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Codimension one foliations on complex tori

Marco Brunella
(1)

ABSTRACT. — We prove a structure theorem for codimension one sin-
gular foliations on complex tori, from which we deduce some dynamical
consequences.

RÉSUMÉ. — On démontre un théorème de structure pour les feuilletages
singuliers de codimension 1 sur les tores complexes, et on en déduit des
conséquences dynamiques.

1. Introduction

Following a suggestion of Ohsawa [Ohs], we will study in this paper some
dynamical properties of holomorphic (and possibly singular) foliations of
codimension one on complex tori.

First of all, we shall prove a structure theorem for such foliations, in
respect of their normal bundle:

Theorem 1.1. — Let X = Cn/Γ be a complex torus and let F be a
codimension one foliation on X. Then one and only one of the following
possibilities occurs:

(1) F is a linear foliation;

(2) F is a turbulent foliation;

(3) there exists a complex torus Y = Cm/Γ′ (m � n), a codimension one
foliation G on Y , a linear projection π : X → Y , such that:
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Dijon, France.

– 405 –



Marco Brunella

(3.1) F = π∗(G);

(3.2) the normal bundle NG of G is ample.

A foliation on a torus is linear if its lifting to the universal covering Cn is
a foliation by parallel hyperplanes. The dynamics of a linear foliation is well
understood; in particular, either every leaf is dense in the ambient torus,
or every leaf is dense in a real codimension one subtorus, or every leaf is
compact (a complex codimension one subtorus). Turbulent foliations will
be defined and studied below. They are possibly singular generalizations of
a class of nonsingular foliations introduced by Ghys in [Ghy]. The dynamics
of turbulent foliations is also rather well understood. Thus, the meaning
of Theorem 1.1 is that, up to some well understood classes, the study of
codimension one foliations on complex tori is reduced to the case of foliations
with ample normal bundle.

Concerning this last case, we will prove:

Theorem 1.2. — Let X be a complex torus of dimension n � 3 and let
F be a codimension one foliation on X with ample normal bundle. Then
every leaf of F accumulates to (part of) the singular set Sing(F).

This answers to a conjecture of [Bru], in the special case of complex tori.
In the case of projective spaces (X = CPn, n � 3) the analogous result has
been proved by Lins Neto in [Lin] (for a foliation on a projective space
the normal bundle is always ample). A related result, for foliations on tori
satisfying some topological assumptions, can also be found in [Ohs].

The main step in the proof of Theorem 1.2 is the construction of a strictly
plurisubharmonic exhaustion of the complement of L, where L is a leaf of
F which, by contradiction, does not accumulate to Sing(F). As in [Bru],
such a function will be constructed by exploiting a positive curvature metric
on NF . This approach should be compared with [Ohs], where the author
constructs a (non strictly) plurisubharmonic exhaustion by exploiting flat
metrics on the torus.

Along the proof of Theorem 1.2, we shall obtain some “new” examples of
Stein domains inside some compact complex surfaces. This will be explained
in the last part of the paper.

Acknowledgements. — I thank T. Ohsawa for sending to me his pre-
print [Ohs], which motivated the present work, and J.-P. Rosay for explain-
ing to me the glueing technique of plurisubharmonic functions used below.
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2. General structure of foliations on complex tori

2.1. Normal reduction

Let X = Cn/Γ be a complex torus and let F be a (possibly singular)
codimension one foliation on X.

The main basic fact that we shall use below is that the normal bundle
NF of F is effective. Indeed, we may take a global holomorphic vector
field v on X, not everywhere tangent to F , and project it to NF under
the natural map TX → NF . The result is a global holomorphic section
sv ∈ H0(X,NF ), vanishing exactly on the hypersurface Σv ⊂ X along
which v is not transverse to F .

More explicitly, if the foliation F is locally defined by holomorphic 1-
forms ωj ∈ Ω1(Uj) (with zero set of codimension at least two, as usual),
then the section sv is locally defined by the functions fj = ivωj ∈ O(Uj): we
have ωj = gjkωk on Uj∩Uk, where {gjk} is (by definition) the multiplicative
cocycle defining NF , hence fj = gjkfk and therefore {fj} defines a global
section of NF .

According to standard results about line bundles on complex tori [Deb,
Théorème VI.5.1], from the effectivity of NF we deduce that there exists a
complex torus Y = Cm/Γ′, a linear projection π : X → Y and an ample
line bundle L on Y such that

NF = π∗(L).

This map π, which is uniquely and canonically defined by F , will be called
normal reduction of F .

It may happen that m = 0, i.e. Y is a point. This occurs if and only if
NF is trivial, that is F is globally defined by a holomorphic 1-form on X
and, therefore, F is a linear foliation. It may also happen that m = n, which
means that NF itself is ample. From now on we shall suppose 1 � m � n−1.

Denote by Fy, y ∈ Y , the fibers of π, which are complex subtori of X
of dimension � = n −m. The fibration π is locally trivial: all the fibers Fy

are isomorphic to the same complex torus F , and given y ∈ Y there exists
a neighbourhood U ⊂ Y of y such that

V = π−1(U) � U × F.

Let us study the foliation on such a neighbourhood V .
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If U is sufficiently small, then L|U is trivial, and so NF |V is trivial too.
This means that F|V is defined by a holomorphic 1-form ω ∈ Ω1(V ), with
zero set of codimension two or more. Denote by {dw1, . . . , dw	} a basis of
Ω1(F ), and by {z1, . . . , zm} coordinates on U . Then the 1-forms {dzj , dwk},
lifted to V = U ×F , form a basis of the O(V )-module Ω1(V ), and therefore
ω can be written as a linear combination of those forms with coefficients in
O(V ). Taking into account that O(V ) = π∗(O(U)), we obtain

ω = π∗(ω0) +
	∑

j=1

aj(z)dwj

where ω0 ∈ Ω1(U) and aj ∈ O(U) for every j.

From this local (over Y ) expression, we deduce:

Lemma 2.1. — If the fibers of the normal reduction π : X → Y are all
F-invariant, then there exists a foliation G on Y such that F = π∗(G).

Indeed, the hypothesis of this lemma means that the above functions
{aj} are all identically zero, hence ω = π∗(ω0) and G is the foliation on Y
defined by ω0 on U ⊂ Y . We also have NG = L, hence NG is ample and we
are in case (3) of Theorem 1.1.

2.2. Turbulent foliations

We now analyse the case in which the fibers of the normal reduction are
not all F-invariant. We start with a definition, close to [Ghy].

Definition 2.2. — Let X be a complex torus and let F be a codimension
one foliation on X with normal reduction π : X → Y , 0 < dimY < dimX.
Then F is said to be a turbulent foliation if it can be defined by a mero-
morphic 1-form η of the type

η = π∗(η0) + η1

where:

(i) η0 is a closed meromorphic 1-form on Y ;

(ii) η1 is a holomorphic 1-form on X, not vanishing on the fibers of π.

Remark that such a 1-form η is not only integrable, but even closed.
The decomposition η = π∗(η0) + η1 is not unique: we may replace η0 with
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η0 + γ, where γ is any holomorphic 1-form on Y , and η1 with η1 − π∗(γ).
The nonvanishing condition in (ii) is required in order to exclude the case
F = π∗(G), already met before. Note that NF is represented by the divisor
(η)∞ − (η)0, which is equal to π∗((η0)∞), and so L is represented by the
polar divisor of η0. In particular, this polar divisor is nontrivial, because L
is ample (and dimY > 0).

The dynamics of turbulent foliations will be described below, let us firstly
conclude the proof of Theorem 1.1 by proving that, if the fibers of the normal
reduction are not all F-invariant, then F is a turbulent foliation.

We can firstly choose a global holomorphic vector field v on X, tangent
to the fibers of π but not everywhere tangent to F . Then we take the
meromorphic 1-form η on X uniquely defined by the conditions

η|F ≡ 0 and ivη ≡ 1.

This is a 1-form which defines F , and we claim that it admits a decompo-
sition as in Definition 2.2.

To see this, let us look again at the neighbourhood V = U × F , where
F is defined also by the holomorphic 1-form ω = π∗(ω0) +

∑	
j=1 ajdwj .

The 1-forms {dwj} appearing here are, in fact, restriction to V of global
holomorphic 1-forms on X, still denoted by {dwj}. The functions ivdwj (on
X) are therefore constant, and up to a change of basis we may assume that

ivdw1 = 1 and ivdwj = 0 for j � 2.

The meromorphic 1-form η, on V , is necessarily proportional to ω: η = fω
for some meromorphic function f ∈ M(V ). From ivη = 1 we then obtain
f = 1/a1. Thus, setting β0 = 1

a1
ω0 and bj = aj

a1
, we get

η|V = π∗(β0) +
	∑

j=1

bj(z)dwj

with b1 identically equal to 1.

Lemma 2.3. — The 1-form β0 is closed and the functions {bj} are con-
stant.

Proof. — This is a consequence of the integrability condition η∧dη ≡ 0,
which develops into three sets of conditions:

(1) β0 ∧ dβ0 = 0
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(2) π∗(β0) ∧ dbj + bjπ
∗(dβ0) = 0 for every j

(3) bjdbk − bkdbj = 0 for every j, k.

Because b1 ≡ 1, condition (3) with k = 1 gives the constancy of bj for every
j, and condition (2) gives the closedness of β0. �

Set

η1 =
	∑

j=1

bjdwj ,

which is now, thanks to the previous lemma, a holomorphic 1-form globally
defined on X. The difference η − η1, restricted to V , is equal to π∗(β0). By
connectedness, the same holds on the full X: there exists a meromorphic
1-form η0 on Y , which extends β0, such that η − η1 = π∗(η0). The 1-form
η0 is closed, because β0 is. Hence F is a turbulent foliation.

2.3. Dynamics of turbulent foliations

Let F be a turbulent foliation, with normal reduction π : X → Y
(dimX = n, dimY = m > 0, � = n −m > 0), defined by η = π∗(η0) + η1

as in Definition 2.2. As already observed, this decomposition of η (and η
itself) is not uniquely determined by F . However, the polar divisor of η0,

D = (η0)∞,

is an object intrinsically associated to F : a point y ∈ Y belongs to D if
and only if the fiber Fy is not everywhere transverse to F . Moreover, if
D =

∑r
j=1 kjDj is the decomposition into irreducible components, and

Ej = π−1(Dj),

then Ej is an hypersurface invariant by F , along which F and π are tangent
at order kj .

The case m = 1 is somewhat special [Ghy]: the foliation F has no sin-
gularity, each Dj is a point, each Ej is a compact leaf of F , whereas all the
other leaves are noncompact and accumulate to every Ej .

On the other hand, if m � 2 then F is certainly singular, and more
precisely every Ej must contain some singularity of F (recall that D �= ∅, for
L = O(D) is ample). Indeed, in the opposite case where Ej ∩ Sing(F) = ∅,
the normal bundle NF would be flat on Ej (by Bott’s vanishing principle,
see e.g. [Suw, Theorem VI.6.4]), hence L = π∗(NF ) would be flat on Dj ,
contradicting its ampleness (if m � 2). Also when m � 2 all the leaves
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outside E = ∪jEj accumulate to every Ej . In particular, every leaf of F
accumulates to some singular point of the foliation.

On X \ E the dynamics of F can be visualized as follows: there is a
“vertical” dynamics, which is given by the periods of η1 along the fibers
of π, and a “horizontal” dynamics, which depends also on the periods of
η0. More precisely, we have on X a natural real fibration by real subtori
h : X → M : a fiber of h is a real subtorus obtained by taking the closure of
a leaf of (ker η1) ∩ (Fy), y ∈ Y . The normal reduction factorizes through h,
i.e. π = g ◦ h with g : M → Y a real fibration. The space M is a real torus,
and the fibers of g are either points (i.e. M = Y , i.e. η1 defines a linear
foliation with dense leaves on every fiber of π), or circles (i.e. η1 defines on
every fiber a foliation whose leaves are dense in real codimension one tori),
or real 2-tori (i.e. η1 defines on every fiber a foliation with compact leaves).

Set M0 = g−1(Y \ D) = h(X \ E). The foliation F|X\E “projects” to
a real foliation L on M0, whose leaves are transverse to the fibers of g
and of complementary dimension. The dynamics of L is described by its
monodromy representation π1(Y \D) → T rsl, where T rsl is the group of
translations of a fiber of M0. This monodromy representation, which is the
horizontal dynamics of F , can be computed from the periods of η0 and those
of η1 in the directions transverse to the fibers of π.

3. Foliations with ample normal bundle

3.1. A general convexity result

In order to prove Theorem 1.2, we start with a general result, motivated
by [Bru] and valid on arbitrary complex manifolds.

Proposition 3.1. — Let X be a complex manifold and let F be a codi-
mension one foliation on X. Let M ⊂ X be a compact F-invariant subset,
disjoint from Sing(F), and suppose that the normal bundle NF admits an
hermitian metric with positive curvature on a neighbourhood of M. Then
there exists a smooth function Φ : X \M → R such that:

(1) Φ(p) → +∞ as p → M;

(2) Φ is strictly plurisubharmonic on a neighbourhood of M.

We can resume the conclusion of this proposition by saying that the end
(or the ends) of X \M converging to M is (or are) strongly pseudoconvex
[Pet].
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Let us fix some notation. We cover a neighbourhood U of M with foliated
charts {Uj}	

j=1. On each Uj , the foliation F is defined by a holomorphic
submersion

fj : Uj → Vj ⊂ C.

The differential dfj ∈ Ω1(Uj) is therefore a nowhere vanishing section of the
conormal bundle N∗

F over Uj . We denote by ‖dfj‖ its norm with respect
to the metric on N∗

F which is dual to the metric on NF appearing in the
statement of Proposition 3.1. Thus, the (1,1)-form on U

Θ = i∂∂̄ log ‖dfj‖

is a positive form, up to shrinking U (modulo a positive constant factor, it
is just the curvature of NF ).

Set Mj = M∩ Uj and Kj = fj(Mj) ⊂ Vj , and denote by

δj : Vj \Kj → R

the euclidean distance from Kj :

δj(z) = inf
w∈Kj

|z − w| ,

where | · | denotes the standard norm on Vj ⊂ C. Remark that − log δj

is a continuous subharmonic function on Vj \ Kj , being the supremum of
harmonic functions, and that − log δj(z) tends to +∞ as z → Kj .

Define, for every j,
hj : Uj \Mj → R

hj(p) = log
‖dfj(p)‖
δj(fj(p))

.

By the above properties of fj and δj , we immediately see that:

(i) hj is continuous, and hj(p) → +∞ as p → Mj ;

(ii) i∂∂̄hj � Θ (in the sense of currents).

Consider now the difference hj − hk on two overlapping charts Uj and
Uk.

Lemma 3.2. — hj(p) − hk(p) → 0 as p → M∩ Uj ∩ Uk.

Proof. — We have fj = ϕ ◦ fk on Uj ∩Uk, for some holomorphic diffeo-
morphism

ϕ : fk(Uj ∩ Uk) → fj(Uj ∩ Uk)

– 412 –



Codimension one foliations on complex tori

(we omit the jk-index), and therefore

‖dfj(p)‖ = |ϕ′(fk(p))| · ‖dfk(p)‖.
Remark, in particular, that the quotient ‖dfj‖/‖dfk‖ is constant along the
leaves, as well as the difference hj − hk, and so our problem is actually one
dimensional.

Set V = fk(Uj ∩ Uk) and K = fk(M∩ Uj ∩ Uk) (a closed subset of V ).

For every p ∈ Uj∩Uk we have, by definition, δj(fj(p)) = infw′∈Kj
|fj(p)−

w′| = infw′∈Kj |ϕ(fk(p))−w′|. But, on some neighbourhood of M∩Uj ∩Uk,
this expression can be rewritten as

δj(fj(p)) = inf
w∈K

|ϕ(fk(p)) − ϕ(w)|

(as soon as the infimum over Kj is realized by a point in ϕ(K) ⊂ Kj).
Similarly, and still on some neighbourhood of M∩ Uj ∩ Uk, we have

δk(fk(p)) = inf
w∈K

|fk(p) − w|

(as soon as the infimum over Kk is realized by a point in K ⊂ Kk).

Thus, the conclusion of the lemma is equivalent to the following one: the
function λ : V \K → R defined by

λ(z) = |ϕ′(z)| · infw∈K |z − w|
infw∈K |ϕ(z) − ϕ(w)|

tends to 1 as z → K.

This claim can be checked as follows, by elementary calculus. We fac-
torize ϕ(z) − ϕ(w) as ψ(z, w) · (z − w), where ψ is a holomorphic function
on V × V and ψ(z, z) = ϕ′(z). If zn → z∞ ∈ K, then infw∈K |zn − w| is
realized by some point wn ∈ K, for n sufficiently large. Hence

λ(zn) =
|ϕ′(zn)| · |zn − wn|

infw∈K |ϕ(zn) − ϕ(w)| � |ϕ′(zn)| · |zn − wn|
|ϕ(zn) − ϕ(wn)| =

|ϕ′(zn)|
|ψ(zn, wn)| .

This last quantity tends to 1, because wn → z∞ (even if wn is possibly not
uniquely determined). In particular, we obtain that lim infn→+∞ λ(zn) � 1.
Similarly, infw∈K |ϕ(zn)−ϕ(w)| is realized by some w̃n ∈ K, with w̃n → z∞,
and we get lim supn→+∞ λ(zn) � 1. Hence λ(zn) → 1, as desired. �

Using Lemma 3.2 and properties (i) and (ii) above, we can now con-
struct, by a glueing procedure, the asymptotically strictly plurisubharmonic
exhaustion Φ : X \M → R. 1

(1) I learned the following glueing technique from J.-P. Rosay
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Set U0 = X\M and let {gj}	
j=0 be a smooth partition of unity associated

to {Uj}	
j=0. Set I = {1, . . . , �}. For every j ∈ I, we can choose a constant

εj > 0 so that εji∂∂̄gj � − 1
2Θ, hence the function

h̃j = hj + εjgj

on Uj \ Mj still satisfies (i) and (ii), except that Θ is replaced with 1
2Θ.

Take now

h : U \M → R

h(p) = sup
j∈I(p)

h̃j(p)

where I(p) = {j ∈ I | p ∈ Uj }.

Lemma 3.3. — On a sufficiently small neighbourhood of M, the function
h is continuous and i∂∂̄h � 1

2Θ.

Proof. — Take q ∈ M and let us distinguish two cases (even if, formally,
this is not indispensable).

(1). The set valued function I(p) is locally constant around q. This
means that there exists a neighbourhood Uq of q such that, for every j ∈ I,
either Uq ⊂ Uj or Uq ∩Uj = ∅. Denote by J the set of those j ∈ I for which
the former possibility occurs. Then the function h|Uq\M can be expressed
as supj∈J h̃j , and now the functions appearing there are all defined on the
full Uq \ M. The continuity and the strict plurisubharmonicity of h|Uq\M
are then a consequence of standard and easy facts.

(2). The set valued function I(p) is not locally constant around q. This
means that q belongs to the boundary of one or more charts. Fix j0 ∈ I
such that gj0(q) > 0. Then we can find a neighbourhood Uq ⊂ Uj0 of q such
that, for every j ∈ I, either Uq ⊂ Uj or εjgj < εj0gj0 on Uq ∩Uj . By Lemma
3.2, and up to restricting Uq, we may replace this inequality with h̃j < h̃j0 .
This means that, as in case (1), the function h|Uq\M can be expressed as
a supremum of functions fully defined on Uq \ M, continuous and strictly
plurisubharmonic, and we conclude as before. �

Standard regularisation results (Richberg) allow now to approximate h
with a smooth function Φ : U \M → R, which is still exhaustive towards
M and still strictly plurisubharmonic close to M. This completes the proof
of Proposition 3.1.
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3.2. Ample foliations on tori

We return now to the case of a foliation on a torus X = Cn/Γ, and we
prove Theorem 1.2.

Suppose, by contradiction, that some leaf of F does not accumulate to
Sing(F). Taking closure, we get a compact subset M ⊂ X as in Proposition
3.1. Therefore, the open subset X \M is strongly pseudoconvex.

According to classical results of Grauert and Remmert [Pet], X \M is a
point modification of a Stein space. However, a complex torus cannot contain
an exceptional set, i.e. an analytic subset of positive dimension collapsible
to a point (for instance, any analytic subset of a torus can be shifted away
by using a holomorphic flow, and this clearly prevents its collapsibility).
Thus, X \M is itself a Stein space.

Now we can use the singular argument of [Lin]. By Baum-Bott formula
[Suw, Theorem VI.3.7], the cohomology class

c21(NF ) ∈ H4(X,R)

is represented by a cycle
∑α

j=1 λjSj , where {Sj} are the codimension 2
irreducible components of Sing(F) and {λj} are complex numbers (Baum-
Bott residues). Because NF is ample, this class is not zero, and because
n = dimX � 3, we infer that Sing(F) has positive dimension. Moreover,
Sing(F) ∩ M = ∅, and so Sing(F) ⊂ X \ M. But this contradicts the
Steinness of X \M.

Remark 3.4. — Our construction of the plurisubharmonic exhaustion of
X \M can be compared with the construction of [Ohs] in the following way.
Take, as in [Ohs], a flat metric on X. Because NF is (outside the singulari-
ties) a quotient of TX, we get an induced metric on NF , and by a standard
comparison principle such a metric as semipositive curvature. If, by chance,
this curvature is positive, then we can apply our construction (Proposition
3.1), and we get an exhaustion which is not so far from Ohsawa’s one (our
exp(−hj) is a sort of “transverse distance from M”, and if the metric on
NF arises from an ambient metric then this transverse distance is not very
different from the ambient distance...). However, even if NF is ample, it can
happen that the above quotient metric has some flat points, corresponding
to points where the leaf has a higher order tangency with an hyperplane.
These flat points are source of difficulties also in [Ohs]. Whereas Ohsawa’s
strategy consists, in some sense, in getting rid of these flat points by work-
ing simultaneously with several flat metrics on X, our strategy is rather to
perturb the metric on NF to a positive curvature one. Of course, this needs
the ampleness hypothesis, which is however furnished by Theorem 1.1.
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Remark 3.5. — Theorem 1.2 holds, more generally, when X is a homo-
geneous manifold. The proof is the same as in the case of tori.

3.3. An example

Let us return to the general Proposition 3.1. When n = dimX � 3,
then we actually do not know any example satisfying the hypothesis of
Proposition 3.1. They exist, instead, when n = 2, as we will now show (see
also the end of [Bru]). It is also worth observing that if n � 3 then, by Rossi
filling theorem, a neighbourhood of M as in the conclusion of Proposition 3.1
can be embedded into a compact complex manifold (of the same dimension),
and then the foliation can be extended to such a compact manifold. Thus,
possible examples in higher dimension should be investigated in a compact
setting.

Let C = D/Γ be a compact, connected, complex curve, of genus g � 2,
and let ρ : π1(C) → Aut(P) be a representation of the fundamental group
of C into the group of Möbius transformations of the projective line. Then
π1(C) acts on D×P via the diagonal representation (Γ, ρ), and the quotient

X = (D × P)/(Γ, ρ)

is a compact complex surface, ruled over C. On X we have a (nonsingular)
foliation F , arising from the horizontal foliation on D×P, and transverse to
the ruling. If K ⊂ P is a compact subset invariant by ρ, then D×K projects
on X to a compact subset M, invariant by F . Because we are interested
in the strong pseudoconvexity of X \ M, we may assume, without loss of
generality, that M is a proper subset of X with empty interior (otherwise
we replace M with ∂M).

We shall assume also that the following property holds:

(•) X contains an irreducible curve D with D ·D < 0.

This is related to the instability of the rank 2 vector bundle over C whose
projectivization is X [Fri].

Lemma 3.6. — The normal bundle NF can be decomposed, as a Q-bundle,
as L ⊗ O(�D), where L is an ample Q-bundle and � is a positive rational
number.

Proof. — Fix a fiber F of the ruling X → C. Then NF is represented, as
a Q-bundle, by a divisor of the form aF+bD, for some rational numbers a, b,
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because F and D generate Pic(X)⊗Q. From c1(NF )·F = 2 (for NF |F � TF
and F � P) and c21(NF ) = 0 (Bott’s vanishing), we get a = −(D·D)/(F ·D)2

and b = 2/(F ·D). Note that a and b are both positive. But any Q-divisor
on X of the type aF + εD, ε > 0 sufficiently small, is ample (use, e.g.,
Nakai’s criterion [Fri]). Hence NF can be decomposed as L ⊗ O(�D), with
L = O(aF + εD) ample and � = b− ε ∈ Q+. �

Observe now that the curve D cannot be totally contained in M: oth-
erwise, by int(M) = ∅, D would be a leaf of F , but this is forbidden by
D ·D < 0. Hence we may take a point p ∈ D∩(X \M) and a neighbourhood
U ⊂⊂ X \M of p.

Lemma 3.7. — The normal bundle NF admits an hermitian metric with
positive curvature on X \ U (which is a neighbourhood of M).

Proof. — By the previous lemma, it is sufficient to prove that the line
bundle O(D) admits an hermitian metric with semipositive curvature on
X0 = X \ U .

We firstly put a singular metric on O(D) with curvature equal to δD =
integration current on D (Poincaré-Lelong equation). By standard results,
there exists a Stein neighbourhood V ⊂ X of D \ (D ∩U), and an equation
f ∈ O(V ) for D′ = D ∩ V ; we may assume also that |f | > 1 on some
neighbourhood of ∂V ∩ X0. Over V , the line bundle O(D) is trivial, and
so the above singular metric is represented by a weight function ψ, which
satisfies i∂∂̄ψ = δD′ . Hence we can write ψ = ψ0 + 1

2π log |f |2, where ψ0 is
a pluriharmonic function on V .

Let χ : R → R be a smooth function such that χ′ � 0, χ′′ � 0, χ(t) = t
for t � 0, χ(t) = −1 for t � −2. Then ψχ = ψ0 + 1

2πχ(log |f |2) is smooth
and plurisubharmonic on the full V , and equal to ψ around ∂V ∩X0 (where
|f | > 1). Thus, we can replace the weight ψ with ψχ, and obtain a well
defined smooth metric on O(D) over X0, coinciding with the previous one
outside V . The curvature of this metric is semipositive. �

By Lemma 3.7 and Proposition 3.1, we get:

Proposition 3.8. — Under assumption (•), X \M is strongly pseudo-
convex.

Examples which satisfy (•) can be constructed as follows. We take a
Kleinian group Λ ⊂ Aut(P), i.e. a discrete subgroup which acts in a proper
and freely discontinuous way on some nonempty open subset Ω ⊂ P [Mas].
The quotient C = Ω/Λ is a complex curve, and there are many examples
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in which C is even compact, connected, of genus g � 2 [Mas]. Then X =
(Ω× P)/(Λ,Λ) is a ruled surface as before, with a foliation F transverse to
the ruling as before. Here we can take as M the quotient of Ω × ∂Ω. Then
X contains an irreducible curve D with D · D < 0 : the quotient of the
diagonal ∆ ⊂ Ω × Ω ⊂ Ω × P. The negativity of the selfintersection comes
from the fact that the tangent and the normal bundle of D are naturally
isomorphic, and its genus is � 2. Remark that in this case we have not only
D �⊂ M, but even D ∩M = ∅.
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