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Krull-Tropical Hypersurfaces

Fuensanta Aroca
(1)

ABSTRACT. — The concepts of tropical semiring and tropical hypersur-
face, are extended to the case of an arbitrary ordered group. Then, we de-
fine the tropicalization of a polynomial with coefficients in a Krull-valued
field.
After a close study of the properties of the operator “tropicalization” we
conclude with an extension of Kapranov’s theorem to algebraically closed
fields together with a valuation over an ordered group.

RÉSUMÉ. — Les concepts de « semi-anneau » et d’« hypersurface tropi-
cale » sont étendus au cas des groupes ordonnés quelconques. Ensuite,
nous definissons la « tropicalisation » d’un polynôme à coefficients dans
un corps valué. Après une étude détaillée de l’opérateur de tropicalisation,
nous donnons une généralisation du théorème de Kapranov aux corps
algébriquement clos munis d’une valuation à valeurs dans un groupe or-
donné.

Introduction

The tropical semi-ring is the set T := R ∪ {∞} together with the op-
erations a ⊕ b := min{a, b} and a � b := a + b. A tropical hypersurface is
a subset of RN defined by a polynomial with coefficients in T. A valuation
of a field into the real numbers is used to tropicalize algebraic geometry
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propositions. A naturally real-valued algebraically closed field is the field of
Puiseux series.

Let K be an algebraically closed real-valued field. In [2] M. Einsieder,
M. Kapranov and D. Lind show that the image of an algebraic hypersurface
via a valuation into the reals coincides with the non-linearity locus of its
tropical map.

Valuations into the real numbers are just a particular type of valuations
called classical (see for example [8]). In 1932 W. Krull extended the classical
definition considering valuations with values in an arbitrary ordered group
[7]. Krull’s definition is the one currently used in most articles and reference
texts (see for example [12, 3, 11]).

Replacing R by another totally ordered group Γ, the tropical semi-ring
G := Γ∪{∞} may be defined naturally. The same happens with the concept
of tropical hypersurface and the tropicalization of a polynomial. A first step
in this direction has been done in [1] where an example is given.

In this note we extend these concepts and prove some properties of
the tropicalization map. Using these properties we extend the so called
Kapranov’s theorem. Our proof is not just an extension of an existing proof
in the classical case but it is essentially different.

In [2], a tropical hypersurface is defined as the closure in RN of the
image, via valuation, of an algebraic hypersurface. Defining the tropical
hypersurface as a subset of ΓN has the advantage (even when Γ ⊂ R) that
we do not need to deal with topological arguments. This idea is already
present in [6].

Sections 1 and 2 are devoted to extending the definitions of tropical
semiring and tropical hypersurface. In sections 3 and 4 we recall the def-
inition of Krull valuation and extend the definition of tropicalization and
tropical hypersurface of a polynomial with coefficients in a valued field.

In section 5 we prove that the hypersurface associated to the tropical-
ization of a product is the union of the hypersurfaces of the tropicalization
of its factors. Kapranov’s theorem in one variable is a consequence of this
fact.

Sections 6 and 7 are devoted to finding polynomials f for which the
value val(f(x)) of f evaluated at a point x equals the tropicalization of f ,
evaluated at the point val(x).

In section 8 we give a proof of the extension of Kapranov’s theorem.
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I would like to thank Jesús del Blanco Maraña for answering all my naive,
and not so naive, questions about valuations. I also thank Martha Takane
and Lućia López de Medrano for fruitful discussions during the preparation
of this note.

1. Ordered groups, tropical semi-rings
and tropical polynomials

A totally ordered group is an abelian group (Γ,+) equipped with a
total order such that for all x, y, z ∈ Γ if x � y then x+z � y+z. For a > 0
we have a+ a > 0 + a, therefore a totally ordered group is torsion free.

The following definition is an extension of a classical definition for the
ordered group (R,+,�) [5, 9, 4].

Definition 1.1. — A totally ordered group (Γ,+,�) induces an idem-
potent semi-ring G := (Γ ∪ {∞},⊕,�). Here

• a⊕ b := min{a, b} and a⊕∞ := a for a, b ∈ Γ.

• a� b := a+ b and a�∞ :=∞ for a, b ∈ Γ.

This semiring is called the min-plus algebra induced by Γ or the tropical
semi-ring.

A non-zero Laurent polynomial F ∈ G[x∗] := G[x1, x
−1
1 , . . . , xN , x

−1
N ] is

an expression of the form

F =
⊕

α∈E(F )⊂ZN
aα � xα, aα ∈ Γ, #E(F ) <∞. (1.1)

These polynomials are called tropical polynomials.

The set of tropical polynomials is a semi-ring with the natural opera-
tions: Given F as above and G =

⊕
β∈E(G)⊂ZN bβ � xβ , we define

F �G :=
⊕

η∈E(F )+E(G)


 ⊕
α+β=η

aα � bβ


� xη

and
F ⊕G :=

⊕
η∈E(F )∪E(G)

aη ⊕ bη � xη

where aη :=∞ for all η ∈ E(G) \ E(F ) and bη :=∞ for all η ∈ E(F ) \ E(G).
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2. Tropical maps and non-linearity locus

Let G be the min-plus algebra induced by the group (Γ,�).

Given g ∈ G and a natural number k, we will use the standard notation

gk :=
k times︷ ︸︸ ︷

g � · · · � g and g−k =
(
g−1

)k
;

and, for γ ∈ ΓN and α ∈ ZN we will denote

γα := γ1
α1 � · · · � γN

αN .

A tropical polynomial F =
⊕

α∈E(F )⊂ZN aα � xα induces a map
F : ΓN −→ Γ given by

F : γ �→
⊕

α∈E(F )

aα � γα.

A map induced by a tropical polynomial is called a tropical map.

For each γ ∈ ΓN there exists at least one α ∈ E(F ) such that
F (γ) = aα � γα. The set of α’s with this property will be denoted by
Dγ(F ). That is

Dγ(F ) := {α ∈ E(F ) | F (γ) = aα � γα}. (2.1)

Definition 2.1. — The hypersurface associated to F is the subset
of ΓN given by

V(F ) := {γ ∈ Γ | #Dγ(F ) > 1}. (2.2)

For α ∈ E(F ), the restriction F |{γ∈ΓN |α∈Dγ(F )} is given by an affine
linear function γ �→ aα � γα. We say that F defines a piecewise linear
function on ΓN . The hypersurface associated to F is called the non-linearity
locus.

3. Valuations

Let (Γ,�,+) be a totally ordered group and let (G,⊕,�) be its min-
plus algebra. A valuation of a field (K,+K, ·) with values in (Γ,�,+) is a
surjective map val : K −→ G such that

1. val(x) =∞⇔ x = 0,
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2. val(x · y) = val(x)� val(y) for all x, y ∈ K, and

3. val(x+K y) � val(x)⊕ val(y).

We say that K has values in Γ. A field together with a valuation is
called a valued field and (Γ,�,+) is called the group of values.

Note that

• val(1) = val(1 · 1) = val(1)� val(1) Γ is torsion free=⇒ val(1) = 0.

• 0 = val((−1)(−1)) = val(−1)� val(−1) Γ is torsion free=⇒ val(−1) = 0.

• val(−b) = val((−1)b) = val(−1)� val(b) = val(b).

Lemma 3.1. — Let E ⊂ K be a finite set. If val
(∑

ϕ∈E ϕ
)
> ⊕ϕ∈Evalϕ

then the set of elements in E where the valuation attains its minimum has
at least two elements.

Proof. — Let Emin be the subset of E consisting of elements where the
valuation attains its minimum:

Emin = {ϕ ∈ E | valϕ = ⊕ϕ∈Evalϕ}.

Suppose that Emin = {a} and set b :=
∑
ϕ∈E\{a} ϕ. We have val(b) > val(a)

and

val


∑
ϕ∈E

ϕ


 > ⊕ϕ∈Evalϕ⇐⇒ val(a+ b) > val(a).

Then val(a) = val((a + b) − b) � val(a + b) ⊕ val(b) > val(a) which is a
contradiction. �

4. The tropicalization

Let (K, val) be a valued field with values in a group Γ and let G be the
min-plus algebra induced by Γ.

A non-zero Laurent polynomial in N variables with coefficients in K,
f ∈ K[x∗], is written in the form:

f =
∑

α∈E(f)⊂ZN
ϕαx

α ϕα ∈ K \ {0}, #E(f) <∞. (4.1)
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The polynomial f via the valuation val induces an element of G[x∗]

T f :=
⊕

α∈E(f)⊂ZN
val(ϕα)� xα

this polynomial is called the tropicalization of f .

Remark 4.1. — Since val(a + b) � val(a) ⊕ val(b) and val(ab) = val(a)
� val(b), we have

val(f(x)) � T f(val(x)) forall x ∈ KN .

Given a Laurent polynomial in N variables with coefficients in K,
f ∈ K[x∗] := K[x1, x

−1
1 , . . . , xN , x

−1
N ], the set of zeroes of f is defined

as
V(f) := {x ∈ (K \ {0})N | f(x) = 0}.

The tropical hypersurface associated to f is the set of values of V(f).
That is:

TVf := val(V(f)).

Proposition 4.2. — Let f be a non-zero polynomial in
K[x1, x

−1
1 , . . . , xN , x

−1
N ]. If φ ∈ KN is a zero of f , then valφ is in the hy-

persurface associated to the tropicalization of f . That is:

TVf ⊂ VT f.

Proof. — For f =
∑
α∈E(f) ϕαx

α, we have

T f = ⊕α∈E(f)val(ϕα)� xα.

Since
∑
α∈E(f) ϕαφ

α = 0, by lemma 3.1, the set

Emin := {α0 ∈ E(f) | val(ϕα0φ
α0) = ⊕α∈E(f)val(ϕαφα)}

has at least two elements.

Now val(ϕαφα) = val(ϕα) � (valφ)α, then Emin = Dvalφ(T f) and we
have the result. �
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5. The tropicalization of a product

The map T : K[x1, . . . , xN ] −→ G[x1, . . . , xN ] may not preserve sum nor
product. Nevertheless, the tropical variety of the product may be described.

Lemma 5.1. — Let K be a valued field and let Γ be its group of values.
Given ω ∈ RN with rationally independent coordinates, f, g ∈ K[x∗] and
γ ∈ ΓN ; set α0 ∈ Dγ(T f) and β0 ∈ Dγ(T g) such that

ω · α0 = min
α∈Dγ(T f)

ω · α and ω · β0 = min
β∈Dγ(T g)

ω · β. (5.1)

Set η0 := α0 + β0. We have:

η0 ∈ Dγ(T (fg)) and ω · η0 = min
η∈Dγ(T fg)

ω · η.

Proof. — Write f =
∑
α∈E(f) ϕαx

α and g =
∑
β∈E(g) ϕ

′
βx

β . Then

fg =
∑

η∈E(f)∪E(g)


 ∑
α+β=η

ϕαϕ
′
β


xη.

By (5.1), we have

ω · η0 = min
η∈Dγ(T f)+Dγ(T g)

ω · η. (5.2)

Since α0 ∈ Dγ(T f) and β0 ∈ Dγ(T g), by definition (2.1), we have


val(ϕα0)� γα0 � val(ϕα)� γα, ∀α ∈ E(f)
and

val(ϕ′β0
)� γβ0 � val(ϕ′β)� γβ , ∀β ∈ E(g).

(5.3)

and


val(ϕα0)� γα0 < val(ϕα)� γα, ∀α ∈ E(f) \ Dγ(T f)
and

val(ϕ′β0
)� γβ0 < val(ϕ′β)� γβ , ∀β ∈ E(g) \ Dγ(T g).

(5.4)

Let α ∈ E(f) and β ∈ E(f) be such that η0 = α + β. If α0 �= α then
either ω · α < ω · α0 or ω · β < ω · β0. Then, by (5.1), α /∈ Dγ(T f) or
β /∈ Dγ(T g), and then


α+ β = η0

and
α �= α0

⇒




val(ϕα0)� γα0 < val(ϕα)� γα

or
val(ϕ′β0

)� γβ0 < val(ϕ′β)� γβ .
(5.5)
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Inequalities (5.5) together with (5.3) give


α+ β = η0

and
α �= α0

⇒ val(ϕα0ϕ
′
β0

)� γη0 < val(ϕαϕ′β)� γη0 .

Therefore, by lemma 3.1,

val


 ∑
α+β=η0

ϕαϕ
′
β


 = val(ϕα0ϕ

′
β0

). (5.6)

Inequalities (5.3) give

val
(
ϕα0ϕ

′
β0

)
� γη0 � val

(
ϕαϕ

′
β

)
� γα+β , ∀α ∈ E(f), β ∈ E(g). (5.7)

Equality (5.6) together with (5.7) gives

val


 ∑
α+β=η0

ϕαϕ
′
β


� γη0 � val


 ∑
α+β=η

ϕαϕ
′
β


� γη, ∀η ∈ E(f) + E(g).

In other words:
η0 ∈ Dγ(T fg) (5.8)

and

T fg(γ) = val


 ∑
α+β=η0

ϕαϕ
′
β


� γη0 = val(ϕα0ϕ

′
β0

)� γη0 . (5.9)

By (5.4) and (5.9), we have

Dγ(T fg) ⊂ Dγ(T f) +Dγ(T g) (5.10)

(5.2), (5.8) and (5.10) give

ω · η0 = min
η∈Dγ(T fg)

ω · η. (5.11)

�

Proposition 5.2. — The hypersurface associated to the tropicalization
of a finite product of polynomials is equal to the union of the hypersurfaces
associated to the tropicalization of each polynomial. That is

VT (fg) = V(T f) ∪ V(T g).
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Proof. — Take ω ∈ RN with rationally independent coordinates. Set
α0 ∈ Dγ(T f) and β0 ∈ Dγ(T g) such that

ω · α0 = min
α∈Dγ(T f)

ω · α and ω · β0 = min
β∈Dγ(T g)

ω · β.

Now take α1 ∈ Dγ(T f) and β1 ∈ Dγ(T g) such that

(−ω) · α1 = min
α∈Dγ(T f)

(−ω) · α and (−ω) · β1 = min
β∈Dγ(T g)

(−ω) · β.

By lemma 5.1 we have η0 := α0 + β0, η1 := α1 + β1 ∈ Dγ(T (fg)). And

ω · η0 = min
η∈Dγ(T fg)

ω · η. and ω · η1 = max
η∈Dγ(T fg)

ω · η. (5.12)

Now 


γ ∈ VT f
or

γ ∈ VT g
⇔




α0 �= α1

or
β0 �= β1

⇔ η0 �= η1 ⇔ γ ∈ VT fg.

�

Corollary 5.3. — Let (K, val) be an algebraically closed valued field.
For N = 1 and f ∈ K[x] we have

VT f = TVf.

Proof. — f =
∏
a∈V(f)(x − a) then VT f = ∪a∈V(f)VT (x − a) =

{val(a) | a ∈ V(f)}. �

6. Valuation ring and residue field

The set
Aval := {a ∈ K | val(a) � 0}

is a ring called the valuation ring. The valuation ring has only one maximal
ideal given by

mval := {a ∈ K | val(a) > 0},

the group of units of Aval is given by:

Uval := {a ∈ K | val(a) = 0}.
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Its residue field is defined as

Rval := Aval/mval.

There is a natural map

Aval −→ Rval
ϕ �→ ϕ̄ = ϕ mod mval.

(6.13)

Lemma 6.1. — If K is algebraically closed, then its residue field is alge-
braically closed.

Proof. — Given P (x) ∈ Rval[x] \ Rval let Q(x) ∈ Aval[x] \ Aval be a
pre-image of P (x) via the map (6.13). Since Aval ⊂ K, the polynomial Q
has a root k ∈ K.

Write Q =
∑d
j=0 ujx

j ∈ Uval[x] with u0, ud �= 0. We have

val(ujkj) = j val(k).

Since
∑d
j=0 ujk

j = 0, by lemma 3.1, there exists j �= j′ such that
j val(k) = j′ val(k). Then, val(k) = 0 or val(k) = ∞. This implies that
k is an element of Aval.

The image of k under the map (6.13), is a root of P . �

Remark 6.2. — As a consequence of lemma 6.1 we have: If K is alge-
braically closed then Rval is infinite.

7. The value of a polynomial at a point

As we noted in remmark 4.1, we have

val(f(x)) � T f(val(x)) forall x ∈ KN ,

in this section we will see that, for each γ ∈ ΓN , there exist
x ∈ val−1(γ) ∈ KN for which the equality holds.

Lemma 7.1. — Let f1, . . . , fk be a finite set of non-zero Laurent poly-
nomials in N variables with coefficients in Rval. There exists an N -tuple
of non-zero elements r ∈ (Rval \ {0})N such that fi(r) is non-zero for each
i ∈ {1, . . . , k}.

– 534 –



Krull-Tropical Hypersurfaces

Proof. — Set g :=
∏k
i=1 fi, then g is a Laurent polynomial

g =
∑

α=(α1,...,αN )∈Λ⊂ZN
rαx

α, rα ∈ Rval, #Λ <∞

set β := (1, . . . , 1)− (minα∈Λ α1, . . . ,minα∈Λ αN ).

We have xβg ∈< x(1,...,1) > Rval[x].

The set of zeroes of f := xβg−1 is a hypersurface of RvalN that doesn’t
intersect the coordinate hyperplanes. Since Rval is an algebraically closed
field (lemma 6.1), there exists a point r ∈ (Rval \ {0})N where f vanishes.

We have:

f(r) = rβg(r)− 1 = 0⇒ rβ
k∏
i=0

fi(r) = 1⇒ fi(r) �= 0∀, i = 1 . . . k.

�

Lemma 7.2. — Let f1, . . . , fk be a finite set of Laurent polynomials in
N variables with coefficients in Aval. If one of the coefficients of each fi is
a unit, then there exists an N -tuple of units u ∈ UvalN such that fi(u) is a
unit for each i ∈ {1, . . . , k}.

Proof. — Let f̄i be the image of fi in Rval[x∗] via the natural morphism.
That is

Φ : Aval[x∗] −→ Rval[x∗]∑
α ϕαx

α �→
∑
α ϕ̄αx

α

where ϕ̄α is the image of ϕα via the map (6.13).

Since at least one of the coefficients of fi is a unit f̄i is not zero. By
lemma 7.1, there exists an N -tuple of non-zero elements r ∈ (Rval \ {0})N
such that f̄i(r) is non-zero for each i ∈ {1, . . . , k}. Take x ∈ Aval

N such
that x̄ = r via the natural map (6.13).

We have x ∈ Uval
N and Φ(fi(x)) = f̄i(r) �= 0 implies fi(x) ∈ Uval.

�

Proposition 7.3. — Let f1, . . . , fk be Laurent polynomials in N vari-
ables with coefficients in K. Given an N -tuple γ ∈ ΓN there exists x ∈ KN
such that

val(x) = γ and val(fi(x)) = T fi(val(x))

for all i ∈ {1, . . . , k}.
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Proof. — Take φ ∈ K
N and ψi ∈ K such that valφ = γ and

valψi = T fi(γ). Set

gi(x1, . . . , xN ) :=
1
ψi
fi(φ1x1, . . . , φNxN ).

Write gi =
∑
α ϕi,αx

α. We have T gi(0, . . . , 0) =
⊕

α val(ϕi,α) = 0.
Then, for each i, there exists α(i)

0 such that val(ϕ
(i,α

(i)
0 )

) = 0 and val(ϕi,α) �
0 for all α. That is gi ∈ Aval[x] and one of the coefficients is a unit. By lemma
7.2, there exists u = (u1, . . . , uN ) ∈ UvalN such that val(gi(u)) = 0. Then

val

(
1
ψi
fi(φ1u1, . . . , φNuN )

)
= 0

=⇒ val(fi(φ1u1, . . . , φNuN )) = val(ψi) = T fi(γ).

Since val((φ1u1, . . . , φNuN )) = γ, we have the result. �

8. The main theorem

Now we are ready to extend the theorem proved by Einsieder, Kapranov
and Lind.

Theorem 8.1. — Let K be an algebraically closed valued field. The trop-
ical hypersurface associated to a polynomial f ∈ K[x∗] is the hypersurface
associated to the tropicalization of f . That is,

TVf = VT f.

Proof. — The inclusion TVf ⊂ VT f is just proposition 4.2.

To see the other inclusion:
Given γ ∈ VT f we want to see that there exists φ = (φ1, . . . , φN ) such that
valφ = γ and f(φ) = 0.

γ ∈ VT f if and only if there exist α(0) �= α(1) ∈ Dγ(T f). The vector
α(0) is different from α(1) if and only if one of the coordinates is different.
Let us suppose that α(0)

N �= α(1)
N . Write f as in (4.1) and set Λ := {αN ∈

Z | α ∈ E(f)}. The polynomial f may be rewritten in the form

f =
∑
i∈Λ

hi(x1, . . . , xN−1)xNi wherehi =
∑

(β,i)∈E(f)
ϕ(β,i)x

(β,0).
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Write γ = (µ, η) ∈ ΓN−1 × Γ, and choose y ∈ KN−1 such that valy = µ
and val(hi(y)) = T hi(µ) (proposition 7.3). Set

g :=
∑
i∈Λ

hi(y)xNi ∈ K[xN ].

We have

T f(γ) = ⊕α∈E(f)val(ϕα)� γα

= ⊕i∈Λ

(
⊕(β,i)∈E(f)val(ϕ(β,i))� µβ

)
� ηi

= ⊕i∈ΛT hi(µ)� ηi

= ⊕i∈Λval(hi(y))� ηi

= T g(η).

Write α(k) = (β(k), j(k)) ∈ ZN−1 × Z, k = 0, 1. We have

T g(η) = val(ϕα(k))� γα
(k)

= val(ϕ(β(k),j(k)))� µβ
(k) � ηj

(k)

= T hi(µ)� ηj
(k)

= val(hi(y))� ηj
(k)
.

Since j(0) �= j(1), the element η ∈ Γ is in the variety VT g, then, by corollary
5.3, there exists z ∈ K such that valz = η and g(z) = 0.

We have φ := (y, z) ∈ KN , val(y, z) = γ and f(y, z) = g(z) = 0. �
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