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Some results on the well-posedness for systems
with time dependent coefficients

MARCELLO D’ABBICcCO™) AND GIOVANNI TAGLIALATELA ()

ABSTRACT. — We consider hyperbolic systems with time dependent
coefficients and size 2 or 3. We give some sufficient conditions in order the
Cauchy Problem to be well-posed in C*° and in Gevrey spaces.

RESUME. — On consideére des systémes hyperboliques dont les coefficients
ne dépendent que du temps. On donne des conditions suffisantes pour que
le probléme de Cauchy soit bien posé en C*° et dans les espaces de Gevrey.

1. Introduction

In this note we consider the well-posedness of the Cauchy Problem for
weakly hyperbolic systems whose coefficients depend only on the time vari-
able of dimension 2 and 3:

LU =0,U — iAj(t)anU - B(t)U = f(t,z) (t,z) €[0,T] xR",
j=1

U(0,z) = Uy(z), x €R™.
(1.1)

We assume that

A, €)= 1€ A0
j=1

(*) Regu le 23/08/06, accepté le 23/01/08
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Marcello D’Abbicco and Giovanni Taglialatela

is real valued and (weakly) hyperbolic, that is its eigenvalues are real (not
necessarily distinct) for any £ € R™ \ {0}. The coefficients of B may be
complex valued.

We start with 2 x 2 systems. Let:

_(di(t6) alt§) _ (bua(t) bi2(t) ) .
A(t’f)_(b(uﬁ) dz(t,f))’ B(t>‘(b£(t> bé(t))’

in this case the assumption of hyperbolicity means that:

(dy —da)?

h:= 1

+ab>0.

In [N], Nishitani gave a necessary and sufficient condition in order the
Cauchy Problem for any 2 x 2 system in one space variable and analytic
coefficients to be well-posed in C*°. On the other hand, Mencherini and
Spagnolo [MS2] proved that Nishitani’s condition is sufficient for the well-
posedness in all Gevrey classes, if the coefficients of A = A(t) are C* and
B =0.

In this note we prove an analogous result if the coefficients are CX, and
we do not assume that B = 0.

To state our result, we recall some notations introduced in [N] and [MS2].

Let:
dy — do

2 )

di+ds

T(t7§) = 2 9

0 =0(t,€) ==
Z:A@@y:A—71=<g_$)

1, ~ 1
k= k(t,€) = 5 A = 5 (a® + %) + 6%,

a+b di—d
5 Tt

a—>b

a® =a¥(t, &) := = c#(t,6) =i 5

1 .
Lﬁ::p#mgyzc#ﬁy—a%#’ziuw—bmy-m—bwq—%m%—ayy
Simple calculations show that:
0<h=a?? —|c#> < Ja® P + [ = k, (1.2)
1 1 1
5k<hﬂﬂ|:§k+§h<k. (1.3)
— 248 -



Some results on the well-posedness for systems with time dependent coefficients

Notations.— 1) Let f(t) and g(t) be defined in [0, T]; we will write f < g
to mean that there exists a positive constant C' such that

f(®) <Cg(t), fortel0,T].

Analogously, if f(t,€) and g¢(¢,€) are symbols defined in [0,7] x R",
we will write f < g to mean that there exists a positive constant C' such
that

F(1€) < Cg(t,€) for (1,€) € [0,T] x R™.

In both cases, we will write f ~ g to mean that f < g and g < f.

2) We write for brevity A € C* (resp. A € C™, resp. A € A) if A;
belong to CX([0,T]) (resp. to C*°([0,T]), resp. are analytic on [0,7]) for
j=1,...,n.

Then we have:

THEOREM 1.1. — Assume that A € CX, x > 2, B € Cl([O,T]), and
suppose that there exists a > 0 such that for any e € ]0,&¢] we have:

/T ‘D#—a#tr(gB)‘—&-’D#—a#tr(gﬁ)’ gt <ot (1.4)
; < . .

(h+e)k+e)

Then the Cauchy Problem (1.1) is well-posed in~*® for any s < so, where:

min(x, )

So =1+ >

Moreover, if the coefficients of A are analytic, and

T |D# — a#tr(AB D# — a#tr(AB
/ | ((h)+|:>(|k+s> lageny. 09
then the Cauchy Problem (1.1) is well-posed in C™.
Remark 1.2. — Since
|D* — a*tr(AB)| + |D* — a*t2(AB)| < Vk , (1.6)

we may assume « > 2 in (1.4), and the Cauchy Problem (1.1) is always
well-posed in v®, for any s < 2.
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Remark 1.3. — If the coefficients do not depend on x, Nishitani’s condi-
tion [N] reduces to the following:

t|D#* — atr(A B)| +t|D* — atr(AB)| < Vhk . (1.7)

It’s easy to see that (1.7) implies (1.5). Indeed, using (1.3) and (1.6), we
have:

/T |D#—a#tr(g§)| . < vk i@t

0 (h+¢e)(k+e) ~ o J(hte)k+e)
v
N I

A

VE g Tq 1
—dt+/ fdt<log
/0 Ve et

Hypothesis (1.4) is obviously satisfied if the following conditions hold
true:

for e € 10, g¢].

T
D#
‘ | < E—l/oc (18)

Vh+e)k+e) '

T |tr AB ‘
7dt<5‘1/‘*, 1.9
/0 vVh+e¢ ~ (1.9)

whereas, hypothesis (1.5) is satisfied if:
g |D¥|
Vh+e)k+e)

T |tr(AB)| 1
= dt <log~. 1.11
/0 it Stog (1.11)

1
< log - 1.10
Slog —, (1.10)

Conditions (1.8) and (1.10) correspond to the homogeneous case (i.e.
B =0), as treated in [MS2]. Indeed our proof of Theorem 1.1 is the natural
generalization of that in [MS2].

The assumptions on the regularity of the coefficients of A can be relaxed

in the following way. Let
L, = {f ec! ([O,T] X R™\ {0}) 7{)5(;?1 _dt S 62/"} :

Lo ={f661([OT}xR"\{O} ‘/ ﬁdt<logé}.
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Some results on the well-posedness for systems with time dependent coefficients

If we assume
a,b,6c Ly, hely, (1.12)

instead of A € CX, and
a,b,0,h€ Ly, (1.13)

instead of A € A, Theorem 1.1 still holds true.

Indeed, a simple calculation shows that if we assume (1.12) (resp. (1.13)),
we have:

T ! / ’
la® |+ |c*| || _1 1
+ Sex resp. < log —), 1.14
/0 e he s (vesp. S log ) (1.14)

and, as we will show in §2, these estimates are enough to prove our results.

In [CJS] it is proved that if f € CX is a real positive function then
f € Lay; more precisely for any € € 0, ] we have:

9
N rrw el =t HGL R (1.15)

whereas, in [S], it is shown that if f is a complex valued CX function, then
f € Ly, and for any ¢ € ]0, g

T
GOl o —2y 5 12
/o o @S Ieol (1.16)

A general sufficient condition in order f to belong to L, is given in [CN1]
[O, Lemma 1], where it is shown that if there exists N € N such that
f'(-,6) = 0 has at most N roots for any £ € R", then f € L. Examples of
functions in L, not verifying the above conditions are given in [DAR].

If A € C* has finite degeneracy, Theorem 1.1 can be improved. By finite
degeneracy we mean that the discriminant h has only finite order zeroes:

e’}
Jj=0

8§h(t,§)’ £0, forallte[0,7] and € £0.

By a compactness argument, if A has finite degeneracy we may find s €
N such that:

8{h(t,§)’ £0, forallte[0,7]and € #0. (1.17)

x
=0
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THEOREM 1.4. — Assume that A € C* has finite degeneracy, and that
|D#* — a#tr(AB)| + |D* — a#tr(AB)| S Vk | (1.18)
holds true for some v > 0. Then

1

1
1. ify+—2 57 the Cauchy Problem (1.1) is well-posed in all Gevrey
>

spaces and in C™°;

1 1
2. if v+ > < 37 the Cauchy Problem (1.1) is well-posed in all Gevrey
spaces v° with

N

19
2 T
If (1.10) is satisfied we can replace (1.18) with

[tr(AB)| S Y.

Since (1.18) is always satisfied with v = 0, we have the following conse-
quence of Theorem 1.4:

COROLLARY 1.5. — Assume that A € C*° has finite degeneracy. Then

1. if 52 < 2, the Cauchy Problem (1.1) is well-posed in all Gevrey spaces
and in C> for any B;
2. if s > 2, the Cauchy Problem (1.1) is well-posed in all Gevrey spaces
~° with
23

tseso Ty

for any B.

We will give other applications of Theorem 1.1 and 1.4 in section 4.

Next, we consider the Cauchy Problem for 3 x 3 first order systems.

THEOREM 1.6. — Assume that A € C3, B € C? and the eigenvalues
{)\1(15, 5),)\2(75,5),)\3@,{)} of A(t,&) satisfy the estimates:

A1 — do| &t (1.19)
|)\1 —)\3‘ ~t* and |)\2 —)\3| %tz7 (1.20)

for some 1 < 3 < /4.
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Some results on the well-posedness for systems with time dependent coefficients

Then the Cauchy Problem (1.1) is well-posed in~° for any s < so, where:

3% feso
50 1= 2%—11 (1.21)
245 ifx=1

Remark 1.7. — Theorem 1.6 extends to first order systems as result by
Colombini [C], for third order equations.

Remark 1.8. — The hypothesis (1.19) and (1.20) can be weakened. In-
stead of (1.19) and (1.20), we can assume that

A1 —Xo| 2t
|)\1—/\3|Zt% and |)\2—)\3|th.

If we assume some additional conditions on the structure of A, then the
result of Theorem 1.6 can be improved.

THEOREM 1.9. — Assume that A € C*, B € C? and the eigenvalues

{Al(t,f),/\g(t,f),/\3(t,§)} of A(t,&) satisfy conditions (1.19) and (1.20),
for some 1 < 3 < L.

Let us define
trd

‘”:(?TI‘AY’

and assume that there exists a > 0 such that:

1Qlloe + [1Q" N0 < £ (1.22)

Then the Cauchy Problem (1.1) is well-posed in v° for any s < Sa,
where:
3 —«

- if a<x—2,
2%£—a—1
204 x— «
saim | Tgpx-a-1 1 FTEEAST (1.23)
+00 if az2l=x=1

If moreover s = £ =1, and o > 1, then the Cauchy Problem is well-
posed in C™ too.
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Remark 1.10. — Assuming a Levi-type condition on B:

I1BQ = Qlloc + @B + Q'llsc St (1.24)

instead of condition (1.22), we get the same conclusion of Theorem 1.9.

If we assume more specific conditions on the structure of A(¢,¢), then
the result of Theorem 1.9 can be improved.

Ezample 1.11. — We assume that A(t, &) is triangular:

/\1 a; az
At, )= 0 X a3z |,
0 0 X3

and that conditions (1.19)-(1.20) hold true for some 1 < » < £.
If we assume that:
|ax| + |ag| + |as| < 2, (1.25)
with @ < s, then condition (1.22) holds true.
More generally, if we replace condition (1.22) by:
lai| + [as] < t*, (1.26)

then the conclusion of Theorem 1.9 holds true (we remark that conditions
(1.22) and (1.26) are independent).

Remark 1.12. — The hypothesis B € C™ !, m = 2,3, in our Theorems
is related to the fact that in both cases we transform the system into a sys-
tem of order m with diagonal principal part. This procedure is carried out
by composing the operator with an operator whose principal part is the
cofactor matrix of A, which is of order m — 1.

We expect that with a different technique one may require only B € C°.

Acknowledgements. — During the redaction of this paper T. Kinoshi-
ta informed us that a result similar to Theorem 1.1 was obtained by
D’Ancona, Kinoshita and Spagnolo [DAKS2]. We point out that the tech-
niques employed in [DAKS2] are rather different from ours, hence we hope
that both these results could be interesting for the reader. We thank
D’Ancona, Kinoshita and Spagnolo for the interesting discussions.
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2. Proof of Theorem 1.1

By Duhamel principle, we can assume f = 0.

Let U be a solution of the system (1.1) and let V(¢,§) = fj(t,f) be
the Fourier transform with respect to the x variables of U; V satisfies the
system

{ VI =iA(t, & |§]V + B(t)V,

Let N
V(t’g) = exp(i@(t,§) |£|) V(tvf) )

where

(ta E) + d2 (t7 5)
2 7

t
0.6 = [ (.95, Tl =
so that the Cauchy Problem (1.1) is transformed into
{V’ =i A(t,€) €] V+ BV,

V(0,6) = Vo(€).

Next, we make the substitution v=r V# with:

1 4
r=(1 1)

in order to obtain the equivalent system:

{ VH# = iA*(t,€) [¢|V# + BF(t)VH#
V#(0,6) = Vi (©),

where . .
A#* = PTUAP = (g# _“C#) , B*.=P'BP,

with a® and ¢# defined in the introduction.
Note that, since tr(A#) = 0, we have:
A#? = hl,
A#B# _ B#CA# = A#BHF 4 (A* B#) = tr(A* B#)I, = tr(AB)I; .
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To simplify the notations, in the following we omit the # and we write
A, B and V instead of A%, B# and V#.

Let:
M := 8, +iA(t, &) |€| + C-(t,€) — B(t),

where C, will be chosen in the following. It’s clear that if we prove the well-
posedness of ML and LM, then the well-posedness for L follows. We show
only the well-posedness of M L, the proof for LM being completely analogue.

We have:
ML = 1,07 —iA'|¢| —iA|¢| 0 — B' — BO; +iA|€|0; + h —iAB|¢]
+C.8, —iC.Al¢| — C.B — B9, + iB“A|¢| + BB
= L+ h|¢)PL, —iK|¢(|+T8, + B,
where:

K = A +tr(AB)r +C.A,

I = C.-—B-B“,

B = —-C.B-B +B®“B.

Let us define the approzrimated energy:

E.(t,€) = V't + (h+ o) EPIVELOP, =1
We have:
EL(t,€) = 2Re(V", V') + 2k €] Re(V,V) 4 2(h + &) |€]* Re(V, V')

= 2[¢|Re(iKV, V') — 2Re(T'V', V') — 2Re(BV, V')
+2h" [€)* Re(V, V) + 22 |¢]> Re(V, V') .

1
Now, since |V'| < v/ E. and V| < ——=VE., we get:
VI < VE and [1V] € eV e

K| B |7 e €]
El(t,§) <C | r E.(t,€),
:(69) \/h+5+| |+|§| \/h+a+h+€+\/h+a (.6

and, using Gronwall’s Lemma:

E(0,8) .

T
K| |B| A4 €]
ES“’@SGXPVO <¢h—+' g mﬂwﬁm)dt
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Some results on the well-posedness for systems with time dependent coefficients

In order to estimate the first three terms, we choose

. 2a'a
C. := diag(ci1,¢11), where ¢1g 1= ——F—,
2al” +¢
so that:
2 — ! li
¢ +tr(AB) — — 5 s
K- 2lal” +¢ 2lal” +¢
= — 2_ —
e @ +tr(AB) — —
2lal” + ¢ 2lal” 4+ ¢
We have:
|K11| <9 @) |ca’ — ac’ — atr(AB)|

m o (2la+e)Vhte

A
+/ e / [tx( B‘ dt:I+II+III.
o (2a]® +e¢) \/h+5 (2]a)® +e)Vh+e

Now assume that Assumption (1.4) holds true. Using (1.3) and (1.14)
we have:

;< 2/T ‘D#—a#tr(gB)} _
b 0 (k+e¢)(h+e) ~ ’

e /T 1]
dtg dt S e x
/ (k+¢) h+€ o Vk+e
T
2

< [ s
k+5 h+€

The term / 2| dt is estimated in the same way thanks to condi-
vh+e¢ Y
tion (1.4) whereas the terms

/ | K1z t:/ (Kol
o Vh+e o Vh+e

are estimated thanks to (1.14).

Using again (1.14), we have:

3 M|
/ T+ ——dt Se
0 h+e

~

X |-
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whereas:

[l _ws g [ Huzea. e
o [ElVh+e T Vel o Vhte

Hence we get:

E.(t,€) Sexp |67 X 4677 + —— +xﬂ§|

VT (e )

_ 28
Choosing € = |£| 7+2, with 8 := min(y, o), we get:

E-(t,€) S exp(|¢]77) E-(0,€),

and we conclude the proof by standard argument based on Paley-Wiener
Theorem (see e.g. [CJS]).

If (1.5) holds true and the coefficients of A satisfy (1.13), we have:

~ )

T
W] 1
I, 1 r dt < log —
A [ e g
which gives
E(t6) < exp[log s B,
f|s|

instead of (2.3). Choosing & = |¢| 2, we get:
E:(t.) < 6" E:(0.6),

for some M > 0, and this gives the well-posedness in C*°.

3. Proof of Theorem 1.4

The proof of Theorem 1.4 is similar to that of Theorem 1.1, but we use
the following Lemma to improve some estimates.

LEMMA 3.1 ([CIO]). — If h(t,&) verifies (1.17), then, for any n = 0,
there exists M, and €y positive such that for any € € (0,&¢], we have:

T 1 Mn 1 an<1/% ’
L ar<{ Mylog= ifn=1/x |

/o ((t, &) +¢)" T
Mye=™" ifn>1/x
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1 1
Assume at first v+ — < =.
w 2

If (1.18) holds true, then, using Lemma 3.1, we have:

T # L H#H A T
Ig/ ’D a tI‘(AB)’dtg/ dt 5€%+77%, (31)
o Vhte)lk+e) o (h+e)t/z=

instead of (2.1), and

g ISI
—dtSe =Tl
0o Vh
rather than (2.2).
Hence we get:
E.(t,¢ <e>><;>[54+'Y 2—1———1—5/ 5§}E 0,€),

instead of (2.3). Choosing & = |¢|™ 17 we get:

E(t8) Sexp (gm0 B (0,¢).

1 1
If v+ — > -, we have:
w2

T |p# — a*tr(A B T
Ié/ | @ il )‘dtﬁ/ %ﬁlog—,
o V(hte)k+e) o (h+e)t/z e

hence:

Eo(t,€) < exp [1og L, W Lkt |s] E.(0.€),

instead of (2.3). Choosing e = |¢|” 2" we get:

E.(t,€) S &M B(0,¢),

for some constant M.
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4. Examples
A simple sufficient condition for (1.10) is given in [MS2, Prop. 2].
We give here some equivalent forms.

LEMMA 4.1. — Assume that one of the following equivalent conditions
s satisfied:

Cy6*+ab>0, for some Cq € [0,1], (4.1)
0| < CoVh, for some Cy > 1, (4.2)
lab| < C3 h, for some Cs > 1. (4.3)

Ifa,b,6 € Ly (resp. € L), then (1.8) with o = x (resp. (1.10)) holds true.

Proof. — To prove the equivalence between the conditions (4.1), (4.2)
and (4.3), we note that if ab > 0 then all the conditions are satisfied, hence
we can assume ab < 0.

To prove the equivalence between (4.1) and (4.2), we remark that con-
dition (4.1) is equivalent to
(1-0C1)6* <6 +ab=h,
which is equivalent to (4.2) with Cy := (1 — Cy)~Y/2,
We prove the equivalence between (4.1) and (4.3). If (4.1) is satisfied,

then
Cy

1 1
bl = —ab= Ciab—ab) < Ciab+Ci6 h,
|ab] = —a 1701( 1ab — ab) 70(1a+ 16) = -
. . . &
hence (4.3) is verified with C5 := .
1-C
Conversely, if (4.3) is satisfied, then
C1 6% +ab=Cih+ (1 —-Cp)ab>[Cy — (1 —C)Cs]h =
Cs
if h = 1.
if we choose Cy C’3—1<
Using (1.16), we have:
/ T 1 /
IR N R L R
\/h+5 (k+¢) o lal+1b[++ve Vh+e
|a0) < T ld] Jabl+bIVE L 2
V(h+e)(k+e) o lal+ve  Vh+te ’
and the other terms are estimated in a similar way. (]
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Condition (4.1) is satisfied, in particular, if A is pseudosymmetric [DAS1],
that is if ab > 0. Pseudosymmetric matrices have been introduced in [DAS1],
where the corresponding homogeneous Cauchy problem is studied. Non ho-
mogeneous Cauchy problem has been studied in [MS2] (see Example 4.4
below).

Condition (4.1) is satisfied also if A is uniformly symmetrizable, that is
if there exists an invertible matrix P = P(t, &) such that

1Pl + 1P~ < M,

and P! AP is Hermitian. Indeed A is uniformly symmetrizable, if, and only
if (cf. [MS1, Prop. 1]),
ht) > nk(t). (4.4)

for some constant n < 1 and condition (4.4) is equivalent to
(L=n)8* +ab> I (a® +1?),
hence (4.1) holds true. Then from Theorem 1.1 we get the following result:

COROLLARY 4.2. — Assume that A is uniformly symmetrizable, and B €
cl.

1. If the coefficients of A satisfy (1.13) (in particular if they are ana-
lytic), then (1.1) is well-posed in C*° [N], [CN1], [DASS3].

2. If the coefficients of A satisfy (1.12) (in particular if they are CX,
X = 2), then (1.1) is well-posed in ~° for s <1+ g [CN1].

We should remark that in [N] and [CN1] the coefficients of B may depend
also on z, whereas in [DAS3] the same result is proved for N x N systems.

Note that A is symmetric if, and only if, h = k.

COROLLARY 4.3. — If A € COO([O,T]) verifies the condition

Cod? +ab = nt*(a* + v?), (4.5)

for some Cy € [0,1[, >0, p >0, and B(t) € Cl([O,T]), then

1. if p < 1 the Cauchy Problem (1.1) is well-posed in all Gevrey classes;
if the coefficients of A are analytic it is also C* well-posed;

2. if p > 1 the Cauchy Problem (1.1) is v° well-posed, for any s such
that 1 < s < Ll .
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If A € C*>([0,T)) verifies the condition
Co6% 4+ ab > n (a® + b2/ | (4.6)

h vanishes at order at most » and B € C*, then:

1 1
. if v+ — > = the Cauchy Problem (1.1) is C* well-posed;
>

[\)

1 1
2. ifvy+ — < 3 the Cauchy Problem (1.1) is v° well-posed, for any s
P

such that
|

LA
2 " n

Proof. — First of all, we note that (4.5) and (4.6) imply (4.1) and
hence (1.10). Moreover, since

—_
N
»

’tr(gB)’ <Vk,

/T\trAB / /
o Vh+e

If assumption (4.5) holds true, then we can assume, with no loss of
generality, that 7 is small with respect to T' so that

we have:

20tk < Cod? + ab+2nt*P 6% < b, (4.7)

hence we have:

T k ve [k | h
dt = Zodt+ ——— dt
0 h+e 0 € Ve V2ntt Vh+e

e1-p)/2 ifp>1 |
1 .

log(1+—>, ifp=1 ,
€

2
which shows that (1.9) is satisfied with o = T if p> 1, and (1.11) is
satisfied if p = 1. The result follows from Theorem 1.1.

If (4.6) holds true, using (4.2) we have:
2k = a®+b*+26% < 27 (Co6%+ab)?74+245% < 2V 2V +2C5 h < C,y b7
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Hence, using Lemma 3.1:

1
M(h), ify+ — >

/T i dt</T Lt ={ M) 10g o L
o Ve U8 )y G @  MWe, i =

1
M(h) et/ =12 if n 4 = <
»

DO =D =N | =

and we get easily the result from Theorem 1.4. O

Ezample 4.4. — If a =t and b = t°, we can choose

min(a, )  a+f—|a—f
a+p 2(a+ ) ’

in (4.6), and we get:
1. if la — B| < 2 the Cauchy Problem (1.1) is C*° well-posed;
2. if |a — B] > 2 the Cauchy Problem (1.1) is v° well-posed, for any s

such that
| <s< 2B Fle—b
la —B| -2
meanwhile in [MS2] they proved well-posedness for 1 < s < 7‘ o ﬁ|6| 5
a —_ J—

We can derive from Theorem 1.1 the following result for second order
scalar equations.

COROLLARY 4.5. — Let
Pu= 8t2u — 2a10,0,u — agﬁiu — boOsu — b10,u =0
be a second order equation with CX coefficients. If

/T |} + a1bo + b1 | N 4
0 vVh+e h+e

where h := a3 4 ag, then the Cauchy problem for P is well-posed in v*, for
min(x, o)
5 .
If moreover the coefficients are analytic and
/T |a’1 + a1b0 + b1| + |h/|
0 Vh+e h+e¢

then the Cauchy problem for P is well-posed in C™.

dt <e Ve, (4.8)

1<s<1+

1
dt Slog . (4.9)
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Proof. — By standard method, we reduce the Cauchy Problem for P to
a Cauchy Problem for a 2 x 2 system by setting U = (0, u, Ozu):
oU = Ao,U + BU ,

where

0 1 0 0
(U A) s 0) e
We have
1 . {
a#:§(1+a2)—w1, c#zi(l—ag),
1
h=ai+ay,  k=g(l+a)+al,

1
D# = a/ (a* — 1) + 5o+ i, tr(AB) = boa; + b,

hence:
|D# — a*tr(AB)| _ |} (a# — h) + § (a1 + i)l — a¥ (boay + by)|
Vh+evk+e Vh+evk+e
o |a#|‘a’1—a1b0—b1{ N |ha’1‘ ‘(al +i)h"
Vh+evk+e Vh+evk+e Vh+eVvk+e

< [!a’l —abo—bi el ]
~ Vh+e laa] ++vE  h+el’

hence Corollary 4.5 follows form Theorem 1.1. |

Note that (4.8) (resp. (4.9)) is equivalent to

T A 4 00AD + b1 ]+ [AD + boAl + b 1
/ . - <1>| |<2> = 1|dt<€*1/“ (resp. <log =),
0 AT =257 €
where )\ge), )\éa) are the solutions of the perturbed characteristic equation

)\2—2a1)\—(a2—|—6)20.

Note also that if A1, Ay are the solutions of the characteristic equation
AN —2aA—ay =0,
and satisfy the condition (cf. [CO], [KS])

A2+ A3
— 2 L
()\1—A2)2 \Cv

then the matrix A in (4.10) satisfies the condition (4.1).
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Ezample 4.6 (Systems with constant coefficients). — If A and B have
constant coefficients, then (1.8) and (1.10) are trivially satisfied, whereas (1.9)
for « > 2 and (1.11) are satisfied if, and only if,

tr(AB)| < Vh . (4.11)

On the other side, we know that in order the Cauchy Problem to be
well-posed in C*° [G] (resp. v° [L]) it is necessary and sufficient that

det(—AT+A€)+B) =0 = [ImA(€)| < M (resp. (1+[¢))"/*, s < &)

A simple calculation shows that:

det(—A I+A+B) = N> —(tr(A)+tr(B)) A+det(A)—tr ((A—27 I) B)+det(B).

Clearly the imaginary parts of the roots of this polynomial are bounded
if, and only if, its discriminant is bounded from below. After some calcula-
tions this condition can be written as

’ 2

}2 B ‘tr(gB)

[2\/E+tr(ﬁB) :

Vh

which is equivalent to (4.11).

+tr(B)? — 4det(B) > —C,

Ezample 4.7 (Systems with constant multiplicity). — If h(t,£) = 0, then
condition (1.5) is always satisfied with o = 2 and the Cauchy Problem (1.1)
is well-posed in 7%, s < 2. Moreover If the coeflicients of A belong to L,
and

D(t,€) — a(t, &)tr(AB) = D(t,€) — a(t, £)tr(AB) =0, (4.12)
then the Cauchy Problem (1.1) is well-posed in v°, for each:

5<so:1+§.

If the coefficients of A belong to Lo and condition (4.12) holds, then
the Cauchy Problem (1.1) is well-posed in C*°.

As it is shown in [N], (4.12) is the usual Levi condition for systems with
double characteristic [Ma] [D].
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5. Proof of Theorem 1.6

As in the proof of Theorem 1.1, by Fourier transform with respect to
the space variables, (1.1) yields:

Vi, —il€| ALV -~ B()V = f,
{V(o,@ — (o), (5:1)

where V(t,&) = U(t,€), Vo(€) = Up(€), and the hat ~ denotes the Fourier
transform with respect to the x variable.

We divide the proof in two Steps.

Step I: A(t, &) is a Sylvester matrix. We assume that A(t,&) is a Sylvester
matrix, that is:

0 1 0
At )= 0 0 1 |,
Hy Hy, H;

where:

Hi= Y XN, Hw=- Y X\, Hy= ][

1<i<3 1<i<j<3 1<i<3

We define for any i,j = 1,2, 3, i # j, the row vectors:

w = (1,0,0),
wj = (_>\i7 1, 0) 5 (52)
wij = ()\1)\],—()\2 +>\j),1) .

Note that if {i,7,k} = {1,2,3}, then w;; is the left eigenvector of A
related to Ay, that is:

wijA = )\kwij 5 (53)

whereas:
wiA = wij + /\in s (54)
wA = wit+\w. (5.5)

For ¢t € [0,T] and |£| > 1, we define the energy:

E(t) =Y |wiVI* + el (lor VI + |w2V1?) + 3 lws V| + (1?8 + &) |wV]?
1<J

where €1 = |§|751, €9 = |§|7627 w=1£]7", and &y, 62, v are positive constants
that we will choose in the following.
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In order to obtain the energy estimate for E, we prepare some useful
estimations.

Estimate of |w;; V. It’s clear that:

FEstimate of |w;V|]. From the definition of E, we have
13 |W3V| < \/E, (57)

whereas, since
wij — wik = (A — Aj) wi,

using Assumption (1.19) we have:

té |LU3V| 5 |)\2 — )\1| \w3V| = |W13V - W23V| 5 \/E (58)

Combining (5.7) and (5.8), we get:

VE

, 5.9
tl+ o ( )

lwsV | <

and, analogously:
VE

th e

lwiV], fw2V] S (5.10)

Estimate of |wV|. We can estimate |wV| in two different ways; first of all,
from the definition of E, we get immediately:

E
WV vE

S I
whereas from the identity
wi—wj =\ —\)w,
using Assumption (1.20), we obtain:
" |w| S A3 = Aal jw| = |ws — wo ,
and by (5.9) and (5.10), we get:
VE VE

th(t +eg)  tR(tF4er)

WV S
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Thus, we have the estimate:
WV S et OVE,

1 1
e+ ut’ to(t 4 e2) - R (tF 4 1)

where ¢a@);1mn{ }. (5.11)

Estimate of |V|. We remark that {w,w;,wi2} is a base of R3. Indeed, by
a simple calculations, we see that if {e;,es,es} is the canonical row base
of R?, then:

e = Ww,
e = w1+ Mw,
es = wig+ ()\1 + )\2)(4)1 + )\%w,
hence:
V12 = |eV]?+ eV + |esV]

S AP A eV A+ L+ O+ 22) T oV 4wV

Using (5.6), (5.10) and (5.11), we get:

1
VIS WVI+ bV +waV| S (o4 e +YVE. (512)
1

Estimate of 0y |w¢jV\2. Let ¢, j, k be such that {4, 5, k} = {1,2,3}, we have:

dwij = —Nw; — Nw;,
hence, using (5.3):
O(wi; V) = OwijV + w0V )
= —Nw;V = XNwV + il \wi;V + wii BV +wij f
thus:
O |lwii VP = 2Re(0(wi;V),wi;V)

= 2Re(—)\§ij — )\gﬂin + 1 || ApwijV + wi; BV + wijﬁ wijV)
= 2Re(-Nw;V — Njw;V + wi; BV +wi; f,wi; V),

since the characteristic roots are real.
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Now we recall that by Bronstein’s Lemma ([B]; cf.[W], [M], [T2]) the
roots A; are Lipschitz continuous functions of ¢, hence, using (5.6), (5.9)
and (5.10):

Re(=Nw;V = NwiVywisV) < (Nl s V] + ] [wiV]) iy V]

1 1
<( )2
~ t’i+€1+tz+€2

Since |w;; BV| < |V, and |(Wijf, wi; V)| S 2+ E, using (5.12), we get:

1 1
ol VIP S (
t|w] | ~ S0—’_7f"’€—|—81—'_té“‘&‘g

+ 1)E+f2. (5.13)

Estimate of 0, |in|2. We have dyw; = —\,w, hence, using (5.4):
(wiV) = BwiV + widV = =NwV +i|€| (wij + \jwi)V + wiBV + w; f,
and, using the same arguments as above:

20, i V]* = 2e1Re (0 (w1 V), w1 V)
= 2€§Re(— LWV + i€ (wir +)\1wi)V+wlBV+w1f,w1V)
2e2Re(—N;wV +i[¢|waV +wi BV +wi f,w V)

1 2 N
= (¢+|§|+ "+ ey +1) t“ilsl E+ /%,
which gives:
20, w1 V)P < (<p + ﬁ% + 1>E + 2, (5.14)
and similarly:
e oV S (@ + % + 1)E + /2, (5.15)
e50; lwsV|* S (w + E%Jii—;l + 1)E + /2. (5.16)

Estimate of 9, |wV|*. Using (5.5), we have:

O(wV) = wdV =il|¢|wAV +wBV + f
i|€] (wi + Aw)V +wBV +wf, (5.17)
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hence:

A lwV? = 2Re (i [¢] (w1 + Mw)V + wBV + wf, wV)
= 2Re(i|¢|wiV +wBV +wf,wV)
S (V] + wBV| + [wf]) [wV]
S (VI + V] + |wf]) WV, (5.18)

and using (5.10) and (5.12):

1 ~
(1P +eHo, |wV P < (e +ut)(tm E'El ot o i, + 1)E+f2

1+¢2 t
o+ Lretlel, pie
th 4+ ¢eq th 4+ ¢

A

+ 1)E L2 (5.19)
1

Now we can derive the energy estimate. Differentiating £ we get:

E'(t) = 0 lwiVI* +}(0r [wr VI + 0y [waV[*) + €30 [wsV[?
1<j

+(12? + Doy [wV | + 2%t WV |,

and, using the above estimates, we derive:

1+¢2 1+¢€3 t
E’(t)<<(p+ b LHeRlE, 1hedlel plelt

1)E@®)+ £3(5.20
~ eldut  tr+e th+er th4e ) (8)+175.20)

thus, applying Gronwall’s Lemma, we get:

t‘z 2 2
u L+ef|é]  1+e3lg] | nlélt
) < + +1)dt|E(t
E( 2) ~ €Xp |:/t1 (95 5% ¥ out 5 + &1 tl + g9 th + e ( 1)

+/2f2(s,§) ds

=exp[(I) + (II)+ (L) + (IV) + (V) + T|E(t1) + |  [*(s,€) ds.

t1

Now, it’s easy to see that if p > —1 and ¢ > 0, then:

T
tP dt la—p—1]F
<p  a log(l+n71), 5.21
/0 pEwTRSL g(l+n") (5.21)

for any 1 € ]0,1[. Here [a]* := max(a, 0), is the positive part of a.
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Indeed, if ¢ < p+ 1 then

T T
P dt tP dt
/ </ <O a),
0 7]+tq 0 td
whereas, if ¢ > p+ 1 then
_1
/T vt _1+%/T" " oPdo <{C(p,q> log(1+n7Y), ifg=p+1
o N+t 0 1401 C’(p,q)n_p“p_;1 ifg>p+1
for any n €10, 1].
If kK > 2, we have the estimates:
() < /T S log(1+45%) (5.22)
X ~ ®), .
o Eitut ™ !
T
wdt _
1 < [ S, (5.29)
1
T 2
1 14l
(I11) < /0 %ﬂf‘dt,ﬁ (147 ¢])e; s (5.24)
T 2
€ +1 141
(IV) < / %dtﬁ (1+e3lee; ', (5.25)
0
T
plElt —142 _
v < [ w b o ve), 6200

which give:

1 _ P
E(t) < exp[; log(1 + £720) + (14 &2 [¢l)er 7

_ 1 _ 2
F(1+e31€)ey T puleler T log(l+ert) + T|E(t)

ta
+ [ f(s,8)ds.

t1
Choosing:

1 —
51::|§| 5, 52::‘§| 2,

we obtain:

_2k-1
pe= g,

2k—1 01 ty
B(ta) < exp[|5|37 log<1+|5|”2>+s|ﬂE<t1>+ | #e.gas
t1

2r—1 ta
S expllE log(L+ | Bt + [ 5. ds,

2k —1 -1
>

since —_—
! 3k~ 2

Jif k < L.
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Now, we remark that F is equivalent to |V (¢, £)|? for [¢| > 1, in the sense
that there exists My, My > 0 such that:

E@) S VP, and  VEOP SEPEW.  (5.27)

Indeed the first inequality in (5.27) follows easily from the choice of €1, €9
and p, taking My := max(2 d1, 2, ), whereas the second inequality follows
easily from (5.12). Thus we get:

2k—1 t2
|V (t2, )] < I€1* exp[ISITNV(thf)H/ (s, ds,
ty
ifl<k</L.

If k = 1, we split the phase space [0,7] x R™ in two zones:

70 = {(t,g)e[o,T]xR” o<t<t5,|£\>1},
70 = Lo 0T xR [t>1.1¢ > 1}, (5.28)
where t; := \ffﬁ.

In both zones we use the energy E as in the case K > 2, but with a
different choice of €1, €2 and p. Clearly these different energies are equivalent
each other.

For (t,£) € Z™ we have:

T 2
1
(IT1) < / +i‘ﬂdtﬁ(1+e%|£\)log(1+esf1),
0 t+¢eq

te
gl
V) < ——dt < te,
V) < [ EEasule
instead of (5.24) and (5.26), whereas (5.25) will be replaced by
T 2
1
vy < [ ZEELag o+ Ble osti+ o),
o t"+es

if £ = 1. Hence we get:

~

E(t2,6) < exp [% log(1 4 &7 %) + (1 + €7 |¢]) log(1 +e7") (5.29)

1 to .
+(1+e3le)e; 7T +u|§|ts+T}E(t1,f)+/f f2(s,€) ds.
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Choosing:
__t 1 __t
W= |£‘ 20T €1 = |§| 200HD) €9 1= |£| Z0HT | (5.30)
we obtain:

Elta, §><exp[|sw+l log<1+|5|} (t,6) / 7

for (t17£)’ (t2,€) € Z(l)

For (t,€) € Z® we choose p = 0 so that (V) = 0. Moreover, we have:

T T
1 1 1 1 1
() < /[ — }dtg—/ = dt
te t(t +62) t(t+€1) tg te tt 4 eo t+e1

1, 141
S cle T log(l+ )] S 23 log(1+ ).
3

hence we get:
Bln€) S e[z lou(l+ ) + (142 e Tog(1 + =7)

+(1+21¢))e, 1+‘+T} (t1,€) /f2 s,

and choosing 1 and €5 as in (5.30) we obtain:
s t2
B2 S eI og(1 4+ 1) | B0+ [ P50
t1
for (t1,£), (t2,€) € 2.

Step II: The general case. As in [DAS2], we transform the 3x 3 system (1.1)
into a 9 x 9 system whose principal part is a block Sylvester matrix.

Using Duhamel principle, we can assume f = 0.

Let:
AN E) = Li(t, X\, ) = (A — €] At,€)”

be the cofactor matrix of the principal symbol Ly (¢, A, §) := ()\ — €| A(t, 5))
of L. It’s clear that the well-posedness of both AL and LA implies the
well-posedness for L.

We prove the well-posedness for AL, the well-posedness of LA is proved
analogously.
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AL is a third order system with diagonal principal part:
JS(AL) = I3 P(tv )‘ag) )

where P(t, A\, §) is the characteristic polynomial of A(t, A, §).

Let
— P v w®

WU = ilglov |, =123, and W:=| W® | eC?,
3t2v(j) w®

then the Cauchy Problem for AL is equivalent to the Cauchy Problem:
W — i [E] AL, W — B(t, )W =0, (5.31)

where:
A(t,€) = A(t,§) @ AL, ) @ AL, §),
A(t,€) is a Sylvester matrix as in Step I, and B a 9 x 9 matrix with the

following block structure:

By B B
B= 5[2,1] 3[272] 3[2,3] ;
Biz1 Bz Bz

each 3 x 3 block Bj; ;) has non zero elements only on the last line.

We remark that W) satisfies the system

W —ilg] At WD) — By, WD =" By (t, WP,
k#j

hence we may regard ZBW“] (t,§)W(k) as a second member and proceed
Py
as in Step L. Let E[W)] be the energy of W): from (5.20), we get:

EWOY < KEWY) + [3 5, kWﬂ :
k#j

where K = K(t,&,e1,e2, 1) denotes the sum of the terms in the bracket
n (5.20). Now, using (5.12):

> BjkW(’“)r SO WP (<p+t,€ — +1) S EWWISES EWY)],

k£ = k#j k£
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hence we have:

k=1
thus, defining the energy for W
3
Z E W(J)
Jj=1
we get:
EW S KEW],

and applying Gronwall Lemma we get the a priori estimate as in Step I.

6. Proof of Theorem 1.9
In order to prove Theorem 1.9, we use the following Lemma.

LEMMA 6.1. — Let A(t, &) be as in Theorem 1.6, and assume the follow-
ing hypothesis on B(t,€):

B(t7€) = B(O)(t7£) + B(l)(t7€)

with
;o A+ A2+ A3
) =g

for some a > 0 and any j = 1,2,3, and |¢| | By (t,€)| is bounded for |¢| large.

1B +7B') + 72 BY)| <t (6.1)

(
J

Let:
E() := Z |wijV|2+€%(|w1V|2+|w2V\2)+€§ |w3V|2+(5‘11+u2t2(a+1)) lwV|?

i<j

ifa<1lorl>1, then E verifies:

E(t,§) < exp €] E(0,€), (6.2)
where:
3Kk — « 5
2§£—a—1 ASH
+ K-«
= - —2 <
Sa 6;—/{—04—1 & <«
— 2K, 1;
. a=k, L>

whereas if « > 1 and £ =1, then E verifies:
3N
E(t,§) S (L+1¢]) " E0,€).
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Ezample 6.2 If k =1, then:

204+1—«
—— «a<l1
5. — {—«
" 2 >1,40>1
/-1 o=z 1,
If k = ¢, then:
3k —
ORI < k-2
s. =4 26—a—1
a 2K
azk, k>1.
k—1

Remark 6.3. — If B = 0, we can choose « arbitrarily large, in particular

a 2 k, and we get s, = —1
Proof. — First of all we remark that we can assume, with no loss of
generality, that a < k.

The proof of Lemma 6.1, is similar to the proof of Step I of Theorem 1.6:
the only difference concerns the estimation of |wV|. Using similar arguments,
we find:

1 1 1
VI < a\/E7 o = i { ’ }7
|w | ~ P 2 min E% + Mta+1 tﬁ,(t[ + 62) + tﬁ(t#ﬂ + 51)

instead of (5.11). Using (5.2), we have:
(BOV);, = BYVi+ BV, + BV
= BJ(?B (e1-V)+BQ(e2 V) + B (es - V)
= [BY+MBQ + 0BG w-v)
+[Bj('?2) + (A1 +A2) B](Os)] (w1-V)+ B(Og) (w12-V),
and, since

‘ (B(O) + M B+ A3 B(O)) (Bj(ol) +7BY + 12 BJ(OB)) ‘

— (M -7 ’BJ(OZ) M+ B(O)‘ <t
we have:

|B(0)V| StYw-V]+jwr - V] + w2 V],
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hence:

~

BV] S (¢ + 17 V] + lan V] + JwraV])

Proceeding as in the proof of Theorem 1.6, we get:

E(ts)
T o 2 2 atl
1 wut L+etlé] 1+e5l€] plélt
< ta o )dt E t
Nexp[/o( Pt g T et e | #tes | tite "
to R
+ [ f(s,8)ds

ty

= exp[(I)a + (1) + (IT) + (II1) + (IV) + (V)] E(t:) + ; f2(s,€) ds

ty
We can estimate the terms (IIT) and (IV) as before, and

(II) < log(l + i) .

To estimate the other terms, we have to distinguish different cases.

Case I. If o < k — 2, then we have:

T
to 1
o< [ olras bos(14 2,
(e /0 ef + ptett o8 e
ta+1 _ at2
V) = / %dtﬁulélalu“, if k>a+2,
0 1
T lgltett
(V) = / mdt§ﬂ|§|log(1+€1), ifk=a+2,
0
so that:
E(ts) < eXpLL 1og(1+ )+ e +(1+ele)e
to
144 +2 72
Choosing: +(1+€2 €l)ex +'“|§|51 ]E(t1)+ . [7(s,€) ds.
_2r—a—1 L
pr=lgT T, e= e = 1€]77
we obtain:

2k—a—1 0—1 ta
Blta) < exp[|£|sw +|£N]E<t1>+ 2(5,€) ds

ty

A

eXp(|€| a E(t1) / f?(s,6)d
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since

2k —a—1 -1
> .
3k — « 20

Case II. If kK — 2 < a < K, we split the strip [0,7] x R" into two zones as
1
n (5.28), choosing 7 := |§|” 2FF=—= .

For (t,£) € Z™ we have the estimates:

T ta+1 T tn—l K
V) g/ &dt@mrw—ﬁ/ dt < pfe| P 1og(7%61).
0 0

th 4+ ¢4 th 4+ ¢eq
Choosing;:
€% 2D B Y S
e R s L R Nt
so that:

B(t2) S exp[16) T loa(1 + [¢]) | B(1) / (s,

for (tla 6)? (t27 6) € Z(l)
For (t,€) € Z?, we choose pu = 0, so that (II) = (V) = 0, and we have:

T T
dt dt _ —1+41 —1+
o< | —% L S a( 7 )
(1) /T t“—a(t4+52)+/7 e 1)~ B2 TE

Choosing;:
K(£+1)

2= |6, ey im e = g

so that: 141 1+ ! fhr—a—1
Py 2 e g = el g = g T

we get
Lhr—a—1 t2 29
E(t) S exp[lg] = log(1+ [§])] E(t1) + [ f*(s,€) ds,
ty

since o0 o0
+ K-« <

l+k—a—-1 (-1
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Case III. If o > Kk, we choose p = 0, and (V') vanishes. Moreover, choosing

€1 =69 = |§|_%, we have:

T — T
ter 1 —141 1
o <[ gas | ass =0T

if £ > 1, and

T pa—r | 1
N, < /| +t—a< at <1 (1 —),
(Da \/0 g + t¢ \/0 g + t¢ ~ 108 +52

if £ = 1. Thus we obtain:

=1 ta
E(t:) Sexp(lE]=)E(t)+ [ f(s,€)ds

ty

if £ > 1, and

to R
E(t2) S@+ENYEM)+ [ Fs.6)ds
t1
for some N > 0, if £ = 1.

This concludes the proof of Lemma 6.1. (]

LEMMA 6.4. — Let

h = t@t, Z ﬁ]k

J+k<2

be a 3 x 3 third order system with diagonal principal part. Assume that
the characteristic roots of h wverify the conditions (1.19) and (1.20), and
moreover:

182,07 + BraT + Boz|| St (6.3)

Then the Cauchy problem for h is well-posed in v° for any s < s, where
Sq is defined in (1.23).

Proof. — We transform h to a 9 x 9 system as in (5.31). B has the same
block structure, and moreover:

0 0 0
B[jvk]:< ) 1 0 ) 2 ) ) 071 ) 0 ) ) ’
(Bo,2)j,k + 1&]7 (Bo,1) 4,k + 161" (Bo,0)j,6 (Br,1)5,6 + 1617 (Br0)j,6 (B2,0)5,k

hence thanks to (6.3) each block B; ) satisfies (6.1), and we get the proof
repeating the same arguments of Step II of the proof of Theorem 1.6. (]
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Now we prove Theorem 1.9. To this end we prove that LM and NL
verify the hypothesis of Lemma 6.4, where

M = A(ta ata Zg) - |£| C(ta 5) ) N = A(tv 8t7 Zé-) —1 |£| D(tv g) )
and C and D are suitable 0-order matrices.

First of all, we have the following Lemma, whose proof is obtained by
direct calculation.

LEMMA 6.5. — Let A be any matriz 3 X 3 matriz, we have:

(AT —A)° = XNT+AA+A®, (6.4)
AT —A)° = A —=A?—tr(\AI-A) N —A)+Z0), (6.5)
where
A=A—tr(4),  EN) =) A=A -X)]1.

J<k

It follows from (6.4) that the cofactor matrix A(¢, A, €) of Ly can be
written as:

At E) == (AT — €[ A(4,€)) = N1 + €] A8, A + [ A(1,€),
with A(t, ) := (A(t,€) — trA(t,€) I). Hence, we have:

L(t7at7§)M(taat,£) = I3P(ta8t’§) - Bat2 - |£| G(tvg)at - |£|2 F(t7§) .

where:
F o= FO4pO
FO — (F ”)) 123 1= BA® — A% — AC, (6.6)
FO = (F))ijo105 = —ilg| ' (C' = BO),
G = (G(w)” 123 =BA-A'+C.
Let

Y :=7?B+7G+FO =B[r2 47 A+ A — (A + A+ (1 - A)C,
we seek for C' € C! such that:
Y., st (6.7)
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From (6.4) and (6.5) we get:
Blr? + 1A+ A®°] = B[r I — A]*® = B[Q + ()],
since tr(r I — A) = 0. Differentiating (6.4) we get:
(1 A 4 A%’y = [(r1— A)CO]/ +7(rI-A)=Q +=(r) +7'(r I - A),
hence:
Y=BQ-Q +BE(r)-Z=(r) =7 (t 1 - A) + (1 - A)C.
Now we remark that |=Z(7)|+ |2(7)’| < t¥, hence it is sufficient to choose

C = 7' I (which has the same regularity of A’), and we have (6.7) by hy-
pothesis (1.24).

On the other hand, if we consider the operator N (t, 0;,i€)L(t, 0;,i&), we
have to prove (6.7) for

Y=I-A)°B+D(rI—-A)—(r1—-A)A".
hence choosing D = 27" I — A’, we have:

Y=QB+Q +E(r)B+0O(t*).
Applying Lemma 6.4 we conclude the proof of Theorem 1.9.

7. Appendix
Let us consider the Example 1.11. We note that:

()\ — )\1)2 ()\3 — )\)al ()\2 — )\)G,Q + ajas

Q= 0 (A= Xo)? (A1 — Nas ~
0 0 (A —X3)?
and:
0 0 1
Q =0M2—XNax [0 0 0] +0@1%).
0 0 O
Moreover:
0 0 1
Al—A=—-a [0 0 0] +01%
0 0 O
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We follow the proof of theorem 1.9, but we choose:

C = NI—(Ap—)\)

o O O
o O O

0
0], D=2NI-A+(X-)\)
1

S O =
o O O
o O O

so that we can apply Lemma 6.4.
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