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Annales de la Faculté des Sciences de Toulouse Vol. XVI, n◦ 4, 2007
pp. 773–797

L2-estimates for the d-equation
and Witten’s proof of the Morse inequalities(∗)

Bo Berndtsson(1)

ABSTRACT. — This is an introduction to Witten’s analytic proof of the
Morse inequalities. The text is directed primarily to readers whose main
interest is in complex analysis, and the similarities to Hörmander’s L2-
estimates for the ∂̄-equation is used as motivation. We also use the method
to prove L2-estimates for the d-equation with a weight e−tφ where φ is a
nondegenerate Morse function.

RÉSUMÉ. — On donne une introduction à la preuve analytique de
E. Witten des inégalités de Morse. Le texte s’adresse principalement aux
lecteurs spécialistes en analyse complexe, et les similarités avec les es-
timées L2 pour l’équation ∂̄ de Hörmander servent de motivation. La
méthode est aussi appliquée pour donner des estimées L2 pour l’équation
d à poids e−tφ, où φ est une fonction de Morse non dégénérée.

1. Introduction

The aim of these notes is primarily to give an easy introduction to Wit-
ten’s proof of the Morse inequalities, see [8]. There are already excellent
such accounts ( see e.g., [5]). The main particularity with this presentation
is that it emphasises the relation between Witten’s proof and the theory of
L2-estimates for the ∂̄-equation. It is thus written with a mind to a reader
whose main interest is in complex analysis, and we shall also take the op-
portunity to state and prove some weighted L2-estimates for the d-equation
that follow from Witten’s method.

(∗) Reçu le 19 janvier 2006, accepté le 7 mars 2006
(1) Department of Mathematics, Chalmers University of Technology and the University

of Göteborg, S-412 96 Göteborg, Sweden,
bob@math.chalmers.se

– 773 –



Bo Berndtsson

The simplest case of Hörmander’s L2-estimates for the ∂̄-equation deal
with the equation

∂̄u = f

where f is a ∂̄-closed (0, q)-form in a bounded pseudoconvex domain Ω in
C

n. The theorem says that this equation can be solved with a solution u
that satisfies the estimate

∫
Ω

|u|2e−φ � C
∫

Ω

|f |2e−φ (1.1)

where C is a constant depending only on the diameter of Ω, and φ is any
plurisubharmonic function.

This theorem follows from an a priori estimate for a dual problem and the
plurisubharmonicity of φ enters in this dual estimate through the complex
hessian (

∂2φ/∂zj∂z̄k
)

= (φjk)

which is positively semidefinite. It is quite clear that this proof can be
adapted to the d-equation (even with some simplifications), and that in
that way one obtains L2-estimates for the d-equation in convex domains
and with a convex weight function.

This is however not satisfactory since the condition on a domain for
solvability of the d-equation is a purely toplogical one for which convexity is
sufficient but far from necessary. It is also not clear why the weight function
should be required to be convex. We shall see that the Morse inequalities
give us a clue as to what the “right” condition on the weight function should
be.

Let us first change the setting somewhat and let Ω be a compact man-
ifold. Let φ be a smooth function on Ω. At each critical point of φ, i e a
point p such that dφ(p) = 0, the hessian of φ is a well defined quadratic
form on the tangent space of Ω. If this quadratic form is nondegenerate at
each critical point, φ is said to be a nondegenerate Morse function, and the
index of a critical point is by definition the number of negative eigenvalues
of the quadratic form. Let mq be the number of critical points of index q .
We also let bq be the q:th Betti number of Ω, i e the dimension of the q:th
de Rham cohomology group with real coefficients. (Recall that the de Rham
cohomology group is by definition the space of d-closed q-forms modulo the
space of exact forms.) The Betti number bq is thus zero precisely when the
equation

du = f (1.2)
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is solvable for each closed q-form f . The weak Morse inequalities now state
that

bq � mq (1.3)

for each q. In particular it follows that if mq is zero, i e if φ has no critical
points of index q, then (1.2) is always solvable. The strong Morse inequalities
say that for any q

bq − bq−1 + bq−2... � mq −mq−1 +mq−2.... (1.4)

Witten’s proof of the Morse inequalities is based on the representation of
a cohomology class by a harmonic form, i.e., one chooses in each cohomology
class the unique element of minimal (L2) norm. For this one has to choose
a Riemannian metric. The main idea in the proof is to perturb the L2-
norms by introducing a weight factor, e−tφ. Here φ is the Morse function in
question and t is a large parameter. For these weighted norms one derives an
identity, similar to but different from the d-version of the Kodaira-Nakano-
Hörmander identity for ∂̄. In case mq = 0, i e when φ has no critical points
of index q the identity shows that there can be no harmonic q-forms if t is
large enough, so the cohomology must vanish. We shall see that the identity
also leads to L2-estimates for solutions to (1.2). In the general case the
identity implies that the harmonic forms must, if t is large enough, be very
concentrated near the critical points of index q with at most one harmonic
form concentrated near each such critical point. This leads to the weak
Morse inequalities. In general equality does not hold in these inequalities
for the reason that at some critical points there may be no corresponding
harmonic forms. It turns out however that if instead of harmonic forms one
studies spaces of eigenforms with small eigenvalues – “low-energy forms”
– then there will be exactly one such form concentrated near each critical
point of index q. The space of low-energy forms also gives a complex with
the same cohomology as the space of all forms, and this is what eventually
leads to the strong Morse inequalities.

In the case of non compact manifolds, like (domains in) R
n, it turns out

that similar arguments can be carried through provided that the manifold is
endowed with a Riemannian metric which is complete, and that the Morse
function satisfies appropriate conditions at infinity. We will not discuss the
Morse inequalities themselves for open manifolds, but we will give a variant
of the L2-estimates for the case when solvability of (1.2) is predicted by the
inequalities, i.e., when the weight function has no critical points of index q. I
do not know if such L2-estimates hold without the completeness assumption,
but I believe they don’t, since the estimates for noncomplete metrics seem
to imply strong conditions on the boundary behaviour of solutions.
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This paper is organized as follows. In the next section we give an ex-
tremely simple motivating example. After that we compare the Witten iden-
tity and the d-version of the Hörmander identity for 1-forms in domains in
R

n. Section 4 is devoted to the proof of the weak Morse inequalities on
compact manifolds, and L2 estimates for (1.2) on complete Riemannian
manifolds. The final section gives a short account of Witten’s derivation of
the strong Morse inequalties.

The content of these notes was presented at a minicourse in Toulouse
in January-05. I would like to thank the organizers and participants in the
course for creating such a stimulating atmosphere, and for “encouraging”
me to write down the notes of the course. In the course we also discussed
the holomorphic Morse inequalities of Demailly, [4], following the approach
of Berman, [2]. We have not included this part of the course in these notes
and instead refer to the original papers [4], [2] and the survey [1]. It should
however be mentioned that the presentation of Witten’s method in sections
4 and 6 is influenced by the scaling method of [2].

2. A motivating example in R

In this section we study weighted estimates for the d-equation for 1-forms
on the real line. This amounts to solving what is arguably the simplest of
all differential equations

du/dx = f, (2.1)

with weighted estimates. To simplify even further we shall, instead of L2-
estimates, discuss weighted L1-estimates of the form

∫
|ut|e−tφ � C

∫
|f |e−tφ, (2.2)

where t is a large positive parameter and the constant C does not depend
on t. For which smooth (Morse) functions φ is it possible to find solutions
ut such that this estimate holds?

Let first f be a point mass δp at a point p. It is clear that if we can solve
this equation with a solution u(p) satisfying an estimate (2.2), then

u =
∫
u(p)f(p)dp

will be a good solution for an arbitrary f in L1(e−tφ). With no loss of
generality we may assume that φ(p) = 0, so that the right hand side in
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(2.2) is just a constant. The general solution to (2.1) is constant for x < p
and x > p and has a jump discontinuity of size 1 at p. To satisfy (2.2) locally
we separate 4 different cases in the behaviour of φ , depending on whether
φ is increasing, decreasing, has a local minimum or a local maximum at p.

In the first case our estimate will be satisfied locally if we choose u(p)

equal to 0 to the left of p. In the second case we take u(p) = 0 to the right
of p. If φ has a local minimum at p both of the two previous alternatives
work, whereas if φ has a local maximum at p no solution to (2.1) satisfies
(2.2) even locally.

The condition on (a smooth Morse function) that we arrive at in order
to have (2.2) satisfied locally is thus that there be no local maxima, or
equivalently no critical point of index 1. This condition is precisely what is
predicted by the Morse inequalities, and it is easy to see that if it is satisfied
we also have a global weighted estimate.

3. The d-equation for 1-forms in R
n

Let us first recall the fundamental Hörmander identity for compactly
supported (0, 1) forms in C

n. We let

α =
∑
αjdz̄j

be a smooth compactly supported form, and φ be a smooth weight function.
The formal adjoint of ∂̄ in L2(e−φ) is

ϑα =
∑
δjαj ,

where
δjv = −eφ∂/∂zj(e−φv) = −vj + φjv.

Then we have∫ (∑
φjk̄αjᾱk +

∑
|∂αj/∂z̄k|2

)
e−φ =

∫ (
|ϑα|2 + |∂̄α|2

)
e−φ (3.1)

In particular, if the complex Hessian of φ is uniformly bounded from below,
and if ∂̄α = 0 we obtain an estimate∫

|α|2e−φ � C
∫

|ϑα|2e−φ.

Roughly speaking, this means that the adjoint of the ∂̄-operator is strongly
injective on the space of ∂̄-closed forms. Via a functional analysis argument
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this leads to the surjectivity of the ∂̄-operator itself, which means that the
∂̄-equation is solvable with an estimate. We skip over here the complica-
tions in this argument that come from the fact that ϑ is only the formal
adjoint, and that we at first only have the inequality for smooth compactly
supported forms. In the case of the ∂̄-equation in all of C

n it is relatively
easy to overcome this complication by approximating a general element in
the domain of the adjoint to ∂̄ with test forms.

We now state and prove the corresponding identity for real forms. Here
we let

∂j = ∂/∂xj , φj = ∂jφ,

(φjk) be the Hessian of φ, and denote by

δα = −eφ
∑
∂j(e−φαj) =:

∑
δjαj = −

∑
∂jαj − φjαj ,

the formal adjoint of d in L2(e−φ).

Proposition 3.1. — Let α be a smooth compactly supported form in
R

n. Then∫ (∑
φjkαjαk +

∑
|∂kαj |2

)
e−φ =

∫ (
|δα|2 + |dα|2

)
e−φ (3.2)

Proof. — Integrating by parts we get∫
|δα|2e−φ = −

∫ ∑
∂j(e−φαj)δα =

∫ ∑
αj∂jδkαke

−φ+

=
∫ ∑

φjkαjαke
−φ +

∫ ∑
αjδk∂jαke

−φ =

=
∫ ∑

φjkαjαke
−φ +

∫ ∑
∂kαj∂jαke

−φ.

Formula (3.2) now follows since
∑
∂kαj∂jαk =

∑
|∂kαj |2 − |dα|2 �

This identity can be used to obtain solvability of the d-equation in convex
domains and estimates for the solution with a convex weight function. To
obtain a more general result we shall rewrite the identity.

First replace φ by 2φ and substitute αeφ for α. Then we introduce the
twisted d and δ operators by

d−φα = e−φd(eφα)

– 778 –



L2-estimates for the d-equation and Witten’s proof of the Morse inequalities

and
δφα = eφδ(e−φα).

Formula (3.2) then says that

2
∫ ∑

φjkαjαk +
∑

|e−φ∂k(eφαj)|2 =
∫

|δφα|2 + |d−φα|2 (3.3)

The second term in the integrand on the left hand side is
∑

(∂kαj + φkαj)2 =
∑

|∂kαj |2 + 2
∑
φk∂kαjαj +

∑
φ2

k|α|2 =

=
∑

|∂kαj |2 +
∑
φk∂kα

2
j + |dφ|2|α|2.

Integrating by parts again, the second term
∑
φk∂kα

2
j

gives a contribution that equals

−
∫

∆φ|α|2.

Summing up we have therefore proved the next proposition.

Proposition 3.2. — Under the same hypotheses as in the previous propo-
sition we have∫ ∑

|∂kαj |2 + |dφ|2|α|2 + 2
∑
φjkαjαk − ∆φ|α|2 =

∫
|δφα|2 + |d−φα|2

(3.4)

Proposition 3.2 is a special case of the formula used by Witten in his
proof of the Morse inequalities. To get solvability of the d-equation from it
we need to choose φ so that the left hand side dominates the L2-norm of α.

Replace φ by tφ where t is a large parameter. Then the gradient term
in the left hand side of (3.4) grows quadratically in t, whereas the terms
that contain second order derivatives of φ grow only linearly. For large t the
(nonnegative) gradient term therefore dominates the two last terms outside
the critical points of φ, so we now need to study more closely the behaviour
of the integrand near the critical points.

Let x = 0 be a critical point of φ. After an orthogonal change of coordi-
nates we may assume that near 0

φ(x) = φ(0) + 1/2
∑
λjx

2
j +O(x3). (3.5)
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Then
|dφ|2(x) =

∑
λ2

jx
2
j +O(x3),

and
2

∑
φjkαjαk − ∆φ|α|2 =

∑
(2λj − λ)α2

j +O(x),

with λ =
∑
λj . For the estimates we now need a version of the Heisenberg

uncertainty inequality.

Lemma 3.3. — Let u be a smooth function on R
n and let λk be real

numbers. Then ∫
|du|2 +

∑
λ2

kx
2
ku

2dx �
∑

|λk|
∫
u2dx

If the left hand side is finite, equality holds if and only if u is a Gaussian
function

u = Ce−
∑

|λk|x2
k/2.

Proof. — We first prove the statement when n = 1, and assume to start
with that u has compact support. Then

∫
u2dx =

∫
u2 dx

dx
dx = −

∫
2xu′udx.

Multiplying by |λ| we find

|λ|
∫
u2dx = −

∫
2|λ|xu′udx �

∫
λ2x2u2 + (u′)2dx,

and the inequality follows. The same argument works if u′ and xu lie in L2

and we see that equality can hold only if

−|λ|xu = u′

which means that u = Ce−|λ|x2/2. This proves the Lemma for n = 1.

In higher dimensions the inequality follows from the one-variable case if
we write

|du|2 =
∑

(∂ku)2,

and apply the one-variable result in each variable separately. Equality
holds iff u is a Gaussian function in each variable separately, and so is
Gaussian. �

For the applications we need a weaker local form of the lemma.
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Lemma 3.4. — Let a > 0. Then for each ε > 0 there is a finite constant
C, depending only on ε and a, such that for any smooth function u on
[−a, a]n we have

∫
[−a,a]n

|du|2 +
∑

k

λ2
kx

2
ku

2dx � (1 − ε)
∑

(|λk| − C)
∫
u2dx

Proof. — Again it suffices to prove the theorem for n = 1. Let χ be a
smooth positive function between 0 and 1, which equals 1 on [−a/2, a/2]
and has compact support in [−a, a], and apply the previous lemma to χu.
We then get

|λ|
∫ a

−a

χ2u2dx �
∫ a

−a

λ2x2u2χ2 + (u′)2 + (χ′)2u2 + 2χ′χu′udx �

�
∫ a

−a

λ2x2u2χ2 + (1 + ε)(u′)2 + Cu2dx.

On the other hand∫ a

−a

(1−χ2)λ2x2u2dx � λ2/4a2
∫ a

−a

u2(1−χ2)dx � (|λ|−a2)
∫ a

−a

u2(1−χ2)dx.

Adding this to the previous inequality we get the claim of the lemma. �

Now we return to the critical point x = 0 and assume that φ is given by
(3.5) near 0. Replace φ by tφ where t is a large parameter. Considering the
expression in the left hand side of (3.4) it follows from the previous lemma
that, with λ =

∑
λk,

∫
[−a,a]n

∑
|∂kαj |2 + t2|dφ|2|α|2 + 2t

∑
φjkαjαk − t∆φ|α|2 �

�
∫

[−a,a]n
ε|x|2|α|2 + t

∑
(2λj − λ+ (1 − ε)

∑
|λk|)α2

j ,

modulo an error term of size∫
C|α|2 + t2O(a3)|α|2 + tO(a)|α|2.

Here C depends only on a and ε and is in particular independent of t.
We have assumed that φ is a Morse function so the critical point is non
degenerate which means that all the numbers λj are different from 0. Since

(2λj − λ+
∑

|λk|) = 2(λj −
∑

λk<0

λk),
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this expression is strictly greater than 0 except if λj is negative and all the
other λks are positive. In particular, if it is negative 0 must be a critical
point of index 1.

Assume this is not the case. Then

(2λj − λ+ (1 − ε)
∑

|λk|)

is still positive if ε is small enough. If we choose a small enough and then t
large enough all the error terms are absorbed and we conclude that

∫
[−a,a]n

∑
|∂kαj |2 + t2|dφ|2|α|2 + 2t

∑
φjkαjαk − t∆φ|α|2 �

tδ

∫
[−a,a]n

|α|2

for some positive δ.

Now let φ be a nondegenerate Morse function in R
n and assume moreover

that |dφ| is bounded from below at infinity. Then φ has only a finite number
of critical points, and we make the hypothesis that none of the critical points
is of index 1. We also assume that φ satisfies the technical condition, (C)
that

|D2φ| � C|dφ|2,
where D2 stands for any second order derivative, outside of a compact sub-
set. Repeating the argument above for each of the critical points we conclude
from Proposition 3.2 that

∫
|δtφα|2 + |d−tφα|2 � tδ

∫
|α|2

for any smooth compactly supported 1-form. Substituting back e−tφ for α
we get equivalently that

∫
(|δ2tφα|2 + |dα|2)e−2tφ � tδ

∫
|α|2e−2tφ.

One can now apply the argument from [6] to obtain the following theorem on
solvability of the d-equation. We do not give the details here since we come
back to this kind of argument for arbitrary complete Riemannian metrics
in the next section.

Theorem 3.5. — Let φ be a nondegenerate Morse function in R
n whose

gradient is bounded from below at infinity. Assume φ satisfies the technical
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assumption (C) above. Assume φ has no critical point of index 1. Then we
can, for any d-closed 1-form f in R

n and any t > t0 solve the equation

du = f

with a function u that satisfies the estimate
∫
u2e−2tφ � C/t

∫
|f |2e−2tφ.

In particular, if u lies in L2(e−2tφ) ∩ L1(e−2tφ), then
∫

(u− ut)2e−2tφ � C/t
∫

|du|2e−2tφ

holds if

ut =
∫
ue−2tφ/

∫
e−2tφ.

The last statement is a weakened version of the so called Brascamp-Lieb
inequality ([3]) for non-convex weights. It follows from the first statement
since u− ut is the L2-minimal solution to

d(u− ut) = du.

4. Weak Morse inequalities

Let at first Ω be a compact differentiable manifold of dimension n,
equipped with a Riemannian metric. We denote by

Hq(X,R)

the de Rham cohomology groups of X of order q, i.e., the quotient between
the space of d-closed q-forms on X and its subspace of exact forms. The
Riemannian metric induces a norm and a scalar product on the space of
q-forms, that can be expressed in terms of the Hodge *-operator as

〈α, β〉 =
∫
α ∧ ∗β.

We denote by δ = d∗ the formal adjoint of the d-operator with respect to
this scalar product, defined by

〈dα, β〉 = 〈α, δβ〉,
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for smooth forms α and β. In classical Hodge theory, see e.g., [7], one chooses
in each cohomology class the unique representative of minimal L2-norm. If
f is such a representative of minimal norm it follows that the function

|f + sdα|2

has a minimum for s = 0, which means that f must be orthogonal to the
space of exact forms, so

δf = 0,

by the definition of the δ-operator. If we introduce the Laplace operator on
forms by

∆f = dδ + δd,

it therefore follows that a minimal representative must be harmonic, i.e.,
solve ∆f = 0. From the ellipticity of the ∆ it follows that f is smooth.
Conversely, by Pythagoras’ theorem, any smooth closed form satisfying δf =
0 must be a representative of minimal norm of its cohomology class. It is
also easy to see that if ∆f = 0 then

〈∆f, f〉 =
∫

|df |2 + |δf |2 = 0

so f must be a closed form of minimal norm in its cohomology class. Sum-
ming up, there is a natural isomorphism between the de Rham cohomology
groups and the space of harmonic forms, H2(X).

Now let φ be a Morse function on X and consider the weighted norms

|α|2t =
∫

|α|2e−2tφ.

The basic idea in Witten’s proof can be described as choosing a represen-
tative of minimal weighted norm for large t. Such a minimal representative
satisfies the two equations

df = 0

and
δ2tf := δ2tφf := e2tφδ(e−2tφf) = 0.

Here δ2t is the formal adjoint of d with respect to the weighted scalar prod-
uct. Just as in the previous section it is convenient to substitute g = fetφ

for f and we then obtain a form that satisfies

δtg = 0

and
d−tg := e−tφd(etφg) = 0.
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Introducing the perturbed Laplace operator

∆t := δtd−t + d−tδt,

we see, as in the unweighted case, that this is equivalent to the single equa-
tion

∆tg = 0.

Just as in classical Hodge theory we therefore get an isomorphism between
the cohomology groups Hq and the spaces

Hq
t := {g q − form; ∆tg = 0}.

Alternatively, we may view this as introducing a new complex with the
coboundary operator d−t and taking a representative of minimal unweighted
norm in each cohomology class of the new complex. (Note that δt is the
adjoint of d−t with respect to the unweighted L2-norms.)

We shall now derive an integral identity for the expression
∫
〈∆tα, α〉 =

∫
|δtα|2 + |d−tα|2

that generalizes formula (3.4). For this we expand the operator ∆t in powers
of t at a point p in X. We may take local coordinates, x, near p, such that
x(p) = 0 and the Riemannian metric on X is euclidean to first order at p.
This means that the metric is given in terms of the coordinates by a matrix
(gij(x)) that is the identity matrix when x = 0 and satisfies dgij = 0 at
x = 0. Let ωj denote the operator (on forms) of interior multiplication with
the form dxj , and let ω∗

j be the dual operator of exterior multiplication with
dxj . Denoting ∂jφ = φj we get at X = 0

d−t = d+ t
∑
φjω

∗
j = d+ tdφ∧

and
δt = δ + t

∑
φjωj = δ + t(dφ∧)∗.

Moreover
d =

∑
ω∗

j ∂j

and
δ = −

∑
∂jωj .

From the definition of the perturbed Laplacian we get at x = 0

∆t = ∆ + t2|dφ|2 + tMφ. (4.1)
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Here
Mφ =

∑
φjk[ω∗

j , ωk], (4.2)

with [ω∗
j , ωk] = ω∗

jωk − ωkω
∗
j In the computations one uses that at x = 0

the operators ∂j and ωk commute and that

ωjω
∗
k + ω∗

kωj = δjk.

The expression for the operator Mφ, holds under the assumption that the
coordinates are chosen so that the metric equals the euclidean metric to first
order, but Mφ nevertheless of course defines a global zeroth order operator.

Integrating (4.1) we get
∫

|d−tα|2 + |δtα|2 =

= 〈∆tα, α〉 =
∫

∆α · α+ t2|dφ|2|α|2 + tMφ(α) · α.

The same relation holds even if X is not compact provided that α has
compact support. We shall now use this formula to determine all the ∆t-
harmonic forms in R

n in the model case when φ = 1/2
∑
λjx

2
j . In the

computations we write with multiindex notation

α =
∑
αJdxJ ,

λJ =
∑

J

λj ,

and we will need an explicit formula for Mφα · α that follows from (4.2):

Mφα · α =
∑

(λJ − λJc)|αJ |2. (4.3)

Theorem 4.1. — Let φ = 1/2
∑
λjx

2
j where all λj are different from

0 and let ∆t be the corresponding laplace operator. Let α be a q-form in
L2(Rn) that satisfies

∆tα = 0.

If the number of negative λj is not equal to q, then α = 0. If the number of
negative λj is equal to q and, say, the first q λj are negative, then

α = Ce−1/2
∑

|λj |x2
jdx1 ∧ ...dxq,

for some constant C.
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Proof. — Let χ be a smooth function with compact support in the ball
with radius 2 which equals 1 in the ball with radius 1. Let

χR := χ(·/R)2.

Then by (4.1)
0 = 〈∆tα, χRα〉 =

=
∫
χR(∆α · α+ t2

∑
λjx

2
j |α|2 + tMφα · α).

Since, in R
n with the euclidean metric∫

∆α · αχR =
∫ ∑

|∂kαJ |2χR

up to an error which is ∫
O(|dχR||α|(

∑
|∂kαJ |).

we get, by the formula for Mφ, that

0 =
∫ ∑

|∂kαJ |2 + t2
∑
λjx

2
j |αJ |2 +

∑
(λJ − λJc)|αJ |2

modulo the same error. Since |dχR|2 � CχR/R
2 the error term vanishes as

R tends to infinity. Apply Lemma 3.3 to u = αJ for each J . We then get

0 �
∫ ∑

(λJ − λJc +
∑

|λj |)|αJ |2.

The coefficient of each |αJ |2 equals twice the sum of all positive λj with j
in J , minus the sum of all negative λj with j outside of J . This number is
always nonnegative and equals 0 only when there are precisely q negative
eigenvalues, all of them lying in J . If α is not identically equal to 0 the
number of negative eigenvalues, i.e., the index of the critical point 0, must
therefore equal q and α = αJdxJ . Finally J must consist of all the indices
corresponding to negative λj . Moreover, equality must hold in (Lemma 3.3),
so αJ is a Gaussian function of the type claimed. �

Actually, the only consequence of Theorem 4.1 that we will need is that
the dimension of the solution space is 1.

We now turn to the proof of the weak Morse inequalities. Assume α is
a q-form on X such that ∆tα = 0. It follows from (4.1) that∫

|dα|2 + |δα|2 + t2|dφ|2|α|2 + tMφα · α = 0, (4.4)
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so

t2
∫

|dφ|2|α|2 � −t
∫
Mφα · α � Ct

∫
|α|2. (4.5)

Let p be a critical point of φ and choose coordinates centered at p with
respect to which the metric is Euclidean to first order and φ has the local
form (3.5). Then |dφ|2 > c|x|2 near p. Let p1, ...pN be the critical points
of φ and let Bj be balls in coordinates centered at pj with radius A/

√
t. It

follows that, if t is large enough,

t2
∫

(∪Bj)c

|dφ|2|α|2 � cA2t

∫
(∪Bj)c

|α|2.

Hence, by (4.5), ∫
(∪Bj)c

|α|2 � C

A2

∫
|α|2,

so ∫
∪Bj

|α|2 � (1 − C

A2
)
∫

|α|2. (4.6)

This means that if t is large we can choose A so large that at least half of
the mass of α is concentrated in the union of the Bjs, i.e., very near the
critical points.

Let Ft be the scaling map in R
n

Ft(x) = x/
√
t.

For each j between 1 and N we restrict α to Bj and let

αj = F ∗
t (α|Bj

),

so αj is a form in the Euclidean ball with radius A. Moreover, αj is harmonic
for the operator ∆t in R

n defined by the weight function

φt(x) = t(φ(x/
√
t) − φ(0)),

(the constant term of φ plays no role in the computation of ∆t) and the
Riemannian metric

tF ∗
t (ds2) =: ds2t =

∑
gij(x/

√
t)dxidxj .

Finally, we normalize by putting

fj = t(q−n/2)/2αj ,
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to get a form whose norm with respect to ds2t equals the norm of α in Bj .
Let ΨA,t be the map

ΨA,t(α) = f = (f1, ...fN ).

Thus ΨA,t maps forms on X that are harmonic with respect to ∆t to forms
on a disjoint union of N balls of radius A in R

n that are harmonic with
respect to the corresponding operator defined by the weight φt and the
metric ds2t . By (4.6), ΨA,t is almost an isometry if A is sufficiently large,
hence in particular injective.

Now take for any large t an element α(t) in Hq
t of norm 1, let f(t) =

ΨA,t(α(t)) and let t tend to infinity. Since the norms of f(t) are uniformly
bounded, we take a subsequence that converges weakly to a limit f∞. By
an identity of the form (4.4) on the union of the balls in R

n we have a
control of the first order derivatives of f(t), so by the Rellich lemma we even
have strong convergence on every compact part. Therefore the limit form
is nonzero. Moreover, since ds2t tends to the euclidean metric as t tends to
infinity, and φt tends to a quadratic form 1/2

∑
λjx

2
j , f∞ is harmonic with

respect to a Laplacian like in Theorem 4.1. Here the choice of A is arbitrary
so f∞ actually extends to such a harmonic form in the disjoint union of
N copies of R

n. This means that f∞ lies in a space of dimension at most
N = mq.

We can for any t choose an ordered orthormal basis of Hq
t and apply this

argument to each element in the basis. Since Hq
t is for any t isomorphic to

the cohomology group Hq, the number of elements in each such basis equals
hq. The forms that we get after applying the limit procedure described above
must be linearily independent, since any fixed nonzero linear combination
of them tends to a nonzero limit. Hence hq � mq, so the weak Morse
inequalities follow.

5. L2-estimates

5.1. Compact manifolds

It follows from the weak Morse inequalities of the previous section that
if a compact manifold has a Morse function with no critical points of index
q, then the equation du = f is always solvable for any d-closed q-form f .
In this section we shall make this statement more precise by proving the
following variant of Theorem 3.5.

Theorem 5.1. — Let X be a compact n-dimensional Riemannian man-
ifold and let φ be a non-degenerate Morse function on X. Let q be an integer
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between 1 and n such that φ has no critical point of index q. Then, for t
sufficiently large and for any d-closed q-form f there is a (q − 1)-form u
such that du = f and ∫

X

|u|2e−tφ � C/t
∫

X

|f |2e−tφ,

where C is a constant independent of t.

The main step of the proof consist in establishing the next lemma.

Lemma 5.2. — Under the hypotheses of Theorem 5.1 there is a constant
C, independent of t, such that for any smooth q-form α, on X∫

X

|α|2 � C/t
∫

X

|d−tα|2 + |δtα|2.

Proof. — It follows from (4.1) that
∫

X

|d−tα|2 + |δtα|2 =
∫

∆tα ·α =
∫

|dα|2 + |δα|2 + t2|dφ|2|α|2 + tMφα ·α.

Let pj be the critical points of φ and let Bj be small balls in local coordinates
centered at each pj . Denote by Y the union of the balls Bj and let χ be a
cutoff function which is equal to zero outside of Y and equal to 1 near the
points pj . The integral in the right hand side above can now be decomposed
into two terms,

I :=
∫
χ

(
|dα|2 + |δα|2 + t2|dφ|2|α|2 + tMφα · α

)
,

and a similar integral, II, with χ replaced by 1 − χ. For large t (not de-
pending on α) II is evidently positive and dominates a multiple of

t2
∫

(1 − χ)|α|2.

To analyse the first term we notice first that there is no loss of generality
in assuming that the metric on X is euclidean with respect to the chosen
coordinates in Bj and so is Euclidean in all of Y . Integrating by parts we
find that

I =
∫
χ

(
(α,∆α) + t2|dφ|2|α|2 + tMφα · α

)

plus an error term that can be estimated by∫
|dχ||∇α||α|. (5.1)
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(Here ∇α is the gradient of α taken componentwise with respect to the given
coordinates.) But, in Euclidean coordinates the Laplacian ∆ on a form is
just the Laplacian taken on each component. Integrating by parts again we
therefore get

I =
∫
χ

(
|∇α|2 + t2|dφ|2|α|2 + tMφα · α

)

plus an error term of the same type as before. The error term (5.1) is smaller
than

ε

∫
|dχ|2|∇α|2 + 1/ε

∫
|α|2.

By a simple, well known and useful trick one can choose the cutoff function
χ so that |dχ|2 � Cχ (the trick consist in replacing χ by χ2). Putting all
this together we then get for t large that that∫

X

|d−tα|2 + |δtα|2 �

� ct2
∫

(1 − χ)|α|2 +
∫
χ

(
(1 − ε)(|∇α|2 + t2|dφ|2|α|2) + tMφα · α

)
�

ct2
∫

Uc

|α|2 +
∫

U

(
(1 − ε)(|∇α|2 + t2|dφ|2|α|2) + tMφα · α

)
,

where we take U to be a neighbourhood of the critical points where χ equals
one. Then U is a union of neighbourhoods Uj of pj that we can take to be
little cubes as in Lemma 3.4. By lemma 3.4 and the discussion immediately
after we find that∫

Uj

|∇αJ |2 + t2|dφ|2|αJ |2 � (t(1 − ε)
∑

|λk| − C)
∫

Uj

|αJ |2,

if αJ is the coefficient of one component of α with respect to the coordinates
near pj . On the other hand

Mφα · α =
∑

(λJ − λJc)|αJ |2 +O(|x||α|).

Hence ∫
Uj

(
(1 − ε)(|∇α|2 + t2|dφ|2|α|2) + tMφα · α

)
� (5.2)

� t
∫

Uj

∑
(λJ − λJc + (1 − ε)

∑
|λk|)|αJ |2.

Precisely as in the discussion of weak Morse inequalties in the previous
section we write ∑

(λJ − λJc +
∑

|λk|)
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as twice the sum of all λj with j in J and λj positive minus the sum of all
λj with j not in J and λj negative. This expression is always nonnegative
and can be zero only if the multiindex J consists precisely of all j with λj

negative. Since we have assumed that there are no critical points of index q
this does not happen at any pj so the expression is strictly positive. Hence

∑
(λJ − λJc + (1 − ε)

∑
|λk|)

is also positive for ε sufficiently small, and the lemma follows. �

It is now easy to deduce Theorem 5.1. The statement of the theorem is
equivalent to saying that we can solve

d−tu = f

with an estimate ∫
|u|2 � C/t

∫
|f |2

if d−tf = 0 and t is large enough. For this we use the following consequence
of Lemma 5.2.

Lemma 5.3. — Let f be a d−t closed q-form on X. Under the hypotheses
of Theorem 5.1 there is a constant C such that

|
∫

(f, α)|2 � C/t
∫

|δtα|2
∫

|f |2

for any smooth q-form α on X.

Proof. — Decompose α = α1 +α2 where d−tα1 = 0 and α2 is orthogonal
to the kernel of d−t. Then α2 is in particular orthogonal to the range to
d−t so δtα2 = 0. Moreover, d−tα2 = d−tα is smooth, so ∆tα2 is smooth.
Hence α2 and therefore also α1 are smooth. Hence it suffices to prove the
statement of the lemma for α1, i e we may assume that d−tα = 0. But then
by Lemma 5.2

|
∫

(f, α)|2 �
∫

|α|2
∫

|f |2 � C/t
∫

|δtα|2
∫

|f |2. �

Now define a linear functional on the space of forms δtα where α is a
smooth q-form by

L(δtα) =
∫

(f, α).
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By the last lemma L is well defined and has norm less than
√
C/t‖f‖. The

Riesz representation theorem then shows that there is a (q−1)-form u with
norm less than the norm of L satisfying∫

(f, α) =
∫

(u, δt).

Then d−tu = f which proves Theorem 5.1.

5.2. Open manifolds

We next discuss briefly the case of open manifolds. For the estimates of
Lemma 5.2 to work we then need to assume that |dφ| be bounded from below
by a positive constant at infinity. We also need that the second derivatives
be bounded from above. Under these assumptions, Lemma 5.2 can be proved
just as for compact manifolds if α is of compact support.

The next step is to generalize Lemma 5.3. It is enough to have the
lemma for forms α of compact support, but a difficulty now arises when
we decompose α into α1 and α2 since these forms in general will not have
compact support anymore. To handle this difficulty one assumes that in
addition the metric on X is complete. Under this extra hypothesis one can
then prove that ∫

|α1|2 � C/t
∫

|δtα1|2

by applying Lemma 5.2 to χνα1, where χν is a sequence of compactly sup-
ported cutoff functions that are equal to 1 on larger and larger compact
sets that eventually cover all of X. Since the metric is complete χν can be
chosen with gradients uniformly bounded which implies that the error terms
appearing in the approximation of α by χνα goes to zero. The rest of the
argument runs as before and we obtain a variant of Theorem 5.1 for open
manifolds with complete metrics and nondegenerate Morse functions with
gradients bounded from below at infinity.

Theorem 5.4. — Let X be a complete n-dimensional manifold and let
φ be a non-degenerate Morse function on X. Assume the gradient of φ is
uniformly bounded from below at infinity and that the second derivatives of
φ are bounded from above by |dφ|2 at infinity. Let q be an integer between 1
and n such that φ has no critical point of index q. Then for all t sufficiently
large and for any d-closed form f of degree q there is a solution to the
equation du = f satisfying the estimate∫

|u|2e−tφ � C/t
∫

|f |2e−tφ.
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Note that any open manifold can be given a complete Riemannian met-
ric. If the manifold has an exhaustion function, ψ, which is a nondegenerate
Morse function whithout critical points of index q we can compose ψ with
a rapidly increasing functions to obtain another function φ satisfying the
conditions of the theorem. Theorem 5.4 therefore implies solvability of the
d-equation in such manifolds.

It is also worth noticing that there is no assumption on the boundary
behaviour of φ explicitly in the assumptions of Theorem 5.4; the assumption
is only on the derivatives of φ. Therefore the theorem also gives solvability
in cases that are rather unrelated to Morse theory. A case in point is when
M is an arbitrary compact manifold and X = M × (−1, 1). Let t be the
projection from X to (−1, 1) and let φ be a strictly increasing function of t.
Then φ has no critical points at all and if we give X a complete metric and
make the derivative of φ sufficiently large at the end points of the interval
(−1, 1), we get solvability of the d-equation for all closed forms f that lie
in the corresponding weighted L2-space. This may look surprising at first
sight since the cohomology of M is arbitrary, but is explained by the fact
that the completeness of the metric forces f to tend to zero as t goes to 1
or -1, so f is homotopic to 0 and therefore exact.

6. Strong Morse inequalities

In this section we again let X be a compact manifold (without bound-
ary). The proof of the weak Morse inequalities in section 3 depended on an
estimate of the dimension of the space of ∆t-harmonic forms on X. The
proof of the strong Morse inequalities uses that the same estimate holds for
the larger space of low energy forms.

Any smooth form on X can be written

α =
∑
αj

where the αj are eigenforms for ∆t, i.e.,

∆tαj = Ejαj .

Choose a function ε(t) slowly tending to zero. We shall say that α is a low
energy form if all the eigenvalues (or energy levels) Ej appearing in the
decomposition above satisfy

Ej � ε(t)t.
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If α is a low energy form the identity 4.4 can be replaced by an inequality∫
|dα|2 + |δα|2 + t2|dφ|2|α|2 + tMφα · α = (6.1)

=
∫

(∆tα, α) =
∑

‖αj‖2Ej � ε(t)t‖α‖2.

Just as in section 4 it follows from this (as soon as, say, ε(t) � 1) that most
of the mass of α is concentrated in the union of balls Bj with radius A/

√
t

around the critical points∫
∪Bj

|α|2 � (1 − C

A2
)‖α‖2.

Arguing as in section 4, we see that the dimension of the space of low energy
forms of degree q does not exceed mq, the number of critical points of index
q. This is because rescaling will give us forms on R

n that are combination
of eigenforms of the scaled laplacian with all eigenvalues at most ε(t), so in
the limit we get harmonic forms again.

The point of using low energy forms instead of harmonic forms is that
now we may arrange things so that equality holds in this estimate. To see
this, fix a critical point pj of index q and choose local coordinates x centered
at pj so that φ = φ(0) + 1/2

∑
λjx

2
j to second order. Let γ be a harmonic

q-form of norm 1 for the weight function 1/2
∑
λjx

2
j in R

n. Let χ be a cutoff
function in R

n which is equal to 1 if |x| < 1 and equal to zero if |x| > 2. Let

γA,t = χ(x
√
t/A)γ.

We then use the (inverse of) the scaling map Ft to define a form

αA,t = F−1
t

∗
(γA,t)

in Bj . Choose finally A = At tending to infinity. One can then check that

‖∆tαAt,t‖ � tε(t)2‖αAt,t‖

where ε(t) tends to zero. (Notice that by the explicit form of γ from Theorem
4.1, γ is dominated by e−cA2

t where the derivative of χ(x/At) is nonzero.)
Expanding αAt,t in eigenforms of the ∆t-operator, this means that

∑
E2

j ‖αj‖2 � ε(t)4t2
∑

‖αj‖2. (6.2)

Finally we let αt be the projection of αAt,t on eigenforms with eigenvalues
Ej � ε(t)t. From 6.2 we see that

‖αt‖ � (1 − ε(t))‖αAt,t‖ ∼ 1
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The upshot of this is that for each critical point pj of index equal to q,
and for t large, we have found a low energy form on X concentrated near
pj . Therefore the dimension of the space of low energy forms is for large t
at least (and, as we know, at most) equal to mq. This is, together with the
next lemma from linear algebra, the crucial step in Witten’s proof of the
strong Morse inequalities

Lemma 6.1. — Let

0 d→ E0 d→ E1 d→ ...Eq d→ ..

be a complex of finite dimensional vector spaces, and let Hq be the corre-
sponding cohomology groups. Let eq be the dimension of Eq and let hq be
the dimension of Hq. Then, for any q � 0,

hq − hq−1 + hq−2... � eq − eq−1 + eq−2...

Proof. — Let Zq be the kernel of d as a map from Eq, and let zq be the
dimension of Zq. Then, since the dimension of Eq−1/Zq−1 = eq−1 − zq−1 is
the dimension of the range of d in Eq,

hq = zq − (eq−1 − zq−1).

Hence

hq − hq−1 + hq−2... = zq − eq−1 + eq−2 − .. � eq − eq−1 + eq−2... �

We shall apply the lemma with d = d−t and Eq = Eq(t), the space of
low energy forms. Since d−t commutes with ∆t, d−t maps Eq to Eq+1, so
we do get a complex. Moreover d−t maps the orthogonal complement of
Eq into the orthogonal complement of Eq+1 so the orthogonal complements
also give a complex. This latter complex is exact, since elements there in
particular are orthogonal to harmonic forms. Therefore the complex Eq

defines the same cohomology as the full d−t-complex. Since now eq = mq,
the number of critical points of index q, Lemma 6.2 gives that

hq − hq−1 + hq−2... � mq −mq−1 +mq−2...

so the proof of the strong Morse inequalities is complete.
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