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Invariant Spin Structures on Riemann Surfaces

Sadok Kallel
(1)

, Denis Sjerve
(2)

ABSTRACT. — We investigate the action of the automorphism group of a
closed Riemann surface of genus at least two on its set of theta charac-
teristics (or spin structures). We give a characterization of those surfaces
admitting a non-trivial automorphism fixing either all of the spin struc-
tures or just one. The case of hyperelliptic curves and of the Klein quartic
are discussed in detail.

RÉSUMÉ. — Dans ce travail, nous étudions l’action du groupe d’automor-
phismes conformes d’une surface de Riemann de genre supérieur à deux
sur ses structures spin. Nous caractérisons de telles surfaces qui admettent
un automorphisme non-trivial fixant soit toutes les structures spin à la
fois, soit seulement une. Les cas des courbes hyperelliptiques et de la
quartique de Klein sont analysés en détail.

1. Introduction

Spin structures on Riemann surfaces or “theta characteristics” are classi-
cal objects of great use and interest in all of geometry, topology and physics.
Let C be a closed Riemann surface and write U(C) for its unit tangent
bundle. A spin structure on C is a cohomology class in H1(U(C);Z2) whose
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restriction to each fiber is a generator of H1(S1;Z2). There is of course a
great number of ways to see what a spin structure is, a few of which we will
encounter in the course of this paper.

Every Riemann surface C has 22g distinct spin structures where g is the
genus of C. As described in [4], Spin(C) has a natural structure of affine
space over Z2 with H1(X,Z2) as its group of translations. The group of
conformal automorphisms of C; Aut(C), acts on H1(U(C);Z2) and hence
on Spin(C) by pullback. This is an affine action.

In this paper we study invariant spin structures on compact Riemann
surfaces, of genus at least two, under the action of Aut(C). Motivation for
this work comes from a question by Jack Morava to the authors and from the
paper [4] in which Atiyah proves that if f : C → C is an automorphism of
a compact Riemann surface C then there necessarily exists a spin structure
ξ that is invariant under f : C → C.

This raises natural questions.

1. Is there an automorphism f : C → C that leaves only one spin
structure invariant?

2. Is there a non-trivial automorphism f : C → C that leaves every spin
structure invariant?

3. How many spin structures are invariant under a given f : C → C?

4. How large can the isotropy subgroup of a given spin structure in
Aut(C) be?

The first question admits the following answer.

Theorem 1.1. — Suppose f : C → C is an automorphism of order n,
where n is odd. Then f leaves only one spin structure invariant if, and only
if, the associated orbit surface C/Zn has genus zero.

We reach this theorem by reducing the problem to linear algebra using
interesting constructions of Johnson [9]. This reduction takes the following
form.

Let A ∈ SL2g(Z) denote the 2g × 2g matrix representing the induced
isomorphism f∗ : H1(C;Z) → H1(C;Z), with respect to some basis, and
let Ā is its mod 2 reduction. Let X = (x1, . . . , x2g)T be a column vector
representing an element of H1(C;Z), and let X̄ be its mod 2 reduction.
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Then we observe in section 2 that spin structures left invariant by an au-
tomorphism f : C → C are in 1-1 correspondence with solutions X̄ of the
matrix equation (ĀT − I)X̄T = 0 (Corollary 2.9). In particular we see that
an orientation preserving diffeomorphism fixes all spin structures if and only
if f acts trivially on H1(C;Z2). This is one form of the main theorem A of
Sipe [15].

In section 2.1 we combine classical results of Nielsen and Serre to obtain
an answer to question (2)

Theorem 1.2. — Let C be a compact Riemann surface of genus at least
two. A non-trivial automorphism f : C → C leaves every spin structure
invariant if, and only if, C is hyperelliptic and f is the hyperelliptic involu-
tion.

Consequences of our calculations in section 2 also give answers to our
remaining questions (3) and (4) respectively.

Corollary 1.3. —

(i) If k is the dimension of the eigenspace of Ā associated to the eigen-
value 1, then the number of f-invariant spin structures is 2k.

(ii) The Klein quartic curve K of genus 3 and maximal group of auto-
morphisms has a unique invariant spin structure under the entire group.

Corollary 1.3 (i) gives a more refined version of the theorem of Atiyah
on the existence of an invariant spin-structure [4].

Corollary 1.3 (ii) is not new (see [7]). Our proof however seems novel
and is simply obtained by inputting computations of [14] in our matrix
equations. Moreover, in section 4 we give a very explicit and elementary
description of the divisor associated to this unique invariant spin structure
which we couldn’t find in the literature (see theorem 4.2).

Finally, in section 3 we give a complete count of invariant spin struc-
tures for automorphisms of hyperelliptic surfaces based on a combinatorial
definition of spin structures due to Mumford [12]. See propositions 3.3 and
3.4. The genus two case is then completely dissected.

Interesting results on invariant r-roots can be found in [15] (a “square
root” being a spin structure). A growing number of references on invariant
spin structures have to do with mapping class groups and moduli spaces of
spin curves. A nice discussion of this theme is in [10].
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Added in revision. — This work was posted on the archives in 20061.
In 2007 an independent proof of Theorem 1.2 appeared in work of Indranil
Biswas and coauthors2. We were both unaware of each other’s work and
interestingly our methods are entirely different. This theorem has later been
given an extension to irreducible smooth projective curves defined over an
algebraically closed field of characteristic prime to two3.

2. Spin Structures and Automorphisms

We assume C is smooth, closed, connected and orientable, of genus g � 1.
Let S1 i→ U(C) π→ C be the unit tangent bundle. We adopt Johnson’s
definition of a spin structure [9]; namely this is a cohomology class ξ ∈
H1(U(C);Z2) that restricts to a generator of H1(S1;Z2) ≈ Z2 for every
fiber S1.

There are short exact sequences

0 −−−→ H1(S1;Z2)
i∗−−−→ H1(U(C);Z2)

π∗−−−→ H1(C;Z2) −−−→ 0

0 ←−−− H1(S1;Z2)
i∗←−−− H1(U(C);Z2)

π∗←−−− H1(C;Z2) ←−−− 0

from which one deduces that the set Spin(C) of spin structures on C is in
1 − 1 correspondence with H1(C;Z2) ≈ Z

2g
2 , and therefore there are 22g

spin structures on C. This correspondence is not a group isomorphism and
Spin(C) is in fact the non-trivial coset of H1(C;Z2) in H1(U(C);Z2).

Suppose ω is a smooth simple closed curve on C. Let ω denote the lift
of ω to U(C) given by the unit tangent vector at each point of ω. There
are actually 2 lifts, but they are homotopic in U(C) by the homotopy that
rotates one tangential direction to the other.

We will let z ∈ H1(U(C);Z2) denote the class represented by the tan-
gential framing on ∂(D2), where D2 is any closed 2-disc in C. As is nicely
explained by Johnson, “Intuitively a spin structure ζ ∈ Spin(C) is a func-
tion assigning a number mod 2 to each framed curve of C, subject to the
usual homological conditions and also that the boundary of a disc in C
tangentially framed receives one”.

(1) http://front.math.ucdavis.edu/0610.5568v1
(2) On theta characteristics of a compact Riemann surface, Bull. Sci. math. 131 (2007)

493-499.
(3) http://front.math.ucdavis.edu/0804.1599

– 460 –



Invariant Spin Structures on Riemann Surfaces

Lemma 2.1 (Johnson [9]). — Suppose the homology class u ∈ H1(C;Z2)
is represented by ω1 + ω2 + · · ·+ ωr, where {ω1, ω2, . . . , ωr} is a set of non-
intersecting smooth simple closed curves. Then ω1 + ω2 + · · · + ωr + rz
depends only on the class u, and not on the particular representation.

Definition 2.2. — ũ = ω1 + ω2 + · · ·+ ωr + rz.

This canonical lifting from H1(C;Z2) to H1(U(C);Z2) fails to be a ho-
momorphism. This is made explicit by the following result in [9].

Lemma 2.3. — If a, b ∈ H1(C;Z2) then ã+ b = ã + b̃ + 〈a, b〉z, where
〈a, b〉 is the intersection pairing.

Let e1, . . . , e2g denote a basis of H1(C;Z) ≈ Z2g. We do not assume that
this basis is symplectic. The following is clear.

Lemma 2.4. — A basis for H1(U(C);Z) is given by ẽ1, ẽ2, . . . , ẽ2g, z.

Let the dual basis of H1(U(C);Z) be denoted ζ1, . . . , ζ2g, η. Then the
mod 2 reduction η̄ ∈ H1(U(C);Z2) is a particular spin structure on C. It
follows that the set of spin structures is given by

Spin(C) =

{
2g∑
i=1

xiζ̄i + η̄
∣∣ all xi ∈ Z2

}
.

We can now determine the action of an automorphism f : C → C on
Spin(C). Write f∗(ei) =

∑2g
j=1 ajiej , i = 1, . . . , 2g, where the ai,j are the

entries of A ∈ SL2g(Z).

Definition 2.5. — vi =
∑

1�j1<j2�2g aj1iaj2i〈ej1 , ej2〉,

V = [v1, v2, . . . , v2g].

We use the notation Vf or VA if we want to emphasize that the vector
V comes from f or A. Note that if f is an orientation preserving diffeomor-
phism of C inducing f∗ (resp. f∗) on H1 (resp. H1) then f̃∗(a) = f∗(ã) (and
same for f∗). This is because f∗(a) = f∗(a) since f∗ acts by its differential
on the tangent space and because f∗(z) = z. The following computation is
an easy corollary of this fact
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Lemma 2.6. — With f∗(ei) =
∑2g

j=1 ajiej for i = 1, . . . , 2g, we have

f∗(ẽi) = ˜f∗(ei) =
2g∑
j=1

ajiẽj + viz , and f∗(z) = z

f∗(ζi) =
2g∑
k=1

aikζk and f∗(η) =
2g∑
k=1

vkζk + η.

Thus the matrices for H1(U(C);Z)
f∗→ H1(U(C);Z) and H1(U(C);Z)

f∗→
H1(U(C);Z) are

[
A 0
V 1

]
and

[
AT V T

0 1

]
respectively. After reducing

mod-2, lemma 2.6 immediately yields

Lemma 2.7. — Suppose ξ =
2g∑
i=1

xiζ̄i + η̄ is a spin structure. Then

f∗(ξ) =
2g∑
k=1

(
2g∑
i=1

aikxi + vk

)
ζ̄k + η̄.

Let X denote the column vector (x1, . . . , x2g)T . Then

Corollary 2.8. — ξ =
2g∑
i=1

xiζ̄i + η̄ is an invariant spin structure for

f : C → C if, and only if,

(ĀT − I)X̄ = V̄ T (2.1)

If we suppose that ξ1, ξ2 are invariant spin structures associated to col-
umn vectors X1, X2, then each vector satisfies equation (2.1), and therefore
X = X1−X2 satisfies (ĀT −I)X̄T = 0. Since we know by a result of Atiyah
[4] that for a given f ∈ Aut(C) there must exists at least an invariant spin
structure ζ, we readily deduce that

Corollary 2.9. — Spin structures left invariant by an automorphism
f : C → C are in 1-1 correspondence with solutions X̄ of the matrix equation
(ĀT − I)X̄T = 0.

2.1. Proofs of Main Statements

We first need information on the similarity class of the matrix A ∈
SL2g(Z).
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Definition 2.10. — Let Φd(x) be the cyclotomic polynomial generated
by the primitive dth roots of unity and let Cd denote the φ(d) × φ(d) com-
panion matrix of Φd(x), that is

Cd =


0 1 0 0 · · · 0
0 0 1 0 · · · 0
· · · · · · · 1

−a0 −a1 · · · · · −aφ(d)−1


where φ(d) denotes Euler’s totient function and Φd(x) = a0 + a1x + · · · +
aφ(d)−1x

φ(d)−1 + xφ(d).

Suppose f : C → C is an automorphism of order n. If g � 2 then A also
has order n. It follows that over the rationals Q, A is similar to a direct sum
of companion matrices. In fact, according to [16], ∃ unique distinct divisors
1 � d1 < d2 < · · · < dr � n of n and unique positive integers e1, . . . , er such
that

• A is similar to e1Cd1 ⊕ e2Cd2 ⊕ · · · ⊕ erCdr as a matrix in GL2g(Q).

• n = LCM(d1, · · · , dr) and 2g = e1φ(d1) + e2φ(d2) + · · · erφ(dr).

The minimal and characteristic polynomials of Cd are both Φd(x). It
follows that the minimal and characteristic polynomials of A are

µA(x) =
r∏

i=1

Φdi(x), γA(x) =
r∏

i=1

Φdi(x)ei respectively.

From the factorization xn−1 + xn−2 + · · ·+ 1 =
∏

d|n,d>1

Φd(x) it follows that

n =
∏

d|n,d>1 Φd(1) and det(I −AT ) = γA(1) =
∏r

i=1 Φei
di

(1). The following
lemma is well known.

Lemma 2.11. — Φd(1) =


0 if d = 1
p if d = pk, p = a prime
1 in all other cases

Corollary 2.12. — ĀT − I is invertible (as a matrix over Z2) if, and
only if, d1 > 1 and none of the di are powers of 2.

From corollary 2.9 it follows that f : C → C has a unique invariant spin
structure if, and only if, ĀT − I ∈ SL2g(Z2). This happens if, and only if,
det(A−I) is odd. Now theorem (1.1) of §1 will follow from this observation.
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Theorem 2.13. — Suppose f : C → C is an automorphism of order n,
where n is odd. Then f leaves only one spin structure invariant if, and only
if, the associated orbit surface C/Zn has genus zero.

Proof. — If V is a vector space and L : V → V is a linear map let
E(L, λ) = {v ∈ V

∣∣∣ L(v) = λv}, the eigenspace of L associated to λ. Let
H (resp. H∗) denote the complex vector space of holomorphic (resp. anti-
holomorphic) differentials on the curve C. Then dimH = g the genus of C.
The automorphism f : C → C induces linear automorphisms L : H → H,
L∗ : H∗ → H∗. The subspaces E(L, 1) and E(L∗, 1) correspond to the Zn-
invariant differentials, where Zn is the cyclic subgroup generated by f , and
thus they have dimension h := genus(C/Zn). Now there is an isomorphism
H1(C;Z) ⊗ C ≈ H ⊕ H∗ which is compatible with f∗ : H1(C;Z) ⊗ C →
H1(C;Z)⊗C on the one hand, and with L⊕L∗ : H⊕H∗ → H⊕H∗ on the
other. From this it follows that the dimension of E(f∗, 1) = E(A, 1) equals
2h. From the rational canonical form e1Cd1 ⊕ e2Cd2 ⊕ · · · ⊕ erCdr we see
that the dimension of E(A, 1) is 0 if d1 > 1 and e1 otherwise. The result
now follows from corollary 2.12 and corollary 2.9. �

Remark 2.14. — Note that if f has order n, and k is the dimension of
the eigenspace of Ā associated to the eigenvalue 1, then necessarily k � 2h
where h is the genus of the orbit surface C/Zn. This is because 2h is the
dimension of the eigenspace of A associated to the eigenvalue 1.

Next we give a proof of Theorem 1.2.

Proof. — Suppose C is hyperelliptic and f is the hyperelliptic involution
J. Then the induced isomorphism J∗ : H1(C;Z) → H1(C;Z) is −I. There-
fore VJ = [0, 0, . . . , 0] and equation (2.1) for an invariant spin structure
becomes trivial.

Conversely, suppose f : C → C is a non-trivial automorphism leaving
every spin structure invariant. We want to prove that C is necessarily hy-
perelliptic and that f is its hyperelliptic involution. Observe in that case
that equation (2.1) is valid for all vectors X and therefore Ā = I. By a
theorem of Serre (see p. 293 of [8]) we see that A must have order 2, and
therefore since Aut(C) embeds in Sp(g,Z) for g � 2, the automorphism
f : C → C is also of order 2. Now a theorem of Nielsen [13] states that
f is determined up to conjugacy by its fixed point data. In the case of an
automorphism of order 2 the fixed point data is just the number of fixed
points, and therefore two involutions with the same number of fixed points
are conjugate. Let the number of fixed points be r. It is known [8] that if
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f �= id, then r � 2g + 2. Assume r < 2g + 2 and write 2s = 2g + 2 − r > 0
(r must be even because of the Riemann-Hurwitz formula). Then f must
be conjugate to an automorphism as depicted in Figure 1.

Figure 1. — An involution with r < 2g + 2 fixed points

Therefore we can choose a basis so that A =

 −Ir 0 0
0 0 −Is
0 −Is 0

. But

this contradicts the equation Ā = I, and therefore r = 2g + 2. Thus C is
hyperelliptic and f is the hyperelliptic involution. �

2.2. Mapping Class Group

Let Γg(C) be the mapping class group of C; that is the group of isotopy
classes of orientation preserving diffeomorphisms of C, and assume g � 2.
It is well-known that Γg(C) is a finitely generated group with generators
the Dehn twists around representative loops of a symplectic basis of C. If
[f ] ∈ Γg, then the action of f on Spin(C) (viewed as cohomology classes) is
independent of the choice of this representative so that Γg acts on Spin(C).
Let Sg ⊂ Γg be the subgroup of Γg that fixes all spin structures. The
following is then immediate from our equation (2.1).

Corollary 2.15 [15]. — The subgroup Sg is precisely the subgroup of
elements that induce the identity on H1(C;Z2).

In fact in [15], Sipe states her theorem for all n-roots and she identifies Sg
with the subgroup of elements which induce the identity on H∗(U(C);Z2).
But an orientation preserving automorphism is the identity onH∗(U(C);Z2)
if and only if it is the identify on H∗(C;Z2).
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3. Spin Structures on Hyperelliptic Curves

We use a convenient description of the spin structures on a hyperelliptic
curve in terms of divisors due to Mumford ([12] or [3], appendix B) to count
invariant spin structures for subgroups of the automorphism group.

From the appendix we have that

Spin(C) = {D ∈ Cl(C) | 2D = K} (3.1)

where Cl(C) is the divisor class group of C. We will denote by J2(C) the
subgroup of points of order two in J(C); the ”Jacobian” of line bundles of
degree zero. See [3].

3.1. Spin Divisors on a Hyperelliptic Curve

We consider the hyperelliptic surface y2 =
∏2g+2

i=1 (x − ei) having genus
g and branch set B = {e1, . . . , e2g+2}. The ei are distinct points in the
Riemann sphere. We will write π : C −→ P1 for the degree two covering
map sending (x, y) �→ x, and we let pi be the ramification points such
that π(pi) = ei. Let D be any divisor of the form 2pi or x + y if x, y �∈
{p1, . . . , p2g+2} (i.e. D is the divisor associated to the line bundle L obtained
as the pullback of the unique line bundle over P1 of degree +1). Then the
canonical divisor is given according to ([3, 12])

KC = −2D + p1 + · · ·+ p2g+2 = (g − 1)D (3.2)

We can next determine the divisor of an element L ∈ J2(C). Let φ :
P1 −→ P1 be the meromorphic function φ(z) = (z − ei)/(z − ej), i �= j,

and consider the composite C
π
−→P1

φ
−→P1. The divisor of the composite is

(φ ◦ π) = 2pi − 2pj and hence by definition pi − pj is the divisor of a line
bundle of order two on C (i �= j). More generally one sees that if L ∈ J2(C),
then it is represented by either one of the divisors

E = pi1 + · · ·+ pik − pj1 − · · · − pjk = kD − pl1 − · · · − · · · − pl2k (3.3)

The above formula shows that any finite set T ⊂ {1, . . . , 2g + 2} of even
cardinality gives an element in J2(C). One can further see that any such T
and its complement T c ⊂ B give rise to the same element. If we define Eg

to be the quotient

Eg := {T
∣∣ T ⊆ B, |T | even}/ ∼, where T ′ ∼ T ⇐⇒ T ′ = T or T ′ = T c,

– 466 –



Invariant Spin Structures on Riemann Surfaces

then the map

α : Eg −→ J2(C) , T �→ αT =
∑
i∈T

(pi − p2g+2)

defines an isomorphism between two copies of Z2g
2 [6].

Theorem 3.1 [12]. — Let pi ∈ C be as above. Then every theta char-
acteristic is of the form

ET = kD + pi1 + · · ·+ pig−1−2k

for −1 � k � g−1
2 , T := {pi1 , · · · , pig−1−2k} with the iα distinct. Moreover

such a representation is unique if k � 0 and subject to a single relation
−D + pi1 + · · ·+ pig+1 = −D + pj1 + · · ·+ pjg+1 when k = −1.

For a simple proof see also [3], exercises 26-32, p. 287-288.

Since to each branch point there corresponds a unique ramification point,
we have

Lemma 3.2. — Spin(C) corresponds to the set of all T ⊂ B such that
|T | ≡ g + 1(2) modulo the equivalence relation T ∼ T c. This has a natural
affine structure over Eg given by θS + αT = θT+S.

3.2. Automorphisms

Let f : C −→ C be an automorphism of a Riemann surface. Then f acts
on Spin(C) as in (3.1) by

f(
∑

niPi) =
∑

nif
−1(Pi)

Indeed one way to see this is to replace the cotangent bundle by the tan-
gent bundle, and since f is an automorphism, replace the pullback f∗ :
T ∗f(x)C −→ T ∗xC by f−1 : Tf(x)C −→ TxC.

For the rest of this section C will be hyperelliptic, B its branch set as
in section 3.1 and J the hyperelliptic involution. This is a central element
in Aut(C) and so we have a short exact sequence

0 −→ Z2{J} −→ Aut(C) −→ Aut(C) −→ 0

where Aut(C) is necessarily a finite subgroup of PSL2(C) and hence is a
cyclic, dihedral or polyhedral group. If f : C → C is an automorphism then
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we associate f̄ ∈ Aut(C). Here f acts on the ramification (i.e. Weierstrass)
points and f̄ on the branch set B. Since an element of PSL2(C) other than
the identity fixes at most two points, we see that if f �= id, J , then f̄ acts
on B = {e1, . . . , e2g+2} with at most two fixed points.

We will be then distinguishing three cases: when f̄ acts fixed point freely,
with one fixed point or with two.

We assume below that f �= id, J , f has order n so that (wlog) f̄(e) = ζe,
ζ = e2πı/n. We use the notation 〈e〉 := {e, ζe, . . . , ζn−1e} to denote the orbit
of e ∈ P1(C) = C∪{∞} under the action of the cyclic group Zn ⊂ PSL2(C)
generated by f̄ . Every orbit 〈e〉 has length n except possibly for two which
are singletons: 〈0〉 = {0} and 〈∞〉 = {∞}.

A spin structure [T ] as in lemma 3.2 is invariant under the automorphism
f : C → C if, and only if, ζT = T or T c. We now put this to good use.

Proposition 3.3. — Assume f �= id has odd order n. Then the number
of invariant spin structures under f is

2r−2 if f̄ acts freely, where 2g + 2 = nr
2r−1 if f̄ acts with one fixed point, where 2g + 2 = nr + 1
2r if f̄ acts with two fixed points, where 2g = nr

Proof. — Since n is odd an invariant spin structure is determined by a
subset T ⊂ B such that ζT = T and card(T ) ≡ g + 1 (mod 2). Assume f̄
acts freely on B so that B is the disjoint union

B = 〈e1〉 � 〈e2〉 � · · · � 〈er〉,

where all the ei are in C∗ = C − {0}. By this notation we also mean that
we have reordered the ei so that e1, . . . , er are representatives of the orbits
〈ei〉 for i = 1, . . . , 2g+2. There is no loss of generality in doing this. In that
case and if some ζmei ∈ T , then the entire orbit 〈ei〉 ⊂ T. Therefore T must
be a disjoint union of the form

T = 〈ei1〉�〈ei2〉�· · ·�〈eik〉, where 1 � i1 < i2 < · · · < ik � r and k = 0, . . . , r.

Therefore card(T ) = kn ≡ k (mod 2). The number of such T is
r∑

k=0

(
r

k

)
=

2r, and the number satisfying card(T ) ≡ g+1 (mod 2) is 2r−1. This follows

from the identity
r∑

k=0

(−1)k
(
r

k

)
= 0. These subsets come in complementary

pairs {T, T c}, and therefore the number of invariant spin structures is 2r−2.
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Assume f̄ acts with one fixed point so that

B = 〈·〉 � 〈e1〉 � 〈e2〉 � · · · � 〈er〉, ei ∈ C∗,∀i

where 〈·〉 is either 〈0〉 or 〈∞〉. If T ⊂ B satisfies ζT = T, then the possibilities
for T are

T = 〈ei1〉 � 〈ei2〉 � · · · � 〈eik〉, or
T = 〈·〉 � 〈ei1〉 � 〈ei2〉 � · · · � 〈eik〉

In both cases we must have 1 � i1 < i2 < · · · < ik � r and k = 0, . . . , r. The
number of such subsets T is 2r+1, and the number satisfying card(T ) ≡ g+
1 (mod 2) is 2r. These subsets come in complementary pairs, and therefore
the number of invariant spin structures is 2r−1.

Finally assume that f̄ has two fixed points in B so that

B = 〈0〉 � 〈∞〉 � 〈e1〉 � 〈e2〉 � · · · � 〈er〉, ei ∈ C∗,∀i

If T ⊂ B satisfies ζT = T then T can be any collection of orbits with the
right cardinality so that by arguments similar to those above we also get 2r

invariant spin structures. �

Proposition 3.4. — Assume f �= id, J has even order n. Then the
number of invariant spin structures is

2r−1 if f̄ acts freely on B and g is even (2g + 2 = nr)
2r if f̄ acts freely on B and g is odd (2g + 2 = nr)
2r if f̄ acts on B with two fixed points (2g = nr)

Note that when n is even, f̄ cannot act on B with a single fixed point
since 2g + 2 = nr + 1.

Proof. — First assume f̄ acts on B fixed point freely so that again B is
the disjoint union 〈e1〉�〈e2〉�· · ·�〈er〉, where all the ei are in C∗ = C−{0}.
Then there are 2 possibilities for an invariant spin structure [T ] : either
ζT = T c or ζT = T.

If ζT = T c occurs then necessarily T is the disjoint union of the sets

{ζεjej , ζ2+εjej , ζ
4+εjej , . . . , ζ

n−1+εjej}, where j = 1, . . . , r and εj = ±1 ∀j

This means that n is necessarily even (as is the case) and that ζ fixes no
branch points. The number of such subsets is 2r since it equals the number
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of choices of the εj . Every such subset T determines a spin structure [T ]
because card(T ) = g+1 in this case. These subsets come in equivalent pairs
{T, T c}, and therefore there are 2r−1 invariant spin structures in this case.

For the second possibility there are 2r subsets T ∈ SB such that ζT = T,
namely

T = 〈ei1〉 � 〈ei2〉 � · · · � 〈eik〉, where 1 � i1 < · · · < ik � r, k = 0, 1, . . . , r

Now card(T ) = kn ≡ 0 (mod 2), and therefore [T ] is a spin structure if, and
only if, g is odd. These spin structures come in complementary pairs, so we
have 2r−1 invariant spin structures for this possibility.

In summary, when f̄ acts fixed point freely there are 2r−1 invariant spin
structures if g is even, and 2r−1 + 2r−1 = 2r if g is odd.

The arguments for the other case are similar. �

3.3. Genus Two Curves

As an exercise we count the invariant spin structures for all possible
subgroups of Aut(C) in the case when C is of genus two; i.e. C : y2 = f(x)
where f is a polynomial of degree 5 or 6. A complete list of all possible
reduced automorphism groups that can occur together with their associated
equations has been long known (and is attributed to O. Bolza). For those
groups we can count precisely the number of fixed spin structures. It is given
by the table below of which middle two columns we have taken from ([2],
p.6):

g = 2 Aut representative f
# of fixed spin

structures

(i) Z2 (x2 − 1)(x2 − a)(x2 − b) 4

(ii) D2 (x2 − 1)(x2 − a2)(x2 − 1
a2 ) 2

(iii) D3 x6 − 2ax3 + 1 1

(iv) D6 x6 + 1 1

(v) S4 x(x4 − 1) 0

(vi) Z5 x5 − 1 1
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Here the actual new statement is in the last column. By Dn we mean the
dihedral group of order 2n. The groups in the table must be finite subgroups
of both SO(3) (since the hyperelliptic involution is normal in Aut(C)), and
of the symmetric group S6 (permutations of the six branch points). Note
that 5 is the largest possible prime order in Aut according to ([8], p. 268).
Note also that A5, the isocahedral group, is not on the list since it has order
60 and hence an extension by the hyperelliptic involution will have order
120 which exceeds the Hurwitz bound on the order of Aut(C).

The spin structures in genus 2 are given by all equivalence classes of
subsets of cardinality 3 in the branch set B (there are 10 of these corre-
sponding to the even structures) together with all subsets of cardinality 5.
For each case in the table above, the configuration of points of B in P1

is laid out according to the geometry of the associated group action. It is
easier to write B = {1, 2, 3, 4, 5, 6}.

Proof. — (last column of table)

• (i) Z2 acts fixed point freely on B via the map x �→ −x and hence
according to proposition 3.4 it fixes 2r−1 = 4 branch points (here n = 2, r =
3).

• (ii) This has to do with the geometry of a parallelogram with vertices
at a, ā,−ā,−a say (|a| = 1). Let’s refer to these branch points by 1, 2, 3, 4
respectively (so that “5” and “6” correspond to the remaining branch points
1 and −1). The two involutions are τ1 = (12)(34) (reflection through the
x-axis) and τ2 = (13)(24)(56) (reflection through the y-axis). According to
proposition 3.4, τ1 and τ2 fix 4 spin structures each but it is easy to see
that they have only two such structures in common namely {5, 3, 4} and
{5, 1, 2}.

• (iii) This is the situation where the branch points are configured in the
plane as in the figure below (each dot represents a branch point in C ⊂ P1).

2

1

3
4

5
6

..

. .

..

– 471 –



Sadok Kallel, Denis Sjerve

The polynomial in (iii) has roots e±α, je±α, j2e±α numbered as in the
figure. There is only one spin structure invariant by the 2π

3 rotation: namely
T = {1, 3, 5} ∼ T ′ = {2, 4, 6}. The involution with respect to the x-axis
switches T and T ′ and hence D3 has a unique invariant spin structure.

• (iv) Z6 acts cyclically on B without fixed points and hence according
to proposition 3.4 it has a single fixed spin structure T = {1, 3, 5} ∼ T c.

• (v) This is the so-called “Bolza surface” with conformal automorphism
group of order 48, which is the largest among all curves of genus 2. The
branch points form an octahedron {1, 2, 3, 4, N, S} with north N and south
S poles. The cylic group Z4 acts by rotating the equator 1 �→ 2 �→ 3 �→ 4.
According to proposition 3.4 this group fixes 2 spin structures which must
be odd of the form {1, 2, 3, 4, N} or {1, 2, 3, 4, S}. But there is an involution
switching N and S and thus there can’t be any invariant spin structure.

• (vi) corresponds to when Aut is of order n = 5 generated by f̄ (in the
notation of section 3.2) which acts by fixing the one branched point at ∞.
According to proposition 3.3 f̄ fixes 2r−1 = 1 structures. �

4. Spin Structures on Klein’s Curve

In this section we show that the Klein’s quartic curve K has a unique spin
structure invariant under all automorphisms and give an explicit description
of it.

Let G = PSL(2,F7) = Aut(K). This is a simple group with presentation
of the form

G =
〈
R,S, T

∣∣ R2 = S3 = T 7 = RST = 1, etc
〉

Let e1, e2, . . . , e6 be a standard symplectic basis of H1(C;Z). That is
a basis of the free abelian group H1(C;Z) chosen so that the intersection
pairing is given as follows:

〈ei, ej〉 =


+1 if j = i+ 3
−1 if j = i− 3
0 in all other cases
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From the work of Rauch and Lewittes [14] we can find matrix represen-
tations for the induced maps R∗, S∗, T∗ on H1(C;Z) :

R∗ =


−1 0 0 0 0 0
−1 1 −1 0 0 0
0 0 −1 0 0 0
0 0 0 −1 −1 0
0 0 0 0 1 0
0 0 0 0 −1 −1



S∗ =


−1 0 0 −1 −1 −1
−1 0 1 0 0 −1
−1 1 0 0 0 0
1 0 0 0 0 0
0 −1 1 0 0 0
0 1 −1 0 1 1



T∗ =


0 0 0 −1 −1 0
0 0 −1 −1 −1 0
0 0 −1 −1 0 0
1 0 0 1 1 1
−1 1 0 0 −1 −1
1 −1 0 0 1 0


The corresponding V vectors are

VR = [0, 0, 0, 0, 0, 0], VS = [−1, 1, 1, 0, 0, 0], VT = [0, 0, 0,−1, 0, 0].

Using equation (2.1), together with a Maple program, it is now direct to
determine the sets of spin structures invariant under R,S, T respectively.
The solution vectors X̄ are:

1. X̄ = [x1, 0, x3, x4, x5, x4], where the xj are arbitrary, for R-invariant
spin structures.

2. X̄ = [x1 + x2, x1 + x2, 1, x1 + x2, x1, x2], where the xj are arbitrary,
for S-invariant spin structures.

3. X̄ = [0, 0, 1, 0, 0, 0] for T -invariant spin structures.

It is now clear that Klein’s curve admits only one invariant spin struc-
ture. This is the spin structure fixed by T and which by choosing the xj
appropriately we can show is also an invariant for R and S.
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Remark 4.1. — The existence of a unique spin structure on Klein’s curve
is well-known to algebraic geometers [7]. It comes as follows. Let X(p), p > 5
prime, denote the modular curve defined as a compactification of the upper
half-plane by the action of the principal congruence subgroup of level p.
The group G = PSL(2,F�) acts as a group of automorphisms on X(p). Then
[1, 6] the group Pic(X(p))G of invariant line bundles is infinite with cyclic
generator a (2p− 12)-th root of the canonical bundle of degree (p2 − 1)/24.
When p = 7, X(7) = K and the generator is a square root of the canonical
bundle hence the spin structure in question.

4.1. Spin Structures on Quartics

We would like to say more about what this particular spin structure on
K is. Consider the points a = [1 : 0 : 0], b = [0 : 1 : 0] and c = [0 : 0 : 1]
belonging to K, where K is described as the locus x3y+y3z+z3x = 0 in P2.
Let K be the canonical divisor on K which is determined by the intersection
of the curve with any hyperplane P1 ⊂ P2. Then

Theorem 4.2. — The divisor class θ := 2a+ 2b+ 2c−K is the unique
spin structure on the Klein curve K fixed by the entire group Aut(K).

Before attempting the proof, we make general remarks about spin struc-
tures on a quartic curve C in P2. There are 26 = 64 spin structures on C
as pointed out, of which 28 are “odd” and 36 “even” (see appendix). The
canonical divisor class on C is the locus of the intersection of a hyperplane
P1 ⊂ P2 with C. Suppose C has a bitangent going through the points p, q,
p �= q. This is a line P1 intersecting the curve in p, q with multiplicity two,
and hence K = 2p+ 2q (in the divisor class group). By definition, p+ q is a
spin structure on C. Since there are 28 bitangents, this accounts for all odd
spin structures.

The even spin structures on the other hand are described as follows.
Following [11], a secant line ab, a �= b ∈ C is a strict tangent of C if either:

(i) ab is tangent to C at a point r different from a, b, or

(ii) ab is a triple tangent at a or at b.

This is equivalent to the condition that the divisor class K = a+ b+ 2r
for a point r ∈ C. A triangle is now strictly biscribed if all sides are strict
tangents (see figure 2). A plane cubic has no such triangles but a plane
quartic has 288 of them! The way they arise as it turns out is in groups of
8 triangles, one for every even spin structure.
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p

q

p

qr

a

cb

Figure 2. — A bitangent (odd theta) and a strictly biscribed triangle

(even theta) fixed points

Let ∆(a, b, c) be a strictly biscribed triangle in a quartic C with double
tangents at p, q, r as in figure 2. Then we can associate to ∆ the even spin
class

θ(∆) = a+ b+ c+ p+ q + r −K

Using the relations K = 2p+ b+ c = 2q + a+ c = 2r+ a+ b we can indeed
check that 2θ(∆) = K. It is known that for an even theta charateristic θ,
there are 8 strictly biscribed triangles ∆ such that θ(∆) = ∆ [6, 11].

Restricting to the case of the Klein curve K, we know that Aut(K) =
PSL(2,F7) fixes no bitangent and hence an invariant spin candidate must be
even. Consider the points a = [1 : 0 : 0], b = [0 : 1 : 0] and c = [0 : 0 : 1] ∈ K.
As discussed in [5] for instance, the transformation T of order 7 can be
represented by

T : x �→ γx , y �→ γ4y , z �→ γ2z

where γ = e
2πi
7 . This transformation fixes the three points above and hence

the triangle xyz = 0 they define. Note that a, b, c are inflexion points (i.e.
points with triple tangents) and hence they form what Klein calls an inflex-
ion triangle; that is the tangent at a meets K at b, and the tangent at b
meets K at c and finally the tangent at c cuts K in a. This is also a biscribed
triangle according to our definition with associated theta divisor

θ := a+ b+ c+ a+ b+ c−K = 2a+ 2b+ 2c−K

(since r = a, p = b, q = c).

Let’s check that θ is fixed by the generators R and S of order two and
three respectively. Now

S : x �→ y , y �→ z , z �→ x
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so ∆ and hence θ is invariant. To see thatR acts trivially on θ it doesn’t quite
help to write the long expression for R given also in [5]. Instead consider
the quotient H = K/〈R〉 by the cylic subgroup generated by R and write
π : K −→ H the quotient map. Clearly H cannot be P1 since K is not
hyperelliptic. The only other possibility by the Riemann-Hurwitz formula is
that genus(H) = 1 and H is an elliptic curve. If a ∈ K, then π−1(π(a)) =
{a,Ra}. But on H there is a meromorphic function f with a double pole at
π(a) and hence in the divisor class group and by definition 0 = (f ◦ π) =
2a − 2R(a). This means that 2a + 2b + 2c = 2R(a) + 2R(b) + 2R(c) and
hence R(θ) = θ as desired.

The above discussion proves theorem 4.2.

Remark 4.3. — In [7], the action of PSL(2,F7) on the set of even spin
structures is described with orbit decomposition 36 = 1+7+7+21. The one
fixed spin generator is expressed explicitly in terms of the orbital divisors
as D2 − D3 − 7D7, where Aut(C) acts on K with orbits D2, D3, D7 with
stabilizers of orders 2, 3, 7.
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