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ABSTRACT. — In this paper, we consider elliptic differential operators on
compact manifolds with a random perturbation in the 0th order term and
show under fairly weak additional assumptions that the large eigenvalues
almost surely distribute according to the Weyl law, well-known in the
self-adjoint case.

RÉSUMÉ. — Dans ce travail, nos considérons des opérateurs différentiels
elliptiques sur des variétés compactes avec une perturbation aléatoire dans
le terme d’orde 0. Sous des hypothèses supplémentaires assez faibles, nous
montrons que les grandes valeurs propres se distribuent selon la loi de
Weyl, bien connue dans le cas auto-adjoint.
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1. Introduction

This work is a continuation of a series of works concerning the asymptotic
distribution of eigenvalues for non-self-adjoint (pseudo-)differential opera-
tors with random perturbations. Since the works of L.N. Trefethen [11],
E.B. Davies [2], M. Zworski [12] and many others (see for instance [5] for
further references) we know that the resolvents of such operators tend to
have very large norms when the spectral parameter is in the range of the
symbol, and consequently, the eigenvalues are unstable under small pertur-
bations of the operator. It is therefore quite natural to study the effect of
random perturbations. Mildred Hager [5] studied quite general classes of
non-self-adjoint h-pseudodifferential operators on the real line with a suit-
able random potential added, and she showed that the eigenvalues distribute
according to the natural Weyl law with a probability very close to 1 in the
semi-classical limit (h → 0). Due to the method, this result was restricted
to the interior of the range of the leading symbol p of the operator and with
a non-vanishing assumption on the Poisson bracket {p, p}.

In [6] the results were generalized to higher dimension and the bound-
ary of the range of p could be included, but the perturbations where no
more multiplicative. In [9, 10] further improvements of the method were
introduced and the case of multiplicative perturbations was handled in all
dimensions.

W. Bordeaux Montrieux [1] studied elliptic systems of differential oper-
ators on S1 with random perturbations of the coefficients, and under some
additional assumptions, he showed that the large eigenvalues obey the Weyl
law almost surely. His analysis was based on a reduction to the semi-classical
case (using essentially the Borel-Cantelli lemma), where he could use and
extend the methods of Hager [5].
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The purpose of the present work is to extend the results of [1] to the case
of elliptic operators on compact manifolds by replacing the one dimensional
semi-classical techniques by the more recent result of [10]. For simplicity,
we treat only the scalar case and the random perturbation is a potential.

Let X be a smooth compact manifold of dimension n. Let P 0 be an el-
liptic differential operator on X of orderm � 2 with smooth coefficients and
with principal symbol p(x, ξ). In local coordinates we get, using standard
multi-index notation,

P 0 =
∑
|α|�m

a0α(x)D
α, p(x, ξ) =

∑
|α|=m

a0α(x)ξ
α. (1.1)

Recall that the ellipticity of P 0 means that p(x, ξ) �= 0 for ξ �= 0. We assume
that

p(T ∗X) �= C. (1.2)

Fix a strictly positive smooth density of integration dx on X, so that the
L2 norm ‖ · ‖ and inner product (·| · ·) are unambiguously defined. Let
Γ : L2(X) → L2(X) be the antilinear operator of complex conjugation,
given by Γu = u. We need the symmetry assumption

(P 0)∗ = ΓP 0Γ, (1.3)

where (P 0)∗ is the formal complex adjoint of P 0. As in [10] we observe that
the property (1.3) implies that

p(x,−ξ) = p(x, ξ), (1.4)

and conversely, if (1.4) holds, then the operator 1
2 (P 0 + Γ(P 0)∗Γ) has the

same principal symbol p and satisfies (1.3).

Let R̃ be an elliptic second order differential operator on X with smooth
coefficients, which is self-adjoint and strictly positive. Let ε0, ε1, ... be an
orthonormal basis of eigenfunctions of R̃ so that

R̃εj = (µ0
j )

2εj , 0 < µ0
0 < µ

0
1 � µ0

2 � ... (1.5)

Our randomly perturbed operator is

P 0
ω = P 0 + q0ω(x), (1.6)

where ω is the random parameter and

q0ω(x) =
∞∑
0

α0
j (ω)εj . (1.7)
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Here we assume that α0
j (ω) are independent complex Gaussian random vari-

ables of variance σ2
j and mean value 0:

α0
j ∼ N (0, σ2

j ), (1.8)

where

(µ0
j )
−ρe−(µ0

j )
β

M+1 � σj � (µ0
j )
−ρ, (1.9)

M =
3n− 1

2

s− n
2 − ε , 0 � β < 1

2
, ρ > n, (1.10)

where s, ρ, ε are fixed constants such that
n

2
< s < ρ− n

2
, 0 < ε < s− n

2
.

Let Hs(X) be the standard Sobolev space of order s. As will follow
from considerations below, we have q0ω ∈ Hs(X) almost surely since s <
ρ− n

2 . Hence q0ω ∈ L∞ almost surely, implying that P 0
ω has purely discrete

spectrum.

Consider the function F (w) = arg p(w) on S∗X. For given θ0 ∈ S1 �
R/(2πZ), N0 ∈ Ṅ := N \ {0}, we introduce the property P (θ0, N0):

N0∑
1

|∇kF (w)| �= 0 on {w ∈ S∗X; F (w) = θ0}. (1.11)

Notice that if P (θ0, N0) holds, then P (θ,N0) holds for all θ in some neigh-
borhood of θ0. Also notice that if X is connected and X, p are analytic and
the analytic function F is non constant, then ∃N0 ∈ Ṅ such that P (θ0, N0)
holds for all θ0.

We can now state our main result.

Theorem 1.1. — Assume that m � 2. Let 0 � θ1 � θ2 � 2π and
assume that P (θ1, N0) and P (θ2, N0) hold for some N0 ∈ Ṅ. Let g ∈
C∞([θ1, θ2]; ]0,∞[) and put

Γgθ1,θ2;0,λ = {reiθ; θ1 � θ � θ2, 0 � r � λg(θ)}.

Then for every δ ∈]0, 1
2 − β[ there exists C > 0 such that almost surely:

∃C(ω) <∞ such that for all λ ∈ [1,∞[:

|#(σ(P 0
ω) ∩ Γgθ1,θ2;0,λ) −

1
(2π)n

vol p−1(Γgθ1,θ2;0,λ)| (1.12)

� C(ω) + Cλ
n
m−

1
m ( 1

2−β−δ)
1

N0+1 .
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Here σ(P 0
ω) denotes the spectrum and #(A) denotes the number of elements

in the set A. In (1.12) the eigenvalues are counted with their algebraic mul-
tiplicity.

The proof actually allows to have almost surely a simultaneous conclu-
sion for a whole family of θ1, θ2, g:

Theorem 1.2. — Assume that m � 2. Let Θ be a compact subset of
[0, 2π]. Let N0 ∈ N and assume that P (θ,N0) holds uniformly for θ ∈ Θ. Let
G be a subset of {(g, θ1, θ2); θj ∈ Θ, θ1 � θ2, g ∈ C∞([θ1, θ2]; ]0,∞[)} with
the property that g and 1/g are uniformly bounded in C∞([θ1, θ2]; ]0,∞[)
when (g, θ1, θ2) varies in G. Then for every δ ∈]0, 1

2 − β[ there exists C > 0
such that almost surely: ∃C(ω) < ∞ such that for all λ ∈ [1,∞[ and all
(g, θ1, θ2) ∈ G, we have the estimate (1.12).

The condition (1.9) allows us to choose σj decaying faster than any neg-
ative power of µ0

j . Then from the discussion below, it will follow that qω(x)
is almost surely a smooth function. A rough and somewhat intuitive inter-
pretation of Theorem 1.2 is then that for almost every elliptic operator of
order � 2 with smooth coefficients on a compact manifold which satisfies the
conditions (1.2), (1.3), the large eigenvalues distribute according to Weyl’s
law in sectors with limiting directions that satisfy a weak non-degeneracy
condition.

2. Some examples

Let f ∈ C∞(S1) be non-vanishing and take its values in a closed sector
Γ ⊂ C of angle < π. Thus there exist θ0 ∈ R, α ∈ [0, π/2[ such that

arg f(S1) = [θ0 − α, θ0 + α]. (2.1)

Assume for simplicity that θ0 = 0. Then (see [1, 7]) the spectrum of f(x)D
can be computed directly and we see that it is constituted by the simple
eigenvalues

λk =
k

〈1/f〉 , k ∈ Z, (2.2)

where 〈1/f〉 denotes the mean-value of the function 1/f . Since 1/f is non-
vanishing with values in the sector Γ, the same holds for 〈1/f〉.

The antisymmetric operator f1/2Df1/2 = f−1/2(fD)f1/2 has the same
spectrum and the elliptic symmetric operator

P 0 = (f1/2Df1/2)2 = Df2D − 1
4
(f ′)2 − 1

2
ff ′′ (2.3)
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therefore has the spectrum

{µ0, µ1, µ2, ...}, µk = λ2
k =

k2

〈1/f〉2 , (2.4)

where µ0 is a simple eigenvalue and µ1, µ2, ... are double. The principal
symbol of P 0 is given by

p(x, ξ) = f(x)2ξ2 (2.5)

and its range is the sector

[0,∞[ei[−2α,2α] (2.6)

(having chosen θ0 = 0) which does not intersect the open negative half axis.
The eigenvalues µk are situated on a half axis inside the range (2.6), and
unless arg f = Const., we see that Weyl asymptotics does not hold for P 0.
On the other hand, if we add the non-degeneracy assumption,

N0∑
1

|( d
dx

)karg f(x)| �= 0, x ∈ S1, for some N0 ∈ N \ {0}, (2.7)

then the property P (θ,N0) holds for all θ and we know from the Theo-
rems 1.1, 1.2 that Weyl asymptotics holds almost surely for the random
perturbations P 0

ω = P 0 + q0ω if q0ω is given in (1.7)–(1.10).

Despite the fact that (in some sense and with the additional conditions
in our main theorems) almost all symmetric elliptic differential operators
obey Weyl asymptotics, it is probably a difficult task to find explicit opera-
tors with this property outside the class of normal operators and operators
with principal symbol having constant argument. To find such examples one
would probably like to assume the coefficients to be analytic but in that case
Weyl asymptotics is unlikely to hold. Indeed, in the analytic case there is the
possibility to make an analytic distorsion (for instance by replacing the un-
derlying compact analytic manifold by a small deformation) which will not
change the spectrum (by ellipticity and analyticity) but which will replace
the given real phase space by a deformation, likely to change the Weyl law.
In one and two dimensions analytic distorsions have been used to determine
the spectrum (by making the operator more normal) in the two-dimensional
semi-classical case this was done by one of the authors, first with A. Melin,
and in [8] it was shown that the resulting law is in general different from the
Weyl law (naively because a complex Bohr-Sommerfeld law relies on going
out in the complex domain while the Weyl law only uses the real cotangent
space).
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To illustrate this, let us consider the second order differential operator
on S1,

P 0 = a(x)D2 + b(x) + c(x), (2.8)

where the coefficients a, b, c are smooth (and 2π-periodic when considered
as functions on R). We assume that P 0 is elliptic, so that a(x) �= 0 and even
that the range of arg a is the interval [−2α, 2α] for some α ∈ [0, π2 [. Then
a(x) = f(x)2, where f is smooth, non-vanishing and the range of arg f
is [−α, α]. The Bohr-Sommerfeld quantization condition, which correctly
describes the large eigenvalues when P 0 is self-adjoint and more generally
when a > 0, would predict that the large eigenvalues µ2

k are determined by
the condition

I(µk) = 2πk + O(1), k ∈ Z, |k| � 1, (2.9)

where I(µ) is the action, defined by I(µ) =
∫ 2π

0
ξ(x, µ)dx, ξ(x, µ) = µ/f(x),

so that p(x, ξ(x, µ)) = µ2, where p(x, ξ) = f(x)2ξ2 is the principal symbol
of P 0. Notice that this simplifies to

µk =
k

〈1/f〉 + O(1). (2.10)

We also recall that the remainder has a complete asymptotic expansion in
negative powers of k. As we have seen, this rule is correct in the special
case of the operator (2.3) and as we have noticed it becomes almost surely
false if we add a random smooth zero order term (at least in the symmetric
case).

However, the Bohr-Sommerfeld rule is correct under suitable analyticity
assumptions, as we shall now review: Look for a complex change of variables
x = x(t) with 0 = x(0) so that f(x)Dx = κDt, for a suitable κ ∈ C \ {0}.
We get

dt

dx
=

κ

f(x)
,

so the inverse t(x) is given by

t = κ
∫ x

0

dy

f(y)
. (2.11)

if f is merely smooth we can only define a complex curve t(x) by (2.11) for
real x. We now determine κ by the condition that t(2π) = 2π, i.e.

κ =
1

〈1/f〉 . (2.12)

Now assume that f extends to a holomorphic non-vanishing function in a
2π-periodic simply connected neighborhood Ω of R in C. Then t(x) extends
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to a holomorphic function on Ω, and we assume that the set {x ∈ Ω; t(x) ∈
R} contains (the image of) a smooth 2π-periodic curve γ : R → Ω such
that γ(0) = 0, γ(2π) = 2π. Also assume that b, c extend to holomorphic
functions on Ω. Notice that if f0 > 0 is an analytic 2π-periodic function
and if f is a small perturbation of f0 in a fixed neighborhood of R, then f
fulfills the assumptions above. In a small neighborhood of γ we can replace
the variable x by t and we get the operator

P̃ = κ2D2
t + b̃(t)Dt + c̃(t), (2.13)

well-defined in a small neighborhood of Rt. For this operator it is quite
easy to justify the Bohr–Sommerfeld rule by some version of the complex
WKB-method (cf [4]). Now the Bohr-Sommerfeld rule is clearly invariant
under the change of variables above. Moreover, eigenfunctions of P̃ defined
near Rt are also eigenfunctions of P 0 with respect to the x-variables in a
neighborhood of γ and since P 0 is elliptic in Ω, they extend to holomorphic
functions in Ω and by restriction become eigenfunctions on Rx. The same
remark holds for generalized eigenfunctions. Hence the eigenvalues of P̃
are also eigenvalues of P 0. This argument works equally well in the other
direction so we can identify completely the spectra of P̃ and of P 0 and this
completes the (review of the) justification of the Bohr-Sommerfeld rule (and
hence of the non-validity of Weyl asymptotics when arg f is non-constant)
for the operator (2.8) in the analytic case.

3. Volume considerations

In the next section we shall perform a reduction to a semi-classical sit-
uation and work with hmP 0 which has the semi-classical principal symbol
p in (1.1). As in [6, 9, 10], we introduce

Vz(t) = vol {ρ ∈ T ∗X; |p(ρ) − z|2 � t}, t � 0. (3.1)

Proposition 3.1. — For any compact set K ⊂ Ċ = C \ {0}, we have

Vz(t) = O(tκ), uniformly for z ∈ K, 0 � t� 1, (3.2)

with κ = 1/2.

The property (3.2) for some κ ∈]0, 1[ is required in [6, 9, 10] near the
boundary of the set Γ, where we count the eigenvalues. Another important
quantity appearing there was

vol p−1(γ +D(0, t)), (3.3)
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where D(0, t) = {z ∈ C; |z| < t}, γ = ∂Γ and Γ � Ċ is assumed to have
piecewise smooth boundary. From (3.2) with general κ it follows that the
volume (3.3) is O(t2κ−1), which is of interest when κ > 1/2. In our case,
we shall therefore investigate vol (γ +B(0, t)) more directly, when γ is (the
image of) a smooth curve. The following result implies Proposition 3.1:

Proposition 3.2. — Let γ be the curve {reiθ ∈ C; r = g(θ), θ ∈ S1},
where 0 < g ∈ C1(S1). Then

vol (p−1(γ +D(0, t))) = O(t), t→ 0.

Proof. — This follows from the fact that the radial derivative of p is
�= 0. More precisely, write T ∗X \ 0 � ρ = rw, w ∈ S∗X, r > 0, so that
p(ρ) = rmp(w), p(w) �= 0. If ρ ∈ p−1(γ +D(0, t)), we have for some C � 1,
independent of t,

g(arg p(w)) − Ct � rm|p(w)| � g(arg p(w)) + Ct,

(
g(arg p(w)) − Ct

|p(w)|

) 1
m

� r �
(
g(arg p(w)) + Ct

|p(w)|

) 1
m

,

so for every w ∈ S∗X, r has to belong to an interval of length O(t). �

We next study the volume in (3.3) when γ is a radial segment of the
form [r1, r2]eiθ0 , where 0 < r1 < r2 and θ0 ∈ S1.

Proposition 3.3. — Let θ0 ∈ S1, N0 ∈ Ṅ and assume that P (θ0, N0)
holds. Then if 0 < r1 < r2 and γ is the radial segment [r1, r2]eiθ0 , we have

vol (p−1(γ +D(0, t))) = O(t1/N0), t→ 0.

Proof. — We first observe that it suffices to show that

volS∗XF−1([θ0 − t, θ0 + t]) = O(t1/N0).

This in turn follows for instance from the Malgrange preparation theorem:
At every point w0 ∈ F−1(θ0) we can choose coordinates w1, ..., w2n−1, cen-
tered at w0, such that for some k ∈ {1, ..., N0}, we have that ∂jw1

(F−θ0)(w0)
is = 0 when 0 � j � k−1 and �= 0 when j = k. Then by Malgrange’s prepa-
ration theorem, we have

F (w) − θ0 = G(w)(wk1 + a1(w2, ..., w2n−1)wk−1
1 + ...+ ak(w2, ..., w2n−1)),
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where G, aj are real and smooth, G(w0) �= 0, and it follows that

vol (F−1([θ0 − t, θ0 + t]) ∩ neigh (w0)) = O(t1/k).

It then suffices to use a simple compactness argument. �

Now, let 0 � θ1 < θ2 � 2π, g ∈ C∞([θ1, θ2]; ]0,∞[) and put

Γgθ1,θ2;r1,r2 = {reiθ; θ1 � θ � θ2, r1g(θ) � r � r2g(θ)}, (3.4)

for 0 � r1 � r2 <∞. If 0 < r1 < r2 < +∞ and P (θj , N0) hold for j = 1, 2,
then the last two propositions imply that

vol p−1(∂Γgθ1,θ2;r1,r2 +D(0, t)) = O(t1/N0), t→ 0. (3.5)

4. Semiclassical reduction

We are interested in the distribution of large eigenvalues ζ of P 0
ω , so we

make a standard reduction to a semi-classical problem by letting 0 < h� 1
satisfy

ζ =
z

hm
, |z| � 1, h � |ζ|−1/m, (4.1)

and write
hm(P 0

ω − ζ) = hmP 0
ω − z =: P + hmq0ω − z, (4.2)

where
P = hmP 0 =

∑
|α|�m

aα(x;h)(hD)α. (4.3)

Here

aα(x;h) = O(hm−|α|) in C∞, (4.4)
aα(x;h) = a0α(x) when |α| = m.

So P is a standard semi-classical differential operator with semi-classical
principal symbol p(x, ξ).

Our strategy will be to decompose the random perturbation

hmq0ω = δQω + kω(x),

where the two terms are independent, and with probability very close to 1,
δQω will be a semi-classical random perturbation as in [10] while

‖kω‖Hs � h, (4.5)
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and
s ∈]

n

2
, ρ− n

2
[ (4.6)

is fixed. Then hmP 0
ω will be viewed as a random perturbation of hmP 0 +kω

and we will apply the main result of [10] that we recall in the appendix
for the convenience of the reader. In order to achieve this without extra
assumptions on the order m, we will also have to represent some of our
coefficients α0

j (ω) as sums of two independent Gaussian random variables.

We start by examining when

‖hmq0ω‖Hs � h. (4.7)

Proposition 4.1. — There is a constant C > 0 such that (4.7) holds
with probability

� 1 − exp(C − 1
2Ch2(m−1)

).

Proof. — We have

hmq0ω =
∞∑
0

αj(ω)εj , αj = hmα0
j ∼ N (0, (hmσj)2), (4.8)

and the αj are independent. Now, using standard functional calculus for R̃
as in [9, 10], we see that

‖hmq0ω‖2
Hs �

∞∑
0

|(µ0
j )
sαj(ω)|2, (4.9)

where (µ0
j )
sαj ∼ N (0, (σ̃j)2) are independent random variables and

σ̃j = (µ0
j )
shmσj .

Now recall the following fact, established by Bordeaux Montrieux [1],
improving and simplifying a similar result in [6]: Let d0, d1, ... be a fi-
nite or infinite family of independent complex Gaussian random variables,
dj ∼ N (0, (σ̂j)2), 0 < σ̂j <∞, and assume that

∑
σ̂2
j <∞. Then for every

t > 0,

P(
∑

|dj |2 � t) � exp(
−1

2 max σ̂2
j

(t− C0

∑
σ̂2
j )). (4.10)

Here P(A) denotes the probability of the event A and C0 > 0 is a universal
constant. The estimate is interesting only when t > C0

∑
σ̂2
j and for such
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values of t it improves if we replace {d0, d1, ...} by a subfamily. Indeed,
∑
σ̂2
j

will then decrease and so will max σ̂2
j .

Apply this to (4.9) with dj = (µ0
j )
sαj , t = h2. Here, we recall that

σ̃j = (µ0
j )
shmσj , and get from (1.9), (4.6) that

max σ̃2
j � h2m, (4.11)

while ∞∑
0

σ̃2
j � h2m

∞∑
0

(µ0
j )

2(s−ρ). (4.12)

Let N(µ) = #(σ(
√
R̃)∩]0, µ]) be the number of eigenvalues of

√
R̃ in ]0, µ],

so that N(µ) � µn by the standard Weyl asymptotics for positive elliptic
operators on compact manifolds. The last sum in (4.12) is equal to∫ ∞

0

µ2(s−ρ)dN(µ) =
∫ ∞

0

2(ρ− s)µ2(s−ρ)−1N(µ)dµ,

which is finite since 2(s− ρ) + n < 0 by (4.6). Thus

∞∑
0

σ̃2
j � h2m, (4.13)

and the proposition follows from applying (4.9), (4.11), (4.12) to (4.10) with
t = h2. �

We next review the choice of parameters for the random perturbation in
[10] (see also the appendix and [9]). This perturbation is of the form δQω,

Qω = hN1qω, δ = τ0hN1+n, 0 < τ0 �
√
h, (4.14)

where
qω(x) =

∑
0<hµ0

k
�L

αk(ω)εk(x), |α|CD � R, (4.15)

and a possible choice of L,R is

L = Ch−M , R = Ch−M̃ , (4.16)

with
M =

3n− κ
s− n

2 − ε , M̃ =
3n
2

− κ+ (
n

2
+ ε)M. (4.17)

Here ε > 0 is any fixed parameter in ]0, s− n2 [ and κ ∈]0, 1] is the geometric
exponent appearing in (3.2), in our case equal to 1/2.
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The exponent N1 is given by

N1 = M̃ + sM +
n

2
, (4.18)

and qω should be subject to a probability density on BCD (0, R) of the form
C(h)eΦ(α;h)L(dα), where

|∇αΦ| = O(h−N4), (4.19)

for some constant N4 � 0.

Write
q0ω = q1ω + q2ω, (4.20)

q1ω =
∑

0<hµ0
j
�L

α0
j (ω)εj , q2ω =

∑
hµ0

j
>L

α0
j (ω)εj . (4.21)

From Proposition 4.1 and its proof, especially the observation after (4.10),
we know that

‖hmq2ω‖Hs � h with probability � 1 − exp(C0 −
1

2Ch2(m−1)
). (4.22)

We write
P + hmq0ω = (P + hmq2ω) + hmq1ω,

and recall that the main result in [10] is valid also when P is replaced by the
perturbation P + hmq2ω, provided that ‖hmq2ω‖Hs � h. (See the comment
after Theorem A.1.)

The next question is then wether hmq1ω can be written as τ0h2N1+nqω
where qω =

∑
0<hµ0

j
�L αjεj and |α|CD � R with probability close to 1. We

get

αj =
1
τ0
hm−2N1−nα0

j (ω) ∼ N (0, σ̂2
j ),

1
τ0
hm−2N1−n(µ0

j )
−ρe−(µ0

j )
β

M+1 � σ̂j �
1
τ0
hm−2N1−n(µ0

j )
−ρ.

Applying (4.10), we get

P(|α|2CD � R2) � exp(C − R2τ2
0

Ch2(m−2N1−n)
), (4.23)

which is O(1) exp(−h−δ) provided that

−2M̃ + 2
ln(1/τ0)
ln(1/h)

+ 2(2N1 + n−m) � −δ. (4.24)
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Here τ0 �
√
h and if we choose τ0 =

√
h or more generally bounded from

below by some power of h, we see that (4.24) holds for any fixed δ, provided
that m is sufficiently large.

In order to avoid such an extra assumption, we shall now represent α0
j

for hµ0
j � L as the sum of two independent Gaussian random variables. Let

j0 = j0(h) be the largest j for which hµ0
j � L. Put

σ′ =
1
C
hKe−Ch

−β
, where K � ρ(M + 1), C � 1 (4.25)

so that σ′ � 1
2σj for 1 � j � j0(h). The factor hK is needed only when

β = 0.

For j � j0, we may assume that α0
j (ω) = α′j(ω) + α′′j (ω), where α′j ∼

N (0, (σ′)2), α′′j ∼ N (0, (σ′′j )
2) are independent random variables and

σ2
j = (σ′)2 + (σ′′j )

2,

so that
σ′′j =

√
σ2
j − (σ′)2 � σj .

Put q1ω = q′ω + q′′ω, where

q′ω =
∑
hµ0

j
�L

α′j(ω)εj , q′′ω =
∑
hµ0

j
�L

α′′j (ω)εj .

Now (cf (4.20)) we write

P + hmq0ω = (P + hm(q′′ω + q2ω)) + hmq′ω.

The main result of [10] is valid for random perturbations of

P0 := P + hm(q′′ω + q2ω),

provided that ‖hm(q′′ω + q2ω)‖Hs � h, which again holds with a probability
as in (4.22). The new random perturbation is now hmq′ω which we write as
τ0h

2N1+nq̃ω, where q̃ω takes the form

q̃ω(x) =
∑

0<hµ0
j
�L

ϑj(ω)εj , (4.26)

with new independent random variables

ϑj =
1
τ0
hm−2N1−nα′j(ω) ∼ N (0, (

1
τ0
hm−2N1−nσ′(h))2). (4.27)
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Now, by (4.10),

P(|ϑ|2CD > R2) � exp(O(1)D − R2τ2
0

O(1)(hm−2N1−nσ′(h))2
).

Here by Weyl’s law for the distribution of eigenvalues of elliptic self-adjoint
differential operators, we have D � (L/h)n. Moreover, L,R behave like
certain powers of h.

• In the case when β = 0, we choose τ0 = h1/2. Then for any a > 0 we
get

P(|ϑ|CD > R) � C exp(− 1
Cha

)

for any given fixed a, provided we choose K large enough in (4.25).

• In the case β > 0 we get the same conclusion with τ0 = h−Kσ′ if K
is large enough.

In both cases, we see that the independent random variables ϑj in (4.26),
(4.27) have a joint probability density C(h)eΦ(α;h)L(dα), satisfying (4.19)
for some N4 depending on K.

With κ = 1/2, we put

ε0(h) = hκ((ln
1
h

)2 + ln
1
τ0

),

where τ0 is chosen as above. Notice that ε0(h) is of the order of magnitude
hκ−β up to a power of ln 1

h . Then Theorem 1.1 in [10] (recalled in the
appendix) gives:

Proposition 4.2. — There exists a constant N4 > 0 depending on ρ, n,m
such that the following holds: Let Γ � Ċ have piecewise smooth boundary.
Then ∃C > 0 such that for 0 < r � 1/C, ε̃ � Cε0(h), we have with proba-
bility

� 1 − Cε0(h)

rhn+max(n(M+1),N4+M̃)
e
− ε̃
Cε0(h) − Ce− 1

Ch , (4.28)

that

|#(hmP 0
ω) ∩ Γ) − 1

(2πh)n
vol (p−1(Γ))| � (4.29)

C

hn
(
ε̃

r
+ C(r + ln(

1
r
)vol (p−1(∂Γ +D(0, r))))).
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As noted in [9] this gives Weyl asymptotics provided that

ln(
1
r
)vol p−1(∂Γ +D(0, r)) = O(rα), (4.30)

for some α ∈]0, 1] (which would automatically be the case if κ had been
larger than 1/2 instead of being equal to 1/2), and we can then choose
r = ε̃1/(1+α), so that the right hand side of (4.29) becomes � Cε̃ α

1+αh−n.

As in [9, 10] we also observe that if Γ belongs to a family G of domains
satisfying the assumptions of the proposition uniformly, then with proba-
bility

� 1 − Cε0(h)

r2hn+max(n(M+1),N4+M̃)
e
− ε̃
Cε0(h) − Ce− 1

Ch , (4.31)

the estimate (4.29) holds uniformly and simultaneously for all Γ ∈ G.

5. End of the proof

Let θ1, θ2, N0 be as in Theorem 1.1, so that P (θ1, N0) and P (θ2, N0)
hold. Combining the propositions 3.1, 3.2, 3.3, we see that (4.30) holds for
every α < 1/N0 when Γ = Γgθ1,θ2;1,λ, λ > 0 fixed, and Proposition 4.2 gives:

Proposition 5.1. — With the parameters as in Proposition 4.2 and for
every α ∈]0, 1

N0
[, we have with probability

� 1 − Cε0(h)

ε̃
1

1+αhn+max(n(M+1),N4+M̃)
e
− ε̃
Cε0(h) − Ce− 1

Ch (5.1)

that

|#(σ(hmPω) ∩ Γgθ1,θ2;1,λ) −
1

(2πh)n
vol (p−1(Γgθ1,θ2;1,λ))| � C

ε̃
α

1+α

hn
. (5.2)

Moreover, the conclusion (5.2) is valid simultaneously for all λ ∈ [1, 2] and
all (θ1, θ2) in a set where P (θ1, N0), P (θ2, N0) hold uniformly, with proba-
bility

� 1 − Cε0(h)

ε̃
2

1+αhn+max(n(M+1),N4+M̃)
e
− ε̃
Cε0(h) − Ce− 1

Ch . (5.3)

For 0 < δ � 1, choose ε̃ = h−δε0 � Ch
1
2−β−δ(ln 1

h )
2, so that ε̃/ε0 = h−δ.

Then for some N5 we have for every α ∈]0, 1/N0[ that

|#(σ(hmPω)∩Γgθ1,θ2;1,λ)−
1

(2πh)n
vol (p−1(Γgθ1,θ2;1,λ))| �

Cα
hn

(h
1
2−δ−β(ln

1
h

)2)
α

1+α ,

(5.4)
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simultaneously for 1 � λ � 2 and all (θ1, θ2) in a set where P (θ1, N0),
P (θ2, N0) hold uniformly, with probability

� 1 − C

hN5
e−

1
Chδ . (5.5)

Here α/(1 +α) ↗ 1/(N0 + 1) when α↗ 1/N0, so the upper bound in (5.4)
can be replaced by

Cδ
hn
h( 1

2−β−2δ)/(N0+1).

Assuming P (θ1, N0), P (θ2, N0), we want to count the number of eigen-
values of P 0

ω in
Γ1,λ = Γgθ1,θ2;1,λ

when λ → ∞. Let k(λ) be the largest integer k for which 2k � λ and
decompose

Γ1,λ = (
k(λ)−1⋃

0

Γ2k,2k+1) ∪ Γ2k(λ),λ.

In order to count the eigenvalues of P 0
ω in Γ2k,2k+1 we define h by hm2k = 1,

h = 2−k/m, so that

#(σ(P 0
ω) ∩ Γ2k,2k+1) = #(σ(hmP 0

ω) ∩ Γ1,2),
1

(2π)n
vol (p−1(Γ2k,2k+1)) =

1
(2πh)n

vol (p−1(Γ1,2)).

Thus, with probability � 1 − C2
N5k
m e−2

δk
m /C we have

|#(σ(P 0
ω) ∩ Γ2k,2k+1) − 1

(2π)n
vol p−1(Γ2k,2k+1)| � Cδ2

kn
m 2−

k
m ( 1

2−β−2δ) 1
N0+1 .

(5.6)
Similarly, with probability � 1 − C2N5k(λ)/me−2δk(λ)/m/C , we have

|#(σ(P 0
ω) ∩ Γ

2k(λ) ,̃λ
) − 1

(2π)n
vol p−1(Γ

2k(λ),̃λ
)| � Cδλ

n
mλ−

1
m ( 1

2−β−2δ) 1
N0+1 ,

(5.7)
simultaneously for all λ̃ ∈ [λ, 2λ[.

Now, we proceed as in [1], using essentially the Borel–Cantelli lemma.
Use that

∞∑
%

2N5
k
m e−2δ

k
m /C = O(1)2N5

�
m e−2δ

�
m /C ,

∑
2k�λ

2k
n
m 2−

k
m ( 1

2−β−2δ) 1
N0+1 = O(1)λ

n
m−

1
m ( 1

2−β−2δ) 1
N0+1 ,
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to conclude that with probability � 1 − C2N5
�
m e−2δ

�
m /C , we have

|#(σ(P 0
ω) ∩ Γ2�,λ)| � Cδλ

n
m−

1
m ( 1

2−β−δ)
1

N0+1 + C(ω)

for all λ � 2%. This statement implies Theorem 1.1. �

Proof of Theorem 1.2. — This is just a minor modification of the proof
of Theorem 1.1. Indeed, we already used the second part of Proposition 4.2,
to get (5.7) with the probability indicated there. In that estimate we are
free to vary (g, θ1, θ2) in G and the same holds for the estimate (5.6). With
these modifications, the same proof gives Theorem 1.2. �

A. Review of the main result of [10]

As before we let X be a compact smooth manifold of dimension n. On
X we consider an h-differential operator P which in local coordinates takes
the form,

P =
∑
|α|�m

aα(x;h)(hD)α, (A.1)

where we use standard multiindex notation and let D = Dx = 1
i
∂
∂x . We

assume that the coefficients aα are uniformly bounded in C∞ for h ∈]0, h0],
0 < h0 � 1. (We will also discuss the case when we only have some Sobolev
space control of a0(x).) Assume

aα(x;h) = a0α(x) + O(h) in C∞, (A.2)
aα(x;h) = aα(x) is independent of h for |α| = m.

Notice that this assumption is invariant under changes of local coordinates.

Also assume that P is elliptic in the classical sense, uniformly with re-
spect to h:

|pm(x, ξ)| � 1
C
|ξ|m, (A.3)

for some positive constant C, where

pm(x, ξ) =
∑
|α|=m

aα(x)ξα (A.4)

is invariantly defined as a function on T ∗X. (In the main text, pm coincides
with p and also with p below.) It follows that pm(T ∗X) is a closed cone in
C and we assume (as in (1.2)) that

pm(T ∗X) �= C. (A.5)
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If z0 ∈ C\pm(T ∗X), we see that λz0 �∈ Σ(p) if λ � 1 is sufficiently large and
fixed, where Σ(p) := p(T ∗X) and p is the semiclassical principal symbol

p(x, ξ) =
∑
|α|�m

a0α(x)ξ
α. (A.6)

Actually, (A.5) can be replaced by the weaker condition that Σ(p) �= C.

Standard elliptic theory and analytic Fredholm theory now show that
if we consider P as an unbounded operator: L2(X) → L2(X) with domain
D(P ) = Hm(X) (the Sobolev space of order m), then P has purely discrete
spectrum.

We will need the symmetry assumption (cf (1.3))

P ∗ = ΓPΓ, (A.7)

which implies that
p(x,−ξ) = p(x, ξ). (A.8)

As before, let Vz(t) := vol ({ρ ∈ R2n; |p(ρ) − z|2 � t}). For κ ∈]0, 1],
z ∈ Ω, we consider the property (cf (3.2)) that

Vz(t) = O(tκ), 0 � t� 1. (A.9)

Since r  → p(x, rξ) is a polynomial of degree m in r with non-vanishing
leading coefficient, we see that (A.9) holds with κ = 1/(2m).

The random potential will be of the form

qω(x) =
∑

0<µk�L

αk(ω)εk(x), |α|CD � R, (A.10)

where εk is the orthonormal basis of eigenfunctions of h2R̃, where R̃ is as
in the introduction. Moreover, h2R̃εk = µ2

kεk, µk > 0 (so that µk = hµ0
k, cf

(1.5)). We choose L = L(h), R = R(h) in the interval

h
κ−3n
s−n2 −ε � L � Ch−M , M � 3n− κ

s− n
2 − ε , (A.11)

1
C
h−(n2 +ε)M+κ− 3n

2 � R � Ch−M̃ , M̃ � 3n
2

− κ+ (
n

2
+ ε)M,

for some ε ∈]0, s − n
2 [, s > n

2 , so by Weyl’s law for the large eigenvalues of
elliptic self-adjoint operators, the dimension D is of the order of magnitude
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(L/h)n. We introduce the small parameter δ = τ0h
N1+n, 0 < τ0 �

√
h,

where
N1 := M̃ + sM +

n

2
. (A.12)

The randomly perturbed operator is

Pδ = P + δhN1qω =: P + δQω. (A.13)

The random variables αj(ω) will have a joint probability distribution

P (dα) = C(h)eΦ(α;h)L(dα), (A.14)

where for some N4 > 0,

|∇αΦ| = O(h−N4), (A.15)

and L(dα) is the Lebesgue measure. (C(h) is the normalizing constant,
assuring that the probability of BCD (0, R) is equal to 1.)

We also need the parameter

ε0(h) = (hκ + hn ln
1
h

)(ln
1
τ0

+ (ln
1
h

)2), (A.16)

which is of the same order of magnitude as the one in Section 4 when
κ = 1/2, and assume that τ0 = τ0(h) is not too small, so that ε0(h) is small.
Let Ω � C be open, simply connected not entirely contained in Σ(p). The
main result of [10] is:

Theorem A.1. — Under the assumptions above, let Γ � Ω have (piece-
wise) smooth boundary, let κ ∈]0, 1] be the parameter in (A.10), (A.11),
(A.16) and assume that (A.9) holds uniformly for z in a neighborhood of ∂Γ.
Then there exists a constant C > 0 such that for C−1 � r > 0, ε̃ � Cε0(h)
we have with probability

� 1 − Cε0(h)

rhn+max(n(M+1),N4+M̃)
e
− ε̃
Cε0(h) (A.17)

that:

|#(σ(Pδ) ∩ Γ) − 1
(2πh)n

vol (p−1(Γ))| � (A.18)

C

hn

(
ε̃

r
+ C(r + ln(

1
r
)vol (p−1(∂Γ +D(0, r))))

)
.

Here #(σ(Pδ) ∩ Γ) denotes the number of eigenvalues of Pδ in Γ, counted
with their algebraic multiplicity.
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Actually, the theorem holds for the slightly more general operators, ob-
tained by replacing P by P0 = P + δ0(h

n
2 q01 + q02), where ‖q01‖Hsh � 1,

‖q2‖Hs � 1, 0 � δ0 � h. Here, Hs is the standard Sobolev space and Hsh is
the same space with the natural semiclassical h-dependent norm.

We also have a result valid simultaneously for a family C of domains
Γ ⊂ Ω satisfying the assumptions of Theorem A.1 uniformly in the natural
sense: With a probability

� 1 − O(1)ε0(h)

r2hn+max(n(M+1),N4+M̃)
e
− ε̃
Cε0(h) , (A.19)

the estimate (A.18) holds simultaneously for all Γ ∈ C.
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