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On a Special Class of Non Complete Webs

Julien Sebag
(1)

RÉSUMÉ. — Dans cet article, nous introduisons une classe particulière
de tissus incomplets, que nous appelons tissus NN . Nous en étudions les
propriétés algébriques et géométriques.

ABSTRACT. — In this article, we introduce a special class of non complete
webs, the NN-webs. We also study the algebraic and geometric properties
of these webs.

1. Introduction

In this article, we consider that a d-web is (implicitly) given by a dif-
ferential equation F (x, y, y′) = 0, where F (x, y, p) ∈ C{x, y}[p] is a poly-
nomial of degree (in p) d � 3, with RF = Resultp(F, ∂pF ) �= 0 (see §2
for the terminology). A main question in web geometry is the question of
the “classification” of such objects. A classical result gives a (bounded by
πd := (d−1)(d−2)/2) discrete invariant: the rank of a web. Roughly speak-
ing, for d-webs of rank πd, the question of classification could amount to
the following one: to be or not to be (up to a local analytic isomorphism)
an algebraic web.

An algebraic web is determined by a polynomial G ∈ C[s, t], in two
variables s and t, via a Legendre tansformation, i.e., F (x, y, p) = G(y−px, p)
(Clairaut’s differential equations). Remark that the derivation ∂x + p∂y of

(∗) Reçu le 07/09/08, accepté le 19/06/09
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C[x, y, p] is locally nilpotent, i.e., for every f ∈ C[x, y, p], there exists n ∈ N
such that (dF ◦ . . . ◦ dF )(f) = dn

F (f) = 0, and that (∂x + p∂y)(F ) = 0 in the
algebraic case.

If W is an arbitrary d-web defined by F , one can associate (see, for
example, [3]/§3) its linearization polynomial VF , which allows to construct a
derivation DF := RF (∂x+p∂y)−VF∂p of C{x, y}[p], which verifies DF (F ) =
UFF , for some polynomial UF . In the case of algebraic webs, VF = UF =
0. In this way, DF generalizes, to any web, the derivation ∂x + p∂y (see
§2 for details). The author has shown that the local nilpotence property
of DF is shared by many other webs, the nilpotent webs, introduced in
[10]. A nilpotent web is, again, determined by a polynomial G ∈ C[s, t],
via a tansformation of Legendre type which depends on the linearization
polynomial VF . Besides, these webs are algebrizable (see [10]/Theorem 5.2).

Among webs, non complete webs are defined by a polynomial F ∈
C[y, p]. In this case, we can consider the derivation DF = RF p∂y −VF∂p of
C[y, p]. The subject of the present article is to give a precise answer to the
following question: what means local nilpotence in this context? In §3, we in-
troduce and study the algebraic-geometric properties of this special class of
non complete webs, that we call NN-webs. We give precise characterizations
(see Theorem 3.6). In particular, we show that such a web is determined
by a polynomial G ∈ C[s], via a transformation rule that we explicit. We
also compute their ranks and we answer to the question of their algebriz-
ability (see Theorem 3.13). Remark that these results can not be obtained
by specifying some results of [10].

Notations

We denote by C the field of complex numbers, and by C{x, y} the ring of
convergent power series in variables x and y. By a derivation of a C-algebra
A, we mean a C-linear map δ : A → A, which verifies Leibnitz’s rule. If
F ∈ C{x, y}[p], the usual partial derivatives are noted ∂x, ∂y and ∂p.

The ring C[y0, y1, . . . , yn, . . .], endowed with the derivation δ(yi) = yi+1,
is denoted C〈y〉. We embed C[y, p] in C〈y〉 (as C-algebras) by y �→ y0 and
p �→ y1. A differential polynomial F is just an element of C〈y〉. Its order is
the biggest integer n such that yn appears effectively in F . Let S be a part
of C〈y〉, we denote by [S] the differential ideal generated by S, and by {S}
its radical.
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2. Terminology in web geometry

Let d � 3 be an integer. In this article, we look at webs of C2. In
particular we only consider them from a local point of view.

• A non singular planar d-web W is defined by the datum, locally in
C2, of d � 1 holomorphic foliations in (C2, 0) in general position. So we
can represent such an object by germs Fi : (C2, 0) −→ (C, 0) for 1 � i � d,
where Fi ∈ C{x, y}, Fi(0) = 0 and dFi(0) ∧ dFj(0) �= 0 if i �= j. A classical
theorem in web geometry asserts that the C-vector space of its abelian
relations, defined by A(d) :=

{
(g1(F1), . . . , gd(Fd)) ∈ C{x, y} with gi ∈

C{t} and
∑d

i=1 gi(Fi)dFi = 0
}
, is of finite dimension. This dimension is

called the rank of the web. It is bounded by the integer πd := (d−1)(d−2)/2,
and it is invariant by local analytic isomorphisms (see [1] for some details
of the theory).

• Cauchy’s theorem and the implicit functions theorem make the da-
tum of a d-web W correspond (up to an invertible element of C{x, y})
to the datum of a differential system F (x, y, y′) = 0 and RF (x, y) :=
Result(F, ∂pF )(x, y) �= 0, with F ∈ C{x, y}[p] of degree d � 3 (in p),
whose solutions, in a neighborhood of 0, are exactly the d distinct slopes of
the Fi as above. Such a polynomial is called a presentation of W, and W is
presented by F .

This is the implicit approach in web geometry. Such a (classical) point of
view is well justified, in the study of webs, by Hénaut’s work [4] and its con-
sequences (see, for example, [6]/Théorème 4.1 as a non trivial consequence).

Introduced in [6], the higher linearization polynomials V i
F will be used

in what follows. Let us recall this construction (see [6]/Chapitre 2). There
exist two associated polynomials U i

F and V i
F , for 0 � i � d− 3, respectively

of degree at most d − 2 and d − 1, verifying the following identity piRF ·
(∂xF + p∂yF ) = U i

FF + V i
F∂pF . Because of the conditions on the degrees,

one can remark that such a couple (U i
F , V i

F ) is unique. We note VF := V 0
F

and call it the linearization polynomial of F .

• Thanks to the implicit approach, we can interpret webs as some ob-
jects of differential algebra (see [7], [8], and [9] for specific applications of
this point of view). We say that a web W is polynomial if W admits a pre-
sentation F ∈ C{x, y}[p] which belongs to C[x, y, p]. We call F ∈ C[x, y, p]
a W -polynomial if its degree d � 3 and if RF := Result(F, ∂pF ) ∈ C[x, y]
is not identically zero.
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3. Non complete webs, and NN -webs

For a W -polynomial F ∈ C[y, p], with RF := Resultp(F, ∂pF ), we note
DF := pRF∂y − VF∂p the associated derivation of C[y, p].

Definition 3.1. — Let d � 3, and let W be a non singular, planar,
polynomial d-web, presented by a W -polynomial F . We say that W is non
complete if F ∈ C[y, p].

Remark 3.2. — Note that a non complete web is never algebraic. In par-
ticular, it follows directly from the definition of the linearization polynomial
(and its unicity) that VF �= 0.

Definition 3.3. — Let d � 3, and let W be a d-web, presented by a
W -polynomial F . Let RF := Resultp(F, ∂pF ) be its resultant, and let VF be
its linearization polynomial. We say that W is an (d-)NN -web if the three
following properties are satisfied:

1. W is non complete;

2. pRF divides VF , i.e., there exists c ∈ C[s, t] such that VF = pRF c(y, p);

3. dF := DF /(pRF ) = ∂y − c∂p is locally nilpotent.

Example 3.4. — Consider F = (p−y)(p−(y+1))(p−(y−1)). Its resultant
RF is equal to −4 and its linearization polynomial VF is equal to −4p. We
will see, in the next paragraph, that all NN -webs can be obtained by this
way.

The technical lemma below will be used and very useful in the following
paragraphs.

Lemma 3.5. — Let d � 3, and let W be a d-NN -web, presented by a W -
polynomial F =

∑d
i=0 fi(y)pi. Let RF := Resultp(F, ∂pF ) be its resultant,

and let VF be its linearization polynomial. Then:

1. VF �= 0;

2. UF = 0;

3. if 0 � i � d− 3 and V i
F =

∑d−1
j=0 v

i
j(y)p

j, then vi
d−1 = 0 and U i

F = 0;

4. there exists a polynomial c ∈ C[s]\{0}, in one variable s, such that
VF = pRF c(y);

5. there exists a polynomial C ∈ C[s]\{0}, in one variable s, such that
ker(dF ) = C[p + C(y)]. In this case, ∂yC(y) = c(y).
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Proof. — The first point comes from the remark above. The second point
is a direct application of [5]/Lemma 1.10. The point (3) can be proved by
induction on i, by remarking that, for each 0 � i � d−4, V i+1

F = pV i
F −vi

d−1 ·
F/fd and U i+1

F = pU i
F + vi

d−1 · ∂pF/fd in Frac(C{x, y})[p], with U0
F := UF

(see [6], Proposition 2.5). For (4), by definition, there exists a polynomial
c ∈ C[y, p] such that VF = pRF c(y, p). Since dF is locally nilpotent, it
follows that the divergence of dF is identically zero (see [2]/Corollary 3.16).
But div(dF ) := ∂y(dF (y)) + ∂p(dF (p)) = ∂p(c(y, p)). It proves (4). For the
last point, let C ∈ C[s]\{0} such that ∂yC(y) = c(y). A direct computation
gives that C[p+C(y)] ⊂ ker(dF ). Let h ∈ C[y, p] be an element of ker(dF ).
If h =

∑
aijy

ipj , there exists bij ∈ C such that h =
∑

bijy
i(p+C(y))j . By

assumtion, dF (h) =
∑

ibijy
i−1(p+C(y))j = 0. Since the couple (y, p+C(y))

determines a C-automorphism of C2, we conclude that C[y, p + C(y)] is a
polynomial ring. Thus h ∈ C[p + C(y)]. �

3.1. Characterizations and first properties

Theorem 3.6. — Let d � 3, and let W be a non complete d-web, pre-
sented by a W -polynomial F . Let RF := Resultp(F, ∂pF ) be its resultant,
and let VF be its linearization polynomial. Then the following assertions are
equivalent:

1. W is a NN -web;

2. there exists a polynomial c ∈ C[s]\{0}, in one variable s, such that
VF = pRF c(y);

3. there exist two polynomials C, G ∈ C[s]\{0}, in one variable s, such
that G is of degree d, F = G(p+C(y)). In this case, VF = pRF∂yC.

Remark 3.7. — As C is algebraically closed and d � 3, a d-NN -web
can not be presented by an irreducible W -polynomial. Remark that the C-
algebra C[y, p]/(F ) is C-isomorphic to (C[z]/(G(z)))[y]. Moreover, a presen-
tation F of a NN -d-web is always of the form F (y, p) =

∏d
i=1(p+C(y)+ai),

where ai ∈ C satisfies ai �= aj , if i �= j.

Proof. — (2) ⇔ (1) comes from the relations dF (y) = ∂y(y) = 1 and
dF (p) = VF /RF , and Lemma 3.5/(4) above.

By Lemma 3.5/(2), if W is a NN -web, dF (F ) = 0 and we conclude by
Lemma 3.5/(5). Conversely, we verify that (∂y −∂yC ·∂p)(F ) = 0. It follows
that pRF∂yF = pRF∂yC(y)∂pF . By the unicity of VF , VF = pRF∂yC. We
have proved that the condition (3) is equivalent to (2). �
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Corollary 3.8. — Let d � 3, and let W be a d-NN -web, presented by
a W -polynomial F . Let RF := Resultp(F, ∂pF ) be its resultant. Then:

1. the general solutions γ ∈ C{x} of the differential equation F (y, y′) =
0 are solutions of the second order differential equation y′′− c(y)y′ =
0;

2. the differential ideal {F, ∂pF} = C〈y〉. In particular, the equation
F (y, y′) = 0 has no singular solutions, i.e., there is no solution γ ∈
C{x} of the differential system F (y, y′) = ∂pF (y, y′) = 0.

Proof. — The point (1) is an easy consequence of Theorem 3.6/(5) (for
a general argument see also [7]/Théorème 11). For (2), we have only to
prove the first assertion. If {F, ∂pF} �= C〈y〉, then we can decompose it in
a finite number of prime ideals of the form {Rα}, with Rα some irreducible
factor of RF . If such a differential ideal {Rα} is an irreducible component
of {F}, then {Rα} ⊂ {y1 + C(y0)}, with y1 + C(y0) dividing F . As {Rα}
is maximal, we have {Rα} = {y1 +C(y0)}. Contradiction. If {Rα} contains
{F} : ∂pF , then it contains {y1 +C(y0)}, with y1 +C(y0) dividing F . Thus
Rα divides C. As {Rα} contains ∂pF , it contains another {y1+C̃(y0)}, with
y1 + C̃(y0) dividing F . But, by Lemma 3.5/(5), we have C̃ −C ∈ C\{0}. It
is again a contradiction. �

3.2. Rank and abelian relations

Recall from [6]/§2.4 the following definition:

Definition 3.9. — Let W be a d-web, presented by a W -polynomial F .
We say that r =

∑d−3
i=0 bip

i ∈ C{x, y}[p] is an abelian polynomial associated
to W, if the degree (in p) of r is at most d−3 and if r satisfies the following
differential equation

RF · (∂xr + p∂yr) = Ur + ∂pVr,

where Ur =
∑d−3

i=0 biU
i
F and Vr =

∑d−3
i=0 biV

i
F .

The set of abelian polynomials of W can be endowed with a structure
of C-vector space that we denote APW .

Remark 3.10. — Hénaut’s work implies that APW is isomorphic to AW
(see [4] and [6]/ Proposition 2.6).

The next technical lemma is new and complete the description of the
abelian polynomials.
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Lemma 3.11. — Let W be a non singular, planar d-web, presented by a
W -polynomial F =

∑d
i=0 fi(x, y)pi. Then:

1. if r ∈ C{x, y}[p] is an abelian polynomial, there exists ω ∈
C{x, y}[f−1

d , p] such that RF ·(∂xr+p∂yr)−VF∂pr = (UF +∂pVF )r−
F∂pω;

2. if W is a NN -web and VF = pRF c(y), then r ∈ C{x, y}[p] is an
abelian polynomial if and only if ∂xr + p∂yr− pc(y)∂pr = rc(y) (i.e.,
ω = 0).

Proof. — For each 0 � i � d − 4, V i+1
F = pV i

F − vi
d−1 · F/fd and

U i+1
F = pU i

F + vi
d−1 · ∂pF/fd in C{x, y}[f−1

d , p], with U0
F := UF and V i

F :=∑d−1
i=0 vi

j(x, y)p
i (see [6], Proposition 2.5). Let us set ωi :=

∑i−1
j=0 v

j
d−1p

i−j−1,
for 1 � i � d− 3. An induction on i, using the above relations, proves that,
for each 1 � i � d− 3,

V i
F = piVF − ωiF/fd and U i

F = piUF + ωi∂pF/fd.

Let r =
∑d−3

i=0 bip
d−i ∈ C{x, y}[p]. We write Ur =

∑d−3
i=0 biU

i
F and Vr =∑d−3

i=0 biV
i
F . It follows that:

Ur =
d−3∑
i=0

bi(piUF + ωi∂pF/fd),

and that ∂pVr is equal to:

d−3∑
i=0

bi∂p(piVF − ωiF/fd) = VF∂pr + r∂pVF −
d−3∑
i=0

bi(ωi∂pF/fd + F∂pωi/fd).

If r is an abelian polynomial, then r is a solution of the differential equation
RF (∂xr + p∂yr) = Ur + ∂pVr. Let us set ω := f−1

d

∑d−3
i=0 biωi. By substi-

tuting the new expressions of Ur and ∂pVr in this differential equation, we
prove the first statement of the lemma. The second one comes directly from
Lemma 3.5/(3) and the fact that Ur = 0 and Vr = rVF . �

Remark 3.12. —

1. If r ∈ C{x, y} is an abelian polynomial, then RF (∂xr + p∂yr) =
(UF + ∂pVF )r. Indeed, consider the degrees (in p) in the relation of
Lemma 3.11. Moreover, if RF divides VF and if r ∈ C[x, y], then
either UF + ∂pVF = 0, either r = 0 by [5]/Lemma 1.10.
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2. If 3 � d < 5, and by considering the degrees (in p), we deduce also
from the construction of ω that, if r ∈ C{x, y}[p] is an abelian poly-
nomial, then RF (∂xr+p∂yr)−VF∂pr = (UF +∂pVF )r. In particular,
abelian polynomials r ∈ C[x, y, p] can be interpreted as associated
Darboux polynomials in C[x, y, p].

Theorem 3.13. — Let d � 3 and let W be a d-NN -web, presented by
F ∈ C[y, p]. Then:

1. the rank of W is egal to πd := (d − 1)(d − 2)/2 if and only if VF =
pRF c, with c ∈ C\{0}. In the other case, the rank of W is zero;

2. W is algebrizable if and only if VF = pRF c, with c ∈ C\{0}.

Proof. — For d � 4, the second assertion is a consequence of the first
one and of [3]/Théorème 1. We have to show that the C-vector space PAW
is of dimension πd if VF = pRF c with c ∈ C\{0}, and of dimension 0 if
VF = pRF c(y) with c(y) ∈ C[y]\C. Let r =

∑d−3
i=0 bip

i ∈ C{x, y}[p] be
an abelian polynomial. By Lemma 3.11, r satisfies the differential equation
∂xr + p∂yr − pc(y)∂pr = rc(y). We can compare the degrees (in p) in this
equation.

Assume that d = 3. Thus the coefficient b0 must satisfy the following
differential system:

M(3) :=
{

∂yb0 = 0
∂xb0 − c(y)b0 = 0 .

If c ∈ C\{0}, then b0 = λexp(cx), with λ ∈ C, is the (general) solution
of this system. The rank of W is then 1. Besides, W is algebrizable. If
c ∈ C[y]\C, M(3) has no non trivial solution, and the rank of W is zero.

Assume that d � 4. Thus the coefficients (bi)0�i�d−3 are the solutions of
the following differential system:

M(d) :=




∂ybd−3 = 0
∂xbd−3 + ∂ybd−4 − (d− 2)c(y)bd−3 = 0
∂xbd−4 + ∂ybd−5 − (d− 3)c(y)bd−4 = 0

...
...

...
∂xb1 + ∂yb0 − 2c(y)bd−1 = 0

∂xb0 − c(y)b0 = 0

.

Let ν the degree of c. Assume firstly that ν � 1. Remark that bd−3 ∈
C{x}. By integrating with respect to y, we show that bd−4 is of the form
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(d−2)C(y)bd−3−y∂xbd−3 +γ(x), with γ ∈ C{x} and ∂yC = c. By deriving
this expression with respect to x, we can compute ∂ybd−5 in terms of bd−3,
and iterate this process. Then b0 can be expressed as a polynomial in y with
coefficients in C{x}. The leading term of b0 is of the following form:

αbd−3y
g(ν),

with g : N → N, g(ν) � ν and α ∈ C\{0}. The last equation of the system
∂xb0 = c(y)b0 implies that

cνy
νbd−3 = ∂xbd−3,

with cν ∈ C\{0} the leading coefficient of c. So bd−3 = 0, because ν > 0
by assumption, and bd−3 ∈ C{x}. Thus the coefficients (bi)0�i�d−4 are the
solutions of a system M(d−1) (with c ∈ C[y]\C). We conclude by induction
on d, since the result is true for d = 3.

Assume now that ν = 0, i.e., c ∈ C\{0}. By integrating with respect to
y, we show that bd−4 = ((d−2)cbd−3 −∂xbd−3)y+γ(x), with γ ∈ C{x}. By
deriving this expression with respect to x, we obtain that ∂ybd−5 is equal
to:

(
(d− 3)c ((d− 2)cbd−3 − ∂xbd−3) −

(
(d− 2)c∂xbd−3 − ∂2

xbd−3

))
y

+(d− 3)cγ(x) − ∂xγ(x).

Equivalently, ∂ybd−5 is equal to:
(
(d− 3)(d− 2)c2bd−3 + (d− 1)c∂xbd−3 + ∂2

xbd−3

)
y+(d−3)cγ(x)+∂xγ(x).

By iterating this process, it is clear that the last equation of the system
∂xb0 = c(y)b0 can be rewritten under the following form:

Gd−3(γd−3)yd−3 + Gd−4(γd−4)yd−4 + . . . + G0(γ0(x)) = 0,

where Gi ∈ C〈y〉, for 0 � i � d − 3, is a linear homogeneous differential
polynomial of order i+1 and γi, for 0 � i � d−3, is an element C{x}, that
we want to determine. Note that γd−3 := bd−3. This equation is of course
equivalent to the differential system Gi(γi) = 0, for all 0 � i � d − 3. We
conclude that the dimension of the space of solutions is equal to the sum of
the dimensions of the spaces of solutions of all differential equations Gi = 0.
As the Gi are linear of order i+1, we conclude that this dimension is equal
to 1 + 2 + . . . + (d− 2) = πd. �

Remark 3.14. — Theorem 3.13 above can be proved using more sophis-
ticated machinery. If d = 3, a non singular, planar, polynomial 3-web W
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is algebrizable if and only if it is of rank 1. This last condition is again
equivalent to KW = 0, where KW is the Blaschke curvature of W. If N is a
3-NN -web presented by F and if VF = pRF c(y), then KW = ∂yc(y)dx∧dy.
For d � 4, Hénaut’s formalism (see [4]), and precisely [6]/Théorème 4.1,
allows (in particular) to compute the rank of a d-NN -web.
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