x))?

2
Consequently the interface condition Z:l Di g';l =
i=

0 is equivalent to

2
> " (—1)'pi [ph(x) Dyui — Dyui] = 0 on .

i=1

In view of the previous expressions of D u; and Dyu;, this is equivalent to

2 /
Z(_l)lpi {DYUO,i - (polszuo,i} =0onT.
- 1+ ©o

Summing up, the problem (2.1) becomes

(=A+ Po)uo,i = fo in Gy,i=1,2,
tg,i =0 on 0G; \ T,
ug,1 = Up,2 onT,
2 . ’
> (=1)'pi (DYUO,i - Jﬁoszuo,i) =0 on T,
i=1
(3.1)
where

2
Pou = 2¢py DXy u + ¢y Dyu — @y” Diu.

3.2. Second change of variables

Let us set p(z) = p2(x) — @o(z),

—+o0

do Y
=~ oo oSy

x

and let
w(t,0) = ¢ tug(X,Y),

g(t,0) = fo(X,Y).
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Using the calculations from section 2, we obtain the identities

Dxup; = ¢'w;+ Dyw; — 04 Dow;,
DE(UOJ = é{%@”wi + ¢’ Dyw; — 00" Dow; + D w;
+02@'2D§wi — 20’ D% w;),
Dyuo; = Dow;
Dyug; = éDng,
Dxvyuo; = Dx(Dow;) = é{ngwi — 0’ D3w;}.

In the variables (t,8) the interface condition

2 /
Z(—l)i piDyuo,i — piL/QDxuo,i =0 onT
i=1 L+ ¢

is equivalent to

2 /
Z(—l)zpiDgwi _ Y0 — Z(—l)zpi(go/wi + Dyw;) on X.
i=1 L4+y” i

Therefore, with the second change of variables, problem (3.1) becomes

(—A+ L)w; = ¢gi(t,0) in ;,

w; =0 on 0 \ X,

Wy = W on X, (3.2)
Z?:l(*l)ipiDewi = h; on 3,

where

Lw; = —p@"w; — ¢' Dyw; + ¢(00" + ¢ ) Dow;
— |#b® + 04 (04 +24)| Djw; +2(6' + o) Dy,

2
€0 (o
h; = Z(—l)lpi(@ w; + Dyw;).
2
149" i

Then we get a transmission problem similar to the transformed problem in
section 2 with the difference that the second transmission condition is not
homogeneous.
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In order to obtain a similar regularity result, it therefore suffices to show
in that case that the operator

2
[“)ui
T, :u— {(_Aui)il,%zpi%h)}

i=1
is an isomorphism from H}(Q) N PH2(Q) onto L2() x Hz (] — oo, b[) and

that the norm of T, ! is independent of a.

First we need to establish a lifting result. Let us set { = — lim £:&)=¢o@)
20 P2(x)—po(z)
(notice that [ > 0), d < min{l,1} and

B:{(t,&)eRz;t<b,—2§l<0<?}.

LEMMA 3.1. — Forh € H(]—00,b[), there ezists v € HL(B)NPH?(B)
satisfying

v = vy oM X,
2
dv;
Zpi—z =h on X.
i=1 Iy

Moreover there exists a constant C > 0 such that

lollpreey < Clllly oy (33)

Proof.— We use the sequence of cut-off functions (1;)9_ ., defined in
the proof of Theorem 2.3, and write

0

1
h=g > hy,
j=—o00
where h; :177jh. As h e Hz2(] — 00,b[), we conclude that hj € Hz(lj—2+

b,t;[) = Vi2(Jj — 2 + b,t;[) (see Theorem 1.35 of [11]). Applying Theorem
3.14 of [11], we deduce the existence of a function v; € PHQ(Bj) (where
B;={(t,0) e B:j—2+b<t<t;}) satisfying

_ Ovii .
Vji = ot = 0 on 0By,
Vj1 = V52 on Zj, (34)
2 vy
> i1 Pi v h; on 3j,
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and the existence of C' > 0 (independent of j, since Bj; is isomorphic to By)
such that
(3.5)

HUJ||PH2(B) Cllh; HH2 (Jj—2+b,t;)°

The claim follows by setting v =3
Bj;). Indeed one has

Vi (v; being extended by zero outside

2

ov; 2 (i)
;pi(’)zﬁ - va 8]%

The estimation (3.3) is obtained using (3.5) and the finite covering property
of the B;. ([l

We are now in position to state the main result of this section.

THEOREM 3.2. — The operator T, is an isomorphism from HE(Q) N
PH2(Q) onto L*(Q) x H2(] — 00,b[) and the norm of T is independent
of a.

Proof.— Let u € H}(2) be the variational solution of the problem

—A’LLZ‘ = fz in Qi,
u1 = U on Z,
Z Piget a”’ = h; on X.

We define a cut-off function v as follows

poy={ Vil —d/3<0<dss,
T 0if 6>2d/3 or 6<—2d/3.

Therefore we may write
w=tu+(1—

It is easy to check that (1 — ¢)u is solution of a Dirichlet problem for the
Laplace equation in the domain

BO{(t,G)GRQ;t<b,9€yD1 900 d{u}dl[}.
w2 —wo 3
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Theorem 2.3 shows (case without interface) that (1 — )u € H?(By) and
that

(L = P)ullaz(y) < CllfllL2(0)- (3.6)
On the other hand the function ©u is solution of problem

—A(Yu;) = F; in B,

Yu; =0 on 0B,

1/)U1 Yz on ¥,

Z Di 8(wVU7 = hy on X,

where
Fy = ¢ f; — 24/ Dgu; — "u; € L*(B).

According to Lemma 3.1, there exists a function v € H}(B) N PH?(B) such

that
1)1 = Vg on X,

sza’“ =h; on X.

Let us set ug = u — v. It is clear that ug € H}(Q2) and is solution of the
transmission problem

—AUO = (Fl + Avl) S L2(B)7

U01—U02 on X,

Oug. i
sz T = on X.

Then we come back to a problem with homogeneous transmission condi-
tions. We can then follow the same technique as in the proof of Theorem
2.3 (in a simpler case since the domain B is a straight half-strip) and show
that ug € PH?(B), with the estimation

luoll P25y < CllAuollL2(m), (3.7)
where the constant C does not depend on a.

As Yu = ug +v, we conclude that ypu € PH?(B), and by (3.3) and (3.7)
that it fulfils

leullpram < C{IFl@ + A0l + 10l gy, b
< C{Mfllaier + 3}
This estimate with (3.6) implies that
lullprrsy < € {12 + 18l g }-
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Arguing as in subsection 2.4. we deduce that for a sufficiently small, the
operator

2
ou;
—A+ L)ugli=1,2, i— + M
UH{[( + L)u;)i=1,2 ;p ” + u}
where

oh <

Muy=— o (¢'u; + Dyuy)
1+<p62;

is an isomorphism between the same spaces. That proves the analogue of
Theorem 2.10. In addition, the same arguments as in subsection 2.5 lead
to the same increase of regularity for uy as in Proposition 2.11, and conse-
quently the same for the solution u of (2.1), because for the first change of
variables we have u € L2(U) if and only if ug € L*(G). O

In summary, we have showed that Theorem 2.12 holds in the case of a
curved interface.

4. Edge behavior in 3D

Since we want to describe the regularity along a cuspidal edge, it suffices
to consider the infinite three dimensional domain Q = U x R with basis U
defined either as in section 2 or as in section 3. The coordinates will be
denoted by © = (21,22, x3) with ' = (21,22) € U and z3 € R.

We shall consider the following interface problem in @

_Auz =0 in in 1= 1727

u=20 on 0Q,

U = u2 on ZQ X R, (41)
2

Zpi%zo on Yo X R,

i=1 ‘

where f € L?(Q), p(x) = p; if x € Q; = U; x R, v; denotes the unit normal
vector to Yo x R directed outside Q.

We easily check that this problem admits a unique variational solution
u € H}(Q) which satisfies

/qu -Vodr = /pgT) dz,Yv € Hy(Q).
Q Q
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Let @, g be the partial Fourier transform with respect to x3 of u, g respec-
tively. Then @ is the variational solution of

/pV'ﬁ-V'ﬂdm’+£2/pﬁ~17dx’ :/pgﬁdﬂc',Vv € Hy(U),
U U U

where V' denotes the (partial) gradient in z’. In the above identity taking
v = U we directly get
€l lallo.w < Cliglow, (4.2)

and
IV'al3 s < Cllglollilos,

for some positive constant C. The two last estimates lead to

[l < 1gllo,u- (4.3)

On the other hand, @ satisfies (2.1) with f = g — &2a € L?(U). Applying
Theorem 2.12, we get & € PH?(U) and

|l prrz(ry < Cllg — Eallo,u-
With (4.2) and (4.3) this yields
]l prr2(ory + 1€l oy + €PNl 22y < ClGl L2 )-

By inverse Fourier transform, this estimate shows that u € PH?(Q).
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