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Viscous approach for Linear Hyperbolic Systems
with Discontinuous Coefficients

Bruno Fornet
(1)

ABSTRACT. — We introduce small viscosity solutions of hyperbolic sys-
tems with discontinuous coefficients accross the fixed noncharacteristic
hypersurface {xd = 0}. Under a geometric stability assumption, our first
result is obtained, in the multi-D framework, for piecewise smooth coeffi-
cients. For our second result, the considered operator is ∂t +a(x)∂x, with
sign(xa(x)) > 0 (expansive case not included in our first result), thus
resulting in an infinity of weak solutions. Proving that this problem is
uniformly Evans-stable, we show that our viscous approach successfully
singles out a solution. Both results are new and incorporates a stability
result as well as an asymptotic analysis of the convergence at any order,
which results in an accurate boundary layer analysis.

RÉSUMÉ. — On s’intéresse à des problèmes hyperboliques linéaires dont
les coefficients sont discontinus au travers de l’hypersurface non-caracté-
ristique {xd = 0}. On prouve alors, sous une hypothèse de stabilité,
la convergence, à la limite à viscosité évanescente, vers la solution d’un
problème hyperbolique limite bien posé. Notre premier résultat concerne
des systèmes multi-D, C∞ par morceaux. Notre second résultat montre
que, pour l’opérateur ∂t + a(x)∂x, avec sign(xa(x)) > 0 (cas exclu de
notre premier résultat), notre critère de stabilité est satisfait, et qu’une
unique solution à petite viscosité se dégage de notre approche. Nos deux
résultats sont nouveaux et incluent une analyse asymptotique à tout ordre
ainsi qu’un théorème de stabilité.
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1. Introduction

Let us consider a linear hyperbolic system of the form:


∂tu +
d∑
j=1

Aj(t, y, x)∂ju = f, (t, y, x) ∈ Ω

u|t=0 = h ,

(1.1)

where Ω = {(t, y, x) ∈ (0, T )×R
d−1×R}, with T > 0 fixed once for all. The

unknown u(t, y, x) belongs to R
N and the matrices Aj are valued in the set

of N ×N matrices with real coefficients MN (R). Due to the discontinuity
of the coefficients, the solution u is, in general, awaited to be discontinuous
through {x = 0}. In such case, ∂xu has a Dirac measure supported on the
hypersurface {x = 0}. Hence, if the coefficient of the normal derivative Ad

is also discontinuous through {x = 0}, the nonconservative product Ad∂xu
cease to be well-defined in the sense of distributions; weak solutions for the
considered problem thus cannot be defined in a classical way.

The definition of such nonconservative product is of course crucial for
defining a notion of weak solutions for such problems. It is an interesting
question by itself, solved for a quasi-linear analogous problem by Lefloch
and Tzavaras ([15]). Adopting a viscous approach will allow us to avoid the
difficult question of giving a sense to the nonconservative product in the
linear framework.

The problematic investigated in this paper relates to many scalar works
on analogous conservative problems. We can for instance refer to the works
of Bouchut, James and Mancini in [3], [4]; by Poupaud and Rascle in [19] or
by Diperna and Lions in [7]. Among other works on closely related topics,
we can also refer to the works of Bachmann and al. ([1],[2]), Fornet ([8],[9]),
Gallouët([10]), LeFloch and al. ([6],[14],[15], [13]). The common idea is that
another notion of solution has to be introduced to deal with linear hyperbolic
Cauchy problems with discontinuous coefficients. Note that almost all the
papers cited before use a different approach to deal with the problem. Like
in [8] and [9], we will opt for a small viscosity approach.

Let us now describe the first result obtained in this paper. We consider
the following viscous hyperbolic-parabolic problem:{

Hεuε = f, (t, y, x) ∈ Ω,
uε|t<0 = 0, (1.2)

where Hε := ∂t +
∑d−1

j=1 Aj∂j + Ad∂x − ε
∑

1�j,k�d ∂j(Bj,k∂k.), and the co-
efficients Aj , with 1 � j � d, are piecewise smooth and constant outside
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a compact set. We assume that the discontinuity of the coefficients occurs
only through the hypersurface {x = 0}. The unknown uε(t, y, x) ∈ R

N , the
source term f belongs to H∞((0, T ) × R

d), and satisfies f |t<0 = 0; this
assumption allows to bypass the analysis of the compatibility conditions.
In this problem, ε, commonly called viscosity, stands for a small positive
parameter. We stress that, if we suppress the terms in −ε∂2

x from our dif-
ferential operator, the obtained hyperbolic problem has no obvious sense.

We make the classical hyperbolicity and hyperbolicity-parabolicity as-
sumptions, plus we assume the boundary is noncharacteristic. Additionally,
we make a transversality assumption and an assumption concerning the sign
of the eigenvalues of Ad on each side of {x = 0}. Last, we suppose a spec-
tral stability condition, which is a Uniform Evans Condition for a related
problem, is satisfied.

Under these assumptions, we prove that, when ε → 0+, uε converges
towards u in L2((0, T ) × R

d), where u := u+1x�0 + u−1x<0 is solution of a
transmission problem of the form:




∂tu
+ +

d∑
j=1

A+
j ∂ju

+ = f+, (t, y, x) ∈ Ω+

∂tu
− +

d∑
j=1

A−
j ∂ju

− = f−, (t, y, x) ∈ Ω−

u+|x=0 − u−|x=0 ∈ Σ,

u+|t<0 = 0, u−|t<0 = 0 .

where Σ is a linear subspace depending of the choice of the viscosity tensor∑
1�j,k�d ∂j(Bj,k∂k.); Ω± denotes Ω

⋂
{±x > 0} and the ± superscripts are

used to indicate the restrictions of the concerned functions to Ω±.

A natural and very related question is the grasping of the nature of
the interface. If N = 1, that is to say for scalar equations, three sort of
discontinuities can arise depending on the sign of Ad (here scalar) on each
side of {xd = 0}. If Ad keeps the same sign in a neighborhood of {xd = 0},
the discontinuity of the coefficient, also traducing the nature of the interface,
is traversing. Always in a neighborhood of {xd = 0}, if Ad has the same sign
as xd then the interface is expansive and if the sign is opposite the interface
is compressive. In the case of systems, there is not one but several modes,
each either traversing, expansive or compressive. For instance, considering
Assumption 2.2, even if Ad|x=0− and Ad|x=0+ can both be diagonalized in
the same basis, this assumption does not prescribe whether or not expansive
modes are present in our discontinuity (it depends on which eigenvalues of

– 399 –



Bruno Fornet

Ad|x=0+ are associated to which eigenvalues of Ad|x=0−). If we also assume
that, after change of basis, the eigenvalues of both Ad|x=0− and Ad|x=0+ are
both sorted by increasing (or decreasing) order then Assumption 2.2 states
that there is exactly q compressive modes and N − q traversing ones. Note
well that, generally speaking, Ad|x=0+ and Ad|x=0− cannot be diagonalized
in the same basis and thus the acknowledgment of the different modes,
traducing the nature of the interface, becomes difficult to grasp.

An important remark is that, for fixed positive ε, (1.2) can be put on
the form of a parabolic problem on the half-space {x > 0} with boundary
conditions on {x = 0} satisfying a Uniform Evans Condition. Moreover,
the solution of this parabolic problem on a half-space tends, when ε goes
to zero, towards the solution of a mixed hyperbolic problem, defined on
{x > 0}, satisfying a Uniform Lopatinski Condition. An analogous
theorem, in the nonlinear framework and for a shockwave solution, was
proved by Rousset ([20]).

For our first result, with conciseness in mind, the proof of stability is
exposed only for 1-D systems with piecewise constant coefficients and the
artificial viscosity tensor B = Id. The goal is to check that the method
introduced in [16] does apply to our boundary conditions. During this proof,
accent is placed on the role played by the Uniform Evans Condition in the
proof of our stability estimates via Kreiss-type Symmetrizers.

Let us now expose our second result, which concerns the sense to give
to the solution of:{

∂tu + a(x)∂xu = f, (t, x) ∈ (0, T ) × R,
u|t=0 = h,

(1.3)

in the case where a(x) = a+1x>0 +a−1x<0, where a+ is a positive constant
and a− is a negative constant. The source term f belongs to C∞

0 ((0, T )×R)
and the Cauchy data h belongs to C∞

0 (R). We assume that the coefficient is
piecewise constant in order to simplify the proof of our stability estimates,
which uses Kreiss-type symmetrizers. Referring to the sign of the coefficient
on each side of {x = 0}, we call such discontinuity of the coefficient expan-
sive. Note that such expansive case was excluded from our previous study
on systems by our assumptions. An important point is that, compared to
the cases studied for our first result, the expansive case has a quite dif-
ferent qualitative behavior. Indeed, for scalar equations, small amplitude
characteristic boundary layers only form in the expansive case.

Our second result states the convergence in the vanishing viscosity limit
and in L2((0, T ) × R) of uε, which is solution of
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{
∂tu

ε + a(x)∂xuε − ε∂2
xu

ε = f, (t, x) ∈ (0, T ) × R,
uε|t=0 = h .

towards u ∈ L2((0, T ) × R), where u := u+1x�0 + u−1x<0 is the unique
solution of the well-posed, even though not classical, transmission problem:




∂tu
+ + a+∂xu

+ = f+, (t, x) ∈ (0, T ) × R
∗
+,

∂tu
− + a−∂xu

− = f−, (t, x) ∈ (0, T ) × R
∗
−,

u+|x=0 − u−|x=0 = 0,
∂xu

+|x=0 − ∂xu
−|x=0 = 0,

u+|t=0 = h+, u−|t=0 = h− .

Naturally, u is then what could be called the small viscosity solution of
(1.3). The result seems to be completely new, since the main difficulty was
to “select” a solution among all possible weak solutions. Remark that, this
time, by performing explicit computations of the Evans function, we prove
that the Uniform Evans Condition holds for our problem thus yielding the
desired stability estimates.

2. Some results for multi-D nonconservative systems
with “no expansive modes”

2.1. Description of the problem

We first expose our full set of assumptions for the problem involved in
our first result.

We note y := (x1, . . . , xd−1) and x := xd and consider the viscous equa-
tion: {

Hεuε = f, (t, y, x) ∈ Ω,
uε|t<0 = 0, (2.1)

where Hε := ∂t+
∑d−1

j=1 Aj∂j +Ad∂x− ε
∑

1�j,k�d ∂j(Bj,k∂k.), the unknown
uε(t, y, x) ∈ R

N , the source term f belongs to H∞((0, T )×R
d), and satisfies

f |t<0 = 0. All the matrices Aj , 1 � j � d are assumed smooth in (t, y, x) on
±x > 0, discontinuous through {x = 0} and constant outside a compact set.
The matrices Bj,k also depends smoothly of (t, y, x) and are constant outside
a compact set. We will denote by A±

d the restriction of Ad to {±x > 0}. We
assume that the boundary is noncharacteristic:

Assumption 2.1 (Noncharacteristic boundary). — Ad|x=0+ and Ad|x=0−

are two nonsingular N ×N matrices with real coefficients.
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Moreover, we make the following structure assumption on the disconti-
nuity of Ad through {x = 0} :

Assumption 2.2 (Sign Assumption). —

• The eigenvalues of A−
d (t, y, 0), sorted by increasing order are denoted

by (λ−
i (t, y))1�i�N , and are such that λ−

p < 0 and λ−
p+1 > 0.

• The eigenvalues of A+
d (t, y, 0), sorted by increasing order are denoted

by (λ+
i (t, y))1�i�N , and satisfy λ+

p+q < 0 and λ+
p+q+1 > 0, with q � 0.

We make the following hyperbolicity assumption on the operator

H := ∂t +
d∑
j=1

Aj∂j :

Assumption 2.3 (Hyperbolicity with constant multiplicity). — For all
(t, y, x) ∈ (0, T ) × R

d−1 × R
∗ and (η, ξ) �= 0Rd ,

d−1∑
j=1

ηjAj(t, y, x) + ξAd(t, y, x)

remains diagonalizable. Moreover, its eigenvalues keep constant multiplici-
ties.

Let us now introduce the symbol of the parabolic part, B, defined by:

B(t, y, x, η, ξ) :=
∑
j,k<d

ηjηkBj,k(t, y, x)

+
∑
j<d

ξηj(Bj,d(t, y, x) + Bd,j(t, y, x)) + ξ2Bd,d(t, y, x).

We make then the following hyperbolicity-parabolicity assumption:

Assumption 2.4 (Hyperbolicity-Parabolicity). — There is c > 0 such
that for all (t, y, x) ∈ (0, T )×R

d−1 ×R
∗ and (η, ξ) ∈ R

d, the eigenvalues of

i


d−1∑
j=1

ηjAj(t, y, x) + ξAd(t, y, x)


 + B(t, y, x, η, ξ)

satisfy 
e µ � c(|η|2 + ξ2).
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In what follows, η := (η1, . . . , ηd−1) will denote the Fourier variable
dual to y and ξ the Fourier variable dual to x. Let us now introduce some
notations in view of writing the Uniform Evans Condition. A

± denotes the
matrices of M2N (C) defined by:

A
±(t, y, x; ζ) =

(
0 Id

M±(t, y, x; ζ) A±(t, y, x; η)

)
,

where ζ := (τ, γ, η),

M±(t, y, x; ζ) = B−1
d,dA

±
d (t, y, x)A±(t, y, x; ζ)+B−1

d,d(t, y, x)
d−1∑
j,k=1

ηjηkBj,k(t, y, x),

with A± standing for the symbol of the hyperbolic part defined by:

A±(t, y, x; ζ) := (A±
d )−1(t, y)


(iτ + γ)Id +

d−1∑
j=1

iηjAj(t, y, x)


 .

and

A±(t, y, x; η) = B−1
d,dA

±
d (t, y, x)−B−1

d,d(t, y, x)
d−1∑
j=1

iηj (Bj,d(t, y, x) + Bd,j(t, y, x)) .

We introduce the weight Λ(ζ) used to deal with high frequencies:

Λ(ζ) =
(
1 + τ2 + γ2 + |η|4

) 1
4 .

Let JΛ be the mapping from C
N × C

N to C
N × C

N given by

(u, v) �→ (u,Λ−1v).

The scaled negative and positive spaces of the matrices A
±(t, y, x; η) are

defined by:
Ẽ±(A±) := JΛE±(A±).

If E and F are two linear subspaces of C
2N such that dim E + dim F = 2N,

then det(E,F) stands for the determinant obtained by taking two direct
orthonormal bases of E and F. Our stability assumption writes then:

Assumption 2.5 (Uniform Evans Condition). — We assume that
(H̃ε,Γ) satisfies the Uniform Evans Condition that is to say that, for all
(t, y) ∈ (0, T ) × R

d−1 and ζ = (τ, η, γ) ∈ R
d × R

+ − {0Rd+1}, there holds:

D̃(t, y, ζ) =
∣∣∣det(

Ẽ−(A+(t, y, 0; ζ)), Ẽ+(A−(t, y, 0; ζ))
)∣∣∣ � C > 0.
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D̃ is called the scaled Evans function. The zeros of D̃ track down the insta-
bilities of our problem.

Assumption 2.6 (Transversality). — E−(G+
d |x=0) and E+(G−

d |x=0) in-
tersects transversally in R

N , which means that:

E−(G+
d |x=0) + E+(G−

d |x=0) = R
N .

Let Gd denote the matrix Gd(t, y, x) := B−1
d,dAd(t, y, x). We have then the

following Lemma:

Lemma 2.7. — Bd,d is nonsingular and its eigenvalues satisfy 
eµ �
c > 0. Moreover, Gd|x=0+ and Gd|x=0− have no eigenvalue on the imaginary
axis, furthermore

dim E±(Gd|x=0+) = dim E±(A+
d |x=0)

and
dim E±(Gd|x=0−) = dim E±(A−

d |x=0).

Proof. — This lemma is a consequence of the hyperbolicity-parabolicity
assumption. Fixing η = 0 and ξ = ξ0 �= 0 in the hyperbolicity-parabolicity
assumption gives that the eigenvalues of: ξ2

0Bd,d + iξ0Ad satisfy 
eµ � cξ2
0 ,

for some c > 0. Hence the eigenvalues of Bd,d+ i
ξ0
Ad are such that 
eµ � c.

Making ξ0 tends towards infinity, we check that Bd,d is nonsingular and
that its eigenvalues does not come near the imaginary axis. For all ξ0 �= 0
and t ∈ [0, 1], the eigenvalues of tBd,d + (1 − t)Id + i

ξ0
Ad are such that


eµ > 0. Thus
(
tBd,d + (1 − t)Id + i

ξ0
Ad

)−1

Ad has no eigenvalue on the
imaginary axis. Indeed, if it was the case, it would mean that, for some
ξ′0 �= 0, tBd,d+(1−t)Id+ i

ξ′0
Ad has also an eigenvalue on the imaginary axis.

Since the eigenvalues of
(
tBd,d + (1 − t)Id + i

ξ0
Ad

)−1

Ad do not cross the
imaginary axis, making ξ0 tends to infinity and considering in succession
t = 0 and t = 1, we have then proved that Gd has the same number of
eigenvalues with positive [resp negative] real part than Ad. In particular,
we get that dim E±(Gd|x=0+) = dim E±(A+

d |x=0) and dim E±(Gd|x=0−) =
dim E±(A−

d |x=0).

2.2. Construction of an approximate solution

We will begin by reformulating the problem (2.1). This viscous problem
can be recast as a “doubled” problem on a half space.
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Let the “+” [resp “-”] superscript denote the restriction of the concerned
function to {x > 0} [resp {x < 0}]. We begin by introducing

ũε(t, y, x) =
(

uε+(t, y, x)
uε−(t, y,−x)

)
,

the new source term writes f̃(t, y, x) =
(

f+(t, y, x)
f−(t, y,−x)

)
, and the new

Cauchy data is h̃ =
(

h+(t, y, x)
h−(t, y,−x)

)
, the normal coefficient becomes:

Ãd(t, y, x) =
(

A+
d (t, y, x) 0

0 −A−
d (t, y,−x)

)

We define then the tangential symbol Ã as follows:

Ã(t, y, x; ζ) =
(

A+(t, y, x; ζ) 0
0 A−(t, y,−x; ζ)

)
.

For 1 � j � d− 1, we denote:

Ãj(t, y, x) =
(

A+
j (t, y, x) 0

0 A−
j (t, y,−x)

)
.

Moreover, if both j �= d, k �= d or if j = k = d, we note:

B̃j,k(t, y, x) =
(

B+
j,k(t, y, x) 0

0 B−
j,k(t, y,−x)

)
;

and, if (j = d, k �= d) or (j �= d, k = d), we write:

B̃j,k(t, y, x) =
(

B+
j,k(t, y, x) 0

0 −B−
j,k(t, y,−x)

)
.

Finally, the new boundary condition is:

Γ̃ =
(

Id −Id
∂x ∂x

)
,

we obtain then the following equivalent reformulation of the hyperbolic-
parabolic viscous problem (2.1):


H̃εũε = f̃ , {x > 0},
Γ̃ũε|x=0 = 0,
ũε|t<0 = 0.

(2.2)
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where

H̃ε := ∂t +
d−1∑
j=1

Ãj∂j + Ãd∂x − ε
∑

1�j,k�N

∂j(B̃j,k∂k.);

we will also note

H̃ := ∂t +
d−1∑
j=1

Ãj∂j + Ãd∂x.

We construct an approximate solution of equation (2.2) along the fol-
lowing ansatz:

ũεapp(t, y, x) :=
M∑
n=1

Un

(
t, y, x,

x

ε

)
εn, (2.3)

Un(t, y, x, z) := Un(t, y, x) + U∗
n(t, y, x, z),

with Un ∈ H∞((0, T )×R
d−1×R

∗
+) and U∗

n ∈ e−δzH∞((0, T )×R
d−1×R

∗
+×

R
∗
+), for some δ > 0. Note that, due to our previous change of unknowns,

we have Un(t, y, x) ∈ R
2N and U∗

n(t, y, x, z) ∈ R
2N . Moreover, we will note:

Un(t, y, x) =
(

U+
n (t, y, x)

U−
n (t, y, x)

)
, U∗

n(t, y, x, z) =
(

U∗+
n (t, y, x, z)

U∗−
n (t, y, x, z)

)
.

Plugging our asymptotic expansion (2.3) into the doubled problem (2.2),
we get the following profiles equations: to begin with, U∗

0 satisfies the fol-
lowing ODE in z :


Ãd(t, y, x)∂zU∗

0 − B̃d,d(t, y, x)∂2
zU

∗
0 = 0,

U∗+
0 |(z,x)=0 − U∗−

0 |(z,x)=0 = −
(
U+

0 |x=0 − U−
0 |x=0

)
,

∂zU
∗+
0 |(z,x)=0 + ∂zU

∗−
0 |(z,x)=0 = 0.

Denote G̃d = B̃−1
d,dÃd, the profile U∗

0 writes then:

U∗
0 (t, y, x, z) = eG̃d(t,y,x)zU∗

0 (t, y, x, 0).

Going back to the transmission conditions satisfied by U∗
0 , we obtain that

U∗
0 |(z,x)=0 satisfies the relations:




U∗+
0 |(z,x)=0 − U∗−

0 |(z,x)=0 = −σ0(t, y),

G+
d (t, y, 0)U∗+

0 |(z,x)=0 −G−
d (t, y, 0)U∗−

0 |(z,x)=0 = 0,

U∗+
0 |(z,x)=0 ∈ E−

(
G+
d (t, y, 0)

)
,

U∗−
0 |(z,x)=0 ∈ E+

(
G−
d (t, y, 0)

)
,
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where σ0 := U+
0 |x=0 −U−

0 |x=0, and G±
d := B−1

d,dA
±
d . This algebraic problem

is well-posed for a fixed σ0 iff it satisfies, for all (t, y) ∈ (0, T ) × R
d−1 :

σ0(t, y) ∈ Σ(t, y),

with the linear subspace Σ defined by:

Σ :=
(
(G+

d |x=0)−1 − (G−
d |x=0)−1

) (
E−(G+

d |x=0)
⋂

E+(G−
d |x=0)

)
.

The equation giving U∗
0 has a unique solution iff:[

v ∈ E−
(
G+
d (t, y, 0)

) ⋂
E+

(
G−
d (t, y, 0)

)
,
(
G+
d (t, y, 0) −G−

d (t, y, 0)
)
v = 0

]
⇒ [v = 0] ,

which is equivalent to:

dim Σ = dim E−(G+
d |x=0)

⋂
E+(G−

d |x=0).

This property results from our assumptions, as we will prove now. As we
shall see below, due to the Uniform Evans Condition holding, one gets:

dim Σ = N − dim E−(A−
d |x=0) − dim E+(A+

d |x=0).

Since A−
d |x=0 and A+

d |x=0 are nonsingular, dim E−(A−
d |x=0) = N − dim E+

(A−
d |x=0) and dim E+(A+

d |x=0) = N − dim E−(A+
d |x=0). Plus, by Lemma

2.7, we have dim E−(G+
d |x=0) = dim E−(A+

d |x=0) and dim E+(G−
d |x=0) =

dim E+(A−
d |x=0). We obtain thus:

N + dim Σ = dim E+(G−
d |x=0) + dim E−(G+

d |x=0).

Thanks to our transversality assumption stated in Assumption 2.6, there
holds:

dim E+(G−
d |x=0)+dim E−(G+

d |x=0) = N+dim E−(G+
d |x=0)

⋂
E+(G−

d |x=0).

This ends the proof of:

dim Σ = dim E−(G+
d |x=0)

⋂
E+(G−

d |x=0).

We must however know σ0(t, y) ∈ Σ(t, y) in order to obtain U∗
0 . σ0 is de-

duced from the computation of the profile U0, which is solution of the
following mixed hyperbolic problem:


H̃U0 = f̃ , {x > 0},
U+

0 |x=0 − U−
0 |x=0 ∈ Σ,

U0|t<0 = 0 .

(2.4)
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We will now sketch a proof of the well-posedness of this equation. Some
elements of it will be proved afterwards, in another subsection. The function
U0 is also solution of the mixed hyperbolic problem:


H̃U0 = f̃ , {x > 0},
ΓHU0|x=0 = 0,
U0|t<0 = 0,

where ΓH denotes a linear operator such that:

ker ΓH = C(t, y) :=
{(

U∗+
0 |(z,x)=0

U∗−
0 |(z,x)=0

)
: U∗+

0 |(z,x)=0 − U∗−
0 |(z,x)=0 ∈ Σ

}
;

note that C is the stable manifold for the dynamical system U∗
0 is solution

of. The Uniform Lopatinski Condition writes that there is C > 0, such that,
for all (t, y) ∈ (0, T ) × R

d−1 and ζ with γ > 0, there holds:

det(E+(A|x=0−),E−(A|x=0+))) � C > 0,

where we recall that:

A(t, y, x; ζ) := −(Ad)−1(t, y, x)


(iτ + γ)A0(t, y, x) + i

d−1∑
j=1

ηjAj(t, y, x)


 .

In particular, taking γ = 1 and (τ, η) = 0, it induces that:

E−(A−
d |x=0)

⋂
E+(A+

d |x=0) = {0}.

We will prove in section 2.5 that this Uniform Lopatinski Condition
holds. It is a result very similar to the one of Rousset in [20], established
in the nonlinear framework, which states that the Uniform Lopatinski Con-
dition holds for the limiting hyperbolic problem as the consequence of the
Uniform Evans condition holding for the parabolic, viscously perturbed,
problem. We underline that, in our case, our transversality assumption is
necessary in order to prove this result. Remark that the Uniform Lopatinski
Condition holds iff there is C > 0 such that, for all (t, y) ∈ (0, T ) × R

d−1

and ζ with γ > 0, there holds:

det
(
E+(A|x=0−)

⊕
E−(A|x=0+)(t, y, ζ),Σ(t, y)

)
� C > 0.

It implies that dim Σ = N −dim E−(A|x=0+)−dim E+(A|x=0−). Due to our
hyperbolicity assumption, dim E−(A|x=0+) = dim E+(A+

d |x=0) and
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dim E+(A|x=0−) = dim E−(A−
d |x=0). Hence dim Σ = N−dim E−(A−

d |x=0)−
dim E+(A+

d |x=0). Remark that, in the case of a 1-D problem with a piece-
wise constant coefficient, equal to A± on {±x > 0}, taking B = Id as the
viscosity tensor, the Uniform Lopatinski Condition writes:

E−(A−)
⊕

E+(A+)
⊕

Σ := R
N .

For the sake of completeness, we will now show that the construction
of the profiles can go on at any order. Let us assume the profiles up to
order n − 1, with n � M, have been computed. We will now proceed with
the construction of the profiles Un and U∗

n. To begin with, U∗
n satisfies the

ODE in z :


Ãd(t, y, x)∂zU∗
n − B̃d,d(t, y, x)∂2

zU
∗
n = ϕ∗

n,

U∗+
n |(z,x)=0 − U∗−

n |(z,x)=0 = −σn := −
(
U+
n |x=0 − U−

n |x=0

)
,

∂zU
∗+
n |(z,x)=0 + ∂zU

∗−
n |(z,x)=0 = −

(
∂xU

+
n−1|x=0 + ∂xU

−
n−1|x=0

)
,

with

ϕ∗
n = −∂tU

∗
n−1 −

d−1∑
j=1

Ãj∂jU
∗
n−1 +

d∑
j=1

∂j(Bj,d∂zU
∗
n−1)

+
d∑

k=1

∂z(Bd,k∂kU
∗
n−1) +

∑
j,k<d

∂j(Bj,k∂kU
∗
n−2).

As a consequence, there is v∗n ∈ e−δzH∞((0, T ) × R
d−1 × R

∗
+ × R

∗
+) such

that:

U∗
n(t, y, x, z) = eG̃d(t,y,x)z (U∗

n|z=0 − v∗n|z=0) + v∗n(t, y, x, z).

Some more computations show that the ODE giving U∗−
n is well-posed for

fixed σn, provided that σn belongs to Σn, where Σn is an affine space di-
rected by Σ. More precisely, Σn writes:

Σn = qn + Σ,

with qn ∈ H∞((0, T ) × R
d−1). Un is then solution of the mixed hyperbolic

problem satisfying a Uniform Lopatinski Condition:


H̃Un =
∑

1�j,k�d

∂j(Bj,k∂kUn−1), {x > 0},

U+
n |x=0 − U−

n |x=0 ∈ Σn,
Un|t<0 = 0.
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Indeed, there is rn ∈ H∞((0, T ) × R
d−1), such that the problem writes as

well: 


H̃Un =
∑

1�j,k�d

∂j(Bj,k∂kUn−1), {x > 0},

ΓHUn|x=0 = ΓHrn,
Un|t<0 = 0.

σn ∈ Σn is deduced from this equation and thus U∗
n can now be computed.

2.3. Stability Analysis and Main Result

The error equation writes, for wε = uεapp − uε:

{
Hεwε = εMRε,
wε|t<0 = 0. (2.5)

Our goal here is to prove that the error wε converges towards zero as the
viscosity vanishes. To be more precise we will prove some uniform energy
estimates in L2 norm. The proof of these stability estimates is almost the
same as the ones performed in [17]. In [16], Métivier gives a simplified version
of the proof for constant coefficients. Assuming the coefficients are constant,
the energy estimates can then be proved by performing a tangential Laplace-
Fourier transform of the problem. In this special case, the symmetrizers
are Fourier Multipliers hence avoiding the need of any pseudodifferential
calculus. Moreover, we emphasize that the analysis of the stability of the
problem for frozen coefficients is a crucial step in the proof of more general
energy estimates.

For our part, some elements of proof have to be given since our assump-
tions differ of the ones in [16] or in [17]. In order to shorten a not so original
proof, we will rather focus on showing that the scheme of proof exposed in
[17] works for our present problem. We will proceed to do so on a very simpli-
fied example. In the process, we will reinvestigate the link existing between
the Uniform Evans Condition holding and the construction of Kreiss-type
symmetrizers. Our proof will be performed in the 1-D framework, for piece-
wise constant coefficients and for a viscosity tensor B = Id. Rather than
giving a proof more simple but also more specific to our example, we aim at
giving an easily generalized proof, which, even if exposed differently, relates
clearly to [16], [17] and [11]. Note that a similar proof of stability can be
proved in the multi-D framework thanks to the Theorem 2.12, which states
the existence of a low frequency symmetrizer ([16]), be it for 1-D or multi-D
systems. Remark that, in our special case, no glancing modes (i.e eigenval-
ues which becomes, after a rescaling focused on a neighborhood of ζ = 0,
purely imaginary and not semi-simple) appear, which makes the proof of
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Theorem 2.12 become a lot easier to perform. These stability results can also
be proved for multi-D systems with piecewise smooth coefficients, constant
outside a compact set, through the use of pseudodifferential calculus. Let
us now state the results obtained under our initial assumptions. Choosing
M big enough, we get:

Theorem 2.8 (Stability). — There is C > 0 such that, for all 0 < ε <
1, there holds

‖uε − uεapp‖L2((0,T )×Rd) � Cε.

Let u be u := u+1x�0 + u−1x<0, where (u+, u−) is the unique solution
of the well-posed transmission problem:


H+u+ = f+, {x > 0},
H−u− = f−, {x < 0},
u+|x=0 − u−|x=0 ∈ Σ,
u+|t<0 = 0, u−|t<0 = 0.

(2.6)

We obtain then the following convergence result, which is our main result:

Theorem 2.9 (Convergence). — There is C > 0 such that, for all
0 < ε < 1, there holds:

‖uε − u‖L2((0,T )×Rd) � Cε.

2.4. Simplified proof of stability estimates

We will prove stability estimates for the following viscous system in one
space dimension:{

∂tu
ε + A(x)∂xuε − ε∂2

xu
ε = f, (t, x) ∈ (0, T ) × Ω,

uε|t<0 = 0.

where the coefficient A is assumed piecewise constant, equal to A+ on {x >
0} and equal to A− on {x < 0}. We still make the same assumptions as
before on this system. We have constructed

uεapp := uε+app(t, x)1x>0 + uε−app(t,−x)1x<0

such that, if we denote wε = uεapp − uε, there holds:{
∂tw

ε + A(x)∂xwε − ε∂2
xw

ε = εMRε, (t, x) ∈ Ω,
wε|t<0 = 0.

where Ω = (0, T ) × R, Rε belongs to H∞((0, T ) × R
∗) and vanishes in the

past. Since our method of estimation comes from pseudodifferential calculus,
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we have to perform a tangential Fourier-Laplace transform of the problem.
To this aim, it is necessary to extend the definition of our error, in order
for it to be defined for all time t ∈ R. We denote by R̃ε, Rε extended by 0
outside (−∞, T )×R. Let us now proceed with the extension of our error to
t � T . We call by w̃ε the unique solution of:{

Hw̃ε − ε∂2
xw̃

ε = εM R̃
ε
, (t, x) ∈ R × R,

w̃ε|t<0 = 0.
(2.7)

Note well that the restriction of w̃ε to Ω is wε. For the sake of simplicity,
we will still denote w̃ε [resp R̃

ε
] by wε [resp Rε] in what follows.

We now come back to our error equation (2.7). To begin with, let us rewrite
the problem (2.7) in a convenient form. wε is solution of:

∂tw
ε + A(x)∂xwε − ε∂2

xw
ε = εMRε, (t, x) ∈ R × R,

Let γ stand for a positive parameter. We denote then by ŵε± := F(e−γtwε±)
and R̂ε± := F(e−γtRε±), where F stands for the tangential Fourier trans-
form (with respect to t) and the ± superscripts indicates restrictions to
{±x > 0}, we have then:




(iτ + γ)ŵε+ + A+∂xŵ
ε+ − ε∂2

xŵ
ε+ = εM R̂ε+, {x > 0},

(iτ + γ)ŵε− + A−∂xŵ
ε− − ε∂2

xŵ
ε− = εM R̂ε−, {x < 0},

ŵε+|x=0 − ŵε−|x=0 = 0,
∂xŵ

ε+|x=0 − ∂xŵ
ε−|x=0 = 0.

(2.8)

Remark that, by taking γ big enough, the restrictions of the solution wε of
(2.7) to {±x > 0} are given by:

wε± = eγtF−1(ŵε±),

where (ŵε+, ŵε−) are the solutions of the transmission problem (2.8).

Taking W ε±(iτ + γ, x) =


 ŵε±

ε∂xŵ
ε±


 , we have then:




∂xW
ε+ =


 ∂xŵ

ε+

ε∂2
xŵ

ε+


 =


 0 1

εId

(iτ + γ) 1
εA

+





 ŵε+

ε∂xŵ
ε+


 +


 0

εM R̂ε+


 ,

∂xW
ε− =


 ∂xŵ

ε−

ε∂2
xŵ

ε−


 =


 0 1

εId

(iτ + γ) 1
εA

−





 ŵε−

ε∂xŵ
ε−


 +


 0

εM R̂ε−


 ,

W ε+|x=0 −W ε−|x=0 = 0.
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We note ζ = (τ, γ) and ζ̃ = (ετ, εγ). Multiplying the previous equation by
ε gives: 


∂zW

ε+ − A
+(ζ̃)W ε+ = G+, {z > 0},

∂zW
ε− − A

−(ζ̃)W ε− = G̃−, {z < 0},
W ε+|z=0 = W ε−|z=0,

(2.9)

where A
±(ζ̃) =

(
0 Id

(iτ̃ + γ̃)Id A±

)
and G± =

(
0

εM+1R̂ε±

)
, and z

stands for the fast variable x
ε . Note that the first energy estimates to be

proved will concern this equation.

2.4.1. Proof of the error estimate by symmetrizers

We will now show how, thanks to the Uniform Evans condition holding,
stability estimates can be proved by symmetrizers for the three different
regimes of frequency: low, medium and high. In the construction of sym-
metrizers, for the sake of simplicity, we will drop the tildes in our notations
and only introduce them back when needed.

An error estimate for medium frequencies

For 1 � |ζ| � 2, we will prove here Proposition 2.10. Denote Ã
− = −A

−,
W ε− := W ε−(t,−z) and G− = G̃−(t,−z), W ε− satisfies then the following
ODE in z: {

∂zW
ε− − Ã

−W ε− = G−, {z > 0},
lim
z→∞

W ε− = 0.

It implies that W ε−|z=0 belongs to the stable manifold:

Ws− = q−n |z=0 + E−
(
Ã

−|z=0

)
,

where q−n is a bounded solution of the above ODE. Even if q−n can be chosen
in several ways, the space Ws− is uniquely defined. In addition, W ε+ is
solution of: {

∂zW
ε+ − A

+W ε+ = G+, {z > 0},
lim
z→∞

W ε+ = 0.

Therefore W ε+|z=0 belongs to the stable manifold:

Ws+ = q+
n |z=0 + E−

(
A

+|z=0

)
.

We have
C

2N = E−(A+)
⊕

E+(A+).
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The projectors associated to this decomposition will respectively be Π−
1

and Π+
1 . Under our structure assumptions, as in [16], there is two hermitian

symmetric, uniformly bounded, matrices S+
1 and S−

1 such that:

• There is C > 0 such that, for all q ∈ E+(A+),

〈
eS+
1 A

+q, q〉 � C|q|2,

and, for all q ∈ E−(A+),

−〈
eS−
1 A

+q, q〉 � C|q|2.

• There is c+1 > 0 and c−1 > 0 such that:

Π+∗
1 Π+

1 � S+
1 � c+1 Π+∗

1 Π+
1 , Π−∗

1 Π−
1 � S−

1 � c−1 Π−∗
1 Π−

1 .

Note well that neither the Uniform Evans condition, nor our boundary con-
ditions intervene in the proof of this result. In what follows, κ will always
denote a positive parameter. We define then S+

κ by

S+
κ := κS+

1 − S−
1 .

We will prove further that, provided that we choose κ large enough, S+
κ

is a suitable Kreiss-type symmetrizer for our system if the Uniform Evans
Condition holds. For now, we have constructed a hermitian symmetric, uni-
formly bounded matrix S+

κ and there is c1,κ > 0 such that:

2
eS+
κ A

+ � c1,κId.

As we will see, our stability condition will play a role in the control of
the traces W ε+|z=0 and W ε−|z=0, which is the crucial step in the proof
of our energy estimates. Those traces are linked together by the relations:
W ε+|z=0 = W ε−|z=0, with W ε+|z=0 ∈ Ws+ and W ε−|z=0 ∈ Ws−. Remark
that there is uniqueness for the traces W ε+|z=0 = W ε−|z=0, satisfying the
above relations, iff:

E−
(
Ã

+|z=0

) ⋂
E−

(
Ã

−|z=0

)
= {0},

which is equivalent, for the range of frequencies we are presently considering,
to our Uniform Evans Condition.

We perform an analogous construction of a potential symmetrizer for
W ε−. The projectors associated to the decomposition:

C
2N = E−(Ã−)

⊕
E+(Ã−)

will respectively be Π−
2 and Π+

2 .
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Under our structure assumptions, as in [16], there is two hermitian sym-
metric, uniformly bounded, matrices S+

2 and S−
2 such that:

• There is C > 0 such that, for all q ∈ E+(Ã−),

〈
eS+
2 Ã

−q, q〉 � C|q|2,

and, for all q ∈ E−(Ã−),

−〈
eS−
2 Ã

−q, q〉 � C|q|2.

• There is c+2 > 0 and c−2 > 0 such that:

Π+∗
2 Π+

2 � S+
2 � c+2 Π+∗

2 Π+
2 , Π−∗

2 Π−
2 � S−

2 � c−2 Π−∗
2 Π−

2 .

Like before, neither our stability condition, nor our boundary conditions
intervene here. We define then S−

κ by

S−
κ := κS+

2 − S−
2 .

The so constructed matrix S−
κ is hermitian symmetric, uniformly bounded

and satisfies, for some c2,κ > 0 :

2
eS−
κ A

− � c2,κId.

We recall that W ε+|z=0 = W ε−|z=0 = q. For the sake of clarity, we will
drop the κ subscripts. Let us now prove our energy estimates.

−
〈
S+W ε+|z=0,W

ε+|z=0

〉
=

∫ ∞

0

〈
S+ d

dz
W ε+,W ε+

〉
+

〈
S+W ε+,

d

dz
W ε+

〉
dz

=
∫ ∞

0

〈
2
eS+

A
+W ε+,W ε+

〉
dz +

∫ ∞

0

〈
2
eS+G̃+,W ε+

〉
dz

thus
c1

∫ ∞

0

〈
W ε+,W ε+

〉
dz � −

〈
S+W ε+|z=0,W

ε+|z=0

〉

+
∣∣∣∣
∫ ∞

0

〈
2
eS+G̃+,W ε+

〉
dz

∣∣∣∣
Denoting by ‖u‖ := ‖u‖L2(R∗

+) =
(∫ ∞

0
〈u, u〉 dz

) 1
2 , we obtain then that there

are c′1 > 0 and C ′
1 > 0 such that:

c′1‖W ε+‖2 � −
〈
S+W ε+|z=0,W

ε+|z=0

〉
+ C ′

1‖
eS+G̃+‖2.
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Performing the same steps once again, we get that:

c′2‖W ε−‖2 � −
〈
S−W ε−|z=0,W

ε−|z=0

〉
+ C ′

2‖
eS−G−‖2.

Taking c = min(c′1, c
′
2), and C = min(C ′

1, C
′
2), we get then:

c‖W ε‖2
L2(R) +

〈
(S+ + S−)q, q

〉
� C

(
‖
eS+G̃+‖2 + ‖
eS−G̃−‖2

)
.

Proposition 2.10. — For κ large enough, there is δ > 0 such that, for
all q ∈ C

2N , there holds:

〈
(S+
κ + S−

κ ) q, q
〉

� δ〈q, q〉. (2.10)

Moreover, there is c, δ and C positive such that, for all 0 < ε < 1, we have:

c‖W ε‖2
L2(R) + δ|W ε|z=0|2 � C‖G‖2

L2(R). (2.11)

Proof. — As a preliminary, we have the next lemma:

Lemma 2.11. — Suppose the uniform Evans condition satisfied, then,
for all |ζ| �= 0 and for all q ∈ C

2N , we have either q = 0 or Π+
1 (ζ)q �= 0 or

Π+
2 (ζ)q �= 0.

Proof. — Indeed, fixing ζ �= 0, if there exists q �= 0 such that Π+
1 q = 0

or Π+
2 q = 0, we get:

Π−
1 (q) = Π−

2 (q) = q.

As a result q is nonzero and belongs to E−(A+)
⋂

E+(A+), which contradicts
our stability assumption.

For q = 0, the inequality is trivially satisfied. For q ∈ C
2N such that

Π+
1 q �= 0, taking κ large enough gives the result. Notice that, for q ∈ C

2N

with Π+
2 q �= 0, taking κ large enough also leads to the result. Now Lemma

2.11 states that either q = 0, either Π+
1 q �= 0 or Π+

2 q �= 0, which achieves
the proof of the first part of Proposition 2.10, using the inequality (2.10),
it follows that:

c‖W ε‖2
L2(R) + δ|W ε|z=0|2 � C

(
‖
eS+G̃+‖2

L2(R+) + ‖
eS−G−‖2
L2(R−)

)
,

thus leading to the estimate (2.11).
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An error estimate for high frequencies

Denote by

wε+1 :=
(

Λŵε+

∂zŵ
ε+

)
,

and

wε−1 :=
(

Λŵε−

∂zŵ
ε−

)
,

then, for Λ big enough, our problem is transformed in the study, for ζ ∈
{|ζ| = 1}

⋃
{γ � 0} of the same equations than for medium frequencies,

this time with unknown (wε+1 , wε−1 ) instead of (W ε+,W ε−). We note wε1 =
wε+1 1x>0 + wε−1 1x<0. We obtain, the same way as for medium frequencies,
that there are ch > 0 and δh > 0 such that for for all |ζ| > 2 and for all
0 < ε < 1, there holds:

ch ‖wε1‖
2
L2(R) + δh |wε1|x=0|2 � C

(
‖ReS+G̃+‖2 + ‖ReS−G−‖2

)
. (2.12)

An error estimate for low frequencies

For low frequencies, the study becomes much more delicate since some
eigenvalues of A

± do not stay away from the imaginary axis, asymptotically
when ζ tends to zero. As a result, the spectral projectors on the negative or
positive eigenspaces of A

+ and A
−, which are needed in the construction of

the symmetrizers are no longer well-defined. Hence, an appropriate rescal-
ing has to be introduced for ζ in a neighborhood of zero, the important
linear subspaces to consider are then the positive and negative spaces of
the rescaled versions of A

+ and A
−. After rescaling, the spectral projectors

on these spaces become perfectly well-defined, for τ̌2 + γ̌2 = 1 and γ̌ > 0,
where τ̌ = τ

|ζ| and γ̌ = τ
|γ| are the frequencies rescaled for a low frequency

analysis. A logical idea would be to prove a continuous extension of these
linear subspaces to {γ̌ = 0}, in order to help with the construction of low
frequency symmetrizers. However, what happens is the converse, since the
fact that those linear subspaces extends continuously to {γ̌ = 0} is a conse-
quence of the construction of a Kreiss-type symmetrizer for low frequencies
as defined by Theorem 2.12. This is shown in [18].

Let us now give a brief overview of the low frequency analysis of the
problem. By a suitable change of basis, the matrix A

± becomes block di-
agonal. Constructing a symmetrizer for A

± reduces to the construction of
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a symmetrizer for each diagonal blocks. We group together the eigenvalues
which do not come near the imaginary axis, forming what we will call the
parabolic block. For this block, our treatment does not differ from the one
previously described for medium frequencies. The other eigenvalues can be
grouped together in the hyperbolic block. As explained in the beginning of
this section, the construction of the symmetrizers for this hyperbolic block
needs a specific approach. For 1-D systems, which is our present case, the
construction of a low frequency symmetrizer is rather easy since all the
eigenvalues in the hyperbolic block are strictly hyperbolic, which means
that, even if they do cross the imaginary axis, they remain semi-simple. In
general, for multi-D systems, glancing modes, that is to say purely imag-
inary, non semi-simple eigenvalues also do appear. Those need an elabo-
rate analysis. For those part of the analysis, we can rely on Theorem 2.12
proved for instance in [16]. Indeed, compared to the problems studied in
[16], we make the same structure assumptions (hyperbolicity, parabolicity
and hyperbolicity-parabolicity), even though, our boundary conditions, and
therefore the expression of our Uniform Evans Condition differs. As a conse-
quence, the results of [16], proved by using only the structure assumptions,
also holds here. It is in particular the case of Theorem 2.12.

W ε+ and W ε− satisfying almost the same equations, we will mostly
describe the proof of the energy estimates involving W ε+. Let us introduce
some notations and some important properties involved in the low frequency
study of the hyperbolic part. Using polar coordinates, we define:

ρ := |τ + iγ|.
There is a nonsingular N ×N matrix ν+ and two N ×N matrices H+ and
P+, such that:

(ν+)−1
A

+ν+ = A
+
2 :=

(
H+(ζ) 0

0 P+(ζ)

)
,

with the eigenvalues of P+ staying away from he imaginary axis and the
eigenvalues of H+ vanishing for |ζ| = 0. Indeed, A

± has got exactly N
hyperbolic eigenvalues and N parabolic eigenvalues as proved for instance
in [9]. In order to symmetrize properly H+, we introduce the polar rescaling:

ζ = ρζ̌ = ρ(τ̌ , γ̌),

we have thus |ζ̌| = 1. The rescaled version of H+, Ȟ+ is then given by:

H+(ζ) = ρȞ+(ζ̌, ρ).

Hence, W ε+
2 = (ν+)−1W ε+ satisfies the equation:{

∂zW
ε+
2 − A

+
2 W ε+

2 = (ν+)−1G̃+, {z > 0},
W ε+

2 |z=0 = (ν+)−1q := q
2

.
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The symmetrizer for this problem will then be constructed by block, as
follows:

S+
l =

(
ρŠ+

H(ζ̌, ρ) 0
0 S+

P (ζ)

)
.

The symmetrizer of P+, S+
P will not be detailed here since it is the exact

analogous of the symmetrizer for medium frequencies.

For the hyperbolic part, we have:

Ȟ+(ζ̌, 0) = −(iτ̌ + γ̌)(A+)−1.

For ρ � C > 0, H+ has exactly N+
1 eigenvalues with positive real part and

N−
1 eigenvalues with negative real part while P+ has exactly N−

1 eigenvalues
with positive real part and N+

1 eigenvalues with negative real part. For
ρ � C > 0, we can construct S+

H(ζ) := ρŠ+
H(ζ̌, ρ) the same way (we have the

same qualitative behavior as for the medium frequencies previously treated).
Under our assumptions, the following result, asserting that we can construct
Š+
H(ζ̌, ρ), for (ζ̌, ρ) in a neighborhood of (ζ̌0, 0) has been proved in [16]:

Theorem 2.12. — For all {|ζ̌| = 1}
⋃
{γ̌ � 0}, there are two linear

subspaces F
+
1 and F

−
1 of constant dimension satisfying:

C
N = F

+
1

⊕
F
−
1 , (2.13)

with dim(F+
1 ) = N+

1 , dim(F−
1 ) = N−

1 , and such that for all κ1 � 1 there
exists a neighborhood ω̌ of (ζ̌, 0) in R

2×R, a C∞ mapping Š+
H from ω̌ to the

space of N ×N matrices, and a constant c > 0 such that for all (ζ̌, ρ) ∈ ω̌,

Š+
H(ζ̌, ρ) =

(
Š+
H(ζ̌, ρ)

)∗
for all h ∈ C

N , denoting by Π+
1 and Π−

1 the projectors associated to the
decomposition (2.13) of C

N :〈
Š+
H(ζ̌, ρ)h, h

〉
� κ1|Π+

1 h|2 − |Π−
1 h|2

and, for all (ζ̌, ρ) ∈ ω̌, with ρ � 0 and γ̌ � 0 :

2
e
〈
Š+
H(ζ̌, ρ)Ȟ+(ζ̌, ρ)h, h

〉
� c(γ̌ + ρ)|h|2

Note that we have the analogous Theorem for W ε− :

Theorem 2.13. — For all {|ζ̌| = 1}
⋃
{γ̌ � 0}, there are two linear

subspaces F
+
2 and F

−
2 of constant dimension satisfying:

C
N = F

+
2

⊕
F
−
2 , (2.14)
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with dim(F+
2 ) = N+

2 , dim(F−
2 ) = N−

2 , and such that for all κ2 � 1 there
exists a neighborhood ω̌ of (ζ̌, 0) in R

2×R, a C∞ mapping Š−
H from ω̌ to the

space of N ×N matrices, and a constant c > 0 such that for all (ζ̌, ρ) ∈ ω̌,

Š−
H(ζ̌, ρ) =

(
Š−
H(ζ̌, ρ)

)∗
for all h ∈ C

N , denoting by Π+
2 and Π−

2 the projectors associated to the
decomposition (2.14) of C

N :〈
Š−
H(ζ̌, ρ)h, h

〉
� κ2|Π+

2 h|2 − |Π−
2 h|2

and, for all (ζ̌, ρ) ∈ ω̌, with ρ � 0 and γ̌ � 0 :

2
e
〈
Š−
H(ζ̌, ρ)Ȟ−(ζ̌, ρ)h, h

〉
� c(γ̌ + ρ)|h|2

We just expose here as a remark an important property linked to our current
analysis.

Remark 2.14. — Let H+(ζ, ρ) be given by:

H+(ζ, ρ) = Ȟ+(ζ̌, ρ).

There exists e+(τ, γ, ξ, ρ) polynomial in ξ with smooth coefficients in (τ, γ, ρ)
such that:

det
(
(iτ + γ)Id + iξA+ + ρId

)
= e+(τ, γ, ξ, ρ)det

(
iξId−H+(τ, γ, ρ)

)
and e+(τ, γ, ξ, 0) �= 0. This shows the important link, for ρ = 0, existing
between the spectral study of H+ and the spectral study of the symbol of
the hyperbolic part of our equation.

For ρ � 0, we have, for all h ∈ C
N :

2
e〈S+
P P+h, h〉 � cρ(γ̌ + ρ)|h|2.

As a result, For ρ � 0, we can construct Sl satisfying:

2
e〈S+
l A

+h, h〉 � c(γ + ρ2)|h|2.

Mimicking what has been done for medium frequencies, after choosing for
all 0 < λ < 2c′(γ + ρ2), we get that, for all γ > 0, the following estimate
holds:(

c′(γ + ρ2) − λ

2

)
‖W ε+

2 ‖2 +
〈
S+
l W ε+

2 |x=0,W
ε+
2 |x=0

〉
� 2

λ
‖ReS+G̃+‖2.
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Therefore, there are c1 > 0 and C1 > 0 such that:

c1(γ + ρ2)‖W ε+
2 ‖2 +

〈
S+
l W ε+

2 |x=0,W
ε+
2 |x=0

〉
� C1

γ + ρ2
‖ReS+G̃+‖2.

Adopting symmetric notations for W ε−
2 and adding the two estimates

gives that there are c > 0 and C > 0, such that, for all γ > 0, there holds:

c(γ + ρ2)‖W ε
2 ‖2

L2(R) +
〈(

S+
l + S−

l

)
q
2
, q

2

〉

� C

γ + ρ2

(
‖ReS+G̃+‖2 + ‖ReS−G̃−‖2

)
.

Proposition 2.15. — For all q ∈ C
2N , there is δ > 0, δ′ > 0 and a set

of two symmetrizers S+
l and S−

l such that:〈(
S+
l + S−

l

)
q, q

〉
� min(ρδ′, δ)

〈
q, q

〉
.

Proof. — Denote by qH the N first coordinates of q and by qP the N
last ones. We have then:〈(

S+
l + S−

l

)
q, q

〉
= ρ

〈(
Š+
H + Š−

H

)
qH , qH

〉
+

〈(
S+
P + S−

P

)
qP , qP

〉
The uniform Evans condition being satisfied, we get immediately the analo-
gous of Proposition 2.10 for the parabolic part: there are two symmetrizers
S+
P , S−

P and a positive constant δ such that for all qP ∈ C
N , there holds:〈(

S+
P + S−

P

)
qP , qP

〉
� δ 〈qP , qP 〉 .

For ρ � C > 0, we obtain the same way that there is a positive constant δ′

such that, for all qH ∈ C
N ,

ρ
〈(
Š+
H + Š−

H

)
qH , qH

〉
� δ′ 〈qH , qH〉 .

Hence, for ρ � C > 0, there holds:〈(
S+
l + S−

l

)
q, q

〉
� min(δ′, δ)

〈
q, q

〉
.

This inequality is true provided that the Evans Condition holds, even if it
is not uniformly. For ρ � C > 0, due to our stability assumption holding,
we had the following decomposition of C

N :

C
N = E−(H+)

⊕
E−(H−).
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Remark that, for all ρ > 0, E−(Ȟ+) = E−(H+) and E+(Ȟ−) = E+(H−).
Moreover we had:

C
N = E−(H+)

⊕
E+(H+) = E−(H−)

⊕
E+(H−).

For the frequencies in a neighborhood of zero, let us prove our result. By
Theorem 2.12 and 2.13, we have: C

N = F
−
1

⊕
F

+
1 , and C

N = F
−
2

⊕
F

+
2 . For

fixed ρ > 0, and (τ̌ , γ̌) such that τ̌2 + γ̌2 = 1 with γ̌ � 0, thanks to the
Evans Condition holding, we have:

C
N = E−(Ȟ+)

⊕
E−(Ȟ−).

As a corollary of Theorem 2.12 and Theorem 2.13, as proven in [18] and
[16], the vector bundles E−(Ȟ+)(ζ̌, ρ) and E−(Ȟ−)(ζ̌, ρ), defined for ζ̌ such
that |ζ̌| = 1, with γ̌ � 0 and ρ > 0, extends continuously to ρ = 0. As a
matter of fact, these continuous extensions are the previously introduced
linear subspaces F

−
1 and F

−
2 . Since the Evans Condition holds uniformly,

and the extensions of E−(Ȟ+) to F
−
1 and of E−(Ȟ−) to F

−
2 are continuous,

we have then:
F
−
1

⋂
F
−
2 = {0},

and therefore F
−
1

⊕
F
−
2 = C

N

As a result, for all qH ∈ C
N , either qH = 0, or Π+

1 qH �= 0 or Π+
2 qH �= 0.

Moreover, by construction of Š±
H :

〈
Š+
H(ζ̌, ρ)qH , qH

〉
� κ1|Π+

1 qH |2 − |Π−
1 qH |2,

〈
Š−
H(ζ̌, ρ)qH , qH

〉
� κ2|Π+

2 qH |2 − |Π−
2 qH |2.

For qH = 0, the awaited inequality trivially holds. If it is not the case, since
either Π+

1 qH �= 0 or Π+
2 qH �= 0, we obtain the desired result by choosing the

two positive parameters κ1 and κ2 large enough.

We get then the following estimate:

Proposition 2.16. — There are δ > 0, c > 0 and C > 0 such that, for
all nonzero frequencies, there holds:

c(γ + ρ2)‖W ε
2 ‖2

L2(R) + δρ|W ε
2 |x=0|2 � C

γ+ρ2 ‖G‖2
L2(R). (2.15)

Note that this estimate needs that either γ > 0 or ρ > 0 to properly control
our error. This shows the need to introduce the weight e−γt with γ > 0.
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The main error estimate

In the previous chapters, we have obtained three energy estimates, each
concerning a different regime of frequencies. We recall that the frequencies
were respectively divided in ζ̃ < 1 for the low frequencies, 1 � ζ̃ � 2 for
the medium frequencies and ζ̃ > 2 for the high frequencies. In a first step,
we will rewrite our estimates (all the positive constants will be taken equal
to one) for the different regimes of frequencies, this time for the original
variables x and ζ instead of z and ζ̃. To begin with, let us redefine here the
notations ‖.‖ and |.| as follows:

‖f(τ, x)‖2 =
∫ ∞

−∞

∫ ∞

−∞
〈f(τ, x), f(τ, x)〉 dx dτ

and
|f(τ)|2 =

∫ ∞

−∞
〈f(τ), f(τ)〉dτ.

We will integrate the previous estimations between −∞ and ∞ with respect
to τ . There is Cm > 0 such that, for all 1 � |εζ| � 2, the energy estimate
writes:

‖ŵε‖2
L2(R) + ε2‖∂xŵε‖2

L2(R) + |ŵε|x=0|2 + ε2|∂xŵε|x=0|2 � Cmε2M

There is Ch > 0 such that, for all |εζ| > 2, the following estimate holds:

(1 + ετ2 + εγ2)‖ŵε‖2
L2(R) + ε2‖∂xŵε‖2

L2(R)

+(1 + ετ2 + εγ2)|ŵε|x=0|2 + ε2|∂xŵε|x=0|2 � Chε
2M .

There is Cl > 0 such that, for all |εζ| < 1, there holds:

(εγ + ε2ρ2)
(
‖ŵε‖2

L2(R) + ε2‖∂xŵε‖2
L2(R)

)
+ ερ

(
|ŵε|x=0|2 + ε2|∂xŵε|x=0|2

)
� Cl

εγ + ε2ρ2
ε2M ,

and thus:

(γ + ερ2)
(
‖ŵε‖2

L2(R) + ε‖∂xŵε‖2
L2(R)

)
+ ρ

(
|ŵε|x=0|2 + ε|∂xŵε|x=0|2

)
� Cl

γ
ε2M−2.

(2.16)
Note that the estimates we proved for low frequencies were for the unknown
W̃ ε

2 . We explain here briefly how to come back to estimates on W̃ ε. W̃ ε±
2

are deduced from W̃ ε by a change of basis described by ν±. There holds:

ν±|ζ=0 =
(

Id (A±)−1B
0 Id

)
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ν+ and ν− are continuous in ζ. Thus, recalling that W̃ ε+ = ν+W̃ ε+
2 [resp

W̃ ε− = ν+W̃ ε−
2 ], both W̃ ε+ and W̃ ε+

2 satisfy estimates with coefficients of
the same scale in ε and ζ. Thus, adjusting the symmetrizers to match the
constants allows to obtain the low frequency estimate (2.16).

We have to keep in mind ε is destined to tend towards zero while looking
at our estimates.

Since ŵε is continuous through {x = 0}, ŵε|x=0 is well-defined. Let us
write the simplified estimates, not involving the traces on the boundary:
there is C positive such that, for all 0 < ε < 1, there holds:

‖ŵε‖L2(R) � C

γ
εM−1,

where γ is a fixed positive parameter.

Recalling that ŵε(τ, x) :=
∫ ∞
−∞[e−γtwε(t, x)]e−2πiτt dt, and using Plancherel’s

Theorem, we get the following result: there is C positive independent of ε
and γ, such that for all function w smooth with compact support satisfying
our error equation, there holds:

‖e−γtwε‖L2((0,T )×R) � C

γ
εM−1.

Therefore, since γ is a positive parameter, by constructing our approximate
solution at an order M � 2, we obtain the following stability result:

Theorem 2.17. — There is C > 0 such that, for all 0 < ε < 1 :

‖wε‖L2((0,T )×R) � Cε.

2.5. Proof of the Uniform Lopatinski condition holding for the
mixed hyperbolic problem (2.4)

We will now prove, by a detailed analysis of the Evans condition for
low frequency, that the Uniform Lopatinski condition holds for (2.4) thus
proving the well-posedness of the transmission problem (2.6).

A(t, y, x; ζ) :=
(

0 Id
M(t, y, x; ζ) A(t, y, x; η)

)
.

To begin with, let us fix the values of (t, y, x) := (t0, y0, x0) and study the
behavior of A0(ζ) := A(t0, y0, x0; ζ) for |ζ| in a neighborhood of zero.
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Lemma 2.18. — There is a nonsingular matrix ν(ζ), smooth on a neigh-
borhood ω0, of 0 such that:

ν(ζ)−1
A0(ζ)ν(ζ) =

(
H(ζ) 0

0 P (ζ)

)
:= G0(ζ).

At ζ = 0, we have P (0) = B−1Ad(t0, y0, x0; 0) and H(0) = 0.

ν(0) =
(

Id (Ad)−1B(t0, y0, x0; 0)
0 Id

)
:= G(ζ).

H(ζ) is often referred to as the hyperbolic block since it satisfies, for ζ ∈ ω0:

H(ζ) = A(t0, y0, x0; ζ) + O(|ζ|2).

A proof of this Lemma can be found in [16]. Remark that:

E−(A0(ζ)) = ν(ζ)E−(H(ζ)) × E−(P (ζ)).

The Uniform Evans condition writes:

det
(
E−(A+|x=0),E+(A−|x=0)

)
� C > 0.

When the two linear subspaces E−(A+|x=0) and E+(A−|x=0) extend con-
tinuously to ζ �= 0 with γ > 0, and if we denote by Ẽ−(A+|x=0) and
Ẽ+(A−|x=0) the extended spaces, the Uniform Evans Condition consists
in asking, for all ζ �= 0 that:

Ẽ−(A+|x=0)
⋂

Ẽ+(A−|x=0) = {0}.

Such extensions do exist in our case. Indeed in [18], Métivier and Zumbrun
proves that, under our assumptions, the following result holds, as a direct
consequence of the construction of a Kreiss-type Symmetrizer. Let us denote
ρ = |ζ|, we have then that ζ = ρζ̌. We have then the following result:

Theorem 2.19. — The linear bundle Ě(t, y, ζ̌, ρ) := E−(t, y, ρζ̌) has a
continuous extension to ρ = 0, γ̌ � 0.

The Uniform Evans being satisfied for low frequencies, it implies that:∣∣∣det(
ν+

(
Ẽ−(A+|x=0) × E−(P+|x=0)

)
, ν−

(
Ẽ+(A−|x=0) × E+(P−|x=0)

))∣∣∣
� C > 0.
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where, for |ζ| in a neighborhood of zero:

ν±(t, y; ζ) =
(

Id (A±
d )−1Bd,d(t, y, 0; ζ)

0 Id

)
+ O(|ζ|).

Let D̃0 denote the following determinant:∣∣∣det(
ν+|ζ=0

(
Ẽ−(A+|x=0) × E−(P+|x=0,ζ=0)

)
,

ν−|ζ=0

(
Ẽ+(A−|x=0) × E+(P−|x=0,ζ=0)

) ∣∣∣
There is ρ0 > 0 such that for all ζ such that |ζ| = ρ0, there holds:

D̃0 � C > 0.

where P±|ζ=0 = B−1
d,dA

±
d .

ν+|ζ=0

(
Ẽ−(A+|x=0) × E−(P+|x=0,ζ=0)

)
is the linear subset composed

of the
(

u+

v+

)
such that there are u′+ ∈ Ẽ−(A+|x=0) and v′+ ∈ E−(B−1

d,dA
+
d )

satisfying : (
u+

v+

)
=

(
u′+ +

(
A+
d

)−1
Bd,d|x=0v

′+

v′+

)

The same way, ν−|ζ=0

(
Ẽ+(A−|x=0) × E+(P−|x=0,ζ=0)

)
is the linear subset

composed of the
(

u−

v−

)
such that there are u′− ∈ Ẽ+(A−|x=0) and v′− ∈

E+(B−1
d,dA

−
d ) satisfying :

(
u−

v−

)
=

(
u′− +

(
A−
d

)−1
Bd,d|x=0v

′−

v′−

)

The low frequency Evans Condition rewrites then:

ν−|ζ=0

(
Ẽ+(A−|x=0) × E+(P−|x=0,ζ=0)

)
⋂

ν+|ζ=0

(
Ẽ−(A+|x=0) × E−(P+|x=0,ζ=0)

)
= {0},

which is equivalent to the following property: if there is λ ∈ C − {0} such
that {

u′+ + (G+
d )−1v′+ = λ

(
u′− + (G−

d )−1v′−
)

v′+ = λv′−
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with u′+ ∈ Ẽ−(A+|x=0), v′+ ∈ E−(B−1
d,dA

+
d ), u′− ∈ Ẽ+(A−|x=0) and v′− ∈

E+(B−1
d,dA

−
d ), then this implies that u′+ = u′− = v′+ = v′− = 0. Easy

algebraic considerations prove this is true iff:

((G+
d )−1 − (G−

d )−1)
(
E−(G+

d )
⋂

E+(G−
d )

) ⊕
Ẽ−(A+|x=0)

⊕
Ẽ+(A−|x=0) = C

N .

We recall Σ denotes the space:

Σ = ((B−1
d,dA

+
d )−1 − (B−1

d,dA
−
d )−1)

(
E−(B−1

d,dA
+
d |x=0)

⋂
E+(B−1

d,dA
−
d |x=0)

)
.

Thus for all ζ �= 0, such that |ζ| < ρ0, we have:

Ẽ−(A+|x=0)
⊕

Ẽ+(A−|x=0)
⊕

Σ = C
N .

Since both of the tangential symbols A+|x=0 and A−|x=0 are homogeneous
of order zero in ζ, this is equivalent to say that for all ζ �= 0, there holds:

Ẽ−(A+|x=0)
⊕

Ẽ+(A−|x=0)
⊕

Σ = C
N ,

which is an equivalent expression of the Uniform Lopatinski Condition
for the mixed hyperbolic problem (2.4). Due to the hyperbolicity
assumption, we get moreover that dim E−(A+|x=0) = dim E+(A+

d |x=0) and
dim E+(A−|x=0) = dim E−(A−

d |x=0).

Remark 2.20. — In the 1-D framework, the Uniform Lopatinski Condi-
tion writes:

E+(A+
d )

⊕
E−(A−

d )
⊕

Σ = R
N .

The role of our transversality Assumption, alongside the other structure
assumptions, is to guarantee Σ has the suitable dimension. This Assumption
is thus crucial since, if Σ has not the right dimension, the limiting mixed
hyperbolic problem has no chance of satisfying a Lopatinski Condition even
though its parabolic perturbation satisfies a Uniform Evans Condition.

3. An open scalar question: the scalar expansive case

For scalar hyperbolic problems of conservation laws with discontinuous
coefficients, we saw in [8] that the expansive case was quite special to treat.
This section is devoted to the open analogous nonconservative problem. To
begin with, let us detail the current problematic: we have in mind to give a
sense to the Cauchy problem for the hyperbolic operator H = ∂tu+a(x)∂xu
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where a is piecewise constant, equal to a+ on {x > 0} and equal to a− on
{x < 0}, with a+ > 0 and a− < 0 :{

∂tu + a(x)∂xu = f, x ∈ R,
u|t=0 = h ,

(3.1)

where f ∈ C∞
0 ((0, T )×R) and h ∈ C∞

0 (R). By opting for a viscous approach,
we will see that a solution of the above problem can be obtained in the
vanishing viscosity limit. Moreover, our viscous approach successfully select
a unique solution. Our main result is stated in Theorem 3.2.

Let us now describe our approach. We consider the viscous hyperbolic-
parabolic problem:{

∂tu
ε + a(x)∂xuε − ε∂2

xu
ε = f, x ∈ R,

uε|t=0 = h .
(3.2)

The stability of problem (3.2) has to be established via Kreiss-type Sym-
metrizers, thus explaining that we assume the coefficient to be piecewise
constant in order to avoid the use of pseudodifferential calculus. We prove
then a convergence result in L2((0, T ) × R), stating that the solution uε of
(3.2) tends towards u, deduced from an asymptotic analysis of the problem.
More precisely, u is given by u := uR1x�0 + uL1x<0, where (uR, uL) is the
unique solution of the following problem:



∂tuR + aR∂xuR = fR, {x > 0},
∂tuL + aL∂xuL = fL, {x < 0},
uR|x=0 − uL|x=0 = 0,
∂xuR|x=0 − ∂xuL|x=0 = 0, ∀t ∈ (0, T ),
uR|t=0 = hR, uL|t=0 = hL ,

(3.3)

with fR [resp hR] denoting the restriction of f [resp h] to {x > 0}, and
fL [resp hL] denoting the restriction of f [resp h] to {x < 0}. Note well
that u, deduced from this unusual, although well-posed, problem belongs
to C0((0, T ) × R)

⋂
L2((0, T ) × R). Indeed, as we shall prove below, the

restriction of u to the side {x < 0} is given by:


∂tuL + aL∂xuL = fL, {x < 0},

uL|x=0 = hL(0) +
∫ t

0

f |x=0(s) ds, ∀t ∈ (0, T ).

uL|t=0 = hL .

and the restriction of u to the side {x > 0} satisfies:


∂tuR + aR∂xuR = fR, {x > 0},

uR|x=0 = hR(0) +
∫ t

0

f |x=0(s) ds, ∀t ∈ (0, T ),

uR|t=0 = hR .
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Remark that, in general, the corner compatibilities are not satisfied here,
and that u /∈ C([0, T ] : Hs(R)) ∀s > 3

2 for example, even though the datas
f and h are smooth.

Remark 3.1. — u is also given by:

u(t, x) = h(x) +
∫ t

0

v(s, x) ds,

where v := vL1x<0 + vR1x�0 is the solution of the well-posed classical
transmission problem:



∂tvR + aR∂xvR = ∂tfR, {x > 0},
∂tvL + aL∂xvL = ∂tfL, {x < 0},
1
aR

vR|x=0 −
1
aL

vL|x=0 =
1
aR

∂tfR|x=0 −
1
aL

∂tfL|x=0,

vR|x=0 − vL|x=0 = 0,
vR|t=0 = fR − aR∂xhR, vL|t=0 = fL − aL∂xhL .

This problem is labeled as classical since it is equivalent to a mixed hyper-
bolic problem satisfying a Uniform Lopatinski Condition.

As an illustration, let us compute u in the case where f = 0. We will
first introduce some notations. We denote for instance:

Ω+
L = {(t, x) ∈ (0, T ) × R

∗− : x− aLt > 0},

where the “L” stands for “on left hand side of {x = 0}” and the + is re-
lated to the sign of x−aLt. We define in the same manner: Ω−

L , Ω+
R and Ω−

R.

t

x

We get that, for all (t, x) ∈ Ω+
L

⋃
Ω−
R

⋃
{x = 0},

u(t, x) = h(0),
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for all (t, x) ∈ Ω+
R,

u(t, x) = hR(x− aRt),

and for all (t, x) ∈ Ω−
L ,

u(t, x) = hL(x− aLt).

This example shows clearly the discontinuity of ∂xu occurring across the
lines ΓR = {(t, x) ∈ (0, T ) × R

∗
+, x − aRt = 0} and ΓL = {(t, x) ∈

(0, T ) × R
∗
−, x− aLt = 0}. The following Theorem is our main result:

Theorem 3.2. — There is C > 0 such that, for all 0 < ε < 1, there
holds:

‖uε − u‖L2((0,T )×R) � Cε,

where uε is the solution of (3.2).

Remark 3.3. — The rate of convergence obtained here is better than the
one we had on the analogous conservative problem treated in [8]. This is
directly explained by a boundary layer analysis of the two problems, which
shows that, in [8], strong amplitude boundary layers forms, whereas in our
current case, only weak amplitude boundary layers form (we will prove that
the boundary layer profile scaled in ε0, denoted as Uc

0, is equal to zero).
Let us be more precise: in the conservative case investigated in [8], the rate
of convergence was in O(ε1/4) while in our current framework, it is in O(ε).
We will show here that the viscous solution uε behaves, when ε → 0+ as
follows:

uε =
(
uR +

√
εe

− |x−aRt|√
ε θR

)
1x>0 +

(
uL +

√
εe

−|x−aLt|√
ε θL

)
1x<0 + O(ε),

with θR and θL belonging to L2 of their respective domains. By derivation
with respect to x of the above asymptotic behavior, we get that the solution
vε := ∂xu

ε of the dual conservative viscous problem behaves, when ε → 0+,
as stated right below:

uε =
(
uR + e

− |x−aRt|√
ε θR

)
1x>0 +

(
uL + e

− |x−aLt|√
ε θL

)
1x<0 + O(

√
ε),

with θR and θL belonging to L2 of their respective domains. We recover

then the rate of convergence given in [8] since e
− |x−aRt|√

ε θL and e
− |x−aRt|√

ε θR
converges towards zero in L2 norm of their respective domains with a rate
in ε

1
4 .

The proof of Theorem 3.2 is divided into two parts. First, we will con-
struct an approximate solution of (3.2) at any order. Then, we will show
that a Uniform Evans Condition holds for an equivalent problem, hence
yielding the desired stability estimates.
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3.1. Construction of an approximate solution

We shall begin by constructing an approximate solution of problem (3.2).
As a first step, we will reformulate problem (3.2) in an equivalent manner.
The restrictions of uε to {x > 0} and {x < 0}, denoted respectively by uεL
and uεR satisfy the following transmission problem:




∂tu
ε
R + aR∂xu

ε
R − ε∂2

xu
ε
R = fR, {x > 0}, t ∈ (0, T ),

∂tu
ε
L + aL∂xu

ε
L − ε∂2

xu
ε
L = fL, {x < 0}, t ∈ (0, T ),

uεR|x=0 − uεL|x=0 = 0,
∂xu

ε
R|x=0 − ∂xu

ε
L|x=0 = 0,

uεR|t=0 = hR,
uεL|t=0 = hL .

(3.4)

Let us introduce LεR = ∂t+aR∂x−ε∂2
x and LεL = ∂t+aL∂x−ε∂2

x. We perform
the construction of the approximate solution separately on the four domains
Ω−
L , Ω+

L , Ω+
R and Ω−

R. . We will denote by uεapp,L,+ the restriction of uεapp to
Ω+
L and so on. Let us present the different profiles and their ansatz:

uεapp,L,+(t, x) =
M∑
n=0

(
UL,n,+(t, x) + Uc

L,n,+

(
t,

x− aLt√
ε

))
ε

n
2 ,

where the profiles UL,n,+ belongs to H∞(Ω+
L) and the characteristic bound-

ary layer profiles Uc
L,n,+(t, θL) belongs to e−δ|θL|H∞((0, T )×R

∗+), for some
δ > 0. We will take a similar ansatz for uεapp,L,−, uεapp,R,− and uεapp,R,+ over
their respective domains. Let us explain the different steps of the construc-
tion of the approximate solution. We begin by constructing the underlined
profiles Un in cascade; the boundary layer profiles Uc

n are then computed
as a last step. We construct our profiles such that, for all fixed ε > 0, uεapp
belongs to C1((0, T ) × R). In what follows, we will note:

UR,j(t, x) := UR,j,+(t, x)1(t,x)∈Ω+
R

+ UR,j,−(t, x)1(t,x)∈Ω−
R
.

Next, we will write:

Uc
R,j

(
t, x,

x− aRt√
ε

)
:= Uc

R,j,+

(
t,

x− aRt√
ε

)
1(t,x)∈Ω+

R

+Uc
R,j,−

(
t,

x− aRt√
ε

)
1(t,x)∈Ω−

R
.

Note well that the dependence of Uc
R,j in x is a bit subtle. Actually, Uc

R,j is
piecewise constant with respect to x on each side of ΓR, which explains that
Uc
R,j,+ and Uc

R,j,− have no direct dependency in x. Due to their particular
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meaning, we prefer denoting the profiles UR,0 and UL,0 by uR and uL. Let
us note HR the differential operator

HR := ∂t + aR∂x

and PR the differential operator

PR := ∂t + aR∂x − ∂2
θR

.

We have

LεR uεR,app

(
t, x,

x− aRt√
ε

)
=

M+1∑
j=0

LR,j

(
t, x,

x− aRt√
ε

)
ε

j
2

where
LR,0 = HRuR + PRU c

R,0,

LR,1 = HRUR,1 + PRU c
R,1 − 2∂x∂θR

U c
R,0,

and, for 2 � j � M − 1, we get:

LR,j = HRUR,j + PRU c
R,j − ∂x

(
2∂θR

U c
R,j−1 + ∂xUR,j−2 + ∂xU

c
R,j−2

)
,

LR,M = PRU c
R,M − ∂x

(
2∂θR

U c
R,M−1 + ∂xUR,M−2 + ∂xU

c
R,M−2

)
,

LR,M+1 = −∂x
(
2∂θR

U c
R,M + ∂xUR,M−1 + ∂xU

c
R,M−1

)
.

Symmetrically, there holds:

LεL uεL,app

(
t, x,

x− aLt√
ε

)
=

M+1∑
j=0

LL,j

(
t, x,

x− aLt√
ε

)
ε

j
2

where, for instance, LL,2 is given by:

LL,2 = HLUL,2 + PLU c
L,2 − ∂x

(
2∂θL

+ ∂xuL + ∂xU
c
L,0

)
,

with HL and and PL defined by:

HL := ∂t + aL∂x

PL := ∂t + aL∂x − ∂2
θL

.

Plugging uεL,app and uεR,app in the problem (3.4) and identifying the
terms with the same scale in ε, making then |θL| and |θR| tend to infinity, we
obtain the profiles equations satisfied by the underlined profiles. Let us begin
by writing the equations satisfied by UL,j and UR,j for all 0 � j � M − 1.
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Thanks to the transmission conditions we had on the viscous problem (3.4),
we get: {

uL,+|x=0 − uR,−|x=0 = 0,
∂xuL,+|x=0 − ∂xuR,−|x=0 = 0,

and thus (uR,−, uL,+) satisfies the following transmission problem:


∂tuR,− + aR∂xuR,− = fR,−, (t, x) ∈ Ω−
R,

∂tuL,+ + aL∂xuL,+ = fL,+, (t, x) ∈ Ω+
L ,

uL,+|x=0 − uR,−|x=0 = 0,
∂xuL,+|x=0 − ∂xuR,−|x=0 = 0 .

(3.5)

As a result, the profile uR,− is the unique solution of:


∂tuR,− + aR∂xuR,− = fR,−, (t, x) ∈ Ω−
R,

uR,−|x=0 = h(0) +
∫ t

0

f |x=0(s) ds ,

and the profile uL,+ is given by:


∂tuL,+ + aL∂xuL,+ = fL,+, (t, x) ∈ Ω+
L ,

uL,+|x=0 = h(0) +
∫ t

0

f |x=0(s) ds .

Proof. — The first boundary condition of (3.5) gives: ∂tuL,+|x=0 = ∂tuR,−|x=0.
Using then the equation, we obtain:

∂xuR,−|x=0 =
1
aR

(fR,−|x=0 − ∂tuR,−|x=0) ,

and
∂xuL,+|x=0 =

1
aL

(fL,+|x=0 − ∂tuL,+|x=0) .

Using the second boundary condition, we have thus

aL (f |x=0 − ∂tuR,−|x=0) = aR (f |x=0 − ∂tuL,+|x=0) ,

therefore
∂tuL,+|x=0 = ∂tuR,−|x=0 = f |x=0.

Hence, there holds:

uL,+|x=0 = uR,−|x=0 = h(0) +
∫ t

0

f |x=0(s) ds.
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Moreover, as we could have forecasted, the profiles uR,+ and uL,− satisfy
the following well-posed hyperbolic problems:{

∂tuR,+ + aR∂xuR,+ = fR,+, (t, x) ∈ Ω+
R,

uR|t=0 = hR ,{
∂tuL,− + aL∂xuL,− = fL,−, (t, x) ∈ Ω−

L ,
uL|t=0 = hL .

Since these equations are well-posed, the function u is now perfectly
defined. Let us go on with the construction of the next profiles. UR,1 and
UL,1 are given by:


∂tUR,1,− + aR∂xUR,1,− = 0, (t, x) ∈ Ω−

R,

∂tUL,1,+ + aL∂xUL,1,+ = 0, (t, x) ∈ Ω+
L ,

UL,1,+|x=0 = UR,1,−|x=0 = 0 .

Thus UL,1,+ = 0 and UR,1,− = 0.{
∂tUR,1,+ + aR∂xUR,1,+ = 0, (t, x) ∈ Ω+

R,
UR,1,+|t=0 = 0 ,{
∂tUL,1,− + aL∂xUL,1,− = 0, (t, x) ∈ Ω−

L ,
UL,1,−|t=0 = 0 .

Hence UR,1,+ = 0 and UL,1,− = 0. Actually, we see by induction that for
all n ∈ N, we have U±

R,2n+1,± = 0 and UL,2n+1,± = 0. On the other hand
for n ∈ N

∗, the profiles UL,2n,± and UR,2n,± are given by the following
well-posed hyperbolic problems. The first equation we get is:



∂tUR,2n,− + aR∂xUR,2n,− = ∂2
xUR,2n−2,−, (t, x) ∈ Ω−

R,

∂tUL,2n,+ + aL∂xUL,2n,+ = ∂2
xUL,2n−2,+, (t, x) ∈ Ω+

L ,
UR,2n,−|x=0 − UL,2n,+|x=0 = 0,
∂xUR,2n,−|x=0 − ∂xUL,2n,+|x=0 = 0,
UR,2n,−|t=0 = 0, UL,2n,+|t=0 = 0 .

The same way as before, we obtain that UR,2n,− and UL,2n,+ are the
solutions of the following well-posed hyperbolic problems:


∂tUR,2n,− + aR∂xUR,2n,− = ∂2

xUR,2n−2,−, (t, x) ∈ Ω−
R,

UR,2n,−|x=0 =
∫ t

0

∂2
xUR,2n−2,−|x=0(s) ds ,




∂tUL,2n,+ + aL∂xUL,2n,+ = ∂2
xUL,2n−2,+, (t, x) ∈ Ω+

L ,

UL,2n,+|x=0 =
∫ t

0

∂2
xUL,2n−2,+|x=0(s) ds .
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Moreover, there holds:{
∂tUR,2n,+ + aR∂xUR,2n,+ = ∂2

xUR,2n−2,+, (t, x) ∈ Ω+
R,

UR,2n,+|t=0 = 0 ,

{
∂tUL,2n,− + aL∂xUL,2n,− = ∂2

xUL,2n−2,−, (t, x) ∈ Ω−
L ,

UL,2n,−|t=0 = 0 .

In conclusion, all the profiles Un are constructed by induction.

We turn now to the construction of the boundary layer profiles
U c
L,j,±(t, θL) and U c

R,j,±(t, θR). We will use the relations imposed on the
profiles by the transmission conditions: [uεapp]ΓR

= 0, [∂xuεapp]ΓR
= 0,

[uεapp]ΓL
= 0, and [∂xuεapp]ΓL

= 0; [uεapp]ΓR
stands for the jump of uεapp

through ΓR defined, for all t ∈ (0, T ) by:

[uεapp]ΓR
(t) := lim

x→aRt,x>aRt
uεapp

(
t, x,

x− aRt√
ε

)
− lim
x→aRt,x<aRt

uεapp

(
t, x,

x− aRt√
ε

)
.

[uεapp]ΓL
(t) is defined the same way. Because uεapp belongs to C1((0, T )×R

∗),
for all 0 � j � M, we have:

[U c
L,j ]L = −[UL,j ]ΓL

,

[U c
R,j ]R = −[UR,j ]ΓR

.

Let [UR,j ]ΓR
be given, for all t ∈ (0, T ), by:

[UR,j ]ΓR
(t) = lim

x→aRt,x>aRt
UR,j,+(t, x) − lim

x→aRt,x<aRt
UR,j,−(t, x)

and [U c
R,j ]R be defined, for all t ∈ (0, T ), by:

[U c
R,j ]R(t) = lim

θR→0+
U c
R,j,+(t, θR) − lim

θR→0−
U c
R,j,−(t, θR).

To avoid writing the exact symmetric equations on {x > 0} and {x < 0}, let
us only proceed with the construction of the boundary layer profiles U c

R,j,±.
Referring to the computations above, for all 1 � j � M + 1, the following
quantity must not have any Dirac measure in it:

∂x

(
∂θR

U c
R,j−1 +

1
2
(∂x(UR,j−2 + U c

R,j−2))
)

,

Our first boundary condition: [U c
R,j ]R = −[UR,j ]ΓR

, ensures that, even if
∂x(UR,j−2 + U c

R,j−2) is, in general, discontinuous on ΓR, it has no Dirac
Measure. ∂x(∂x(UR,j−2 + U c

R,j−2)) is the derivative of such a function and
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thus has a Dirac Measure. Let us describe this singularity: if we fix t = t0,
the Dirac measure forming is(

[∂xUR,j−2]|x=aRt0 + [∂xU c
R,j−2]R(t0)

)
δx=aRt0 ,

where [ω]|x=aRt0 = limx→aRt0,x>aRt0 ω − limx→aRt0,x<aRt0 ω. On the other
hand, if ∂θR

U c
R,j−1 is discontinuous through ΓR, ∂x

(
∂θR

U c
R,j−1

)
has a Dirac

measure given, for t = t0 by:

[∂θR
U c
R,j−1]R δx=aRt0 .

In order to ensure the sum of the two Dirac measure vanishes, the second
boundary condition we get is that, ∀t ∈ (0, T ) :

[∂θR
U c
R,j−1]R(t) = −1

2
(
[∂xUR,j−2]ΓR

(t) + [∂xU c
R,j−2(t)]R

)
.

The profiles U c
R,0,+ and U c

R,0,− are solution of the following heat equa-
tion: 



∂tU
c
R,0,+ − ∂2

θR
U c
R,0,+ = 0 t ∈ (0, T ), {θR > 0},

∂tU
c
R,0,− − ∂2

θR
U c
R,0,− = 0 t ∈ (0, T ), {θR < 0},

[U c
R,0]R(t) = −[uR]ΓR

, ∀t ∈ (0, T ),
[∂θR

U c
R,j ]R(t) = 0, ∀t ∈ (0, T ),

U c
R,j,+|t=0 = 0,

U c
R,j,−|t=0 = 0 .

Note well that, since [uR]ΓR
= 0, the profiles U c

R,0 and U c
L,0 are both equal

to zero; this shows that the characteristic boundary layers forming are of
weak amplitude. For all 1 � j � M, the profiles U c

R,j,+ and U c
R,j,− are given

by:


∂tU
c
R,j,+ − ∂2

θR
U c
R,j,+ = 0 t ∈ (0, T ), {θR > 0},

∂tU
c
R,j,− − ∂2

θR
U c
R,j,− = 0 t ∈ (0, T ), {θR < 0},

[U c
R,j ]R(t) = −[UR,j ]ΓR

, ∀t ∈ (0, T ),

[∂θR
U c
R,j ]R(t) = −1

2
(
[∂xUR,j−1(t)]ΓR

(t) + [∂xU c
R,j−1(t)]R

)
, ∀t ∈ (0, T ),

U c
R,j,+|t=0 = 0,

U c
R,j,−|t=0 = 0 .

Let us now prove the well-posedness of these problems. We take ψR,j in
H∞ ((0, T ) × R

∗) such that

[ψR,j ]R = −[UR,j ]ΓR
,

and

[∂θR
ψR,j ]R(t) = −1

2
(
[∂xUR,j−1(t)]ΓR

(t) + [∂xU c
R,j−1(t)]R

)
.
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We can then compute U c
R,j := U c

R,j,+1θR>0 + U c
R,j,−1θR<0 by:

U c
R,j := ψR,j + V c

R,j .

V c
R,j is then the solution of the following heat equation with homogeneous

transmission conditions straightforwardly satisfying a uniform Evans con-
dition: 



∂tV
c,±
R,j − ∂2

θR
V c,±
R,j = ϕ∗

R,j , t ∈ (0, T ),±θR > 0,
V c,+
R,j

∣∣
θR=0

− V c,−
R,j

∣∣
θR=0

= 0,
∂θR

V c,+
R,j

∣∣
θR=0

− ∂θR
V c,−
R,j

∣∣
θR=0

= 0,
V c,±
R,j

∣∣
t=0

= 0.

and ϕ∗
R,j is given by:

ϕ∗
R,j := −

(
∂tψR,j − ∂2

θR
ψR,j

)
.

The profiles can thus be constructed by induction using the scheme just
introduced.

3.2. Stability estimates

We will now prove stability estimates. We define the error wε := uεapp −
uε. Let us denote by wε± the restriction of wε to ±x > 0. (wε+, wε−) is
then solution of the transmission problem:



∂tw
ε+ + aR∂xw

ε+ − ε∂2
xw

ε+ = εMRε+, x > 0, t ∈ (0, T ),
∂tw

ε− + aL∂xw
ε− − ε∂2

xw
ε− = εMRε−, x < 0, t ∈ (0, T ),

wε+|x=0 − wε−|x=0 = 0,
∂xw

ε+|x=0 − ∂xw
ε−|x=0 = 0,

wε+|t=0 = 0, wε−|t=0 = 0.

By construction of our approximate solution, Rε belongs to L2((0, T )×R).

Like we have done previously for systems, we have to extend the defi-
nition of wε to (t, x) ∈ R

2. Here for the sake of simplicity, we will make a
slight abuse of notations and write:



∂tw
ε+ + aR∂xw

ε+ − ε∂2
xw

ε+ = εMRε+, x > 0, t ∈ R,
∂tw

ε− + aL∂xw
ε− − ε∂2

xw
ε− = εMRε−, x < 0, t ∈ R,

wε+|x=0 − wε−|x=0 = 0,
∂xw

ε+|x=0 − ∂xw
ε−|x=0 = 0,

wε+|t<0 = 0, wε−|t<0 = 0,

with Rε belonging to L2(R2) and vanishing in the past. We prove in [9], in
a more general framework, that we can do so.
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We will now reformulate this problem into an equivalent problem, posed

on one side of the boundary. Defining w̃ε :=
(

wε+(t, x)
wε−(t,−x)

)
, the error

equation rewrites as the doubled problem on one side of the boundary:


H̃εw̃ε = εM R̃ε, {x > 0},
Γw̃ε|x=0 = 0,
w̃ε|t<0 = 0.

where Hε = ∂t + Ã∂x − ε∂2
x,

Ã =
[

aR 0
0 −aL

]
, and Γ =

[
1 −1
∂x ∂x

]
.

Let us admit for now the following Proposition that will be proved in
the next section.

Proposition 3.4. — (H̃ε,Γ) satisfies a Uniform Evans Condition.

As established earlier in the paper, if our linear mixed parabolic problem
satisfies a Uniform Evans Condition, the following stability estimate holds:

‖uε − uεapp‖L2((0,T )×R) = O
(
ε

M−1
2

)
,

taking M large enough achieves then the proof of Theorem 3.2.

4. Proof of Proposition 3.4

In this section we will prefer using the notations a+ and a− instead of
aR and aL. We refer to [9] for computations of the Evans function for 2× 2
systems. In our present case, we have:

A
±(ζ̃) =

(
0 1

iτ̃ + γ̃ a±

)

4.1. Computation of the Evans function for medium frequencies

There holds:

E−(A+(ζ̃)) = Span

{(
1

µ+
−(ζ̃)

)}

where µ+
− denotes the eigenvalue of A

+ with negative real part and is given
by:

µ+
−(ζ̃) =

1
2
a+− 1

4
(
((a+)2 + 4γ̃)2 + 16τ̃2

) 1
4


(

1 +
16τ̃2

((a+)2 + 4γ̃)2

)− 1
2

+ 1



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−i sign(τ̃)
1
4

(
((a+)2 + 4γ̃)2 + 16τ̃2

) 1
4


1 −

(
1 +

16τ̃2

((a+)2 + 4γ̃)2

)− 1
2



Moreover, we have:

E+(A−(ζ̃)) = Span

{(
1

µ−
+(ζ̃)

)}

where µ−
+ denotes the eigenvalue of A

− with positive real part and is given
by:

µ−
+(ζ̃) =

1
2
a−+

1
4

(
((a−)2 + 4γ̃)2 + 16τ̃2

) 1
4


(

1 +
16τ̃2

((a−)2 + 4γ̃)2

)− 1
2

+ 1




+i sign(τ̃)
1
4

(
((a−)2 + 4γ̃)2 + 16τ̃2

) 1
4


1 −

(
1 +

16τ̃2

((a−)2 + 4γ̃)2

)− 1
2



If we consider ζ̃ such that 0 < c � |ζ̃| � C < ∞, an Evans function is
the modulus of the following determinant:∣∣∣∣ 1 1

µ+
−(ζ̃) µ−

+(ζ̃)

∣∣∣∣
that is to say: |µ−

+(ζ̃) − µ+
−(ζ̃)|, since µ−

+ keeps a positive real part and µ+
−

keeps a negative real part, for all ζ̃ such that 0 < c � |ζ̃| � C < ∞, there
holds: ∣∣∣µ−

+(ζ̃) − µ+
−(ζ̃)

∣∣∣ > 0.

Hence the Evans Condition is checked for medium frequencies.

4.2. Computation of the asymptotic Evans function when |ζ̃| → ∞

Λ is defined by:
Λ(ζ̃) =

(
1 + τ̃2 + γ̃2

) 1
2

We recall that the scaled eigenspaces for high frequencies write then:

E−(A+(ζ̃)) = Span

{(
1

Λ−1µ+
−(ζ̃)

)}

E+(A−(ζ̃)) = Span

{(
1

Λ−1µ−
+(ζ̃)

)}
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An asymptotic Evans function for high frequencies writes:

lim
|ζ|→∞

∣∣∣∣∣µ
−
+(ζ̃) − µ+

−(ζ̃)

Λ(ζ̃)

∣∣∣∣∣ .
Since there is C > 0 such that, for all ρ � C > 0, 
e

µ−
+(ζ̃)

Λ(ζ̃)
� C and


e
µ−

+(ζ̃)

Λ(ζ̃)
� −C, making |ζ| → ∞, we have:

∣∣∣∣∣µ
−
+(ζ̃) − µ+

−(ζ̃)

Λ(ζ̃)

∣∣∣∣∣ � C ′ > 0.

Therefore, the Evans Condition is checked for high frequencies.

4.3. Computation of the asymptotic Evans function when |ζ̃| → 0+

Remark that
µ−

+|ζ̃=0 = 0,

µ+
−|ζ̃=0 = 0.

As a result, the linear subspaces E−(A+(ζ̃)) and E+(A−(ζ̃)) cease to be
well-defined. A

±(ζ̃) appears in an ODE of the form:

∂z

(
w±

∂zw
±

)
= A

±(ζ̃)
(

w±

∂zw
±

)
+ F±,

We have then:

∂z

(
w±

ρ−1∂zw
±

)
:=

(
0 ρId

ρ−1(iτ̃ + γ̃)Id a±

) (
w±

ρ−1∂zw
±

)

:= ρǍ(ζ̌, ρ)
(

w±

ρ−1∂zw
±

)
,

where

Ǎ
±(ζ̌, ρ) :=

(
0 1

ρ−1(iτ̌ + γ̌) ρ−1a±

)

with τ̌ := τ̃
ρ and γ̌ := γ̃

ρ .
As reviewed earlier, a continuous extension of some positive and negative
spaces of A

± has to be performed if we want to study the Evans function for
low frequencies. These extended spaces are noted E

lim
− (A+) and E

lim
+ (A−),

and are computed as follows:

E
lim
− (A+) = E−(Ǎ+)|τ̌=1,γ̌=0,ρ=0,
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and

E
lim
+ (A−) = E+(Ǎ−)|τ̌=1,γ̌=0,ρ=0.

The asymptotic Evans condition for low frequency writes then:

E
lim
− (A+)

⋂
E
lim
+ (A−) = {0}.

Let us look at the negative eigenvalue of Ǎ
+(ζ̌, ρ) that we will note

λ̌+(ζ̌, ρ) and compute its associated eigenvector:

Ǎ
+

(
v1

v2

)
= λ̌+

(
v1

v2

)
,

We get:

v2 = λ̌v1,

and multiplying by ρ > 0 the second coordinate of our vector gives:

(iτ̌ + γ̌)v1 + a+v2 = ρλ̌v2

Making ρ → 0+, we obtain that:

λ̌+(ζ̌, ρ) = − iτ̌ + γ̌

a+

As a result

lim
ρ→0+

E−
(
Ǎ

+(ζ̌, ρ)
)

= Span

{(
1

− iτ̌+γ̌
a+

)}

The same way, we have:

lim
ρ→0+

E+

(
Ǧ−(ζ̌, ρ)

)
= Span

{(
1

− iτ̌+γ̌
a−

)}

Taking γ̌ = 0 and τ̌ = 1, since, by assumption, a− < 0 and a+ > 0
(otherwise the stability analysis for low frequencies would differ of the one
we have just done), the Asymptotic Evans condition for low frequencies
holds. This ends the proof of Proposition 3.4.
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[10] Gallouët (T.). — Hyperbolic equations and systems with discontinuous coeffi-
cients or source terms, 10 pages, Proceedings of Equadiff-11, Bratislava, Slovaquia
(July 25-29, 2005).

[11] Guès (O.), Métivier (G.), Williams (M.), Zumbrun (K.). — Existence and sta-
bility of multidimensional shock fronts in the vanishing viscosity limit, Arch. Rat.
Mech. Anal. 175 p. 151-244 (2004).

[12] Guès (O.), Williams (M.). — Curved shocks as viscous limits: a boundary prob-
lem approach, Indiana Univ. Math. J., 51 (2002), 421-450.

[13] Hayes (B. T.), LeFloch (P. G.). — Measure solutions to a strictly hyperbolic
system of conservation laws Nonlinearity, 9(6), p. 1547-1563 (1996).

[14] LeFloch (P. G.). — An existence and uniqueness result for two nonstrictly hy-
perbolic systems. In Nonlinear evolution 271 equations that change type, vol. 27
of IMA Vol. Math. Appl. (1990), 126-138. Springer, New York.

[15] LeFloch (P. G.), Tzavaras (A.E.). — Representation of weak limits and defini-
tion of nonconservartive products, SIAM J. Math. Anal. 30, p. 1309-1342 (1999).

[16] Métivier (G.). — Small Viscosity and Boundary Layer Methods : Theory, Sta-
bility Analysis, and Applications, Birkhauser (2003).

[17] Métivier (G.), Zumbrun (K.). — Large Viscous Boundary Layers for Nonchar-
acteristic Nonlinear Hyperbolic Problems, Mem. Amer. Math. Soc. 175, no. 826,
vi+107 pp (2005).

[18] Métivier (G.), Zumbrun (K.). — Symmetrizers and Continuity of Stable Sub-
spaces for Parabolic-Hyperbolic Boundary Value Problems, Disc. Cont. Dyn. Syst.,
11, p. 205-220 (2004).

– 442 –



Viscous approach for Linear Hyperbolic Systems with Discontinuous Coefficients

[19] Poupaud (F.), Rascle (M.). — Measure solutions to the linear multidimensional
transport equation with discontinuous coefficients, Comm. Diff. Equ. 22, p. 337-
358 (1997).

[20] Rousset (F.). — Viscous approximation of strong shocks of systems of conserva-
tion laws, SIAM J. Math. Anal. 35 (2003), 492-519.

– 443 –


