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Global well-posedness for the primitive equations
with less regular initial data(∗)

Frédéric Charve(1)

ABSTRACT. — This paper is devoted to the study of the lifespan of the
solutions of the primitive equations for less regular initial data. We in-

terpolate the globall well-posedness results for small initial data in Ḣ
1
2

given by the Fujita-Kato theorem, and the result from [6] which gives
global well-posedness if the Rossby parameter ε is small enough, and for

regular initial data (oscillating part in Ḣ
1
2 ∩Ḣ1 and quasigeostrophic part

in H1).

RÉSUMÉ. — Cet article est consacré à l’étude du temps d’existence des
solutions du système des équations primitives pour des données moins

régulières. On interpole les résultats d’existence globale à données Ḣ
1
2

petites fournis par le théorème de Fujita-Kato, et le résultat de [6] qui
donne l’existence globale si le paramètre de Rossby ε est suffisamment
petit, et pour des données plus régulières (partie oscillante initiale dans

Ḣ
1
2 ∩ Ḣ1 et partie quasigéostrophique initiale dans H1).

1. Introduction

1.1. The primitive equations

The primitive system writes :


∂tUε + Uε.∇Uε − LUε +
1
ε
AUε =

1
ε
(−∇Φε, 0)

div vε = 0
Uε/t=0 = U0,ε.

(PEε)
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The unknowns are Uε and Φε. We denote by Uε a pair (vε, θε) where vε is
a vector field on R

3 (three dimensional velocity), θε a scalar function (the
density fluctuation : in the case of the atmosphere it depends on the scalar
(potential) temperature and in the case of the ocean it depends on the
temperature and the salinity), and Φε the pressure, all of them depending
on (t, x). The operator L is defined by

LUε
def= (ν∆vε, ν

′∆θε),

We define :

Uε.∇Uε = vε.∇Uε =
3∑

i=1

viε.∂iUε,

and the matrix A by :

A def=




0 −1 0 0
1 0 0 0
0 0 0 F−1

0 0 −F−1 0


 .

The small parameter ε is called here the Rossby number and F is called
the Froude number. They are related to the physical Rossby and Froude
numbers by the following relations :

Ro = ε, Fr = εF.

The smaller is ε, the more important are the Coriolis force (induced by the
rotation of the earth around its axis) and the vertical stratification of the
density.

We refer for example to [6] for the physical meaning of these terms and
for a list of physical references.

Definition 1.1. — If s is a real number, the homogenous (resp. inho-
mogenous) Sobolev space of order s, which we will denote by Ḣs (resp. Hs),
is defined as the space of tempered distributions u ∈ S ′(R3) whose Fourier
transform û is locally integrable and has the following property :

‖u‖2
Ḣs

def
=

∫
R3

|ξ|2s|û(ξ)|2dξ < ∞

(resp. ‖u‖2
Hs

def
=

∫
R3

(1 + |ξ|2)s|û(ξ)|2dξ < ∞).

– 222 –



Global well-posedness for the primitive equations

Although the primitive equations have no scaling anymore, we can eas-
ily adapt the proofs of the Leray and Fujita-Kato theorems (thanks to the
skewsymmetry of matrix A and the fact that both of these theorems are
proved using mainly inner products and energy estimates) to get the follow-
ing results :

Theorem 1.2. — (Leray, 1934, [15]) if the initial data U0 ∈ L2(R3),
then there exists for all ε > 0 a Leray solution of the system (PEε), Uε,
globally defined in time, belonging to L∞(R+, L

2(R3))∩L2(R+, Ḣ
1(R3)) and

satisfying the following energy inequality (let ν0 = min(ν, ν′) > 0) :

∀t ∈ R+, ‖Uε(t)‖2
L2(R3) + 2ν0

∫ t

0

‖∇Uε(t)‖2
L2(R3)dt � ‖U0‖2

L2(R3).

We refer to [5] where we studied the limit of Leray solutions when ε, the
Rossby number, goes to zero and introduced the following notations and
results in the case of weak solutions : the potential vorticity is defined by

Ωε
def= ∂1v

2
ε − ∂2v

1
ε − F∂3θε.

Then from this, we define the orthogonal decomposition of Uε into its quasi-
geostrophic part, and its oscillating part :

Uε,QG
def=




−∂2∆F
−1Ωε

∂1∆F
−1Ωε

0
−F∂3∆F

−1Ωε


 ,

with ∆F
def= ∂2

1 + ∂2
2 + F 2∂3

3 , and :

Uε,osc
def= Uε − Uε,QG =




v1
ε + ∂2∆F

−1Ωε

v2
ε − ∂1∆F

−1Ωε

v3
ε

θε + F∂3∆F
−1Ωε


 .

We have seen in [5] that this decomposition is an orthogonal decomposition
and we denoted by P the orthogonal projector onto the potential vorticity
free vector fields (which is built the same way as the orthogonal projector
P on the divergence free vector fields, also called the Leray projector) and
Q = Id − P the orthogonal projector on the quasigeostrophic vectorfiels.
Both of them are homogeneous pseudo differential operators of degree zero.

In [5] we studied the convergence, when ε goes to zero, of the weak Leray
solutions towards the quasigeostrophic model (see (1.1) below).

– 223 –



Frédéric Charve

When the initial data is more regular and even if there is no scale in-
variance for this system we can easily adapt the Fujita and Kato theorem
(1964) :

Theorem 1. — (Fujita and Kato, 1964, [12]) If U0 ∈ Ḣ
1
2 there exist a

unique maximal time T ∗
ε > 0, and a unique solution

Uε ∈ C([0, T ∗
ε [, Ḣ

1
2 ) ∩ L2

loc([0, T
∗
ε [, Ḣ

3
2 ).

Moreover, if T ∗
ε is finite, then we have

∫ T∗
ε

0

‖Uε(t)‖2

Ḣ
3
2 (R3)

dt = +∞.

Finally there exists a constant c such that if ‖U0‖
Ḣ

1
2 (R3)

� cν0 then T ∗
ε =

+∞.

Contrary to the Leray solutions, the solutions are unique but we do
not know whether they are global in general. The Fujita-Kato theorem also
works on the quasigeostrophic system, and again, it does not say whether
the unique solution is global if we do not have a small initial data.

Both of these results are general results directly adaptated from the
Navier-Stokes case, without using the special structure of the primitive
equations. As we have seen in [5], [6], and [7], when the Rossby number
ε goes to zero, the system is stabilized as its solutions go to the solutions
of the quasigeostrophic model (We refer to [5], [6], and [7] for the study, in
the case of the whole space, and for F �= 1, of the convergence, as ε goes to
zero, of the primitive equations solutions to the quasigeostrophic model.),
which is closer to the two-dimensionnal Navier-Stokes system than to the
three-dimensionnal one :

Theorem 2. — [6] If U0,QG ∈ H1(R3) then the quasigeostrophic system{
∂tUQG − ΓUQG + Q(UQG.∇UQG) = 0
UQG/t=0

= U0,QG,
(1.1)

has a unique global solution in L∞(R+, H
1) ∩ L2(R+, Ḣ

1 ∩ Ḣ2), with the
following energy estimate for all s ∈ [0, 1] :

∀t ∈ R+, ‖ŨQG(t)‖2
Ḣs + 2cν0

∫ t

0

‖ŨQG(t′)‖2
Ḣs+1dt

′ � C(U0,QG), (1.2)

where ν0 = min(ν, ν′).
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Global well-posedness for the primitive equations

The convergence theorem is the following one :

Theorem 3. — ([6]) Assume that U0 ∈ Ḣ1(R3)∩Ḣ 1
2 (R3) and U0,QG ∈

L2(R3). Let us define for s ∈ R, Ės def
= L∞(R+, Ḣ

s)∩L2(R+, Ḣ
s+1) and let

Wε be a solution of the following linear system :{
∂tWε − LWε + 1

εPAWε = −G
Wε/t=0 = U0,osc = P(U0)

(1.3)

with G
def
= PP(ŨQG.∇ŨQG) − F (ν − ν′)∆∆−2

F




−F∂2∂
2
3

F∂1∂
2
3

0
(∂2

1 + ∂2
2)∂3


 Ω̃QG.

(1.4)
Then we have the following results :

• Wε exists globally and is unique in the space Ės for every s ∈ [ 12 , 1].

• Moreover ‖Wε‖L2(R+,L∞) → 0 as ε → 0.

• If we denote by γε
def
= Uε − ŨQG − Wε, then if ε is small enough,

γε ∈ Ės and converges to zero in this space Ės for every s ∈ [ 12 , 1].

• If ε is small enough Uε is defined for all time in Es.

The aim of this paper is to get global existence results on the solutions
of the primitive equations but with less initial regularity. The Ḣ

1
2 regularity

being the minimal regularity as we want to apply at least the Fujita and
Kato theorem, we will require in this paper U0,QG ∈ H

1
2+η, U0,osc ∈ Ḣ

1
2 and

we will interpolate between theorem 1 and theorem 3, using the arguments
given by [14]. The key point is that we cut the initial data into two parts :
the first part being regular enough to apply theorem 3, and the second one
being Ḣ

1
2 with small initial data, in order to apply theorem 1. We get the

following result :

Theorem 4. — If the initial data U0 = U0,QG + U0,osc with U0,QG ∈
H

1
2+η, U0,osc ∈ Ḣ

1
2 then, there exists ε0 > 0 such that for all ε � ε0, (PEε)

has a unique global solution Uε ∈ L∞(R+, Ḣ
1
2 ) ∩ L2(R+, Ḣ

3
2 ).

This paper is devoted to the proof of theorem 4 and the structure will
be the following : first we will use truncation in order to cut the initial data
into two parts. At this point we show how important is the interpolation ar-
gument from [14] to get adaptated energy estimates on the quasigeostrophic
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system. We then prove this interpolation argument and manage to apply
theorem 3. Finally we are able to adapt theorem 1 with small initial data,
which concludes the proof.

2. Proof of Theorem 4

2.1. Frequency truncation of the initial data

We have seen that the above theorems give two different results concerning
the lifespan of the strong solutions of the primitive equations :

• Theorem 1 requires U0,QG ∈ Ḣ
1
2 , U0,osc ∈ Ḣ

1
2 , and gives local exis-

tence of strong solutions, with global lifespan and energy if the initial
data are small enough (‖U0‖

Ḣ
1
2

� cν0).

• Theorem 3 requires U0,QG ∈ H1, U0,osc ∈ Ḣ
1
2 ∩ Ḣ1, and gives global

strong solutions (and energy and convergence) when the Rossby num-
ber ε is small enough.

So the idea is to cut our initial data into two parts : on the first one, which is
regular (H1) and whose norm is large, we will be able to apply Theorem 3,
and on the second one, which is Ḣ

1
2 with a small norm we will use Theorem

1. We then decompose the initial data in the following way (χ is a C∞

truncation function : χ(x) ≡ 1 if x ∈ [−1, 1] and χ(x) ≡ 0 if |x| > 3
2 for

example) :

U0 = U0,QG + U0,osc =
(
χ(

|D|
λ

)U0,QG + U0,osc

)
+ (1 − χ(

|D|
λ

))U0,QG.

So let us begin with the use of Theorem 3 on the first part (low frequen-
cies for the quasigeostrophic part).

2.2. Study of the low frequencies

2.2.1. Global well-posedness

Let us define Uλ
ε solution of the primitive equations :




∂tU
λ
ε + Uλ

ε .∇Uλ
ε − LUλ

ε + 1
εAUλ

ε = 1
ε (−∇Φλ

ε , 0)
div vλε = 0
Uλ
ε/t=0 = χ( |D|

λ )U0,QG + U0,osc.
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Global well-posedness for the primitive equations

Theorem 3 gives then ε0 = ε0(λ, ...) > 0 such that ∀ε � ε0, the unique
solution Uλ

ε globally exists. Precisely we define Uλ
QG and Wλ

ε , solutions of
the following systems (we refer to [6] for details concerning the convergence
of the strong solutions and its proof) :


∂tU

λ
QG − ΓUλ

QG + Q(Uλ
QG.∇Uλ

QG) = 0

Uλ
QG/t=0

= χ( |D|
λ )U0,QG,

(2.5)

and 


∂tW
λ
ε − LWλ

ε + 1
εPAWλ

ε = −Gλ

Wλ
ε /t=0 = U0,osc,

(2.6)

where Gλ = Gλ,b + Gλ,l,

with Gλ,b = PP(Uλ
QG.∇Uλ

QG),

and Gλ,l = −F (ν − ν′)∆∆−2
F




−F∂2∂
2
3

F∂1∂
2
3

0
(∂2

1 + ∂2
2)∂3


 Ωλ

QG.
(2.7)

Then Theorem 3 gives ε0 = ε0(λ, ...) > 0 such that ∀ε � ε0, the difference
of the solutions of the primitive and quasigeostrophic systems, to whom we
substract rapid oscillations, γε = Uλ

ε − Uλ
QG − Wλ

ε , globally exists in Ė
1
2

and goes to zero in this space.

The aim is to get estimates in Ė
1
2 of and then use it in the system

satisfied by V λ
ε = Uε−Uλ

ε so we will outline the adaptation of the estimates
given in [6] in the proof of Theorem 3.

2.2.2. Estimates for the limit system

First we have to estimate Uλ
QG in Ḣs : let us recall that in the proof,

the fact that the initial data is in Ḣ
1
2 allows us to use the Fujita and

Kato theorem, which gives a local lifespan [0, T ∗,λ[. The fact that, in ad-
dition, χ( |D|

λ )U0,QG ∈ Ḣ1 allows us to use the regularity propagation the-
orem that provides enough regularity to the potential vorticity which is in
C([0, T ∗,λ[, L2) ∩ L2

loc([0, T
∗,λ[, Ḣ1), and it is sufficient for us to define the

scalar product in L2 of Ωλ
QG by the equation :

∂tΩλ
QG − ΓΩλ

QG + Uλ
QG.∇Ωλ

QG = 0,
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and for all t < T ∗ (ν0 = min(ν, ν′) > 0) :

‖ΩQG(t)λ‖2
L2+2cν0

∫ t

0

‖∇Ωλ
QG(τ)‖2

L2dτ = ‖Ωλ
QG(0)‖2

L2 � C ′‖χ(
|D|
λ

)U0,QG‖2
Ḣ1 .

Finally, the fact that χ( |D|
λ )U0,QG is in L2 allows us to get the fact that it

is a global weak solution, and the following Leray estimate ∀t � 0, (ν0 =
min(ν, ν′) > 0) :

‖Uλ
QG(t)‖2

L2 + ν0

∫ t

0

‖∇Uλ
QG(τ)‖2

L2dτ � ‖χ(
|D|
λ

)U0,QG‖2
L2 .

Then from this, we easily contradict the usual blow-up criterion, and that
implies that there is a unique, global solution and for every s ∈ [0, 1] :

∀t ∈ R+, ‖Uλ
QG(t)‖2

Ḣs + ν0

∫ t

0

‖Uλ
QG(τ)‖2

Ḣs+1dτ � C‖χ(
|D|
λ

)U0,QG‖2
H1

(2.8)
� Cλ

1
2−η‖U0,QG‖

H
1
2 +η .

2.2.3. Estimates for Wλ
ε and Uλ

ε

We refer to [6] (section 3.2) for the following estimates :

‖Wλ
ε (t)‖2

Ḣ
1
2

+ ν0

∫ t

0

‖∇Wλ
ε (t′)‖2

Ḣ
1
2
e

∫ t

t′
‖Gλ,b(τ)‖

Ḣ
1
2
dτ
dt′

� ‖U0,osc‖2

Ḣ
1
2
e

∫ t

0
‖Gλ,b(τ)‖

Ḣ
1
2
dτ

+
∫ t

0

(‖Gλ,b‖
Ḣ

1
2
+

1
ν0

‖Gl‖2

Ḣ− 1
2
)e

∫ t

t′
‖Gλ,b(τ)‖

Ḣ
1
2
dτ
dt′,

and there is no change, in lemma 3.2 from [6], for the estimate on Gλ,l :∫ ∞

0

‖Gl‖2

Ḣ− 1
2
dt � C‖Uλ

QG‖L2Ḣ
3
2
,

contrary to the estimate on Gλ,b, where we could use the argument from [6] :

∫ ∞

0

‖Gb‖Ḣsdt � C




‖ŨQG‖L2(R+,Ḣ1)‖ŨQG‖L2(R+,Ḣ2) if s =
1
2

‖ŨQG‖2
L2(R+,Ḣs+1)

if s ∈]
1
2
, 1].

But here s = 1
2 and as we cannot afford to use much regularity, we prefer

to do it differently, using product laws in Sobolev spaces :∫ ∞

0

‖Gb‖
Ḣ

1
2
dt � C

∫ ∞

0

‖Uλ
QG.∇Uλ

QG‖Ḣ 1
2

� C

∫ ∞

0

‖Uλ
QG‖Ḣ 3

2−η .‖∇Uλ
QG‖Ḣ 1

2 +η .
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Global well-posedness for the primitive equations

Then
‖Gb‖

L1Ḣ
1
2

� ‖Uλ
QG‖Ḣ 3

2−η .‖Uλ
QG‖Ḣ 3

2 +η

So, using the estimate from the previous section, we obtain that :

‖Wλ
ε ‖Ė 1

2
� C(‖U0,osc‖

Ḣ
1
2

+ λ
1
2−η‖U0,QG‖

H
1
2 +η ).

Finally, as γλε goes to zero, in particular if ε is small enough, its norm in
Ė

1
2 is less than 1, so we obtain the estimate for Uλ

ε :

‖Uλ
ε ‖Ė 1

2
� C(‖U0,osc‖

Ḣ
1
2

+ λ
1
2−η‖U0,QG‖

H
1
2 +η ).

But in the following we will use the fact that λ goes to infinity in order to
use the results of global well-posedness with small initial data. But in this
case the previous estimates explode. We refer to the following section for an
explaination of this problem.

2.3. Study of the high frequencies

In the previous section we used Theorem 3 to define Uλ
ε . The Fujita and

Kato theorem gives the existence of Uε in C([0, T ∗
ε [, Ḣ

1
2 ). Then we can define

the difference V λ
ε = Uε − Uλ

ε , which satisfies :


∂tV
λ
ε + V λ

ε .∇V λ
ε + V λ

ε .∇Uλ
ε + Uλ

ε .∇V λ
ε − LV λ

ε + 1
εAV λ

ε = 1
ε (−∇Φλ

ε , 0)

V λ
ε /t=0 = (1 − χ( |D|

λ ))U0,QG.

Then the classical schemes of the proofs of the Leray or Fujita-Kato the-
orems can be adapted on this system to prove the existence of weak solu-
tions, strong solutions, and global lifespan when the initial data are small.
We won’t give details in this section, we will only write energy estimates (in
the proof, such estimates are proved for regularized approximated solutions
and obtained as limits).

First, the inner product in L2, yields :

1
2
d

dt
‖V λ

ε ‖2
L2 + ν0‖∇V λ

ε ‖2
L2 � |(V λ

ε .∇Uλ
ε |V λ

ε )L2 |.

Then, classical Sobolev injections (Ḣ1(R3) ↪→ L6(R3) and Ḣ
1
2 (R3)) ↪→

L3(R3), imply :

1
2
d

dt
‖V λ

ε ‖2
L2 + ν0‖∇V λ

ε ‖2
L2 � ν0

2
|∇V λ

ε ‖2
L2 +

C

ν0
‖V λ

ε ‖2
L2 .‖∇Uλ

ε ‖Ḣ 1
2
.

– 229 –



Frédéric Charve

Then a Gronwall estimate implies :

∀t � 0, ‖V λ
ε (t)‖2

L2 + ν0

∫ t

0

‖∇V λ
ε (τ)‖2

L2dτ

� ‖(1 − χ(
|D|
λ

))U0,QG‖2
L2e

2C
ν0

‖∇Uλ
ε ‖2

L2Ḣ
1
2 . (2.9)

And if we take the inner product in Ḣ
1
2 , we obtain :

1
2
d

dt
‖V λ

ε ‖2

Ḣ
1
2

+ ν0‖∇V λ
ε ‖2

Ḣ
1
2

� |(V λ
ε .∇V λ

ε |V λ
ε )

Ḣ
1
2
|

+|(V λ
ε .∇Uλ

ε |V λ
ε )

Ḣ
1
2
| + |(Uλ

ε .∇Uλ
ε |V λ

ε )
Ḣ

1
2
|.

Using |(f |g)
Ḣ

1
2
| � C‖f‖L2‖g‖Ḣ1 , the fact that L3.L6 ↪→ L2, and linear

interpolation arguments, we get :

1
2
d

dt
‖V λ

ε ‖2

Ḣ
1
2

+ ν0‖∇V λ
ε ‖2

Ḣ
1
2

� C‖V λ
ε ‖2

Ḣ1‖∇V λ
ε ‖

Ḣ
1
2

+C‖V λ
ε ‖

Ḣ
1
2
‖∇V λ

ε ‖
Ḣ

1
2
‖∇Uλ

ε ‖Ḣ 1
2

+ C‖Uλ
ε ‖

1
2

Ḣ
1
2
‖∇Uλ

ε ‖
1
2

Ḣ
1
2
‖∇V λ

ε ‖
3
2

Ḣ
1
2
.

The classical inequality ab � ap

p + bq

q if 1
p + 1

q = 1 gives :

1
2
d

dt
‖V λ

ε ‖2

Ḣ
1
2

+ ν0‖∇V λ
ε ‖2

Ḣ
1
2

� C‖V λ
ε ‖

Ḣ
1
2
‖∇V λ

ε ‖2

Ḣ
1
2

+
ν0

4
‖∇V λ

ε ‖2

Ḣ
1
2
+

C

ν0
‖V λ

ε ‖2

Ḣ
1
2
‖∇Uλ

ε ‖2

Ḣ
1
2

+
ν0

4
‖∇V λ

ε ‖2

Ḣ
1
2

+
C

ν3
0

‖Uλ
ε ‖2

Ḣ
1
2
‖∇Uλ

ε ‖2

Ḣ
1
2
‖V λ

ε ‖2

Ḣ
1
2
.

And then,

d

dt
‖V λ

ε ‖2

Ḣ
1
2

+ ν0‖∇V λ
ε ‖2

Ḣ
1
2

� 2C‖V λ
ε ‖

Ḣ
1
2
‖∇V λ

ε ‖2

Ḣ
1
2
+

‖V λ
ε ‖2

Ḣ
1
2

(
2C
ν0

‖∇Uλ
ε ‖2

Ḣ
1
2

+
2C
ν3
0

‖Uλ
ε ‖2

Ḣ
1
2
‖∇Uλ

ε ‖2

Ḣ
1
2

)
.

A Gronwall estimate finally gives that for all t ∈ [0, T ∗
ε [ :

‖V λ
ε (t)‖2

Ḣ
1
2

+
∫ t

0

(ν0 − 2C‖V λ
ε (t′)‖

Ḣ
1
2
)‖∇V λ

ε (t′)‖2

Ḣ
1
2
e

∫ t

t′
g(τ)dτ

dt′ �

‖(1 − χ(
|D|
λ

))U0,QG‖2
L2e

∫ t

0
g(τ)dτ

, (2.10)

with g(t) = ‖∇Uλ
ε (t)‖2

Ḣ
1
2
(
2C
ν0

+
2C
ν3
0

‖Uλ
ε ‖2

Ḣ
1
2
).
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In both cases, we obtain a majoration by ‖(1−χ( |D|
λ ))U0,QG‖e

‖Uλ
ε ‖

Ė
1
2 , that

is

‖(1 − χ(
|D|
λ

))U0,QG‖e
λ1−2ηC(‖U0,osc‖

Ḣ
1
2
,‖U0,QG‖

H
1
2 +η

)

which does not go to zero when λ goes to infinity which is annoying as
we want to adapt a theorem with small initial data. So as everything de-
pends on the estimate of Uλ

QG, we will provide, in the following, an esti-
mate whose right-hand member depends on ‖χ( |D|

λ ))U0,QG‖
H

1
2 +η instead of

‖χ( |D|
λ ))U0,QG‖H1 .

2.4. Real interpolation

The aim of this section is to prove the following result :

Lemma 2.1. — Let η > 0, U0,QG ∈ H1, and UQG the unique global
solution (we refer to [6]) of the following quasigeostrophic system :


∂tUQG − ΓUQG + Q(UQG.∇UQG) = 0

UQG/t=0 = U0,QG.

There exists a constant C such that, for all t � 0,

‖UQG(t)‖2

H
1
2 +η

+ ν0

∫ t

0

‖∇UQG(τ)‖2

H
1
2 +η

dτ � C‖U0,QG‖
2+ 1

η

H
1
2 +η

.

With this estimate, we will be able to use the results from the previous
section on V λ

ε and prove the global well-posedness as λ is large enough to
ensure small initial data.

To prove this lemma, we will use the same Calderon method (see [4])
as Gallagher and Planchon in [14] : thanks to interpolation arguments we
will be able to control the norm of a part of the initial data and make it as
small as we want, so that we can use the Fujita-Kato theorem.

2.4.1. General interpolation results

In this section we will recall classical real interpolation definitions (we refer
for example to [3] for a presentation) and present it in the same way as in
[14] together with a useful lemma from this paper :
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Definition 2.2. — Let E1 and E2 two Banach spaces. The interpolated
space E = [E1, E2]θ,q with θ ∈ [0, 1] and q � 1 is defined by :

E = [E1, E2]θ,q = {f ∈ E1 + E2 such that ‖f‖E < ∞},

with

‖f‖E =


∑

j∈Z

2jqθK(f, j)q




1
q

,

and
K(f, j) =def inf

f1+f2=f
(‖f1‖E1 + 2−j‖f2‖E2) (fi ∈ Ei).

The following lemma concerns the case when E2 ↪→ E ↪→ E1. In the
following, we will take E1 = H

1
2 , E2 = H1 and E = H

1
2+η.

Lemma 2.3. — There exists a constant C(θ, q) such that for any integer
j0 � 1 and any function f ∈ E, the following equivalence holds :


∑

j�j0

2jqθK(f, j)q




1
q

� ‖f‖E � C(θ, q)2j0


∑

j�j0

2jqθK(f, j)q




1
q

.

We refer to [14] for the proof of this result (section 4.4).

2.4.2. Decomposition and small data

As said in section 2.2.2, we have different results on the quasigeostrophic
system :

• U0,QG ∈ L2 leads to a global weak solution and a global energy
estimate in L2.

• U0,QG ∈ Ḣ
1
2 leads to a local unique strong solution, global if

‖U0,QG‖
Ḣ

1
2

� cν0 (see Theorem 1) with global energy estimate in

Ḣ
1
2 .

• U0,QG ∈ H1 leads to a global strong solutions together with a global
energy estimate in H1.
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The aim is to decompose the initial data in H
1
2+η = [H

1
2 , H1]2η,2 and

solve separatedly a quasigeostrophic system with small data in H
1
2 (there-

fore it is small in Ḣ
1
2 ), and a modified quasigeostrophic system with initial

data in H1.

For every j ∈ Z let us decompose

U0,QG = U1,j
0,QG + U2,j

0,QG, with U1,j
0,QG ∈ E1 = H

1
2 , U2,j

0,QG ∈ E2 = H1,

(actually, as U0,QG is H1, so does U1,j
0,QG), and by definition of K(U0,QG, j)

as an infimum :

‖U1,j
0,QG‖H 1

2
+ 2−j‖U2,j

0,QG‖H1 � 3
2
K(U0,QG, j).

As said earlier, we want to define the corresponding solutions, U1,j
QG(t) and

UQG(t)2,j , respectedly given by the Fujita-Kato theorem, or Theorem 1.2.
The problem is that we have no information on the smallness of ‖U1,j

0,QG‖Ḣ 1
2
.

But, like in [14], using Lemma 2.3, we can write, that, for every j � 1
(with θ = 2η and q = 2) :

‖U0,QG‖
H

1
2 +η � 22jηK(U0,QG, j) � 22jη 2

3

(
‖U1,j

0,QG‖H 1
2

+ 2−j‖U2,j
0,QG‖H1

)
.

In particular,

‖U1,j
0,QG‖Ḣ 1

2
� ‖U1,j

0,QG‖H 1
2

� 3
2
2−2jη‖U0,QG‖

H
1
2 +η .

So if j0 is defined such that (c being the constant given by the global lifespan
for small initial data result) :

3
2
2−2j0η‖U0,QG‖

H
1
2 +η =

cν0

‖U0,QG‖
H

1
2 +η

, (2.11)

i.-e.

j0 = E(− 1
2η

log 2cν0
3‖U0,QG‖

H
1
2 +η

log 2
) + 1,

and, for all j � j0, ‖U1,j
0,QG‖Ḣ 1

2
� cν0. This allows us to apply the Fujita-

Kato theorem with small initial data and define U1,j
QG, solution of :


∂tU

1,j
QG − ΓU1,j

QG + Q(U1,j
QG.∇U1,j

QG) = 0

U1,j
QG/t=0

= U1,j
0,QG,

(2.12)
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with the global energy estimate :

∀t ∈ R+, ‖U1,j
QG(t)‖2

Ḣ
1
2

+ ν0

∫ t

0

‖∇U1,j
QG(τ)‖2

Ḣ
1
2
dτ � C‖U1,j

0,QG‖2

Ḣ
1
2
. (2.13)

On the other hand, as U1,j
0,QG ∈ H

1
2 ↪→ L2 the Leray Theorem says that U1,j

QG

is also a global weak solution, together with the associated energy estimate
(in L2), so we finally obtain :

∀t ∈ R+, ‖U1,j
QG(t)‖2

H
1
2

+ ν0

∫ t

0

‖∇U1,j
QG(τ)‖2

H
1
2
dτ � C‖U1,j

0,QG‖2

H
1
2

� Cν2
0 .

(2.14)

Remark 2.4. — As U1,j
0,QG = U0,QG − U2,j

0,QG, it is in fact in Ḣ1 so by
the regularity propagation theorem, the solution is more regular and the
estimate 2.14 is in fact in H1.

We now define U2,j
QG(t) = UQG(t) − U1,j

QG(t), UQG(t) globally given by
Theorem 1.2, which satisfies the following system :


∂tU
2,j
QG − ΓU2,j

QG + Q(U2,j
QG.∇U2,j

QG) + Q(U2,j
QG.∇U1,j

QG) + Q(U1,j
QG.∇U2,j

QG) = 0

U2,j
QG/t=0

= U2,j
0,QG.

(2.15)
Its potential vorticity satisfying :

∂tΩ
2,j
QG − ΓΩ2,j

QG + U2,j
QG.∇Ω2,j

QG + U2,j
QG.∇Ω1,j

QG + U1,j
QG.∇Ω2,j

QG = 0. (2.16)

We aim to adapt Theorem 1.1 and get global estimates : if we take the inner
product in L2 of (2.15) by U2,j

QG :

1
2
d

dt
‖U2,j

QG‖2
L2+ν0‖∇U2,j

QG‖2
L2 � |(U2,j

QG.∇U1,j
QG|U

2,j
QG)L2 � ‖U2,j

QG.∇U1,j
QG‖L2‖U2,j

QG‖L2 .

Using the usual product law L3.L6 ↪→ L2, we get :

1
2
d

dt
‖U2,j

QG‖2
L2 + ν0‖∇U2,j

QG‖2
L2 � ‖U2,j

QG‖Ḣ1‖∇U1,j
QG‖Ḣ 1

2
‖U2,j

QG‖L2 .

The same Hölder estimate as above gives :

1
2
d

dt
‖U2,j

QG‖2
L2 + ν0‖∇U2,j

QG‖2
L2 � ν0

2
‖∇U2,j

QG‖2
L2 +

C

ν0
‖∇U1,j

QG‖Ḣ 1
2
‖U2,j

QG‖L2 ,

and then, classical Gronwall estimates give for all t � 0 :

‖U2,j
QG(t)‖2

L2 + ν0

∫ t

0

‖∇U2,j
QG(τ)‖2

L2dτ � C‖U2,j
0,QG‖2

L2e
2C
ν0

‖∇U1,j
QG

‖2

L2Ḣ
1
2 .
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On the other hand, as in section 2.2.2, the inner product in L2 of (2.16) by
Ω2,j
QG yields (with the same methods as above) :

‖U2,j
QG(t)‖2

Ḣ1 + ν0

∫ t

0

‖∇U2,j
QG(τ)‖2

Ḣ1dτ � C‖U2,j
0,QG‖2

Ḣ1e
2C
ν0

‖∇U1,j
QG

‖2

L2Ḣ
1
2 .

Collecting these last two estimates, and using (2.14) we obtain (the new
constant C contains ν0.) :

‖U2,j
QG(t)‖2

H1 + ν0

∫ t

0

‖∇U2,j
QG(τ)‖2

H1dτ � C‖U2,j
0,QG‖2

H1 . (2.17)

2.4.3. Application of Lemma 2.3

Since we have decomposed the initial data, we want to use Lemma 2.3 on
U1,j
QG and U2,j

QG in order to estimate UQG.

According to section (2.4) and to the definition K :

‖U0,QG‖2

H
1
2 +η

�
∑
j�j0

24jηK(U0,QG, j,H
1
2 , H1)2,

After the definition of U1,j
QG and U2,j

QG we can write that (j0 fixed in the
previous section) :

‖U0,QG‖2

H
1
2 +η

� 2
3

∑
j�j0

24jη
(
‖U1,j

0,QG‖H 1
2

+ 2−j‖U2,j
0,QG‖H1

)2

. (2.18)

According to the estimates (2.14) and (2.17) we have for all t � 0 :


‖U1,j
0,QG‖H 1

2
� C‖U1,j

QG(t)‖
H

1
2

‖U2,j
0,QG‖H1 � C‖U2,j

QG(t)‖H1 ,

(2.19)

and 


‖U1,j
0,QG‖H 1

2
� C

√
ν0‖U1,j

QG‖L2
tH

3
2

‖U2,j
0,QG‖H1 � C

√
ν0‖U2,j

QG‖L2
tH

1 .

(2.20)

So if we use (2.19) into (2.18), we obtain that :

‖U0,QG‖2

H
1
2 +η

� C
∑
j�j0

24jη
(
‖U1,j

QG(t)‖
H

1
2

+ 2−j‖U2,j
QG(t)‖H1

)2

.
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And, using UQG(t) = U1,j
QG(t) + U2,j

QG(t) and the definition of K as an infi-
mum :

‖U0,QG‖2

H
1
2 +η

� C
∑
j�j0

24jηK
(
UQG(t), j,H

1
2 , H1

)2

.

Using Lemma 2.3 allows us to go back to UQG(t) :

‖U0,QG‖2

H
1
2 +η

� C(2−j0‖UQG(t)‖
H

1
2 +η )2.

Finally, replacing j0 (see (2.11)) implies :

∀t � 0, ‖UQG(t)‖2

H
1
2 +η

� C‖U0,QG‖
2+ 1

η

H
1
2 +η

.

Similarly if we use (2.20) into (2.18), we obtain that :

‖U0,QG‖2

H
1
2 +η

� C
∑
j�j0

24jη
(√

ν0‖∇U1,j
QG‖L2([0,t],H

1
2 )

+ 2−j√ν0‖∇U2,j
QG‖L2([0,t],H1)

)2

.

Using ∇UQG = ∇U1,j
QG + ∇U2,j

QG and the definition of K :

‖U0,QG‖2

H
1
2 +η

� C
√
ν0

∑
j�j0

24jηK
(
∇UQG, j, L

2([0, t], H
1
2 ), L2([0, t], H1)

)2

.

Using the fact that [L2
tE1, L

2
tE1]θ,2 = L2

t [E1, E1]θ,2 (we refer for example
to [3], this can be easily proved using the continuous (equivalent) definition
of K) and Lemma 2.3, we can write that :

‖U0,QG‖2

H
1
2 +η

� C
√
ν0

(
2−j0‖∇UQG‖

L2([0,t],H
1
2 +η)

)2

,

and, finally :

ν0

∫ t

0

‖∇UQG(τ)‖2

H
1
2 +η

dτ � C‖U0,QG‖
2+ 1

η

H
1
2 +η

.

In particular this implies that T ∗ = ∞ and if we collect the previous results,
we obtain that :

∀t � 0, ‖UQG(t)‖2

H
1
2 +η

+ ν0

∫ t

0

‖∇UQG(τ)‖2

H
1
2 +η

dτ � C‖U0,QG‖
2+ 1

η

H
1
2 +η

,

(2.21)
which concludes the proof of Lemma 2.1.
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2.5. End of the proof

If we apply Lemma 2.1 to system 2.5, we obtain that for all t � 0 :

‖Uλ
QG(t)‖2

H
1
2 +η

+ ν0

∫ t

0

‖∇Uλ
QG(τ)‖2

H
1
2 +η

dτ � C‖χ(
|D|
λ

)U0,QG‖
2+ 1

η

H
1
2 +η

� C‖U0,QG‖
2+ 1

η

H
1
2 +η

.

And the right-hand member is now a constant (no divergence when λ goes
to infinity), so we can go back to 2.10 and now we can estimate the L1-norm
of g where :

g(t) = ‖∇Uλ
ε (t)‖2

Ḣ
1
2
(
2C
ν0

+
2C
ν3
0

‖Uλ
ε ‖2

Ḣ
1
2
),

and ‖g‖L1 � C(‖U0,QG‖
H

1
2 +η , ν0), so we can write :

‖V λ
ε (t)‖2

Ḣ
1
2

+
∫ t

0

(ν0 − 2C‖V λ
ε (t′)‖

Ḣ
1
2
)‖∇V λ

ε (t′)‖2

Ḣ
1
2
e

∫ t

t′
g(τ)dτ

dt′ �

‖(1 − χ(
|D|
λ

))U0,QG‖2
L2e

∫ t

0
g(τ)dτ � C ′‖(1 − χ(

|D|
λ

))U0,QG‖2
L2 . (2.22)

We can now complete the bootstrap argument : if λ is large enough so that :

√
C ′‖(1 − χ(

|D|
λ

))U0,QG‖L2 � ν0

8C
,

and if we define (recall that T ∗
ε is the lifespan of V λ

ε ) :

Tε = sup{t ∈ [0, T ∗
ε [, so that ∀t′ � t, ‖V λ

ε (t′)‖
Ḣ

1
2

� ν0

4C
}.

Then for all t � Tε,

‖V λ
ε (t)‖2

Ḣ
1
2

+
ν0

2

∫ t

0

‖∇V λ
ε (t′)‖2

Ḣ
1
2
dτdt′ � ν0

8C
<

ν0

4C
,

then it implies Tε = T ∗
ε and we use the blow-up criterion to conclude that

T ε,∗ = +∞.

Finally, if λ � λ0 and ε � ε(λ), Vε is global, and then our solution Uε is
also global, and is an element of Ė

1
2 .
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Journal de Mathématiques pures et appliquées, 77, p. 989-1054 (1998).

[14] Gallagher (I.), Planchon (F.). — On global infinite energy solutions to the
Navier-Stokes equations in two dimensions, Archive for Rational Mechanics and
Analysis, 161, p. 307-337 (2002).

[15] Leray (J.). — Essai sur le mouvement d’un liquide visqueux emplissant l’espace,
Acta Mathematica, 63, p. 193-248 (1933).

[16] Pedlosky (J.). — Geophysical fluid dynamics, Springer (1979).

– 238 –


