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Exact asymptotics of nonlinear difference equations
with levels 1 and 1+(∗)

G.K. Immink(1)

ABSTRACT. — We study a class of nonlinear difference equations admit-
ting a 1-Gevrey formal power series solution which, in general, is not 1-
(or Borel-) summable. Using right inverses of an associated difference op-
erator on Banach spaces of so-called quasi-functions, we prove that this
formal solution can be lifted to an analytic solution in a suitable domain of
the complex plane and show that this analytic solution is an accelero-sum
of the formal power series.

RÉSUMÉ. — On étudie une classe d’équations aux différences finies, non-
linéaires, possédants une solution formelle en forme de série 1-Gevrey qui,
en général, n’est pas Borel-sommable. En utilisant des inverses à droite
d’un opérateur aux différences associé, définies sur des espaces Banach de
quasi-fonctions, on démontre qu’à la solution formelle peut être associée,
de façon unique, une solution analytique sur un domaine approprié, qui
est une accéléro-somme de la solution formelle.

1. Introduction

This paper is concerned with the summability of formal power series
solutions of certain nonlinear difference equations, i.e. with the existence
of analytic solutions, represented asymptotically by the formal solution in
some unbounded domain and characterized, in some way, by their asymp-
totic properties. We begin by discussing two very simple examples of linear
difference equations, which may be regarded as building blocks for the class
of equations considered below.

Example 1.1. — The equation

y(z + 1) − ay(z) =
b

z
, a, b ∈ C∗, a �= 1 (1.1)

(∗) Reçu le 21/06/2006, accepté le 24/09/2007.
(1) Faculty of Economics, University of Groningen, P.O. Box 800, 9700 AV Groningen,

g.k.immink@rug.nl
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is a difference equation of level 1. It has a formal power series solution
f̂ =

∑∞
h=1 ahz

−h with the property that |ah| � Ahhh for all h � 1, where
A is a positive constant, i.e. f̂ is 1-Gevrey. Its formal Borel transform

φ(t) = B̂f̂(t) =
∞∑
h=1

ah
(h− 1)!

th−1

has a positive radius of convergence. φ is the germ of a meromorphic func-
tion, to be denoted by the same symbol :

φ(t) =
b

e−t − a.

The directions αl = arg(−Log a + 2lπi), where Log denotes the principal
value of the logarithm and l ∈ Z, are so-called singular directions and the
directions −π/2 − αl, l ∈ Z, are Stokes directions of (1.1). Let |a| < 1. The
Laplace integrals

∫ eiα∞

0

φ(t)e−tzdt =
∫ eiα∞

0

b

e−t − ae
−tzdt, Re zeiα > 0

with α ∈ (αl−1, αl), can be ‘glued together’ to yield an analytic solution yl
of (1.1) with asymptotic expansion f̂ as z → ∞ in the (maximal) sector :

Sl := ∪α∈(αl−1,αl){z : Re zeiα > 0},

uniformly on closed subsectors. This solution yl is called the 1-sum or Borel-
sum of f̂ in a direction α ∈ (αl−1, αl), or on (αl−1, αl). It is uniquely deter-
mined by its asymptotic properties in Sl. The difference of two ‘neighbour-
ing’ 1-sums is an exponential function of order 1 :

yl+1(z) − yl(z) =
2πib
a
e(Log a−2lπi)z

The asymptotic behaviour of yl changes when we cross the Stokes ray with
direction −π/2 − αl, or the anti-Stokes ray with direction π/2 − αl−1.

Example 1.2. —

y(z + 1) − a

z
y(z) =

b

z
, a, b ∈ C∗ (1.2)

This is a difference equation of level 1+ (cf. [2, 6, 7], the nonlinear case is
discussed in [8]). It has a formal power series solution f̂ =

∑∞
h=1 ahz

−h

with the property that |ah| � Ah( h
log h )h for all h � 2, which we will call
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1+-Gevrey. Its formal Borel transform has infinite radius of convergence and
defines an entire function with supra-exponential growth :

φ(t) = B̂f̂(t) = be−a exp(t+ aet)

The so-called critical variable for the level 1+ is z log z, or any variable
ψ(z) equivalent to it, in the sense that limz→∞ ψ(z)(z log z)−1 = 1. The
formal Borel transform of f̂ with respect to the critical variable ψθ(z) :=
z log(zeiθ) :

B̂1+,θ(f̂)(t) =
1

2πi

∞∑
h=1

ah

∫
U

z−hetψθ(z)dψθ(z)

where θ ∈ R and U is a U-shaped contour, consisting of the half line from
−∞− iδ to δ − iδ, the segment from δ − iδ to δ + iδ and the half line from
δ+ iδ to −∞+ iδ, δ > 0, converges for small positive t and defines a quasi-
analytic function φθ on the positive real axis, provided θ �= −Arg a + 2lπ
for any l ∈ Z. (By Arg a we denote the value of arg a in (−π, π].) The
directions θl = −Arg a + 2lπ, l ∈ Z, are called pseudo-Stokes directions.
The Laplace integrals ∫ ∞

0

φθ(t)e−tψθ(z)dt

with θ ∈ (θl−1, θl), can be glued together to yield an analytic solution yl of
(2), represented asymptotically by f̂ as z → ∞ in

Dl = ∪θ∈(θl−1,θl){z : Re ψθ(z) � c},

uniformly on subdomains of the type ∪θ∈I{z : Re ψθ(z) � c′}, where I is a
closed subinterval of (θl−1, θl) and c′ some sufficiently large positive number.
The functions yl satisfy certain generalized Gevrey conditions and can be
viewed as ‘1+-sum’ of f̂ on Dl, as they are characterized by their asymptotic
properties in Dl. Accordingly, the difference of two neighbouring 1+-sums
is an exponential function ‘of order 1+’ :

yl+1(z) − yl(z) =
2πibe−a

a
e(Log a−2lπi)zΓ(z)−1

= e−z log(zeiθl )(1+o(1)) as z → ∞ in Dl ∩Dl+1

uniformly on subdomains of the type ∩θ∈[θl−δ,θl+δ]{z : Re ψθ(z) � cδ},
where δ and cδ > 0.
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Combining the equations in examples 1 and 2, we obtain the simplest
(and, admittedly, somewhat trivial) example of a difference equation with
levels 1 and 1+ :

y1(z + 1) − a1y1(z) = b1
z , a1, b1 ∈ C∗, a1 �= 1

y2(z + 1) − a2
z y2(z) = b2

z , a2, b2 ∈ C∗
(1.3)

Its formal solution f̂ ∈ C2[[z−1]] is 1-Gevrey, but not 1-summable in any di-
rection α ∈ (−π/2, π/2). Nor is it multi-summable in any of these directions.
Its formal Borel transform φ = B̂f̂ has a positive radius of convergence. φ
can be continued analytically in any direction α �= arg(−Log a1 + 2lπi),
where l ∈ Z, but has supra-exponential growth. If 0 is not a singular direc-
tion of level 1, it can be accelerated to level 1+ by means of a weak accel-
eration operator, which is an extension of a Laplace transformation (i.e. an
inverse (ordinary) Borel transformation), followed by a Borel transformation
with respect to the variable ψθ(z). The accelerate φθ defines a quasi-analytic
function on the positive real axis, provided θ is not a pseudo-Stokes direction
of level 1+ : θ �= θl := −Arg a2 + 2lπ, for all l ∈ Z. The Laplace transforms
in the variable ψθ(z), of the functions φθ, with θ ∈ (θl−1, θl), can be glued
together to yield an accelero-sum of the formal solution and a solution of
(1.3). This accelero-sum is a particular case of the (1, 1+)-sum introduced in
[1], where it was proved that formal solutions of linear systems of difference
equations with levels 1 and 1+ are (1, 1+)-summable on suitable domains,
provided 0 is not a singular direction of level 1. It is the purpose of the
present paper to extend this result to nonlinear systems of difference equa-
tions and lift the restrictive condition on the singular directions of level 1.
The equations we consider can be represented in the form

ϕ(z, y(z), y(z + 1)) = 0 (1.4)

where ϕ is a Cn-valued function, analytic in a neighbourhood of (∞,y0,y0),
y0 ∈ Cn, or in a more general type of domain (cf. §3 for the exact con-
ditions). We assume that (1.4) possesses a formal power series solution
f̂ =

∑∞
h=0 ahz

−h/p, with a0 = y0 and p ∈ N, and that the (formal) dif-
ference operator obtained by linearization about the formal solution has no
levels < 1 (cf. §2.1 for more details).

In general, the accelero-sums of the formal solution are not character-
ized by their asymptotic expansion and the corresponding Gevrey type error
bounds, as the domain in which the asymptotic expansion is valid is usually
not large enough. Therefore, instead of considering individual solutions, we
work with so-called quasi-functions (introduced by Ramis in [12]). In our
case, these will be pairs of solutions, defined on overlapping domains and
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differing by an exponentially small function on the intersection of these
domains. Quasi-functions can in many ways be treated like ordinary func-
tions. In particular, they may satisfy Gevrey type conditions and admit
an asymptotic expansion, which is necessarily the same for each individual
function. If the union of the individual domains is sufficiently large, they
can, under some additional conditions, be characterized by the asymptotic
expansion. In this paper we prove that the equations considered here have
unique quasi-function solutions, which turn out to be accelero-sums of the
formal solution.

In the case that 0 is a singular direction of level 1, the singularities of
φ := B̂f̂ on the positive real axis present a problem, due to the fact that
the acceleration operator we would like to apply involves integration of φ
along this axis. It turns out that these singularities can, in a certain sense,
be ‘circumvented’ or ‘regularized’ by replacing the ordinary formal Borel
transformation by a Borel transformation with respect to a variable rθ(z)
defined by

rθ(z) =
ψθ(z)
log z

= z + iθ
z

log z
,

where θ is a suitable real number, different from 0. Note that rθ(z) is equiv-
alent to the variable z, as limz→∞ rθ(z)z−1 = 1.

The domains considered in this paper are ‘right’ domains, invariant un-
der z → z+1. Analogous results can be derived for ‘left’ domains, invariant
under z → z − 1. As there exists a simple relation between results for the
two types of domains (cf. [5]), we restrict ourselves to domains of the first
type.

The paper is organized as follows. In §2.1 and §2.2 we introduce some
basic notions and summarize the main properties of the curves Cθ(z) (level
curves of Re ψθ) and the domains DI(z) and D̃I(z), which play a major role
in the theory, comparable to that of sectors of aperture � π and � π, re-
spectively, in problems of level 1 (the generic case). In §2.3 we define classes
of analytic functions admitting asymptotic expansions with prescribed error
bounds and recall some of their properties. §3 contains the main existence
results : Theorems 3.1 and 3.2. The first theorem is concerned with exis-
tence and uniqueness of Gevrey type solutions of (1.4), while the second
one deals with quasi-function solutions. Both theorems are based on the
existence of right inverses of the difference operator ∆c, on suitable Banach
spaces of analytic functions, or quasi-functions, respectively. The existence
of these right inverses is proved in §4.1 for ordinary functions and in §4.2
for quasi-functions. In §5 (Theorem 5.9) it is shown that the quasi-functions
in Theorem 3.2 consist of two accelero-sums of the formal solution.
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2. Preliminaries

2.1. Formal theory

By τ we denote the ‘shift operator’, defined by

τy(z) = y(z + 1).

We use the same symbol for the automorphism of End(n,P), where

P = ∪p∈NC[[z−1/p]][z1/p],

defined by

τ(z1/p) = z1/p
∞∑
h=0

(
1/p
h

)
z−h, p ∈ N.

Let Â and B̂ ∈ Gl(n,P), and let ∆̂ := Â+ B̂τ . By a transformation

∆̂ → (τF̂ )−1B̂−1∆̂F̂ (2.1)

with F̂ ∈ Gl(n;P), ∆̂ can be reduced to a canonical form (cf. [11, 5])

∆c = ⊕m
j=1∆

c
j (2.2)

where
∆c

j := τ − ycj(z + 1)ycj(z)
−1 (2.3)

ycj is an nj × nj- matrix function of the form

ycj(z) = zdjzeµjz+qj(z)zCj (2.4)

where dj ∈ Q, µj ∈ C, qj(z) is a polynomial in z1/p for some p ∈ N, of
degree < p and without constant term if qj �≡ 0, and Cj is a Jordan block
of order nj : Cj = Nj + γjInj

, with eigenvalue γj , j = 1, ...,m. The number
µj is determined up to a multiple of 2πi and will be chosen such that

0 � Im µj < 2π.

Furthermore, we assume that qj ≡ 0 for all j ∈ {1, ...,m} such that dj =
µj = 0. In that case, the equation has no levels less than 1. If there is a
j ∈ {1, ...,m} such that dj �= 0, ∆̂ is said to possess a level 1+.

Definition 2.1 (Gevrey conditions). — By Ô1 we denote the ring of 1-
Gevrey formal power series of the form

∑∞
h=0 ahz

−h/p where p ∈ N. These
are characterized by the property that there exists a positive number A such
that, for all h � 1,

|ah| � Ahh
h
p .
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Definition 2.2 (Stokes directions). — Let ∆̂ = Â + B̂τ , where Â and
B̂ ∈ Gl(n,P). Suppose that ∆̂ has a canonical form ∆c, with blocks ∆c

j of
the form (2.3). The directions π/2 − arg(µj + 2lπi), where j ∈ {1, ...,m}
such that dj = 0, l ∈ Z, l �= 0 if µj = 0, are the Stokes directions of ∆̂ of
level 1. By Θ±(∆̂) we denote the following set :

Θ±(∆̂) = {θ ∈ R : djθ = Im µj mod 2π for some j ∈ {1, ...,m}

such that ± dj > 0}.

We call the elements of Θ(∆̂) := Θ+(∆̂) ∪ Θ−(∆̂) the pseudo-Stokes direc-
tions of ∆̂, of level 1+.

Note that Θ(∆̂) = Θ(∆c) = ∪m
j=1Θ(∆c

j).

Remark 2.3. — In ‘right’ domains, invariant under z → z+1, the pseudo-
Stokes directions belonging to Θ+(∆̂) may be disregarded, whereas in do-
mains invariant under z → z − 1 the same is true of the pseudo-Stokes
directions belonging to Θ−(∆̂).

2.2. Domains

By S+ we denote the sector

S+ := {z : | arg z| < π}

of the Riemann surface of the logarithm. Let θ ∈ R, z ∈ S+ and

ψθ(z) := z(log z + iθ)

We consider two types of domains : DI(z) and D̃I(z), which play a crucial
role, similar to sectors of aperture � π and � π, respectively, in problems
of level 1. Each domain contains a sector of the form {z ∈ S+ : | arg z| <
π/2 − δ, |z| > R} for every δ ∈ (0, π/2) and some sufficiently large R, and
is bounded by curves with limiting directions ±π/2.

Definition 2.4. — Let z ∈ S+ such that Reψθ(z) > 1/e+ |θ|. By Cθ(z)
we denote the level curve of Re ψθ through z :

Cθ(z) = {ζ ∈ S+ : Re ψθ(ζ) = Re ψθ(z)}

In particular, if R > 0, such that R logR > 1/e+ |θ|

Cθ(R) = {z ∈ S+ : Re (z log z + iθz) = R logR}
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We define C+
θ (z) and C−

θ (z) by

C±
θ (z) = {ζ ∈ Cθ(z) : ± Im (ζ − z) � 0}.

For all R > 0 such that R logR > 1/e+|θ|, C+
θ (R) is contained in the sector

{z ∈ S+ : | arg z| < π/2, |z| > 1} iff θ � −π/2 and C−
θ (R) is contained in

this sector iff θ � π/2 (cf. Figure 1).

By Dθ(z) we denote the domain

Dθ(z) := {ζ ∈ S+ : Re ψθ(ζ) � Re ψθ(z)}.

Let I be a finite interval of R, θ1 = inf I and θ2 = sup I. Let z ∈ S+ and
suppose that Re ψθ(z) > 1/e + |θ| for all θ ∈ I. By DI(z) we denote the
domain

DI(z) = ∩θ∈IDθ(z) = Dθ1(z) ∩Dθ2(z)

and by D̃I(z)
D̃I(z) = ∪θ∈IDθ(z).

By RI we denote the positive number such that

RI logRI = 1/e+ sup{|θ| : θ ∈ I}.

Figure 1. — Examples of Cθ(R) for various values of θ and R = 10
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Remark 2.5. — DI(z) is a closed domain, bounded by C+
θ2

(z) and C−
θ1

(z),
whereas D̃I(z) is bounded by C+

θ1
(z) and C−

θ2
(z) (cf. Figure 2). D̃I(z) is

open when I is open and closed when I is closed. Note that I ⊂ I ′ implies
D̃I(z) ⊂ D̃I′(z), but DI′(z) ⊂ DI(z).
The condition Re ψθ(z) > 1/e + |θ| ensures that |ζ| > 1 for all ζ ∈ Cθ(z)
(cf. [9]).
Let I be a finite interval and z ∈ S+ such that Re ψθ(z) > 1/e + |θ|
for all θ ∈ I. Then there exist positive numbers R and R′ such that
R logR = infθ∈I Re ψθ(z) and R′ logR′ = supθ∈I Re ψθ(z), and we have :
DI(R′) ⊂ DI(z) ⊂ DI(R) and D̃I(R′) ⊂ D̃I(z) ⊂ D̃I(R). Conversely, let
φ ∈ (−π/2, π/2) be a fixed number and R logR > 1/e + |θ| for all θ ∈ I.
Since Re ψθ(R′′eiφ) = R′′ logR′′ cosφ(1+o(1)) as R′′ → ∞, uniformly on I,
there exists a positive number R′′ such that infθ∈I Re ψθ(R′′eiφ) � R logR.
This implies that D̃I(R′′eiφ) ⊂ D̃I(R).

Figure 2. — D̃[−π,− π
4 ](6) is the large domain, bounded by C−

− π
4
(6) and C+

−π(6)

For a detailed discussion of the curves Cθ(z) the reader is referred to
[9]. Here we give a brief survey of those properties that will be needed here.
For all z ∈ S+ such that Re ψθ(z) > 1/e + |θ|, Cθ(z) admits a parameter
representation of the form :

Cθ(z) = {ζ(x) = ρ(x) + ix : x ∈ R}.
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where x = Im ζ(x). It is easily seen that

ρ(x) = O(
|x|

log |x| ) as |x| → ∞

Putting arg ζ(x) = φ(x), |ζ(x)| = r(x) and Re ψθ(z) = c(z) we have

ρ′(x) =
φ(x) + θ

1 + log r(x)
(2.5)

φ′(x) =
ρ(x) + c(z)

r(x)2(1 + log r(x))
(2.6)

inf
x∈R

φ(x) → −π
2

and sup
x∈R

φ(x) → π

2
as c(z) → ∞ (2.7)

r′(x) = sinφ(x) +
φ(x) + θ

1 + log r(x)
cosφ(x) (2.8)

1 < min
x∈R

r(x) =
c(z)

log c(z)
(1 + o(1)) as c(z) → ∞ (2.9)

(cf. [9]). (2.6) shows that φ′(x) > 0 whenever ρ(x) > 0. From (2.5), (2.7)
and (2.9) we infer that ρ′ < 0 if θ < −π/2 and ρ′ > 0 if θ > π/2, provided
c(z) is sufficiently large.

Lemma 2.6. — Let I = [θ1, θ2], z0 ∈ S+ such that Re ψθ(z0) > 1/e+ |θ|
for all θ ∈ I, and D = DI(z0) or D = D̃I(z0).
(i) C−

θ (z) ⊂ D for every z ∈ D and every θ � θ1, and C+
θ (z) ⊂ D for every

z ∈ D and every θ � θ2.
(ii) Let α ∈ (−π/2, π/2). If |z0| is sufficiently large, the half line from z to
∞ with direction α is contained in D for all z ∈ D.
(iii) Cθ(z) ⊂ D̃I(z0) for all z ∈ DI(z0) and all θ ∈ I.

Proof. — (i) We give the proof for C−
θ (z), the proof for C+

θ (z) is analo-
gous. Let z ∈ D, θ � θ1 and ζ ∈ C−

θ (z). For i ∈ {1, 2} we have

Re ψθi(ζ) − Re ψθi(z) = Re ψθ(ζ) − Re ψθ(z) + (θ − θi) Im (ζ − z)

and the right-hand side is nonnegative, as Re ψθ(ζ) = Re ψθ(z), θ � θ1 <
θ2 and Im ζ � Im z. If z ∈ DI(z0), then it follows that Re ψθi(ζ) �
Re ψθi(z) � Re ψθi(z0) for both i = 1 and i = 2. If, on the other hand,
z ∈ D̃I(z0), then Re ψθi(ζ) � Re ψθi(z) � Re ψθi(z0) for either i = 1 or
i = 2. In both cases this implies that ζ ∈ D.
(ii) follows easily from (2.5).
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(iii) Let z ∈ DI(z0), θ ∈ I and ζ ∈ Cθ(z). Then Re ψθ(ζ) = Re ψθ(z) �
Re ψθ(z0) and, consequently, ζ ∈ D̃I(z0). �

In §4.1 we will use the following technical lemma (cf. [9, Lemma 3.10],
[10, Lemma 2.5]).

Lemma 2.7. — (i) Let s > 0, dj ∈ R. There exists a positive number Ks

such that, for all z ∈ S+ with the property that |z+x| � 1 for all x � 0 and
for all σ ∈ [0, s],

|ycj(z)ycj(z + σ)−1| � Ks|z|−djσ

(ii) For each δ > 0 there exists a positive number K ′
δ, such that, for all z,

ζ ∈ S+, such that d(ζ, z + Z) � δ,

|e±2πi(ζ−z) − 1|−1 � K ′
δ

2.3. Asymptotic expansions with Gevrey-type error bounds

In this section we define classes of functions admitting asymptotic ex-
pansions with particular types of error bounds and discuss some of their
properties. The sets A1(I) defined below consist of functions that are 1-
Gevrey, uniformly on closed subsectors of {z ∈ S+ : | arg z| < π/2}, and
satisfy additional conditions on DI′(R) for any open interval I ′ containing
I, which can be expressed in terms of a convenient variable rθ(z), equivalent
to z.

Definition 2.8. — For all z ∈ S+ : z �= 1 and θ ∈ R we define

rθ(z) =
ψθ(z)
log z

and ρθ(z) = Re rθ(z)

Remark 2.9. — Obviously, r0(z) = z. rθ(z) is equivalent to z in the sense
that

rθ(z)
z

= 1 +
iθ

log z
= 1 + o(1) as z → ∞

In [10] it is shown that, for any θ′ ∈ R such that θ′ �= θ + π/2,

ρθ(z) =
(θ − θ′ + 1

2π)|z|
log |z| (1 +O(

1
log |z| ) as z → ∞ on C−

θ′ (R) (2.10)

and, for any θ′ �= θ − π/2,

ρθ(z) =
(θ′ − θ + 1

2π)|z|
log |z| (1 +O(

1
log |z| ) as z → ∞ on C+

θ′(R) (2.11)
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Hence it can be deduced that ρθ(z) → ∞ on DI(R), where I = [θ1, θ2], if
θ ∈ (θ1 − π/2, θ2 + π/2), whereas ρθ(z) → ∞ on D̃I(R) if θ2 − θ1 < π and
θ ∈ (θ2 − π/2, θ1 + π/2).

Definition 2.10 (Generalized Gevrey classes). — Let I be a finite in-
terval of R and let I = [θ1, θ2]. By |I| we denote the length of I :

|I| = sup I − inf I = θ2 − θ1

By A(I) or A0(I) we denote the set of continuous functions f : S+ → C,
admitting an asymptotic expansion f̂ =

∑∞
h=0 ahz

−h/p, with p ∈ N, such
that, for any open interval I ′ containing I and some sufficiently large R >
RI (depending on I ′), f is holomorphic in int DI′(R) and for all N ∈ N,
there exists a positive constant MN (I ′) such that

|RN (f ; z)| := |f(z) −
N−1∑
h=0

ahz
−h/p| < MN (I ′)|z|−N/p

uniformly on DI′(R). By A1(I) we denote the set of f ∈ A(I) with the
property that, for any open interval I ′ = (θ′1, θ

′
2) containing I and some

(or any, cf. Remark 2.11 below) θ ∈ (θ′1 − 1
2π, θ

′
2 + 1

2π), there exist positive
constants A′ and R > RI (depending on I ′), such that, for all N ∈ N,

|RN (f ; z)| < A′NNN/pρθ(z)−N/p

uniformly on DI′(R). We write A(θ) instead of A([θ, θ]). By A0,0(I) we
denote the set of f ∈ A(I) such that f̂ = 0, and A1,0(I) := A0,0(I)∩A1(I).

Let y0 ∈ Cn. By A(I; y0) we denote the set of functions ϕ : S+×C2n → C

with the following properties :
(i) There exists a neighbourhood U of y0, such that ϕ is holomorphic on
DI′(R) × U × U for any open interval I ′ containing I and some R > RI .
(ii) There exist p ∈ N and (holomorphic) functions ϕh : U × U → C with
the property that, for any open interval I ′ containing I and some R > RI ,
and for all N ∈ N, there exists a positive constant MN (I ′) such that

|RN (ϕ; z, y1, y2)| := |ϕ(z, y1, y2) −
N−1∑
h=0

ϕh(y1, y2)z−h/p| < MN (I ′)|z|−N/p,

uniformly on DI′(R) × U × U . By A1(I; y0) we denote the set of func-
tions ϕ ∈ A(I; y0) with the property that, for any open interval I ′ = (θ′1, θ

′
2)
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containing I and some θ ∈ (θ′1 − 1
2π, θ

′
2 + 1

2π), there exist positive constants
A′ and R > RI (depending on I ′), such that, for all N ∈ N,

|RN (ϕ; z, y1, y2)| < A′NNN/pρθ(z)−N/p,

uniformly on DI′(R) × U × U .

Let I be a finite, open interval. We define

Ã(I) = Ã0(I) := ∩θ′∈IA(θ′)

and
Ã1(I) := ∩θ′∈IA1(θ′)

or, equivalently, Ã1(I) is the set of f ∈ Ã(I), with the property that, for
any closed interval I ′ = [θ′1, θ

′
2] ⊂ I of length |I ′| < π and some θ ∈ (θ′2 −

1
2π, θ

′
1 + 1

2π), there exist positive constants A′ and R > RI (depending on
I ′), such that, for all N ∈ N,

|RN (f ; z)| < A′NNN/pρθ(z)−N/p

uniformly on D̃I′(R). By Ã1,0(I) we denote the set of f ∈ Ã1(I) such that
f̂ = 0.

Let I be a finite, open interval and y0 ∈ Cn. We define

Ã(I; y0) := ∩θ′∈IA(θ′; y0)

and
Ã1(I; y0) := ∩θ′∈IA1(θ′; y0)

or, equivalently, the set of functions ϕ ∈ Ã(I; y0) with the property that,
for any closed interval I ′ = [θ′1, θ

′
2] ⊂ I of length |I ′| < π and some θ ∈

(θ′2 − 1
2π, θ

′
1 + 1

2π), there exist positive constants A′ and R > RI (depending
on I ′), such that, for all N ∈ N,

|RN (ϕ; z, y1, y2)| < A′NNN/pρθ(z)−N/p,

uniformly on D̃I′(R) × U × U .

Remark 2.11. — It can be shown that A1(I), A1(I; y0), Ã1(I) etc. are
independent of the choice of θ (cf. [10]).

The elements of A1(I) need not be Gevrey of order 1, uniformly on
DI′(R) for any open interval I ′ containing I, but they are Gevrey of order
1, uniformly on closed subsectors of {z ∈ S+ : | arg z| < π/2, |z| � R}.
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Definition 2.12. — Let I be a finite interval of R. By A1+(I) we de-
note the set of f ∈ A(I), with the property that, for any open interval I ′

containing I and some θ ∈ I, there exist a positive constant A′ and a positive
number R > RI (depending on I ′), such that, for all N � 2,

|RN (f ; z)| < (
A′N

logN
)N/pdθ(z)−N/p (2.12)

where dθ(z) = min{|ζ| : Re ψθ(ζ) = Re ψθ(z)}, uniformly on DI′(R). By
A1+,0(I) we denote the set of f ∈ A1+(I) such that f̂ = 0.

We shall need the following Borel-Ritt type theorem (cf. [10]), which
generalizes a well-known result (the case θ = 0).

Theorem 2.13. — Let f̂ =
∑∞

h=0 ahz
−h/p ∈ Ô1, θ ∈ R and R > 1.

There exists a function f , holomorphic on ρθ(z) � R, with the property
that, for all N ∈ N,

|RN (f ; z)| < A′NNN/pρθ(z)−N/p

Elements of A1,0(I) and A1+,0(I) are characterized by their rate of de-
crease at ∞ in appropriate domains. For the proofs of the following lemmas
we refer the reader to [10].

Lemma 2.14. — (i) Let I be a finite interval of R and let I = [θ1, θ2].
f ∈ A1,0(I) iff for each open interval I ′ containing I there exist positive
constants R and a such that

sup
z∈DI′ (R)

|f(z)eaρθ(z)| <∞

where θ ∈ [θ1 − π
2 , θ2 + π

2 ].
(ii) Let I be a finite interval of R and let I = [θ1, θ2]. f ∈ A1+,0(I) iff for
each open interval I ′ containing I there exist positive constants R and a
such that

sup
z∈DI′ (R)

|f(z)eaψθ(z)| <∞

where θ ∈ [θ1, θ2].

Lemma 2.15. — 1. Let I be a finite interval of R, I = [θ1, θ2]. and
R a sufficiently large number. Let either D(R) = DI(R) and θ ∈ (θ1 −
1
2π, θ2 + 1

2π), or |I| < π, D(R) = D̃I(R) and θ ∈ (θ2 − 1
2π, θ1 + 1

2π). Let
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f : D(R) → C a continuous function, holomorphic in int D(R). Then the
following statements are equivalent.
(i). There exist positive numbers a and C, such that, for all z ∈ D(R),

|f(z)| � Ce−aρθ(z)

(ii). There exist positive numbers δ and C, such that, for all z ∈ D(R),

|f(z)| � Ce−δ
|z|

log |z|

2. If f is an analytic function on a domain D̃I(R), where I is a finite
interval of R of length |I| > π and R > RI , with the property that

|f(z)| � Ce−c
|z|

log |z|

for all z in this domain, where C and c are positive constants, then f ≡ 0.

Corollary 2.16. — If I is an open interval of R of length |I| > π, then
any f ∈ Ã1(I) is uniquely determined by its asymptotic expansion.

Lemma 2.17. — 1. Let θ1 < θ2, I = [θ1, θ2], R > RI and f : DI(R) → C

a continuous function, holomorphic in int DI(R). Let θ ∈ (θ1, θ2). Then the
following statements are equivalent.
(i). There exist positive numbers t and C, such that, for all z ∈ DI(R),

|f(z)| � Ce−tRe ψθ(z)

(ii). There exist positive numbers δ and C, such that, for all z ∈ DI(R),

|f(z)| � Ce−δ|z|

2. (cf. [7]). Let θ ∈ R. If there exist positive numbers δ and C, such that
|f(z)| � Ce−δ|z|, uniformly on Dθ(R), then f ≡ 0.

3. Existence theorems

The first theorem concerns the existence of ordinary solutions, charac-
terized by their asymptotic expansion f̂ . The class of equations to which
it applies is larger than that mentioned in the introduction. Instead of as-
suming ϕ analytic at (∞, y0, y0), we assume that it satisfies certain Gevrey
conditions : ϕ ∈ A1(I; y0)n (cf. Definition 2.10).
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Theorem 3.1. — Let I be a finite interval of R, y0 ∈ Cn and ϕ ∈
A1(I; y0)n, admitting an asymptotic expansion ϕ̂. Suppose that equation
(1.4) possesses a formal solution f̂ ∈ Ôn

1 with constant term y0, and that
the following conditions are satisfied :

I. The formal matrix functions Â and B̂ defined by

Â := ϕ̂′
1(f̂ , τ f̂), B̂ := ϕ̂′

2(f̂ , τ f̂)1

belong to Gl(n,P).

II. The difference operator ∆̂ := Â + B̂τ has a canonical form (2.2),
where ∆c

j is of the form (2.3), with qj ≡ 0 for all j ∈ {1, ...,m} such that
dj = µj = 0 (i.e. ∆̂ has no levels different from 1 and 1+).

III. I contains no pseudo-Stokes directions of ∆̂ of level 1+ (cf. Defini-
tion 2.2 and Remark 2.3; more precisely : I ∩ Θ−(∆̂) = ∅).

IV. (i) : I is closed and, if −π/2 is a Stokes direction of ∆̂ of level 1, then
I ∩ [−π

2 ,
π
2 ] = ∅, or (ii) : I is an open interval : I = (θ1, θ2), ϕ ∈ Ã1(I; y0)n

and, if −π/2 is a Stokes direction of ∆̂ of level 1, then either θ1 < −π/2
and θ2 < π/2, or θ1 > −π/2 and θ2 > π/2.

Then the equation (1.4) has a unique solution y ∈ A1(I)n or y ∈ Ã1(I)n,
respectively, with asymptotic expansion f̂ .

In the case that f̂ = 0, the statements remain valid if the condition
ϕ ∈ A1(I; y0)n or ϕ ∈ Ã1(I; y0)n is replaced by : ϕ ∈ A(I; 0)n and ϕ0 ∈
A1,0(I)n, or ϕ ∈ Ã(I; 0)n and ϕ0 ∈ Ã1,0(I)n, respectively, where ϕ0 is
defined by ϕ0(z) = ϕ(z, 0, 0).

Proof. — In the cases that condition IV (i) is satisfied, or that condition
IV (ii) is satisfied and |I| � π, the statements of Theorem 3.1 can be deduced
from proposition 4.4 below, with the aid of Theorem 2.13, by means of a
classical argument (cf. [10]). Now suppose that condition IV (ii) is satisfied
and |I| = θ2−θ1 > π. Then we have either θ1 +π < π/2 and θ2−π < −π/2,
or θ1+π > π/2 and θ2−π > −π/2. In both cases, (1.4) has unique solutions
y1 ∈ Ã1(θ1, θ1 + π)n and y2 ∈ Ã1(θ2 − π, θ2)n. Moreover, it has a unique
solution y ∈ Ã1(θ2 −π, θ1 +π)n if θ2 − θ1 < 2π, or y ∈ A1([θ1 +π, θ2 −π])n

if θ2−θ1 � 2π. The uniqueness of these solutions implies that y1 and y2 are
analytic continuations of y. �

Our main result is an existence and uniqueness theorem for quasi-function
solutions (f1, f2), where f1 and f2 are represented asymptotically by f̂ in

(1) By ϕ̂′
i(y1, y2) we denote the Jacobian matrix of ϕ̂ with respect to yi
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overlapping domains and differ by an exponentially small function on the
intersection. The most interesting case is that where |I| > π : then the
solutions f1 and f2 are accelero-sums of f̂ (cf. Theorem 5.9).

Theorem 3.2. — Let y0 ∈ Cn, let I1, I2 be open intervals of R : Ii =
(θ−i , θ

+
i ) such that θ+1 � θ−2 . Let I12 = [θ+1 , θ

−
2 ] and I = (θ−1 , θ

+
2 ). Assume

that

I. ϕ ∈ Ã1(I; y0)n.

II.(1.4) has a formal solution f̂ ∈ Ôn
1 and conditions I. and II. of The-

orem 3.1 are satisfied.

III. I1 ∪ I2 contains no pseudo-Stokes directions of ∆̂ of level 1+ (more
precisely : (I1 ∪ I2) ∩ Θ−(∆̂) = ∅).

IV. If −π/2 is a Stokes direction of ∆̂ of level 1, then either one of the
following conditions holds.
a) θ−1 < −π/2 and θ+2 < π/2,
b) θ−1 > −π/2 and θ+2 > π/2.

Then the equation (1.4) has unique solutions fi ∈ Ã1(Ii)n, i = 1, 2, rep-
resented asymptotically by f̂ , with the property that f2 − f1 ∈ A1+,0(I12)n.
Moreover, if I12 contains no pseudo-Stokes directions of ∆̂ of level 1+, then
f2 = f1.

Proof . — To begin with, assume that |I| � π. According to Theorem
2.13 there exists a function f ∈ Ã1(I)n, with asymptotic expansion f̂ . The
substitution

(z, y1, y2) → (z, y1 + f(z), y2 + f(z + 1))

changes ϕ to a function ϕ̃ ∈ Ã1(I; 0)n, such that the function ϕ0 defined
by ϕ0(z) = ϕ̃(z, 0, 0) belongs to Ã1,0(I)n, and the corresponding difference
equation has a formal power series solution with vanishing coefficients. By
another simple transformation it can be reduced to an equation in the ‘pre-
pared form’ (3.1) below, and thus the theorem can be deduced from The-
orem 3.3 below, except for the last statement, which follows immediately
from Theorem 3.1.

Next, suppose that |I| > π. If condition IV a) holds, we define I ′2 :=
(θ−2 , θ

′
2), where θ′2 = θ+2 if |I2| < π and θ′2 ∈ (θ−2 , θ

−
2 + π) if |I2| � π, and we

define Ĩ1 := (θ̃−1 , θ̃
+
1 ), where θ̃−1 = max{θ−1 , θ′2−π}(< θ−2 ) and θ̃+1 ∈ (θ̃−1 , θ

−
2 ]

such that Ĩ1 ∩ Θ−(∆̂) = ∅. As both θ−1 and θ′2 − π are less than −π/2, so
is θ̃−1 . Moreover, θ′2 − θ̃−1 � π, and thus (1.4) has solutions f̃1 ∈ Ã1(Ĩ1)n

and f ′2 ∈ Ã1(I ′2)
n, represented asymptotically by f̂ , with the property that
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f ′2 − f̃1 ∈ A1+,0([θ̃
+
1 , θ

−
2 ])n. Without loss of generality we may assume that

θ̃+1 � θ+1 , hence f ′2 − f̃1 ∈ A1+,0([θ
+
1 , θ

−
2 ])n. Note that either I ′2 = I2, in

which case we put f ′2 = f2, or θ−2 � θ+2 − π < −π/2. In the latter case,
according to Theorem 3.1, (1.4) has unique solutions f2 ∈ Ã1(I2)n and
f ′2 ∈ Ã1(I ′2)

n with asymptotic expansion f̂ . The uniqueness implies that f2
is the analytic continuation of f ′2. Again by Theorem 3.1, (1.4) has unique
solutions f1 ∈ Ã1(I1)n and f̃1 ∈ Ã1(Ĩ1)n with asymptotic expansion f̂ . In
the case that θ′2 − π < θ+1 this implies that f1 is the analytic continuation
of f̃1 and the result follows. If θ̃−1 = θ′2 − π � θ+1 , we proceed with Ĩ1 in
the role of I2 and define Ĩ2 := (θ̃−2 , θ̃

+
2 ), where θ̃−2 = max{θ−1 , θ̃+1 − π} and

θ̃+2 ∈ (θ̃−2 , θ̃
−
1 ] such that θ̃+2 � θ+1 and Ĩ2 ∩ Θ−(∆̂) = ∅. In this manner, we

obtain a finite number of open subintervals Ĩj = (θ̃−j , θ̃
+
j ) of I, j = 1, ..., N ,

such that θ+1 � θ̃+j � θ̃−j−1 < θ−2 and θ̃+j−1 − θ̃−j � π for j = 2, ..., N and
θ̃−N < θ+1 , and unique solutions f̃j ∈ Ã1(Ĩj)n with asymptotic expansion f̂ ,
such that f̃j−f̃j−1 ∈ A1+,0([θ̃

+
j , θ̃

−
j−1])

n ⊂ A1+,0([θ
+
1 , θ

−
2 ])n. The uniqueness

of f1 and f̃N implies that these two solutions coincide. Consequently, f1 −
f2 =

∑N
j=2 f̃j − f̃j−1 + f̃1 − f2 ∈ A1+,0([θ

+
1 , θ

−
2 ])n. The remaining cases can

be proved similarly. �

Theorem 3.3. — Let I1, I2 be open intervals of R : Ii = (θ−i , θ
+
i ), such

that θ+1 � θ−2 and θ+2 − θ−1 � π. Let I12 = [θ+1 , θ
−
2 ], I = (θ−1 , θ

+
2 ) and

ϕ ∈ Ã(I; 0)n. Assume that

I. ϕ can be written in the form

ϕ(z, y1, y2) = ϕ0(z) +A(z)y1 +B(z)y2 + ψ(z, y1, y2)

where ϕ0 ∈ Ã1,0(I)n, A and B ∈ End (n; Ã0,0(I)) and for any closed subin-
terval I ′ of I, there exists a positive number R > RI , such that ψ′

2(z, 0, 0) =
ψ′

3(z, 0, 0) = 0 for all z ∈ D̃I′(R).

II. I1 ∪ I2 contains no pseudo-Stokes directions of ∆̂ of level 1+ (more
precisely : (I1 ∪ I2) ∩ Θ−(∆̂) = ∅).

III. If −π/2 is a Stokes direction of ∆̂ of level 1, then either θ−1 < −π/2
or θ+2 > π/2. Then the equation

∆cy(z) = ϕ(z, y(z), y(z + 1)) (3.1)

where ∆c is of the form (2.3), with qj ≡ 0 for all j ∈ {1, ...,m} such that
dj = µj = 0, has unique solutions fi ∈ Ã1,0(Ii)n, i = 1, 2, with the property
that f2 − f1 ∈ A1+,0(I12)n.

An outline of the proof of this theorem can be found at the end of §4.2.
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4. Right inverses of ∆c
j

4.1. Right inverses of ∆c
j on Banach spaces of analytic functions

Definition 4.1. — Let D be a closed domain of S+. Let θ ∈ R and
a > 0. By b1θ,a(D) we denote the Banach space of continuous functions
f : D → C that are holomorphic in int D and have the property that

‖f‖θa,D := sup
z∈D

|earθ(z)f(z)| <∞

By b1
+

θ,a(D) we denote the Banach space of continuous functions f : D → C

that are holomorphic in int D and have the property that

|||f |||θa,D := sup
z∈D

|eaψθ(z)f(z)| <∞

We will consider the Banach spaces b1θ,a(D)n and b1
+

θ,a(D)n equipped with
the norms ‖(f1, ..., fn)‖θa,D := maxi∈{1,...,n} ‖fi‖θa,D and |||(f1, ..., fn)|||θa,D :=
maxi∈{1,...,n} |||fi|||θa,D, respectively.

Definition 4.2. — Let I be a finite interval of R. We define

J1(I) =
{
{j ∈ {1, ...,m} :dj = 0, µj �= 0 :argµj = π} if I ∩ (−π

2 ,
π
2 ) �= ∅

∅ otherwise

J̃1(I) =
{
J1(I) if I ⊂ (−π

2 ,
π
2 )

∅ otherwise

J1+(I) := {j ∈ {1, ...,m} : Θ−(∆c
j) ∩ I �= ∅}

Remark 4.3. — J1(I) or J̃1(I) �= ∅ implies that DI(RI) or D̃I(RI) is
contained in the right half plane and −π/2 is a Stokes direction of level 1.
J1(I) ∪ J1+(I) is the set of indices j ∈ {1, ...,m} such that, for some l ∈ Z

(equal to 0 in the case that dj = 0, µj �= 0 and argµj = π), ycj(z)e
2lπiz ∼ 0

as z → ∞, uniformly on DI(RI). Obviously, J1(I) = J1(I).

j ∈ J̃1(I) implies that ycj(z) ∼ 0 as z → ∞ on D̃I(RI), uniformly on
D̃I′(RI), for any closed subinterval I ′ ⊂ int I and uniformly on D̃I(RI) if
I ⊂ (−π/2, π/2).

In what follows we shall associate with certain closed intervals I of R

two types of closed domains D(R) with the property that

d(R) := min{|z| : z ∈ D(R)} = R(1 + o(1)) as R→ ∞ (4.1)
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These are defined as follows. Let I = [θ1, θ2], R > RI and assume that
{θ1, θ2} ∩ {−π/2, π/2} = ∅. If J1(I) = ∅, D(R) = DI(R) or D̃I(R) (this
is the case when −π/2 is not a Stokes direction of level 1, or, when either
θ2 < −π/2, or θ1 > π/2). Next, suppose that J̃1(I) = ∅, but J1(I) �= ∅, and
|I| < π. This implies that either θ1 < −π/2 < θ2 < π/2 or −π/2 < θ1 <
π/2 < θ2. In the first case we choose φ ∈ (−π/2,−θ2), in the second case
we choose φ ∈ (−θ1, π/2), and in both cases we define : D(R) := D̃I(Reiφ).
From (2.5) and (2.7) it can be seen that, on the boundary of D(R), Re z
decreases monotonely to −∞ (and thus eµjz increases monotonely to ∞ for
all j ∈ J1(I)) as Im z → ∞ in the first and as Im z → −∞ in the second
case, provided R is sufficiently large. (Cf. Figure 3.)

Figure 3. — In this picture, R = 20, φ = π
4

and D = D̃[− π
5 , 3π

5 ](Reiφ)

Proposition 4.4. — Let θ1, θ2 ∈ R, θ1 < θ2 and I = [θ1, θ2]. Suppose
that J1+(I) = J̃1(I) = {θ1, θ2}∩{−π/2, π/2} = ∅. We consider the following
two cases :
a) J1(I) = ∅, D(R) = DI(R) and θ ∈ (θ1 − π/2, θ2 + π/2), or
b) |I| < π and D(R) = D̃I(Reiφ), where φ = 0 if J1(I) = ∅ and, in the case
that J1(I) �= ∅, φ ∈ (−π/2,−θ2) if θ1 < −π/2 < θ2 < π/2, φ ∈ (−θ1, π/2)
if −π/2 < θ1 < π/2 < θ2, and θ ∈ (θ2 − π/2, θ1 + π/2).
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There exist positive numbers a0 and R0 such that, for each j ∈ {1, ...,m},
∆c

j is a bijective mapping from ∪(a,R)b
1
θ,a(D(R))nj onto itself, where the

union is taken over all a ∈ (0, a0) and R > R0. Its inverse Λc
j has the

following properties :
(i) There exists a real number νj such that, for all a ∈ (0, a0) and R > R0,

Λc
j(b

1
θ,a(D(R))nj ) ⊂ zνj b1θ,a(D(R))nj

(ii) There exists a positive constant C ′
j, independent of R, such that

‖z−νj Λc
jf‖θa,D(R) � C ′

j‖f‖θa,D(R) (4.2)

for all f ∈ b1θ,a(D(R))nj , provided a ∈ (0, a0) and R > R0.

Proof. — Let j ∈ {1, ...,m}, θ ∈ R, R > RI , a > 0 and f ∈ b1θ,a(D(R))nj .
We define Λc

jf by

Λc
jf(z) = ycj(z)

∫
Cj(z′)

e−2ljπi(ζ−z)ycj(ζ + 1)−1f(ζ)
e2πi(ζ−z) − 1

dζ−ycj(z)ycj(z+1)−1f(z)

where lj is a suitable integer and Cj(z′) is a path in D(R) with limiting
directions α− ∈ [−π/2, 0) and α+ ∈ (0, π/2], intersecting the line Im ζ =
Im z exactly once, at a point z′ on the segment (z, z + 1), described in the
direction of increasing imaginary part. We shall briefly discuss each of the
different cases that may occur and derive estimates of the form (4.2). For
more details we refer the reader to [5, 9], where similar proofs can be found.
Without loss of generality, we may assume that ‖f‖θa,D(R) = 1. We begin
by noting that, due to lemma 2.7(i), we have, for all z ∈ D(R),

|ycj(z)ycj(z + 1)−1| � K1|z|−dj (4.3)

and for all ζ ∈ D(R), choosing z′ = z + 1/2,

|ycj(z)ycj(ζ + 1)−1| � K1K1/2|z|−dj/2|ζ|−dj |ycj(z′)ycj(ζ)−1| (4.4)

provided R is sufficiently large.

Case 1. dj = 0 and µj = 0. We can take Cj(z′) to consist of a half line
from ∞eiα−

to z′ and a half line from z′ to ∞eiα+
, where α− ∈ (−π/2, 0)

and α+ ∈ (0, π/2). With the aid of residue calculus we find

Λc
jf(z) = −ycj(z)

∞∑
h=0

ycj(z + h+ 1)−1f(z + h) (4.5)
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(Or, alternatively, Λc
jf could be defined by the above expression.) We have

d

dz
log ycj(z) =

Cj

z

and
r′θ(z) = 1 + iθ(

1
log z

− 1
(log z)2

) (4.6)

Hence we deduce that, for all z ∈ D(R) and all h ∈ N,

eaρθ(z)−aρθ(z+h)|ycj(z)ycj(z + h+ 1)−1| � Ke−ah/2

where K is a positive number, independent of R, provided R is sufficiently
large. It follows that

eaρθ(z)|Λc
jf(z)| � K

∞∑
h=0

e−ah/2

Obviously, the right-hand side is independent ofR. Thus Λc
jf ∈ b1θ,a(D(R))nj

(νj = 0) and ‖Λc
jf‖θa,D(R) � C ′

j , where the constant C ′
j = K(1 − e−a/2)−1

is independent of R, provided R is sufficiently large.

Case 2. dj > 0. We can choose a path Cj(z′), similar to that in case 1.
Here again, the use of residue calculus yields the representation (4.5), and,
with the aid of (4.3), we obtain an estimate of the form

eaρθ(z)|Λc
jf(z)| �

∞∑
h=0

Kh
1 e

−ah/2|z(z + 1)...(z + h)|−dj � C ′
j |z|−dj

where C ′
j is a positive constant, independent of R. This implies that Λc

jf ∈
z−dj b1θ,a(D(R))nj (νj = −dj) and ‖zdj Λc

jf‖θa,D(R) � C ′
j , where C ′

j is a
positive constant, independent of R, provided R is sufficiently large.

Case 3. If dj = 0, µj �= 0 and | argµj | < π (in view of the definition of µj
this implies 0 � argµj < π), we take lj = −1 and Cj(z′) to consist of two
half lines C−

j (z′) and C+
j (z′) from z′ to ∞ with directions

α−
j ∈ (−π/2,min{0, π/2 − arg(µj + a)})

and
α+
j ∈ (max{0, 3π/2 − arg(µj + a− 2πi)}, π/2),

respectively. Here we choose arg(µj + a) ∈ [0, π) and arg(µj + a − 2πi) ∈
(π, 2π) (note that Im (µj + a − 2πi) < 0). According to lemma 2.6(ii),
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C−
j (z′) and C+

j (z′) are contained in D(R) if R is sufficiently large. Putting

ζ = z′ + eiα
+
j x if ζ ∈ C+

j (z′) and using (4.6) and (4.1), we have

a(ρθ(z′) − ρθ(ζ)) + Re (µj − 2πi)(z′ − ζ)

= −(Re ((µj + a− 2πi)eiα
+
j ) +O(

1
logR

))x

Similarly, putting ζ = z′ + eiα
−
j x if ζ ∈ C−

j (z′), we have

a(ρθ(z′) − ρθ(ζ)) + Re µj(z′ − ζ) = −(Re ((µj + a)eiα
−
j ) +O(

1
logR

))x

Using lemma 2.7(ii) and the fact that both cos(arg(µj + a− 2πi) +α+
j ) > 0

and cos(arg(µj + a) + α−
j ) > 0, one easily obtains an estimate of the form

eaρθ(z)|ycj(z′) |
∫
Cj(z′)

|
e2πi(ζ−z)ycj(ζ)

−1f(ζ)
e2πi(ζ−z) − 1

| |dζ| � K

∫ ∞

0

e−δxdx

where K and δ are positive numbers, independent of R, provided R is suf-
ficiently large. With the aid of (4.3) and (4.4) we conclude that Λc

jf ∈
b1θ,a(D(R))nj (νj = 0) and ‖Λc

jf‖θa,D(R) � C ′
j , where C ′

j is a positive con-
stant, independent of R.

Case 4. If dj < 0, we choose Cj(z′) to consist of C−
θ1

(z′) and C+
θ2

(z′).
According to lemma 2.6(i), these paths lie in D(R) for all z ∈ D(R). Let
θ′ ∈ R. Putting ζ = ζ(x) if ζ ∈ Cθ′(z) and using the notation of §2.1, the
identities (2.5), (2.8) and (4.6), we have

ζ ′(x) = ρ′(x) + i =
φ(x) + θ′

1 + log r(x)
+ i, (4.7)

d

dx
log r(x) = O(

1
r(x)

), (4.8)

d

dx
ρθ(ζ(x)) = Re {[1 + iθ(

1
log ζ(x)

− 1
(log ζ(x))2

)]ζ ′(x)} =

=
φ(x) + θ′ − θ

log r(x)
+O(

1
(log r(x))2

) (4.9)

and
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d

dx
log |ycj(ζ(x))e2ljπiζ(x)| = Re {[dj(log ζ(x) + 1) + (µj + 2ljπi)]ζ ′(x)}+

+O(r(x)−1/p) = djθ
′ − Im µj − 2ljπ +O(

1
log r(x)

) (4.10)

Due to the assumption that J1+(I) = ∅, there exists a unique integer n with
the property that

Im µj + 2(n+ 1)π
dj

< θ1 and
Im µj + 2nπ

dj
> θ2

Now, choose lj to be this integer. Then we have

djθ2 − Im µj − 2ljπ > 0 and djθ1 − Im µj − 2(lj + 1)π < 0 (4.11)

Using (4.3), (4.4), (4.10), (4.11) and lemma 2.7(ii), we obtain an estimate
of the form

eaρθ(z)|zdjycj(z)|
∫
Cj(z′)

|
e−2ljπi(ζ−z)ycj(ζ + 1)−1f(ζ)

e2πi(ζ−z) − 1
||dζ| � K

∫ ∞

0

e−δxdx

where K and δ are positive numbers, independent of R, provided R is suffi-
ciently large. With the aid of (4.4) we conclude that Λc

jf ∈ z− 3
2dj b1θ,a(D(R))nj

(νj = − 3
2dj) and ‖z 3

2dj Λc
jf‖θa,D(R) � C ′

j , where C ′
j is a positive constant,

independent of R. (Note that a similar result holds for any νj > −dj , as we
can choose z′ arbitrarily close to z.)
Case 5. Now suppose dj = 0, µj �= 0, argµj = π. The assumption J̃1(I) = ∅
implies that θ1 < −π/2, or θ2 > π/2. We shall discuss the case that
θ1 < −π/2 and take lj = 0.

First, suppose that J1(I) = ∅, so θ2 < −π/2 as well. Let D(R) = DI(R)
and θ ∈ (θ1−π/2, θ2 +π/2) (case a) of proposition 4.4), or |I| < π, D(R) =
D̃I(R) and θ ∈ (θ2 − π/2, θ1 + π/2) (case b)). In both cases, θ < 0. We
choose Cj(z′) to consist of a half line C−

j (z′) from z′ to ∞ with direction
α−
j ∈ (−π/2,min{0, π/2−arg(µj +a+2πi)}) and C+

θ2
(z′). The integral over

C−
j (z′) is similar to that in case 3 above. Using lemma 2.7(ii) and (4.4), we

find that, for all ζ ∈ C+
θ2

(z′),

eaρθ(z)|
ycj(z)y

c
j(ζ + 1)−1f(ζ)

e2πi(ζ−z) − 1
| � Kea(ρθ(z)−ρθ(ζ))|ycj(z′)ycj(ζ)−1| (4.12)

where K is a positive constant, independent of R, provided R is sufficiently
large. We put ζ = ζ(x) for all ζ ∈ Cθ2(z

′) and use the notation of §2.1. In
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view of (2.7), there exists a positive number δ such that φ(x) + θ2 < −δ for
all x ∈ R, provided R is sufficiently large. From (2.5) we deduce that ρ is
monotone decreasing on R. With the aid of (4.7) and (4.9) we find

d

dx
ρθ(ζ(x)) = (

φ(x) + θ2 − θ
φ(x) + θ2

+O(
1

logR
))ρ′(x),

d

dx
log |ycj(ζ(x))| = µjρ

′(x) +O(r(x)−1/p) = (µj +O(
1

logR
))ρ′(x),

|dζ(x)| = O(log |ζ(x)|)|dρ(x)|

and
d

dx
log log |ζ(x)| = O(

1
R

)ρ′(x)

After a change of variable, setting ρ(z′) = ρ0 and noting that, for all x ∈ R,
θ

φ(x)+θ2
> 0, we obtain

∫
C+

θ2
(z′)

ea(ρθ(z′)−ρθ(ζ))(log |z′|)−1|ycj(z′)ycj(ζ)−1||dζ|

�
∫ ρ0

−∞
e(µj+a+O( 1

log R ))(ρ0−ρ)dρ

provided a < |µj | and R is sufficiently large. With the aid of (4.12) we
conclude that Λc

jf ∈ zνj b1θ,a(D(R))nj for a < |µj | and any positive number
νj , and ‖z−νj Λc

jf‖θa,D(R) � C ′
j , where C ′

j is a positive constant, independent
of R, provided R is sufficiently large.

Next, we consider the case that |I| < π, D(R) = D̃I(R) and J1(I) �= ∅,
so −π/2 < θ2 < θ1 + π < π/2, and θ ∈ (θ2 − π/2, θ1 + π/2). In this
case, D(R) = D̃I(Reiφ), with φ ∈ (−π/2,−θ2). If z′ ∈ Dθ1(Re

iφ), we can
proceed as above. If z′ �∈ Dθ1(Re

iφ), we have to choose a slightly more
complicated path of integration, consisting of a half line C−

j (z′) as above,
the arc of C+

θ(z)(z
′) connecting z′ and Reiφ, where θ(z) ∈ [θ1, θ2] is defined by

Re ψθ(z)(z′) = Re ψθ(z)(Reiφ), and C+
θ1

(Reiφ). The integrals over the path
from z′ to Reiφ and C+

θ1
(Reiφ) can be estimated similarly to the integral

over C+
θ2

(z′) in the previous case, due to the fact that, on each of these
paths, Re ζ decreases sufficiently fast as Im ζ increases (cf. the proof of
proposition 4.7). The case θ2 > π/2 is similar.

Moreover, a careful analysis reveals that R0 can be taken independent
of a, provided a < a0 < inf{|µj | : j ∈ {1, ...,m}, dj = 0, argµj = π}. This
completes the proof of (i) and (ii).
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The proof of the fact that Λc
j∆

c
jf = ∆c

jΛ
c
jf = f for all f ∈ b1θ,a(D(R))nj

is straightforward and similar to, for example, the proof of the correspond-
ing part of proposition 3.6 in [9]. It involves deformation of contours and
application of Cauchy’s theorem. �

4.2. Right inverses of ∆c
j on Banach spaces of quasi-functions

In this section we consider Banach spaces of so-called quasi-functions :
pairs of functions, defined on overlapping domains D1(R) and D2(R), and
differing by an exponentially small function on the intersection of the do-
mains. The domains D1(R) and D2(R) are defined as follows. Let I1 and
I2 be finite, closed intervals of R : Ii = [θ−i , θ

+
i ], such that θ+1 < θ−2 ,

θ+2 − θ−1 < π. Let R be a sufficiently large positive number. If θ−1 < −π/2 <
θ+2 < π/2 we choose φ12 ∈ (−π/2,−θ+2 ), if −π/2 < θ−1 < π/2 < θ+2 we
choose φ12 ∈ (−θ−1 , π/2), otherwise we take φ12 = 0. In all cases we define
z12 = Reiφ12 and Di(R) := D̃Ii

(z12) for i = 1, 2. Furthermore, we put
D1 ∩D2 = D12 and D1 ∪D2 = D. Note that D is defined similarly to D(R)
in proposition 4.4 b), with I = [θ−1 , θ

+
2 ]. (cf. Figure 4.)

Definition 4.5. — Let I1, I2 be finite, closed intervals of R : Ii =
[θ−i , θ

+
i ], such that θ+1 < θ−2 and θ+2 < θ−1 + π. Let R be a sufficiently

large positive number and, for i = 1, 2, let Di := Di(R) denote the do-
main defined above and D12 = D1 ∩ D2. Let θ ∈ (θ+2 − π/2, θ−1 + π/2),
θ′ ∈ (θ+1 , θ

−
2 ), a and b > 0. By Ba,θ

b,θ′(R) we denote the Banach space of
quasi-functions F = (f1, f2) ∈ b1θ,a(D1) × b1θ,a(D2) with the property that
f1 − f2 ∈ b1+

θ′,b(D12), equipped with the norm

‖F‖ := max{‖f1‖θa,D1
, ‖f2‖θa,D2

,K(R)|||f1 − f2|||θ
′

b,D12
}

where K(R) = supz∈D12
|earθ(z)−bψθ′ (z)|.

By τF and ∆c
jF we denote the quasi-functions

τF := (τf1, τf2), ∆c
jF := (∆c

jf1,∆
c
jf2)

and by zνF the quasi-function (g1, g2), where gi(z) = zνfi(z) for all z ∈ Di,
i = 1, 2.

Remark 4.6. — Obviously, K(R) also depends on a, b, θ and θ′. For all
z ∈ D12 we have

Re (ψθ′(z)− ψθ′(z12)) � max{(θ′ − θ+1 )Im (z12 − z), (θ−2 − θ′)Im (z − z12)}

With the aid of this inequality it is easily seen that, for every θ′ ∈ (θ+1 , θ
−
2 )

and every θ ∈ R, K(R) = |earθ(z12)−bψθ′ (z12)|, provided R is sufficiently
large.
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Figure 4. — In this picture, I1 = [−π
5
,− π

10
], I2 = [ 2π

5
, 3π

5
], R = 20 and φ = π

4

Proposition 4.7. — Let I1, I2 be finite, closed intervals of R : Ii =
[θ−i , θ

+
i ], i ∈ {1, 2}, such that θ+1 < θ−2 , θ+2 < θ−1 + π and, for i = 1, 2,

J1+(Ii) = {θ−i , θ+i }∩{−π/2, π/2} = ∅. Moreover, if there is a j ∈ {1, ...,m}
such that dj = 0, µj �= 0 and argµj = π, we assume that either θ−1 < −π/2
or θ+2 > π/2.

Let θ ∈ (θ+2 − π/2, θ−1 + π/2) and θ′ ∈ (θ+1 , θ
−
2 ). There exist positive

numbers a0, b0 and R0 such that, for each j ∈ {1, ...,m}, ∆c
j is a bijective

mapping from ∪(a,b,R)B
a,θ
b,θ′(R)nj onto itself, where the union is over all a ∈

(0, a0), b ∈ (0, b0) and R > R0. Its inverse Λq
j has the following properties :

(i) There exists a real number νj such that, for all a ∈ (0, a0), b ∈ (0, b0)
and R > R0,

Λq
j(B

a,θ
b,θ′(R)nj ) ⊂ zνjBa,θ

b,θ′(R)nj

(ii) There exists a positive constant C ′
j, independent of R, such that

‖z−νj Λq
jF‖ � C ′

j‖F‖

for all F ∈ Ba,θ
b,θ′(R)nj , provided a ∈ (0, a0), b ∈ (0, b0) and R > R0.
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Proof. — Let j ∈ {1, ...,m}, a and b > 0, R > RI , where I = [θ−1 , θ
+
2 ], let

F = (f1, f2) ∈ Ba,θ
b,θ′(R)nj and i ∈ {1, 2}. Again, without loss of generality,

we may assume that ‖F‖ = 1. If j �∈ J̃1(Ii) (cf. definition 4.2) we define gi :=
(Λq

jF )i = Λc
jfi, where Λc

j denotes the mapping mentioned in proposition 4.4.
According to proposition 4.4, Λc

jfi ∈ zνj b1θ,a(Di)nj and

‖z−νj Λc
jfi‖θa,Di

� Ci
j‖fi‖θa,Di

� Ci
j

where Ci
j is a positive constant, independent of R, provided R is sufficiently

large.

Now suppose that j ∈ J̃1(Ii). This implies that dj = 0, µj �= 0 and
argµj = π, and Ii ⊂ (−π/2, π/2). We shall discuss the case that i = 2,
i.e. j �∈ J̃1(I1), but j ∈ J̃1(I2). The case that j �∈ J̃1(I2), but j ∈ J̃1(I1) is
similar. For all z ∈ D2 we define

g2(z) := (Λq
jF )2(z) := ycj(z)

∫
C+

j
(z∗)

ycj(ζ + 1)−1f1(ζ)
e2πi(ζ−z) − 1

dζ+

−ycj(z)
∫
C−

j
(z′)

ycj(ζ + 1)−1f2(ζ)
e2πi(ζ−z) − 1

dζ + ycj(z)
∫
Cj(z′,z∗)

ycj(ζ + 1)−1f2(ζ)
e2πi(ζ−z) − 1

dζ

+ycj(z)
∫
C12

j
(z∗)

ycj(ζ + 1)−1(f2 − f1)(ζ)
e2πi(ζ−z) − 1

dζ − ycj(z)ycj(z + 1)−1f2(z)

Here z∗ is some point in Dθ−1
(z12) ∩ D2, C+

j (z∗) = C+

θ−1
(z∗), Cj(z′, z∗) is

a suitable path from z′ to z∗, C−
j (z′) is a half line from z′ to ∞ in a

direction α−
j ∈ (−π/2, π/2 − arg(µj + a + 2πi)) and C12

j (z∗) is a half line
from z∗ to ∞ in a direction α+

j ∈ (0, π/2). If a < |µj |, we can choose
arg(µj +a+2πi) ∈ (π/2, π), so that α−

j ∈ (−π/2, 0). (Note that, essentially,
the path C−

j (z′)∪Cj(z′, z∗)∪C+
j (z∗) is the same as the path Cj(z′) in the

last part of the proof of case 5 of proposition 4.4, if we replace θ1 and θ2
in that proof by θ−1 and θ+2 , respectively. The fact that the function in the
integrand changes from f2 to f1 at some point on this path, necessitates a
“corrective term” involving the difference f2 − f1.)
We deduce from lemma 2.6 (iii) that C+

j (z∗) ⊂ D1, C12
j (z∗) ⊂ D12, and

C−
j (z′) ⊂ D2 for all z ∈ D2 if R is sufficiently large. It is easily seen

that, within certain limits, the above definition is independent of the choice
of z∗. If Re ψθ−1

(z′) � Re ψθ−1
(z12) (i.e. z′ ∈ D2 ∩ Dθ−1

(z12) ⊂ D12), we
take z∗ = z′, otherwise we choose it to be the intersection of ∂D1 and
∂D2, i.e. z12. In the latter case we have Re ψθ+

2
(z) � Re ψθ+

2
(z12) and
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Re ψθ−1
(z) � Re ψθ−1

(z12), or, equivalently,

θ−1 Im (z12 − z) � Re (z12 log z12 − z log z) � θ+2 Im (z12 − z)

for all z ∈ D2 − Dθ−1
(z12). Thus, if z′ ∈ D2 − Dθ−1

(z12), there is a θ(z) ∈
[θ−1 , θ

+
2 ], such that Re ψθ(z)(z′) = Re ψθ(z)(z∗), (more precisely, θ(z)Im (z12−

z) = Re (z12 log z12 − z′ log z′)) and we take Cj(z′, z∗) to be the arc of
Cθ(z)(z12) between z′ and z∗.
The integral over C−

j (z′) can be estimated in a way similar to the corre-
sponding integrals in cases 3 and 5 in the proof of proposition 4.4 above.
The integral over C+

j (z∗) is similar to the integral over C+
θ2

(z′) in case 5 of
that proof (with z∗ instead of z′ and θ−1 instead of θ2), and we have the
following estimate

(log |z∗|)−1eaρθ(z∗)|ycj(z∗)
∫
C+

j
(z∗)

ycj(ζ + 1)−1f1(ζ)
e2πi(ζ−z) − 1

dζ| � C ′
j (4.13)

where C ′
j is a positive number, independent of R. If z′ ∈ Dθ−1

(z12) we
are done. If z′ ∈ D2 − Dθ−1

(z12) we have z∗ = z12, Im z � Im z12 and
arg z′ � φ12 < −θ+2 . Putting ζ = ζ(x) if ζ ∈ Cθ(z)(z′) and using the
notation of §2.1 and (2.5) and (2.8), we have

d

dx
[aρθ(ζ(x)) + log |ycj(ζ(x))| − log log |ζ(x)|]

=
a(φ(x) + θ(z) − θ) + µj(φ(x) + θ(z))

log r(x)
+O(

1
(log r(x))2

)

As φ(x) � φ12 < −θ+2 for all x � Im z12 and θ(z) � θ+2 , the left-hand side is
positive for all x � Im z12, provided a is a sufficiently small positive number
and R is sufficiently large. Consequently,

(log |z′|)−1 log |z12|ea(ρθ(z′)−ρθ(z12))|ycj(z′)ycj(z12)−1| � 1 (4.14)

for all z′ ∈ D2−Dθ−1
(z12), provided a is sufficiently small andR is sufficiently

large. With (4.3), (4.4) and (4.13) this implies that, for all z ∈ D2,

(log |z|)−1eaρθ(z)|ycj(z)
∫
C+

j
(z∗)

ycj(ζ + 1)−1f1(ζ)
e2πi(ζ−z) − 1

dζ| � C ′′
j

where C ′′
j is a positive number, independent ofR. The integral over Cj(z′, z12)

can be estimated in a similar manner, due to the fact that, for all ζ ∈
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Cj(z′, z12), arg ζ + θ(z) � φ12 + θ+2 < 0. Due to the supra-exponential
decrease of f2 − f1 on C12

j (z∗), one easily verifies that

|ebψθ′ (z∗)ycj(z∗)
∫
C12

j
(z∗)

ycj(ζ + 1)−1(f2 − f1)(ζ)
e2πi(ζ−z) − 1

dζ| � C ′′′
j |||f2 − f1|||θ

′

b,D12

where C ′′′
j is a positive number, independent of R. Since K(R)|||f2−f1|||θ

′

b,D12

� ‖F‖ = 1, it suffices to prove that K(R)−1earθ(z)−bψθ′ (z∗)ycj(z)y
c
j(z∗)

−1 is
uniformly bounded onD2, by a constant independent of R. This is obviously
true if z′ ∈ Dθ−1

(z12), in which case z∗ = z′. For z′ ∈ D2−Dθ−1
(z12) it follows

easily from (4.4) and (4.14). Combining the above estimates, we find that
g2 ∈ zνj b1θ,a(D2)nj for any positive number νj and

‖z−νjg2‖θa,D2
� C

(2)
j

where C(2)
j is a positive constant, independent of R.

It remains to be proved that, for θ′ ∈ (θ+1 , θ
−
2 ), sufficiently small b and

sufficiently large R, g1 − g2 ∈ zνj b1
+

θ′,b(D12) and

|||z−νj (g1 − g2)|||θ
′

b,D12
� C|||f2 − f1|||θ

′

b,D12

where C is a positive constant, independent of R. By means of residue
calculus we find, if dj � 0,

g1(z) − g2(z) = ycj(z)
∞∑
h=0

ycj(z + h+ 1)−1(f1 − f2)(z + h)

Furthermore, we have

ψ′
θ′(z) = log z + 1 + iθ′

Hence it follows that, for all h � 0,

Re (ψθ′(z) − ψθ′(z + h)) � −h log d(R)

where d(R) = min{|z| : z ∈ D12}. With the aid of lemma 2.7(i) and (4.1)
we find

|||zdj (g1 − g2)|||θ
′

b,D12
�

∞∑
h=0

Kh
1 d(R)−(dj+b)h|||f2 − f1|||θ

′

b,D12
< 2|||f2 − f1|||θ

′

b,D12

– 338 –



Exact asymptotics of nonlinear difference equations with levels 1 and 1+

if R is sufficiently large. Thus, we can conclude that, if dj � 0 and R is
sufficiently large, there exists a νj ∈ R such that Λq

jF ∈ zνjBa,θ
b,θ′(R)nj and

‖z−νj Λq
jF‖ � Cj (4.15)

where Cj is a positive constant, independent of R.

Now consider the case that dj < 0. Then we have for i ∈ {1, 2} (cf.
Proposition 4.4, case 4)

gi(z) = ycj(z)
∫
Cj(z′)

e−2liπi(ζ−z)ycj(ζ + 1)−1fi(ζ)
e2πi(ζ−z) − 1

dζ − ycj(z)ycj(z + 1)−1f(z)

where Cj(z′) is the path consisting of C−
θ−

i

(z′) and C+

θ+
i

(z′), l1 and l2 are the

unique integers with the property that, for i ∈ {1, 2},

djθ
+
i − Imµj − 2liπ > 0 and djθ−i − Im µj − 2(li + 1)π < 0 (4.16)

By lemma 2.6(i) we have, for all z ∈ D12, C+

θ+
2
(z′) ⊂ D1 (as θ+2 > θ+1 ) and

C−
θ−1

(z′) ⊂ D2 (as θ−1 < θ−2 ). From (4.16) we deduce that

∫
C+

θ
+
1

(z′)

e−2l2πi(ζ−z)ycj(ζ + 1)−1f1(ζ)
e2πi(ζ−z) − 1

dζ =

∫
C+

θ
+
2

(z′)

e−2l2πi(ζ−z)ycj(ζ + 1)−1f1(ζ)
e2πi(ζ−z) − 1

dζ

and ∫
C−

θ
−
2

(z′)

e−2l1πi(ζ−z)ycj(ζ + 1)−1f2(ζ)
e2πi(ζ−z) − 1

dζ =

∫
C−

θ
−
1

(z′)

e−2l1πi(ζ−z)ycj(ζ + 1)−1f2(ζ)
e2πi(ζ−z) − 1

dζ

Putting f1 − f2 = f12 we obtain

ycj(z)
−1(g1(z) − g2(z)) =

∫
C+

θ
+
2

(z′)

e−2l2πi(ζ−z)ycj(ζ + 1)−1(f12)(ζ)
e2πi(ζ−z) − 1

dζ

+
∫
C−

θ
−
1

(z′)

e−2l1πi(ζ−z)ycj(ζ + 1)−1(f12)(ζ)
e2πi(ζ−z) − 1

dζ
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+
∫
C+

θ
+
1

(z′)

(e−2l1πi(ζ−z) − e−2l2πi(ζ−z))ycj(ζ + 1)−1f1(ζ)
e2πi(ζ−z) − 1

dζ (4.17)

+
∫
C−

θ
−
2

(z′)

(e−2l1πi(ζ−z) − e−2l2πi(ζ−z))ycj(ζ + 1)−1f2(ζ)
e2πi(ζ−z) − 1

dζ

For all ζ ∈ C−
θ−1

(z′) we have, due to (4.16),

log |(z′/ζ)djycj(z
′)ycj(ζ)

−1e2(l1+1)πi(z−ζ)| + bRe (ψθ′(z′) − ψθ′(ζ))

= {djθ−1 −Im µj−2(l1+1)π+b(θ−1 −θ′)+O(
1

logR
)}Im (z−ζ) < −δIm (z−ζ)

and, for all ζ ∈ C+

θ+
2
(z′),

log |(z′/ζ)djycj(z
′)ycj(ζ)

−1e2l2πi(z−ζ)| + bRe (ψθ′(z′) − ψθ′(ζ)) =

= {djθ+2 − Im µj − 2l2π + b(θ+2 − θ′) +O(
1

logR
)}Im (z − ζ)

< δIm (z − ζ)
where δ is a positive number, independent of R, provided R is sufficiently
large. Hence we deduce, with the aid of (4.4), an estimate of the form

|z3dj/2ycj(z){
∫
C+

θ
+
2

(z′)

e−2l2πi(ζ−z)ycj(ζ + 1)−1f12(ζ)
e2πi(ζ−z) − 1

dζ+

∫
C−

θ
−
1

(z′)

e−2l1πi(ζ−z)ycj(ζ + 1)−1f12(ζ)
e2πi(ζ−z) − 1

dζ}|

� C ′
j |||f12|||θ

′

b,D12
|e−bψθ′ (z)|, z ∈ D12

where C ′
j is a positive number, independent of R.

For all z ∈ D12, such that Im z �= Im z12, there exists a real number
θ(z) : θ(z) � θ+1 if Im z < Im z12, θ(z) � θ−2 if Im z > Im z12, with the
property that

Re ψθ(z)(z′) = Re ψθ(z)(z12)

By deformation of contours, one easily verifies that the sum of the last two
integrals in (4.17) is equal to

l1∑
h=l2+1

∫
Cj(z′,z12)

ycj(ζ + 1)−1f12(ζ)e−2hπi(ζ−z)dζ
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+
l1∑

h=l2+1

[
∫
C+

θ
+
1

(z12)

e−2hπi(ζ−z)ycj(ζ + 1)−1f1(ζ)dζ

+
∫
C−

θ
−
2

(z12)

e−2hπi(ζ−z)ycj(ζ + 1)−1f2(ζ)dζ]

where Cj(z′, z12) is the (directed) segment from z′ to z12 if Im z = Im z12,
and the arc of Cθ(z)(z′) connecting z′ and z12 otherwise. We shall discuss
the case that Im z < Im z12. In that case we have, for all ζ ∈ Cj(z′, z12)
and all integers h � l1,

log |(z′/ζ)djycj(z
′)ycj(ζ)

−1e2hπi(z−ζ)| + bRe (ψθ′(z′) − ψθ′(ζ)) =

{(dj + b+O(
1

logR
))θ(z) − Im µj − 2hπ − bθ′ +O(

1
logR

)}Im (z − ζ)

As θ(z) � θ+1 while θ′ > θ+1 , the right-hand side is less than

{djθ+1 − Im µj − 2l1π + b(θ+1 − θ′) +O(
1

logR
)}Im (z − ζ)

provided b < −dj and R is sufficiently large. With (4.16) it follows that, for
all ζ ∈ Cj(z′, z12) and all integers h � l1,

log |(z′/ζ)djycj(z
′)ycj(ζ)

−1e2hπi(z−ζ)| + bRe (ψθ′(z′) − ψθ′(ζ)) < δIm (z − ζ)
(4.18)

where δ is a positive number, independent of R, provided b is sufficiently
small and R is sufficiently large. Hence we deduce, with the aid of (4.4), an
estimate of the form

|z3dj/2ebψθ′ (z)ycj(z)
l1∑

h=l2+1

∫
Cj(z′,z12)

ycj(ζ + 1)−1f12(ζ)e−2hπi(ζ−z)dζ|

� C ′′
j |||f12|||θ

′

b,D12

where C ′′
j is a positive constant, independent of R, and we have used the

fact that Re ψθ′(z) � Re ψθ′(z′).

For all ζ ∈ C+

θ+
1
(z12) we have, due to (4.16),

log |(z12/ζ)djycj(z12)y
c
j(ζ)

−1e2hπi(z12−ζ)| + a(ρθ(z12) − ρθ(ζ))

= {djθ+1 − Im µj − 2hπ +O(
1

logR
)}Im (z12 − ζ) < δIm (z12 − ζ) (4.19)
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if h � l1. From (4.18) we infer that, for all h � l1,

log |(z′/z12)djycj(z
′)ycj(z12)

−1e2hπi(z−z12)| + bRe (ψθ′(z′) − ψθ′(z12) � 0

provided b is sufficiently small and R is sufficiently large. Using (4.4) and
(4.19), we find

|z3dj/2ebψθ′ (z)ycj(z)
l1∑

h=l2+1

∫
C+

θ
+
1

(z12)

e−2hπi(ζ−z)ycj(ζ + 1)−1f1(ζ)dζ| �

K1|ebψθ′ (z12)z
dj

12y
c
j(z12)|

l1∑
h=l2+1

∫
C+

θ
+
1

(z12)

|ζ−djycj(ζ)
−1e2hπi(z12−ζ)f1(ζ)dζ|

< K1|ebψθ′ (z12)−arθ(z12)|
l1∑

h=l2+1

∫
C+

θ
+
1

(z12)

eδIm (z12−ζ)|dζ|‖f1‖θa,D1

With the aid of remark 4.6 it follows that

K(R)|z3dj/2ebψθ′ (z)ycj(z)
l1∑

h=l2+1

∫
C+

θ
+
1

(z12)

e−2hπi(ζ−z)ycj(ζ+1)−1f1(ζ)dζ| � C̃j

where C̃j is a positive constant, independent of R. In a similar manner one
proves that

K(R)|z3dj/2ebψθ′ (z)ycj(z)
l1∑

h=l2+1

∫
C−

θ
−
2

(z12)

e−2hπi(ζ−z)ycj(ζ+1)−1f2(ζ)dζ| � C̃ ′
j

where C̃ ′
j is a positive constant, independent of R. Combining the above

estimates, we conclude that, if dj < 0, Λq
jF ∈ z−3dj/2Ba,θ

b,θ′(R)nj and

‖z3dj/2Λq
jF‖ � C ′

j (4.20)

where C ′
j is a positive constant, independent of R. This completes the proof

of (i) and (ii). For the proof of the fact that Λq
j inverts ∆c

j we refer the
reader to [9]. �

We shall need the following simple lemma, which is a straightforward
generalization of a lemma proved by Wasow (cf. [13, lemma 14.3]).

Lemma 4.8. — Let ψ : D×U → C be a holomorphic function, where D
is a domain of C and U a convex subset of Cn containing O. Suppose that
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the Jacobian matrix of ψ(z, u) with respect to u vanishes at u = 0 for all
z ∈ D and the Hessian matrix of ψ(z, u) with respect to u is bounded on
D×U . Then there exists a positive constant K such that, for all z ∈ D and
all u1, u2, v1 and v2 ∈ U ,

|ψ(z, u1) − ψ(z, u2) − ψ(z, v1) + ψ(z, v2)| �

K [max{|u2 − u1|, |v2 − v1|}max{|u1 − v1|, |u2 − v2|}

+ max{|u1|, |u2|, |v1|, |v2|}|u2 − u1 − v2 + v1|]

Proof. — For all z ∈ D and all u1, u2, v1 and v2 ∈ U ,

|ψ(z, u1) − ψ(z, u2) − ψ(z, v1) + ψ(z, v2)| =

|
∫ 1

0

d

dt
ψ(z, u2 + t(u1 − u2)) − ψ(z, v2 + t(v1 − v2))dt| =

|
∫ 1

0

∫ 1

0

∂2

∂s∂t
ψ(z, v2 + t(v1 − v2) + s(u2 − v2 + t(u1 − u2 − v1 + v2)))dsdt|

Due to the properties of ψ, there exist positive numbers K1 and K2 such
that, for all z ∈ D, all u1, u2, v1 and v2 ∈ U and (s, t) ∈ (0, 1) × (0, 1),

| ∂
2

∂s∂t
ψ(z, v2 + t(v1 − v2) + s(u2 − v2 + t(u1 − u2 − v1 + v2)))|

� K1|v1 − v2 + s(u1 − u2 − v1 + v2)||u2 − v2 + t(u1 − u2 − v1 + v2)|+

+K2|v2 + t(v1 − v2) + s(u2 − v2 + t(u1 − u2 − v1 + v2))||u1 − u2 − v1 + v2|

Hence the result follows. �

Let U ⊂ Cn, Di ⊂ S+, i = 1, 2, and ψ a Cn-valued function on (D1 ∪
D2)×U . For i = 1, 2, let fi : Di → U be a given function and let gi : Di →
Cn be defined by

gi(z) = ψ(z, fi(z)) for all z ∈ Di

Putting (f1, f2) = F , we define

ψq(F ) := G := (g1, g2)

In particular, if U is a neighbourhood of O, Di = Di(R) and F is a given
element of Ba,θ

b,θ′(R)n, then ψq(F ) is well-defined if ‖F‖ is sufficiently small,
or R is sufficiently large. From lemma 4.8 we derive the following corollary.
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Corollary 4.9. — Let I1, I2 be finite, closed intervals of R : Ii =
[θ−i , θ

+
i ], i ∈ {1, 2}, such that θ+1 < θ−2 and θ+2 < θ−1 + π, and let I =

[θ−1 , θ
+
2 ]. For i = 1, 2, let Di := Di(R) denote a domain of the type defined

at the beginning of section 4.2, let D12 = D1 ∩ D2 and D = D1 ∪ D2.
Let ψ ∈ Ã(I ′, 0)n, where I ′ is some finite open interval containing I, and
suppose that ψ(z, 0, 0) = 0 and ψ′

2(z, 0, 0) = ψ′
3(z, 0, 0) = 0 for all z ∈ D.

Let θ ∈ (θ+2 − π/2, θ−1 + π/2), θ′ ∈ (θ+1 , θ
−
2 ), a and b > 0 and ν ∈ R. For

any positive number M , let BM (R) denote the ball

BM (R) = {Y ∈ Ba,θ
b,θ′(R)n : ‖Y ‖ � M}

Then ψq(Y, τY ) ∈ Ba,θ
b,θ′(R)n for all Y ∈ zνBM (R), provided R is sufficiently

large. Moreover, there exists a positive constant K ′
ν(R), such that K ′

ν(R) →
0 as R→ ∞ and, for all Y1, Y2 ∈ zνBM (R),

‖ψq(Y1, τY1) − ψq(Y2, τY2)‖ � MK ′
ν(R)‖Ỹ1 − Ỹ2‖

where Ỹi = z−νYi, i = 1, 2.

Proof. — Let Y = (y1, y2) = zν(ỹ1, ỹ2) ∈ zνBM (R). Thus, ỹi ∈ b1θ,a(Di)n

for i = 1, 2, ỹ1 − ỹ2 ∈ b1+

θ′,b(D12)n and ‖(ỹ1, ỹ2)‖ � M . It is easily seen that
ρθ(z + 1) − ρθ(z) > 0 and Re (ψθ′(z + 1) − ψθ′(z)) > 0 for sufficiently
large |z|. Hence, τ ỹi ∈ b1θ,a(Di)n for i = 1, 2 and τ(ỹ1 − ỹ2) ∈ b1+

θ′,b(D12)n,
‖τ ỹi‖θa,Di

� ‖ỹi‖θa,Di
� M and |||τ(ỹ1 − ỹ2)|||θ

′

b,D12
� |||ỹ1 − ỹ2|||θ

′

b,D12
, if R is

sufficiently large. ψ is analytic on D × U × U , where U ⊂ Cn is a (convex)
neighbourhood of 0. For all z ∈ Di we have |yi(z)| � M |z|νe−aρθ(z), i = 1, 2.
Hence we infer, with the aid of lemma 2.15, that both yi(z) and yi(z+1) ∈ U
if R is sufficiently large. Applying lemma 4.8, with u1 = (yi(z), yi(z + 1)),
i ∈ {1, 2}, and u2 = v1 = v2 = 0, we have, for all z ∈ Di,

|ψ(z, yi(z), yi(z + 1))| � 2K|(yi(z), yi(z + 1))|2 � 2M2Kν |z|2νe−2aρθ(z)

where K and Kν are positive constants, independent of R, if R is suffi-
ciently large. As |z|2νe−aρθ(z) is bounded on D, it follows that ψ(z, yi, τyi) ∈
b1θ,a(Di)n, i = 1, 2. Again applying lemma 4.8, now with ui = (yi(z), yi(z +
1)) for i = 1, 2, and v1 = v2 = 0, we find that, for all z ∈ D12,

|ψ(z, y1(z), y1(z + 1)) − ψ(z, y2(z), y2(z + 1))|

� 2K|(y1(z), y1(z + 1)) − (y2(z), y2(z + 1))|max
i=1,2

|(yi(z), yi(z + 1))|

� 2MKν |z2νe−bψθ′ (z)−arθ(z)||||ỹ1 − ỹ2|||θ
′

b,D12
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This shows that ψ(z, y1, τy1)−ψ(z, y2, τy2) ∈ b1
+

θ′,b(D12)n and thus ψq(Y, τY )
∈ Ba,θ

b,θ′(R)n. In a similar manner one deduces from lemma 4.8 that, for
i ∈ {1, 2} and y1, y2 ∈ zνb1θ,a(Di)n such that ‖ỹj‖θa,Di

� M , j ∈ {1, 2},

‖ψ(z,y1,τy1) − ψ(z,y2,τy2)‖θa,Di
�2MKν sup

z∈Di

|z|2νe−aρθ(z)‖ỹ1−ỹ2‖θa,Di

Now let Y1 = (u1, u2) = zν Ỹ1 = zν(ũ1, ũ2) ∈ zνBM (R) and Y2 = (v1, v2) =
zν Ỹ2 = zν(ṽ1, ṽ2) ∈ zνBM (R). Let ψq(Y1, τY1)−ψq(Y2, τY2) = G = (g1, g2).
Then we have for i = 1, 2 : ‖ũi‖θa,Di

� ‖Ỹ1‖ � M , ‖ṽi‖θa,Di
� ‖Ỹ2‖ � M ,

‖ũi − ṽi‖θa,Di
� ‖Ỹ1 − Ỹ2‖, hence

‖gi‖θa,Di
= ‖ψ(z, ui, τui) − ψ(z, vi, τvi)‖θa,Di

� 2MKν sup
z∈Di

|z|2νe−aρθ(z)‖Ỹ1 − Ỹ2‖ (4.21)

and, applying once more lemma 4.8,

|||g1 − g2|||θ
′

b,D12
= |||ψ(z,u1,τu1)−ψ(z,u2,τu2)−ψ(z,v1,τv1)+ψ(z,v2,τv2)|||θ

′

b,D12

� Kν sup
z∈D

|z|2νe−aρθ(z)

[
max
i=1,2

‖ũi − ṽi‖θa,Di
max{|||ũ1 − ũ2|||θ

′

b,D12
, |||ṽ1 − ṽ2|||θ

′

b,D12
}

+ max{‖ũ1‖θa,D1
, ‖ũ2‖θa,D2

, ‖ṽ1‖θa,D1
, ‖ṽ2‖θa,D2

}|||ũ1 − ṽ1 − ũ2 + ṽ2|||θ
′

b,D12

]
Noting that K(R)|||ũ1 − ũ2|||θ

′

b,D12
� M , K(R)|||ṽ1 − ṽ2|||θ

′

b,D12
� M and

K(R)|||ũ1 − ṽ1 − ũ2 + ṽ2|||θ
′

b,D12
� ‖Ỹ1 − Ỹ2‖, we obtain the inequality

K(R)|||g1 − g2|||θ
′

b,D12
� 2MKν sup

z∈D
|z|2νe−aρθ(z)‖Ỹ1 − Ỹ2‖ (4.22)

From (4.21) and (4.22) the result follows,
with K ′

ν(R)= 2Kν supz∈D|z|2νe−aρθ(z). �

Proof of Theorem 3.3. — If there is no j ∈ {1, ...,m} such that dj = 0,
µj �= 0 and argµj = π, i.e. if −π/2 is not a Stokes direction of level 1, then
the statements of the theorem can be deduced from Theorem 3.1. We shall
discuss the case that −π/2 is a Stokes direction of level 1 and θ−1 < −π/2
(the case that θ+2 > π/2 can be proved in a similar manner). For i = 1, 2 let
I ′i = [θ̂−i , θ̂

+
i ] be a closed subinterval of Ii such that {θ̂−i , θ̂+i }∩{−π/2, π/2} =

∅ and θ̂−1 < −π/2. Then I ′1 �⊂ (−π/2, π/2), so J̃1(I ′1) = ∅, but J̃1(I ′2) may
be nonempty (viz., if θ̂−2 > −π/2). Obviously, θ+1 � θ−2 and θ+2 − θ−1 � π

implies that θ̂+1 < θ̂−2 and θ̂+2 −θ̂−1 < π. Let θ ∈ (θ̂+2 −π/2, θ̂−1 +π/2) and θ′ ∈
(θ̂+1 , θ̂

−
2 ). Let D be a domain of the type mentioned in definition 4.5 with I1
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and I2 replaced by I ′1 and I ′2. In view of lemma 2.14(i), the assumption that
ϕ0 ∈ Ã1,0(I)n implies the existence of a positive number a1 such that ϕ0 ∈
b1θ,a(D)n for all a ∈ (0, a1), if R is sufficiently large. Let a ∈ (0,min{a0, a1}),
b ∈ (0, b0), ν = max{νj : j ∈ {1, ...,m}}, where a0, b0 and νj , j = 1, ...,m,
are the real numbers mentioned in proposition 4.7, and let Λq := ⊕m

j=1Λ
q
j .

Let M > ‖z−νΛq(ϕ0, ϕ0)‖θa,D. ϕ is analytic on D × U × U , where U is a
neighbourhood of O. For Y = (y1, y2) ∈ zνBa,θ

b,θ′(R)n, with the property that
yi(z) ∈ U for all z ∈ Di, i = 1, 2, we define ϕq(Y, τY ) := (g1, g2), where
gi(z) = ϕ0(z) +A(z)yi(z) +B(z)yi(z+ 1) +ψ(z, yi(z), yi(z+ 1)). By virtue
of corollary 4.9, ϕq(Y, τY ) ∈ Ba,θ

b,θ′(R)n for all Y ∈ zνBM (R), provided R is
sufficiently large (depending onM). Furthermore, for all Y1, Y2 ∈ zνBM (R),

‖ϕq(Y1, τY1) − ϕq(Y2, τY2)‖ � sup
z∈D

(|zνA(z)| + |(z + 1)νB(z)|)‖Ỹ1 − Ỹ2‖

+MK ′
ν(R)‖Ỹ1 − Ỹ2‖

where Ỹi = z−νYi for i = 1, 2 and R is supposed sufficiently large. Due to
the fact that A(z) ∼ 0, B(z) ∼ 0 as z → ∞, uniformly on D̃I′(R′) for any
closed subinterval I ′ of I and some sufficiently large R′, and K ′

ν(R) → 0 as
R → ∞, and in view of proposition 4.7, this implies that, for sufficiently
large R, the mapping T : BM (R) → Ba,θ

b,θ′(R)n defined by

T Ỹ = z−νΛqϕq(Y, τY ) = z−νΛq(ϕq(Y, τY ) − ϕq(0, 0)) + z−νΛq(ϕ0, ϕ0)

where Λq := ⊕m
j=1Λ

q
j , is a contraction. Consequently, there exists a unique

quasi-function F̃ = (F̃1, F̃2) ∈ BM (R), such that T F̃ = F̃ . With proposi-
tion 4.7 it follows that zν F̃ is a unique quasi-function solution of (3.1) in
zνBM (R), and thus, both F1 := zν F̃1 and F2 := zνF̃2 are solutions of (3.1).
Increasing I ′1 and I ′2 and using the uniqueness of the quasi-function solu-
tions and lemma 2.14, we conclude that Fi can be analytically continued to
an element fi of Ã1,0(Ii)n, i = 1, 2, such that f2 − f1 ∈ Ã1+,0(Ii)n.

Remark 4.10 . — Note that the conditions on A and B in Theorem 3.3
can be relaxed. All we need is that sup

z∈D̃I′ (R
′)
|zνA(z)| and

sup
z∈D̃I′ (R

′)
|zνB(z)| tend to 0 as R′ → ∞ for any closed subinterval I ′

of I. Moreover, both in Proposition 4.4 and Theorem 3.3, the condition
qj ≡ 0 for all j ∈ {1, . . . ,m} such that dj = µj = 0 can be lifted.

5. Accelero-sums of f̂

In this section we generalize results of [7, §4] and show that the solutions
f1 and f2, mentioned in Theorem 3.2, can be obtained from the formal solu-
tion f̂ by means of a summation procedure, known as ‘accelero-summation’,
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provided |I| > π. It is shown that, for suitable values of θ and θ′, the formal
Borel transform φ1,θ(s) of f̂ with respect to the variable rθ(z) can be contin-
ued quasi-analytically to the half line arg s = 0 and has so-called accelerable
growth. Its accelerate Aθ,θ′(φ1,θ) to the level 1+ (with corresponding ‘crit-
ical variable’ ψθ′(z), cf. (5.9) and (5.11)), has at most exponential growth
of order 1 and, depending on the values of θ and θ′, the Laplace transform
of Aθ,θ′(φ1,θ), in the variable ψθ′(z), coincides with either f1 or f2. This
Laplace transform is an accelero-sum of f̂ .

Let θ ∈ R and let f be a continuous function on (R,∞), where R > 0.
If f has at most subexponential growth as z → ∞, then the function φ̃1,θ

defined by

φ̃1,θ(s) :=
1

2πi

∫ ∞

R

f(z)esrθ(z)drθ(z) (5.1)

is analytic in the half plane Re s < 0. If f is analytic in D̃I(R), where
I = (θ1, θ2) is an open interval of R, and f has subexponential growth as
z → ∞ in D̃I(R), then φ̃1,θ can be continued analytically to the sector
0 < arg s < 2π.

Lemma 5.1. — Let θ ∈ R and let f be a continuous function on (R,∞).
(i) Suppose that f is analytic in D̃I(R), where I = (θ1, θ2) and f satisfies
a growth condition of the form

sup
z∈D̃I(R)

|f(z)|e−ε
|z|

log |z| <∞ for all ε > 0 (5.2)

If θ1 < θ − π/2, then φ̃1,θ defined by (5.1), is continuous on the sector
0 � arg s < 2π and quasi-analytic on arg s = 02. If θ2 > θ + π/2, then φ̃1,θ

is continuous on the sector 0 < arg s � 2π and quasi-analytic on arg s = 2π.
(ii) If there exist positive numbers C and ω such that

|f(z)| � Ce−ωz log z for all z ∈ (R,∞) (5.3)

then φ̃1,θ is an entire function satisfying a growth condition of the form

φ̃1,θ(s) = exp{c exp(
Re s

ω
)}O(1) as Re s→ ∞, (5.4)

uniformly on closed subsectors of | arg s| < π/2, where c is a positive number.

(2) More precisely, the restriction of φ̃1,θ to [a, b] belongs to the Denjoy class 1D[a, b]
for all 0 < a < b
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Proof. — (i) Suppose that θ1 < θ − π/2. By deformation of the path of
integration in (5.1), it is easily seen that the right-hand side can be continued
analytically to the upper half plane and that it can be represented by

φ̃1,θ(s) =
1

2πi

∫
C+

θ1
(R)

f(z)esrθ(z)drθ(z), 0 < arg s < π (5.5)

According to (2.11), there exists δ > 0 such that ρθ(z) � −δ |z|
log |z| for all

z ∈ C+
θ1

(R) with sufficiently large absolute value. Thus, in view of (5.2), the
function defined by the right-hand side of (5.5) is continuous on 0 � arg s <
π and C∞ on arg s = 0, and we have, for all m ∈ N,

φ̃
(m)
1,θ (s) =

1
2πi

∫
C+

θ1
(R)

f(z)(rθ(z))mesrθ(z)drθ(z), arg s = 0

From (5.2) and (2.11) we deduce an inequality of the form

|φ̃(m)
1,θ (s)| � ec

′sCm
ε

∫
C+

θ1
(R)

|z|me(ε−δs)
|z|

log |z| |dz|, arg s = 0

where c′ and Cε > 0 and 0 < ε < δs. Application of the Laplace method to
the integral on the right-hand side yields an estimate of the form

|φ̃(m)
1,θ (s)| � Km

a,b(m logm)m, m � 2, s ∈ [a, b],

where Ka,b > 0, for any interval [a, b] ⊂ (0,∞). Hence it follows that the
restriction of φ̃1,θ to [a, b] belongs to the Denjoy class 1D[a, b] (cf. [4]). The
statement for the case that θ2 > θ + π/2 can be proved similarly, using the
representation

φ̃2,θ(s) =
1

2πi

∫
C−

θ2
(R)

f(z)esrθ(z)drθ(z), π < arg s < 2π (5.6)

(ii) If f decreases supra-exponentially as z → ∞, the right-hand side of
(5.1) obviously defines an entire function. Moreover, if (5.3) is satisfied, we
have, for all z ∈ (R,∞),

|f(z)esrθ(z)| � Ce−ωz log z+Re sz−θIm sz
log z

The right-hand side of this inequality attains its maximum at a point z(s)
with the property that log z(s) = (Re s

ω − 1)(1 +O( Im s
(Re s)2 )) as Im s

(Re s)2 → 0,
and

−ωz(s) log z(s) + Re sz(s) − θIm sz(s)
log z(s)

= z(s){ω +O(
Im s

Re s
)}

hence (5.4) follows easily. �
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Let I1, I2 be open intervals of R : Ii = (θ−i , θ
+
i ), i ∈ {1, 2}, such that

θ−1 < θ+2 − π and let θ ∈ (θ−1 + π
2 , θ

+
2 − π

2 ). Suppose we are given functions
fi, analytic on D̃Ii(R) and satisfying a growth condition of the form (5.2)
on D̃Ii

(R) instead of D̃I(R), i = 1, 2, such that

|f2(z) − f1(z)| � Ce−ωz log z on (R,∞),

where C and ω are positive numbers. Let φ̃[i]
1,θ(s) :=

∫ ∞
R
fi(z)esrθ(z)drθ(z),

i = 1, 2. According to lemma 5.1, φ̃[1]
1,θ(s) is quasi-analytic on the half line

arg s = 0, φ̃[2]
1,θ(s) is quasi-analytic on the half line arg s = 2π and φ̃[2]

1,θ− φ̃
[1]
1,θ

is an entire function satisfying a growth condition of the form (5.4). Hence
it follows that φ̃[1]

1,θ(s) is quasi-analytic on the half line arg s = 2π as well
and the function φ1,θ defined by

φ1,θ(s) = φ̃
[1]
1,θ(s) − φ̃

[1]
1,θ(se

2πi) = φ̃
[2]
1,θ(s) − φ̃

[2]
1,θ(se

2πi), arg s = 0 (5.7)

is quasi-analytic on the half line arg s = 0 (more precisely, for all 0 < a < b,
the restriction of φ1,θ to [a, b] belongs to the Denjoy class 1D[a, b]).

Definition 5.2. — We call φ1,θ defined by (5.7) the Borel transform
of the quasi-function F := (f1, f2) with respect to the variable rθ(z), and
denote it by B1,θ(F ).

Remark 5.3. — If fi ∈ A1(Ii) for i = 1, 2, with common asymptotic
expansion f̂ =

∑∞
h=0 ahz

−h/p, then, for sufficiently small s, the Borel trans-
form φ1,θ(s) coincides with the analytic function defined by the (formal)
Borel transform of f̂ with respect to the variable rθ(z), i.e. :∑∞

h=1
ah

2πi

∫
U
z−h/pesrθ(z)drθ(z), where U is a suitable contour in S+. This

is well-known in the case of the ordinary Borel transform, i.e. θ = 0.

Proposition 5.4. — Let Ii = [θ−i , θ
+
i ], i ∈ {1, 2}, such that θ−1 < θ+2 −

π, let I = (θ−1 , θ
+
2 ), and θ ∈ (θ−1 + π

2 , θ
+
2 − π

2 ). Suppose we are given functions
fj, analytic on D̃Ii

(R) and satisfying a growth condition of the form (5.2)
on D̃Ii(R) instead of D̃I(R), i = 1, 2, such that

|f2(z) − f1(z)| � Ce−ωz log z on (R,∞), (5.8)

where C and ω are positive numbers. Then the Borel transform φ1,θ of
(f1, f2) satisfies a growth condition of the form (5.4) as s→ ∞, arg s = 0.
Furthermore, φ1,θ admits the following integral representation, for all s > 0,
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φ1,θ(s) =
1

2πi


∫

C+

θ
−
1

(R)

f1(z)esrθ(z)drθ(z) −
∫
C−

θ
+
2

(R)

f2(z)esrθ(z)drθ(z)+

+
∫ ∞

R

(f2(z) − f1(z))esrθ(z)drθ(z)
]

Proof. — From (5.7) we deduce that

φ1,θ(s) = φ̃
[1]
1,θ(s) − φ̃

[2]
1,θ(se

2πi) + (φ̃[2]
1,θ − φ̃

[1]
1,θ)(se

2πi), arg s = 0

The integral representation for φ1,θ now follows from (5.5) and (5.6) (ex-
tended to 0 � arg s < π and π < arg s � 2π, respectively). It is easily seen
that the first two terms in this representation grow at most exponentially
as s→ ∞, arg s = 0. From (5.8) and lemma 5.1 (ii) it follows that the third
term satisfies a growth condition of the form (5.4). �

The estimate on the growth of φ1,θ shows that it can be “accelerated from
level 1 to level 1+” by means of a weak acceleration operator Aθ′,θ, where
θ′ ∈ (θ− π

2 , θ+ π
2 ) (cf. [3, 4]). Aθ′,θ is an integral operator (generalizing the

operators Aθ defined in [6, 7]) with kernel Aθ′,θ :

Aθ′,θ(t, s) =
1

2πi

∫
U

etψθ′ (z)−srθ(z)dψθ′(z), t > 0, s > 0 (5.9)

where U denotes a contour consisting of the half line from −∞−iδ to δ−iδ,
the directed segment from δ − iδ to δ + iδ and the half line from δ + iδ to
−∞ + iδ, with δ > 0. Applying the saddle point method to the integral on
the right-hand side of (5.9) we find that, as s

t → ∞, Aθ′,θ behaves as

Aθ′,θ(t, s) = {e
s
t −1−i(θ′−θ)+O(t/s)

2πt3
} 1

2 se−te
s
t
−1−i(θ′−θ)+O(t/s)

(5.10)

The weak accelerate Aθ′,θ(φ) of a function φ satisfying an appropriate growth
condition, is defined by

Aθ′,θ(φ)(t) =
∫ ∞

0

Aθ′,θ(t, s)φ(s)ds, t > 0 (5.11)

Proposition 5.5. — Under the conditions of proposition 5.4, the weak
accelerate Aθ′,θ(φ1,θ)(t) of the Borel transform φ1,θ of (f1, f2) with respect
to rθ(z), defined by (5.11), exists for all θ′ ∈ (θ− π

2 , θ+
π
2 ) and all t ∈ (0, ω).
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Proof. — According to proposition 5.4, φ1,θ satisfies a growth condition
of the form (5.4). With (5.10) it follows that Aθ′,θ(φ1,θ)(t) exists for all
t ∈ (0, ω). �

In [7] we have proved the following proposition ([7, Proposition 2.11]).

Proposition 5.6. — Let θ1 < θ2, I = [θ1, θ2] and R > RI . Suppose
that f is an analytic function on D̃I(R), with the following properties
(i) for every ε > 0,

sup
z∈D̃I(R)

|f(z)|e−ε|z| log |z| <∞

(ii) f grows at most subexponentially as z → ∞ on C+
θ1

(R) ∪ C−
θ2

(R).
Then, for any θ ∈ (θ1, θ2), the function φ̃1+,θ defined by

φ̃1+,θ(t) =
1

2πi

∫ ∞

R

f(z)etψθ(z)dψθ(z), Re t < 0

can be continued analytically to the sector 0 < arg t < 2π and is continuous
on the sector 0 � arg t � 2π, and the function φ1+,θ defined on the half line
arg t = 0, by :

φ1+,θ(t) = φ̃1+,θ(t) − φ̃1+,θ(te2πi)

is quasi-analytic on (0,∞) 3. It can be represented by the integral

φ1+,θ(t) =
1

2πi

∫
∂D̃I(R)

f(z)etψθ(z)dψθ(z)

where we integrate in the direction of increasing Im z. Moreover, if f(z) =
O(zµ) as z → ∞, uniformly on D̃I(R), where µ < 0, then

f(z) =
∫ ∞

0

φ1+,θ(t)e−tψθ(z)dt (5.12)

Definition 5.7. — We call the function φ1+,θ the Borel transform of f
with respect to the variable ψθ(z) and denote it by B1+,θ(f).

Theorem 5.8. — Let Ii = [θ−i , θ
+
i ], i ∈ {1, 2}, such that θ−i < θ+i for

i = 1, 2, θ−1 < θ+2 − π and θ+1 < θ−2 . Let I12 := (θ+1 , θ
−
2 ), R a sufficiently

large positive number and D12 := DI12(R). Suppose we are given functions
fi, analytic on D̃Ii(R) and O(zµ) as z → ∞, uniformly on D̃Ii(R), i = 1, 2,
where µ < 0, with the property that

f2 − f1 ∈ b1
+

θ′′,ω(D12)

(3) More precisely, for all 0 < a < b, the restriction of φ1+,θ to [a, b] belongs to 1D[a, b]
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where θ′′ ∈ I12 and ω > 0. Let i ∈ {1, 2}, θ′ ∈ (θ−i , θ
+
i ), θ ∈ (θ′ − π

2 , θ
′ +

π
2 ) ∩ (θ−1 + π

2 , θ
+
2 − π

2 ), and let φ1,θ denote the Borel transform of (f1, f2)
with respect to the variable rθ(z). Then the weak accelerate Aθ′,θ(φ1,θ)(t)
coincides with B1+,θ′(fi)(t) for sufficiently small positive values of t.

Proof. — The proof is similar to that of Theorem 4.5 in [7], but the
presence of the variable rθ(z) requires some additional technicalities. Let
θ ∈ (θ−1 + π/2, θ+2 − π/2) and f21 := f2 − f1. According to proposition 5.4,
φ1,θ can be represented as follows

φ1,θ(s) =
1

2πi


∫

C+

θ
−
1

(R)

f1(z)esrθ(z)drθ(z) −
∫
C−

θ
+
2

(R)

f2(z)esrθ(z)drθ(z)+

+
∫ ∞

R

f21(z)esrθ(z)drθ(z)
]

(5.13)

As f21 decreases exponentially of order 1 on D12 and esrθ(z) grows at most
subexponentially as z → ∞ on C−

θ+
1
(R) ∪ C+

θ−2
(R), we have, for s > 0,

∫ ∞

R

f21(z)esrθ(z)drθ(z) =
∫
C−

θ
+
1

(R)

f21(z)esrθ(z)drθ(z) =

=
∫
C+

θ
−
2

(R)

f21(z)esrθ(z)drθ(z)

Suppose that θ′ ∈ (θ−1 , θ
+
1 ) and θ ∈ (θ′−π

2 , θ
′+π

2 )∩(θ−1 +π
2 , θ

+
2 −π

2 ), the other
case is analogous. Let θ∗ ∈ (θ− π

2 , θ
′), θ∗∗ ∈ (θ′,min{θ+1 , θ+ π

2 }), R′ > 0 and
let C̃θ′(R′) denote the contour consisting of C+

θ∗(R
′) and C−

θ∗∗(R
′), described

in the direction of increasing Im z. As Re ψθ′(z) = R′ logR′ + (θ̃ − θ′)Im z
for all z ∈ Cθ̃(R

′) and θ̃ ∈ R, Re ψθ′(z) → −∞ as z → ∞ on C+

θ̃
(R′) if

θ̃ < θ′, or z → ∞ on C−
θ̃

(R′) if θ̃ > θ′. Thus, we can deform the path of
integration in (5.9) so as to obtain

Aθ′,θ(t, s) =
1

2πi

∫
C̃θ′ (R′)

etψθ′ (z)−srθ(z)dψθ′(z), t > 0, s > 0 (5.14)

Let M > 0, t > 0 and let

I−M (t) :=
∫ M

0

ds

∫
C−

θ
+
1

(R)

drθ(ζ)f21(ζ)esrθ(ζ)Aθ′,θ(t, s)
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For each M > 0 we can replace the path of integration C̃θ′(R′) in (5.14)
by C̃θ′(RM ), where RM is a suitable number > R, to be specified later on.
Changing the order of integration we find

I−M (t) =
∫
C̃θ′ (RM )

dψθ′(z)etψθ′ (z)

∫
C−

θ
+
1

(R)

drθ(ζ)
f21(ζ)(eM(rθ(ζ)−rθ(z)) − 1)

2πi(rθ(ζ) − rθ(z))

On C−
θ+
1
(R) we have, for any θ′′ ∈ R,

Re ψθ′′(ζ) = R logR− (θ′′ − θ+1 )Im ζ

As f21 ∈ b1+

θ′′,ω(D12) for some θ′′ ∈ (θ+1 , θ
−
2 ), there exist positive numbers c

and C such that, for all ζ ∈ C−
θ+
1
(R),

|f21(ζ)| � CecIm ζ (5.15)

Furthermore, it can be shown that there exists a positive constant δ such
that, for all ζ ∈ Cθ+

1
(R) and all z ∈ Dθ+

1
(R + 1), the following inequality

holds
|rθ(ζ) − rθ(z)| � δ

log |z| (5.16)

provided R is sufficiently large. Now consider the integral

Ĩ−M (t) :=
∫
C̃θ′ (RM )

dψθ′(z)etψθ′ (z)

∫
C−

θ
+
1

(R)

drθ(ζ)
f21(ζ)eM(rθ(ζ)−rθ(z))

2πi(rθ(ζ) − rθ(z))

With (5.15) and (5.16) we have

|Ĩ−M (t)| � C ′
∫
C̃θ′ (RM )

|dψθ′(z)| log |z|etRe ψθ′ (z)−Mρθ(z)

∫
C−

θ
+
1

(R)

|drθ(ζ)|ecIm ζ+Mρθ(ζ)

where C ′ is a positive constant, independent of M , provided RM � R + 1.
A straightforward computation shows that

min
z∈C̃θ′ (R′)

(ρθ(z) − log log |z|) = R′(1 + o(1)) as R′ → ∞

For all z ∈ C+
θ∗(RM ) we have Re ψθ′(z) = RM logRM + (θ∗ − θ′)Im z,

while, for all z ∈ C−
θ+
1
(RM ), Re ψθ′(z) = RM logRM + (θ+1 − θ′)Im z. As

θ∗ < θ′ < θ∗∗, there exists α ∈ (0, 1) and a positive number K, independent
of M , such that, for every t > 0,∫

C̃θ′ (RM )

|dψθ′(z)| log |z|etRe ψθ′ (z)−Mρθ(z) � K

t
etRM logRM−αMRM
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provided RM is sufficiently large. In order to derive an estimate for∫
C−

θ
+
1

(R)
|drθ(ζ)|ecIm ζ+Mρθ(ζ), we put Im ζ = x and Re ζ = ρ(x) for all

ζ ∈ C−
θ+
1
(R). Let ζ(x) = ρ(x) + ix, φ(x) = arg ζ(x) and r(x) = |ζ(x)|. From

the relation

ρ(x) log |ζ(x)| = (arg ζ(x) + θ+1 )x+R logR

we deduce that

ρθ(ζ(x)) =
(φ(x) + θ+1 )x+R logR

log r(x)
− θx log r(x) − ρ(x)φ(x)

(log r(x))2 + φ(x)2
�

� (π + |θ+1 | + |θ|)|x| +R logR
log r(x)

(1 +
|θ|π

(log r(x))2
) � aθ,R|x|

log |x|
where aθ,R is a positive constant and x � −e. Hence it follows that, for
sufficiently large M ,

sup
x∈(−∞,−e)

Mρθ(ζ(x)) + cx � eMaθ,R/c

From the above considerations we conclude that, for all sufficiently large
M , ∫

C−
θ
+
1

(R)

|drθ(ζ)|ecIm ζ+Mρθ(ζ) � ebθ,ReMaθ,R/c

where bθ,R is a positive constant, independent ofM . Let β > aθ,R

c . Choosing
RM = eβM we find that limM→∞ Ĩ−M (t) = 0 for all t ∈ (0, α/β). Conse-
quently, the integral

I21(t) :=
∫ ∞

0

ds

∫ ∞

R

drθ(ζ)f21(ζ)esrθ(ζ)Aθ′,θ(t, s)

converges for sufficiently small t > 0, and equals

I21(t) =
∫
C̃θ′ (R′)

dψθ′(z)etψθ′ (z)

∫
C−

θ
+
1

(R)

drθ(ζ)
f21(ζ)

2πi(rθ(ζ) − rθ(z))

Furthermore, it is easily verified that, for all t > 0,

I1(t) :=
∫ ∞

0

ds

∫
C+

θ
−
1

(R)

drθ(ζ)f1(ζ)esrθ(ζ)Aθ′,θ(t, s)

= −
∫
C̃θ′ (R′)

dψθ′(z)etψθ′ (z)

∫
C+

θ
−
1

(R)

drθ(ζ)
f1(ζ)

2πi(rθ(ζ) − rθ(z))
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= −
∫
C̃θ′ (R′)

dψθ′(z)etψθ′ (z)

∫
C+

θ∗ (R)

drθ(ζ)
f1(ζ)

2πi(rθ(ζ) − rθ(z))

and
I2(t) :=

∫ ∞

0

ds

∫
C−

θ
+
2

(R)

drθ(ζ)f2(ζ)esrθ(ζ)Aθ′,θ(t, s)

= −
∫
C̃θ′ (R′)

dψθ′(z)etψθ′ (z)

∫
C−

θ
+
2

(R)

drθ(ζ)
f2(ζ)

2πi(rθ(ζ) − rθ(z))

= −
∫
C̃θ′ (R′)

dψθ′(z)etψθ′ (z)

∫
C−

θ
+
1

(R)

drθ(ζ)
f2(ζ)

2πi(rθ(ζ) − rθ(z))

In view of (5.13) we have

Aθ′,θ(φ1,θ)(t) =
1

2πi
(I1(t) + I21(t) − I2(t))

Inserting the above expressions for I1(t), I21(t) and I2(t) into the right-hand
side of this identity we find

Aθ′,θ(φ1,θ)(t) = − 1
2πi

∫
C̃θ′ (R′)

dψθ′(z)etψθ′ (z)

∫
C̃θ′ (R)

drθ(ζ)
f1(ζ)

2πi(rθ(ζ) − rθ(z))

Applying Cauchy’s theorem we get

Aθ′,θ(φ1,θ)(t) =
1

2πi

∫
C̃θ′ (R′)

f1(z)etψθ′ (z)dψθ′(z)

and this proves that, for sufficiently small t > 0, Aθ′,θ(φ1,θ) coincides with
the Borel transform of f1 (cf. proposition 5.6). �

From Theorem 3.2, Proposition 5.6 and Theorem 5.8 one easily deduces
the following result (cf. also Remark 5.3 and [7, Remark 4.6]).

Theorem 5.9. — Assume that the conditions of Theorem 3.2 are satis-
fied and that, in addition, |I| > π. Then the solutions f1 and f2 are accelero-
sums of f̂ , i.e.

fi(z) = y0 +
∫ ∞

0

Aθ′
i
,θi

(φ1,θi)(t)e
−tψθ′

i
(z)
dt, Re ψθ′

i
(z) � cθ′

i
, i = 1, 2

(5.17)
where y0 is the zero order term of f̂ , φ1,θi = B1,θi((f1, f2)), θ

′
i ∈ Ii, θi ∈

(θ′i− π
2 , θ

′
i +

π
2 )∩ (θ−1 + π

2 , θ
+
2 − π

2 ) and cθ′
i
is some sufficiently large positive

number, i = 1, 2.
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This theorem shows that, if the conditions of Theorem 3.2 are satis-
fied and |I| > π, then the functions f1 and f2 are characterized by their
asymptotic properties alone (independently of the equation they satisfy).
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[2] Écalle (J.). — Les Fonctions Résurgentes, tome III, Publ. Math. d’Orsay, Uni-
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