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Equisingular generic discriminants and Whitney
conditions(∗)

Eric Dago Akéké
(1)

ABSTRACT. — The purpose of this article is to show that the Whitney
conditions are satisfied for complex analytic families of normal surface sin-
gularities for which the generic discriminants are equisingular. According
to J. Briançon and J. P. Speder the constancy of the topological type
of a family of surface singularities does not imply Whitney conditions in
general. We will see here that for a family of minimal normal surface
singularities these two equisingularity conditions are equivalent.

RÉSUMÉ. — L’objet de cet article est de montrer que les conditions de
Whitney sont satisfaites pour les familles analytiques complexes de sin-
gularités de surfaces normales à discriminants génériques équisinguliers.
D’après J. Briançon et J. P. Speder, la constance du type topologique
d’une famille de singularités de surfaces n’implique pas en general les con-
ditions de Whitney. Nous verrons ici que pour une famille de singularités
minimales de surfaces normales ces deux conditions d’équisingularité sont
équivalentes.

Introduction

The principal tools we will use are the theory of polar varieties as devel-
oped by B. Teissier and Lê Dũng Tráng (cf. [14], [19]). In [19], B. Teissier
gives numerical conditions for a stratification to be Whitney. Our situation
is to consider a family of normal surface singularities f : (X, 0) −→ (D, 0)
with equisingular generic discriminants and to show that Whitney condi-
tions are satisfied. We refer to section three for more details. Let us re-
call that by Thom-Mather’s isotopy lemma the Whitney conditions imply
the constancy of the topological type [15]. Let us also note that different
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surface singularities with equisingular generic discriminants are not topo-
logically equivalent in general (cf. Example 4.4). The question resolved in
this article was suggested by Lê Dũng Tráng. The answer is certainly well
known by the specialists. We did not find any proof anywhere. However
we refer to [7] (cf. Theorem 4.1 and Remark 4.4) for families of complex
surface singularities X ↪→ C

3 × D. It is shown in [7] that for such families
the constancy of some numerical invariants is equivalent to the “generic eq-
uisingularity ”in Zariski’s sense (cf. [7]) and that generic equisingularity is
stronger than Whitney conditions along the singular locus. We will use the
class of minimal surface singularities for some applications. These singular-
ities were studied by M. Spivakovsky [18], and recently by R. Bondil [3], [4],
(see also [1]). R. Bondil gives in [3] the algebraic structure of the generic
discriminants of minimal surface singularities (see also [4], [1]). It turns out
that equisingular minimal surface singularities (according to Definition 3.7)
have equisingular generic discriminants.
In the first section we review the concept of polar varieties (we refer to [19]
for more details) and give the main result of B. Teissier in [19] on the numer-
ical characterization of the Whitney conditions. The generic discriminants
of normal surface singularities will be defined in section 2. The sections
3 and 4 are the principal part of this article. We refer to [6], [20] for the
concept of equisingularity of reduced plane curves.

1. Local polar varieties and Whitney conditions

The notion of polar varieties was developed as a mean of studying the
singularities of analytic varieties.
Let us consider an analytic morphism f : (X, 0) −→ (Y, 0) of reduced com-
plex analytic spaces such that the fibers of f are smooth of dimension
d = dimX − dimY on the complement of a closed nowhere dense ana-
lytic subset F of X. Here we suppose that Y is a smooth space. We can
embed (X, 0) in Y × C

N so that the following diagram commutes.

(X, 0) ↪→ (Y, 0)× (CN , 0)
✑

✑
✑✑✰❄

(Y, 0)

f

The relative k-th polar variety, 0 � k � d is obtained by choosing a generic
projection p : X −→ Y × C

d−k+1 (with kernel Dd−k+1), calculating the
critical set of the restriction of p to f−1(s) \ (f−1(s) ∩ F ) for all s and
taking the closure of this. This set is denoted pk(f,Dd−k+1) or sometimes
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pk(X, f) when p is understood. B. Teissier showed in [19] that for a generic
projection p : X −→ Y × C

d−k+1 the polar variety pk(X,Dd−k+1) is a
closed analytic subset of X, purely of codimension k in X if it is not empty.
The key invariant of pk(f,Dd−k+1) is its multiplicity which we denote by
m0(pk(f,Dd−k+1)) or mk(X, f) ifDd−k+1 is understood. If f is the constant
map, we denote this multiplicity by mk(X). For a generic projection this
turns out to be independent of Dd−k+1 and is in fact an analytic invariant
(we refer to [19] for more details). B. Teissier uses these invariants to give
a necessary and sufficient conditions so that a stratification be Whitney.
The key result that we will use is ([19], page 470):

Theorem 1.1. — Let f : (X, 0) −→ (C, 0) be a morphism with a sec-
tion σ, whose fibers are purely of dimension d and reduced. Set Y = σ(C)
and suppose we have a local C-embedding

(X, 0) ↪→ (C, 0)× (CN , 0)
✑

✑
✑✑✰❄

(C, 0)

f ✻σ

such that Y = C× {0}.
The following conditions are equivalent (here Xo stands for the smooth lo-
cus of the family X).
i) The hyperplane K = {0}×C

N is transverse to all limiting tangent planes
at Xo and the map Y −→ Nd+1 defined by:
y −→ (m0(X, f)y, m1(X, f)y, . . . ,md(X, f)y) is constant on Y in a neigh-
borhood of 0.
ii) The pair of strata (Xo, Y ) satisfies the Whitney conditions at 0.

2. Generic discriminants of normal surface singularities

Let (S, 0) be a germ of normal complex surface singularity and take a
representative S embedded in (CN , 0). For any (N − 2)-dimensional sub-
space D in C

N , we consider the linear projection C
N −→ C

2 with kernel D
and denote by pD : (S, 0) −→ (C2, 0) the restriction of this projection to
(S, 0).
Considering a small representative S of the germ (S, 0) and restricting our-
selves to the (N − 2)-dimensional subspaces D such that pD is finite, we
define as in [19] the polar curve C(D) of the projection pD as the closure
in S of the critical locus of the restriction of pD to S \ {0}. It is a reduced
analytic curve. It is shown in [19] that it makes sense to say that for an open
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dense subset of the grassmannian of (N−2)-dimensional linear subspaces of
C

N the polar curves C(D) are equisingular in term of strong simultaneous
resolution (cf. [6] for this notion). It also turns out that this equisingularity
class depends only on the analytic type of the germ (S, 0) (cf. [19], page
430).
The discriminant of the finite projection pD is (the germ at 0 of) the re-
duced analytic curve of (C2, 0), image of the polar curve C(D).
We can state the following result ([6], Proposition VI.2, [19], page 352, 462).

Theorem 2.1. — There is an open dense subsetW of the grassmannian
of (N− 2)-linear subspaces of C

N such that the discriminants ∆pD
, D ∈ W

obtained are equisingular (germs of) plane curves.

We refer to [20], [6] for the concept of equisingularity of reduced plane
curves. As explained in [6] the equisingularity class of the discriminant
∆pD

, D ∈ W is uniquely defined by the saturation ring ÕC(D),0 of the
polar curve C(D). Also note that the equisingularity class of the discrimi-
nant ∆pD

, D ∈ W depends only on the analytic type of the germ (S, 0). We
will denote by ∆S,0 the equisingularity class of the discriminant of a generic
projection pD and call it the generic discriminant of the normal surface
singularity (S, 0). Note that for a generic projection the polar curve and the
discriminant have the same multiplicity at 0 (cf. [19]).

3. Whitney conditions for a family of normal surface singularities

Our situation is the following: let f : (X, 0) −→ (D, 0) be an analytic
morphism of reduced complex spaces with a section σ, where D is a small
complex disk centered at 0. We suppose that for all t ∈ D, Xt is a normal
surface with isolated singularity at σ(t), i.e. Xt \ σ(t) is smooth. We can
consider a D-installation (i.e., an embedding (X, 0) ↪→ (D, 0)× (CN , 0) such
that the following diagram commutes).

(X, 0) ↪→ (D, 0)× (CN , 0)
✑

✑
✑✑✰❄

(D, 0)

f ✻σ

We suppose σ(D) = D× {0}.

Theorem 3.1. — Assume that the generic discriminants ∆Xt,σ(t), t ∈
D of the normal surface singularities (Xt, σ(t)), t ∈ D are equisingular. Then
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we can find a projection π : X −→ D × C
2 compatible with f such that for

all t ∈ D the discriminant (∆t, σ(t)) of the restriction πt : Xt −→ {t} × C
2

of π to Xt is equisingular to the generic discriminant ∆Xt,σ(t).

Proof. — Let us consider a projection π : X −→ D×C
2 which is generic

for both (X, f) and the special fiber X0 := f−1(0) (i.e., π : X −→ D × C
2

gives the generic relative polar variety (cf. section 1) and π0 : X0 −→
{0} × C

2 gives the generic discriminant of the singularity (X0, 0)). We de-
note by ∆ the “divisorial”part of the Fitting discriminant of the projection
π : X −→ D×C

2 (we refer to [5] for this notion). The discriminant (∆, 0) is
a reduced hypersurface in (D×C

2, 0). The discriminant of the restriction πt

of π to Xt is ∆t = ∆∩ ({t} ×C
2). Since ∆ is Cohen-Macaulay the induced

morphism h : ∆ −→ D is flat so that the generic fibers ∆t are reduced (∆0

is reduced by hypothesis).
Let us show that the projections πt are generic, i.e. ∆t is the generic dis-
criminant of (Xt, σ(t)).

Since the Milnor number (cf. [6], [16]) is upper semi-continuous we have:

µ(∆0, 0) � µ(∆t, σ(t)). (3.1)

This inequality cannot be strict. Indeed, suppose that the following inequal-
ity holds for some t:

µ(∆0, 0) > µ(∆t, σ(t)). (3.2)

There is a family of projections P = (pl)l∈D, P : D×Xt −→ D×C
2 such that

the projections pl, l ∈ D \ {0} are generic and the discriminant of p0 : {0}×
Xt −→ {0}×C

2 is equisingular to (∆t, σ(t)). We have µ(∆Xt,σ(t)) = µ(∆pl
)

for l �= 0. Since the Milnor number is upper semi-continuous we have

µ(∆p0) � µ(∆pl
). (3.3)

It follows that

µ(∆0, 0) > µ(∆t, σ(t)) � µ(∆pl
) = µ(∆Xt,σ(t)).

This is contrary to the fact that µ(∆0, 0) = µ(∆Xt,σ(t)) since (∆0, 0) is
equisingular to ∆Xt,σ(t). So the morphism h : ∆ −→ D defines a family of
reduced planes curves with constant Milnor number. It is well known that
such plane curves are equisingular [9]. �

Remark 3.2. — It follows from the previous theorem (cf. Theorem 3.1)
that the multiplicities m0(Xt, σ(t)), t ∈ D of the singularities (Xt, σ(t)),
t ∈ D are the same.
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In fact the projections πt : Xt −→ {t} × C
2 are generic so that the degree

of each projection πt (i.e., the number of elements in a generic fiber of πt)
is equal to the multiplicity m0(Xt, σ(t)) of the singularity (Xt, σ(t)). The
degree of the projection π is the number of elements in a generic fiber π−1(y)
where y ∈ (D×C

2) \∆. Taking y in ({t}×C
2) \∆, we have Card π−1(y) =

deg πt and taking y ∈ {0} × C
2 \∆ gives Card π−1(y) = deg π0. It follows

that m0(Xt, σ(0)) = deg π0 = deg π = deg πt = m0(Xt, σ(t)).

Let us take a family of normal surface singularities X ↪→ D×C
N as above.

We denote T = D × {0}. Note that if the pair of strata (Xo, T ) satisfies
Whitney conditions at 0 then one can easily show that for any k, 0 � k � 2
the k th absolute local polar variety and the k-th relative polar variety are
the same (subspace of X). It also turns out that the generic absolute polar
variety p2(X, f) in X is empty if the pair of strata (Xo, T ) satisfies the
Whitney conditions (cf. [19], chapter V, Proposition 1.2.1). In our situation
we can state (cf. [1]).

Proposition 3.3. — Suppose that there is a generic projection π : X −→
D×C

2 such that the discriminants of the projections πt : Xt −→ {t}×C
2, t ∈

D are equisingular. Then the relative generic polar variety p2(X, f) is empty.

Proof. — Let us consider a general flag D: D2 ⊂ D1 ⊂ C
N , where D2

(resp. D1) is a (N − 2)-subspace (resp. (N − 1)-subspace) of C
N . We have

the following diagram

X
✑

✑
✑✑✰

D× C

π2 


�

π1

D× C
2✛ ϕ∆2(f,D) ↪→










�

←↩ ∆1(f,D)
✑

✑
✑

✑
✑

✑
✑✑✰

D

f2 f1

where π1(= π) is the projection with kernel D2 and π2 is the projection with
kernel D1 (π2 = ϕ ◦ π1) and ∆i(f,D) is the discriminant of the projection
πi, i = 1, 2 and fi : ∆i(f,D) −→ D is the morphism induced by f . By
transitivity (cf. [11], Corollary 4.3.12) we have:

∆1(f1,D1) = ∆2(f,D) (3.4)

(where D1 denote the flag induced by D).
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The morphism f1 defines also the family (∆t)t∈D of equisingular discrim-
inants. Since the Milnor number is constant along D × {0} it follows that
the singular locus of the discriminant ∆ = (∆t)t∈D is D× {0} and the pair
of strata (∆0, D×{0}) is a “good stratification”(in the sense of [13]). Then
the polar variety p1(f1,D1) = ∅ is necessarily empty.
The space ∆1(f1,D1) is the image of p1(f1,D1). By the equality (3.4) it
follows that ∆2(f,D) = ∅ and since ∆2(f,D) is the image of p2(f,D) we
have p2(f,D) = ∅. �

The following result is by T. Gaffney (cf. [10], Theorem 5.10).

Theorem 3.4. — Suppose X ⊂ D× C
N −→ D is a 1-parameter family

of d-dimensional reduced complex analytic spaces with isolated singularity
at (t, 0). Suppose Sing(X) = T and pd(X, f) = ∅. We also assume that for
any fixed k, 0 � k � d − 1, the polar multiplicities mk(Xt)0 are the same.
Then m(pk(X, f))(t,0) = mk(Xt)0.

Corollary 3.5. — Suppose X ⊂ D×C
N −→ D is a 1-parameter fam-

ily of d-dimensional reduced complex analytic spaces with isolated singular-
ity at (t, 0). Suppose Sing(X) = T and pd(X, f) = ∅. Then the pair of
strata (Xo, T ) is Whitney equisingular at 0 if and only if the multiplicities
mk(Xt)0 are constant on T , 0 � k � d− 1.

Proof. — The hyperplane K := {0} × C
N is transverse to all limiting

tangent planes to X at 0 (cf. [10], Theorem 5.2). The conclusion comes
from Theorem 1.1 and the above theorem. �

We can state the main result.

Theorem 3.6. — Let (X, 0) ↪→ D × C
N be a family of normal surface

singularities as above,

(X, 0) ↪→ (D, 0)× (CN , 0)
✑

✑
✑✑✰❄

(D, 0)

f ✻σ

(T := σ(D)).
Suppose the generic discriminants ∆Xt,σ(t), t ∈ D of the normal surface
singularities (Xt, σ(t)) are equisingular. Then the pair of strata (Xo, T ) sat-
isfies Whitney conditions.
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Proof. — By Theorem 3.1 and Proposition 3.3 we have p2(X, f) = ∅. The
hyperplane K := {0}×C

N is transverse to all limiting tangent planes to X
at 0 (cf. [10], Theorem 5.2). By Remark 3.2 the normal surface singularities
(Xt, σ(t)), t ∈ D have the same multiplicity. The conclusion comes from
Corollary 3.5. �

Let us consider a germ of a normal complex surface singularity (S, 0) and
take a representative S embedded in (CN , 0). The link Σ of the singularity
is the intersection of S with a small (2N − 1)-sphere centered at the origin.
The link Σ is a compact oriented 3-manifold. The local topology of the pair
(S,CN ) is given by the topological cone over (Σ, S2N−1) (in particular S is
a topological manifold at the origin iff Σ is homeomorphic to the 3-sphere).
The diffeomorphism class of the link Σ does not depend on the embedding
(S, 0) ⊂ (CN , 0) (we refer to [16] for more details).
It is well known that the usual way to see the topology of a normal surface
singularity (S, 0) is via a “good”resolution π : (X,E) −→ (S, 0). Namely
X is smooth, π is proper and maps X \ E isomorphically onto S \ {0}
and E = π−1(0) is a divisor consisting of smooth projective curves Ei,
intersecting transversally (there is in fact a minimal good resolution in an
obvious sense). The weighted resolution dual graph Γ is then associated to
E in the usual way: each irreducible component Ei of E gives a vertex.
Intersection points give edges of the graph and each vertex is weighted by
the degree of the normal bundle of the corresponding irreducible curve. It
is well known that the link Σ can be reconstructed from Γ so that the
topological type of a normal surface singularity is given by the weighted
dual graph of its minimal good resolution (cf. [17]).

Definition 3.7. — Two normal surface singularities will be said to be
equisingular if the dual graphs of their minimal good resolutions.

4. Application to minimal surface singularities

The class of minimal normal surface singularities can be defined as the
subclass of rational surface singularities with reduced tangent cone. The
reader can find in [12] the definition of minimal singularities in any dimen-
sion. Minimal normal surfaces singularities are exactly the rational surface
singularities with reduced fundamental cycle (in the terminology of [2]). By
using a result of Spivakovsky in [18] R. Bondil gives in [3] the equisingu-
larity type of the generic discriminants of minimal surface singularities (see
also [3], [1]). It turns out that equisingular minimal surface singularities
(according to the definition 3.7) have equisingular generic discriminants (cf.
[3], [4], [1]). We can then state:
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Corollary 4.1. — Let (X, 0) ↪→ D × C
N be a family of equisingular

minimal surface singularities

(X, 0) ↪→ (D, 0)× (CN , 0)
✑

✑
✑✑✰❄

(D, 0)

f ✻σ

(T =: σ(D)). Then the pair of strata (Xo, T ) satisfies Whitney conditions.

Proof. — The generic discriminants ∆Xt,σ(t) of a family (Xt, σ(t))t∈D of
equisingular minimal surface singularities are equisingular (cf. [3], [4], [1]).
The conclusion comes from Theorem 3.6. �

Remark 4.2. — Whitney conditions for a family of normal surface sin-
gularities imply the constancy of the topological type of that family [15].
According to J. Briançon and J. P. Speder the constancy of the topological
type of a family of surface singularities does not imply Whitney conditions
in general [8].
Let us recall an important result of W. Neumann which says that the topo-
logical type of the link of a normal surface singularity determines the graph
of the minimal good resolution (with the exceptions of cyclic quotient sin-
gularities and “cusp”singularities where orientation must be taken into ac-
count) [17].

Corollary 4.3. — Let (X, 0) ↪→ D×C
N be a family of minimal surface

singularities (which does not contain cyclic quotients)

(X, 0) ↪→ (D, 0)× (CN , 0)
✑

✑
✑✑✰❄

(D, 0)

f ✻σ

(T =: σ(D)). The pair of strata (X,T ) satisfies Whitney conditions if and
only if the family is equisingular (i.e, the minimal dual graphs are the same).

Note that different surface singularities with equisingular generic dis-
criminants are not equisingular in general (cf. [1]).

Example 4.4. — Let Γ1 and Γ2 be the following minimal graphs (i.e., the
dual graphs of the minimal resolutions of minimal surface singularities).

– 669 –



Eric Dago Akéké

2

*

2

3

2 3 22 3 22
**

*

32 2

2

2

2
* *

Figure 1. — Minimal graphs Γ1 and Γ2

The generic discriminant of the minimal singularities with minimal graph
Γ1, Γ2 is ∆ = δ2∪A5∪A6, where δ2 denotes two distinct lines and A5 (resp.
A6) denotes a plane curve analytically isomorphic to the curve x2 + y6 = 0
(resp. x2 + y7 = 0). The contact between A5 and A6 (i.e., the number of
blow-up points necessary to separate A5 and A6) is 3. The contact between
δ2 and A5 (resp. A6) is one.
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