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with Weak Unit
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(1)

, Anthony Hager
(2)

To Mel Henriksen for his 80 th Birthday

ABSTRACT. — W denotes the class of abstract algebras of the title (with
homomorphisms preserving unit). The familiar H, S, and P from universal
algebra are here meant in W . Z and R denote the integers and the reals,
with unit 1, qua W -objects. V denotes a non-void finite set of positive
integers. Let G ⊆ W be non-void and not {{0}}. We show

(1) HSPG = HSP (HSG ∩ SR), and

(2) W �= G = HSPG if and only if ∃V (G = HSP{ 1
v
Z|v ∈ V }).

Our proofs are, for the most part, simple calculations. There is no real use
of methods of universal algebra (e.g., free objects), and only one restricted
use of representation theory (Yosida). Note that (1) implies the basic fact
that HSPR = W (which can be proved in several ways). Note that (2)
contrasts W with C = archimedean l-groups, and C = abelian l-groups,
where HSPZ = C in each case.

RÉSUMÉ. — Soit W la classe des algèbres abstraites décrit dans le titre
de l’article (avec les homomorphismes qui preservent l’unité). On utilise
dans W la notation H, S, et P , familière de l’algèbre universelle. On note
par Z et les nombres entiers et les nombres réels, avec l’unité 1, qua
W -objets. On note par V un ensemble fini non-vide de nombres entiers.
Soit G ⊆ W en ensemble non-vide, different de {{0}}. Nous montrons que

(1) HSPG = HSP (HSG ∩ S), and
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(2) W �= G = HSPG if and only if ∃V (G = HSP{ 1
v
Z|v ∈ V }).

Pour la plupart, nos démonstrations sont des calculs simples. On n’utilise
pas de méthodes de l’algèbre universelle (par exemple, les objets libres);
il n’y a qu’un seul endroit où on utilise, d’une façon très restreint la
théorie de representations (Yosida). Nous signalons que (1) entraine le
fait basique HSP = W (qui peut être démontré de plusieures façons) et
aussi que (2) souligne la differénce entre W et C = l-groupes archimédien
et C = l-groupes abéliens, où HSPZ = C dans chaque cas.

1. Preliminaries

“l-group” means “lattice-ordered group”, a set with group operation +
and compatible lattice order � . An “l - homomorphism” is a group homo-
morphism which preserves the binary sup ∨ and inf ∧. [D] is a comprehensive
reference. Let G be an l-group. G is archimedean if in G, 0 � na � b ∀n ∈ N

implies a = 0. (This implies commutativity.) A (weak) unit of G is a positive
element u for which a ∧ u = 0 implies a = 0.

W is the class of archimedean l-groups G with a designated unit eG,
and a W -homomorphism G

ϕ→ H is a l-homomorphism with ϕ(eG) = eH

(analogous to homomorphisms of rings with identity). (Thus, W forms a
category.)

Note that {0} ∈ W , and ∀G ∈ W, G
0→ {0} is a W -homomorphism;

{0} is the terminal object of W . Any “ring of continuous functions” C(X),
with constant function 1 as unit, is in W , and all ring homomorphisms
C(X) → C(X) are W -homomorphisms; see [GJ], p. 13. (In fact, conversely
too; see [HR], p. 420.) W has products: G =

∏
I Gi is the cartesian product

with coordinate-wise + and �, and eG = (eGi). W has subobjects: “G is a
subobject of A”, written G � A, means G is a sub-l-group of A and eG = eA

(the inclusion is a W -homomorphism). W has homomorphic images: For
any: ϕ : G → A in W , Im(ϕ) ∈ |W | and the corestriction G → Im(ϕ) is a
surjective W -homomorphism. (The kerϕ, for ϕ : G → A in W , are exactly
the convex sub-l-groups I of G for which G/I is archimedean with eG + I a
unit in G/I. The requirement that G/I be archimedean is substantive; see
[LZ], p. 427.)

Henceforth, W -homomorphisms are called simply “morphisms.” All
classes G ⊆ W are supposed isomorphism-closed, non-void, and not {{0}}.
Let G ⊆ W . PG (respectively, SG ; HG) consists of all products (respec-
tively, subobjects; morphic images) of objects from G (all meant in W ).
P{G} is abbreviated to PG, etc... G is a P (respectively, S;H) class if G =
PG (respectively, SG;HG). Any HSPG is an H-, S-, P - class, and is called
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an HSP -class. (Note that {{0}} is an HSP -class. We do not mention this
further.)

2. Subobjects of R Generate

Let G ⊆ W ; we exclude ∅ and {{0}}. Let K(G) =HSG∩SR. For G ∈ W,
let G∗ = {g ∈ G | ∃n(|g| � neG} (the subobject of bounded “functions”,
in allusion to Yosida Representation (see [HR]); notation follows [GJ]). For

K ∈ SR, we have K = K∗. For any morphism G
ϕ→ L, we have G∗ ϕ∗

→ L∗

given by ϕ∗(g) = ϕ(g) (since ϕ(eG) = eL, and then ϕ(G∗) ⊆ L∗) : “( )∗ is a
functor”.

Theorem 2.1. — HSPG = HSPK(G).

Proof. — The containment ⊇ is clear. For ⊆ we claim, and prove below,
that for G �= {0},

(a) K(G) = K(G∗),

(b) G = G∗ ⇒ G ∈ SP (HG ∩ SR) (⊆ SPK(G)),

(c) G ∈ HS(G∗)ω (( )ω the countable power).

And thus G ∈ HSPK(G). �

Now, for the general HSPG ⊆ HSPK(G): Let A ∈ HSPG. Then A ∈
HSG for G ∈ PG, so K(A) ⊆ K(G), and HSPK(A) ⊆ HSPK(G) ⊆
HSPK(G). By the above, A ∈ HSPK(A), so A ∈ HSPK(G).

We prove the claims (a), (b), (c).

(a) K(G) ⊇ K(G∗) since G∗ ∈ SG.

K(G) ⊆ K(G∗) : If K ∈ K(G), as G � B
ϕ
� K, we have G∗ � B∗ ϕ∗

�
K∗ = K. (ϕ∗ is onto K since ϕ is onto: if ϕ(b) = k, choose n ∈ N with
|k| � n, and let c = (b ∧ neG) ∨ (−neG). Then, c ∈ B∗ and ϕ(c) = k.)

(b). (This is a version of the classical Yosida Theorem for strong unit
[Y]. This is the only place in the paper where the word “ideal” is used (see
5.5, en passant). One might also hold the view that this is the only place
in the paper where actual Algebra occurs.)

In an abelian l-group, “ideal” means “convex sub-l-group,” and ideals are
kernels of l-homomorphisms. The ideal P in G is prime if and only if G/P is
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totally ordered; a maximal ideal is prime. IfM is a maximal ideal in G, then
G/M has no proper ideals, and thus is archimedean (since “archimedean”
means “no infinitesimals” and the infinitesimals form an ideal). Hölder’s
Theorem: L is archimedean and totally ordered if and only if there is an
l-embedding L

ϕ
↪→ R. If 0 �= r ∈ R+, then x→ rx defines an l-automorphism

of R. Thus:

If G = G∗ in W and M is a proper maximal ideal, then eG /∈M and we
have a W -embedding αM : G/M ↪→ R, αM = a ◦ ϕ, where G/M

ϕ
↪→ R is

any Hölder map and a is the automorphism of R, x �→ (1/ϕ(eG +M))x. So
G/M ∈ HG ∩ SR.

If G = G∗ in W then, ∀g �= 0∃M (g /∈M) (by Zorn’s lemma; see [HR],
p. 415). Thus the “reduced product” < αM > : G→

∏
{G/M |M maximal}

is a W -embedding, and G ∈ SP (HG ∩ SR). (See the early parts of [D] for
the basic facts quoted above.)

(c). (This proof uses a sequential convergence in W introduced in [BH],
injected into an argument from [HIJ], which originally used pointwise con-
vergence on the Yosida space.)

Fix G �= {0} in W. In the following, a � ε in G means ε = 1/k for k ∈ N

and ka � eG; and, for p ∈ N, peG ∈ G is just called p.

Definition 2.2. — ([BH], 2.2.4) In G : let r � 1.
gn

r→ g means [∀ε∀p ∈ N ∃n0 (n � n0 ⇒ (p− r)+ ∧ |gn − g| � ε)] and
gn → g means [∃r (gn

r→ g)].

(Intuition: View G as an l-group of continuous extended real-valued func-
tions on a compact space X, e.g., in its Yosida representation - see [D] or
[HR]. Then, gn

r→ g means, for the functions, gn converges uniformly to g
on each subset of X on which r is bounded - or, on each compact subset of
r−1(R).)

The convergence has the following basic features gleaned from [BH].

(i) gn → g and gn → g′ ⇒ g′ = g.

(ii) gn → g and hn → h⇒ gn ⊗ hn → g ⊗ h for ⊗ = +,−,∨,∧.

(iii) For each g, (g ∧ n) ∨ (−n) → g (indeed, r→ for r = |g| ∨ 1).

(Here, (i) and (ii) are parts of [BH], 2.2.5, (iii) follows from [BH], 2.1.8.
The proofs are not difficult but use “archimedean” several times.)
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We now show that G ∈ HS(G∗)ω. Define B ⊆ (G∗)ω as: b = (bn) ∈ B
means ∃g ∈ G ( bn → g). Given b ∈ B, this g is unique by (i); call it λ(b).
We have a function B λ→ G. By (ii), B � (G∗)ω (i.e., B is a W -subobject)
and λ is a morphism. By (iii), λ is onto. �

Corollary 2.3. — W = HSPR.

Proof. — By 2.1 any G ∈ HSPK(G), while K(G) ⊆ HSPR. �

There are other quite different proofs of 2.3. See 5.1.

3. Generating R from SR.

Let K be a subgroup of R. It is elementary that : Topologically, K is
either dense or discrete, in the latter case cyclic. If 1 ∈ K (i.e., K � R),
then K is either dense or of the form 1

nZ for some n ∈ N− {0}.

In the proof of 3.1 (3) below and later, we use the further easy observa-
tions: 1

mZ � 1
nZ if and only if m|n; S 1

nZ = { 1
vZ : v ∈ Div n}. (m|n is “m

divides n”. Div n is the set of divisors of n.)

Consider finite V ⊆ N−{0}, putKV = { 1
vZ : v ∈ V }(⊆ SR) and B(V ) =

ΠKV (∈ W ). Any finite K ⊆ SR consisting of discrete subgroups is a KV .
Note that SKV = KDiv V (Div V = ∪{Div v|v ∈ V }).

The following does not use 2.1. (Of course though, knowing [2.3:HSPR =
W ], the point is partly which K ⊆ SR do / do not have HSPK proper; we
consider this explicitly in the next section.)

Theorem 3.1. — Let K ∈ SR be dense. Let K ⊆ SR consist of discrete
subgroups.

(1) R ∈ HS(Kw)

(2) If K is infinite, then R ∈ HS(
∏
K).

(3) If K is finite, then K = KV for some V , (HSPK) ∩ SR = SK, and
R /∈ HSPK.

Proof. — For (1) and (2), consider {Kn}N ⊆ SR and P ≡
∏

NKn . For
(1), we take Kn = K ∀n, and for (2), we take k0 < k1 < ... and Kn = 1

kn
Z.

Then let A ≡ {a ∈ P | The sequence (a(n)) converges in R}, and define
λ : A → R by λ(a) = lim a(n). Then A ∈ W and λ is a morphism, as is
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checked easily. We claim λ is onto in either case : Let γ ∈ R. For (1), ∀n
choose a(n) ∈ K with |a(n) − γ| � 1/n, by density. For (2), ∀n choose the
least m with γ−1/kn � m/kn, then m/kn � γ+1/kn; define a(n) = m/kn.

(3) We noted above that K = KV for some V and SK = KDiv V . Clearly
R /∈ KDiv V . We show HSPKV ∩SR = SKV . The inclusion ⊇ is clear. For
⊆:
HSPKV = HSPB(V ) of course, so consider B(V )Γ � A ϕ→ R.

We are to show ϕ(A) ⊆ some 1
vZ. Now RV � {f ∈ RV |f(v) ∈ 1

vZ∀v} =
B(V ). Let X = V × Γ =

⋃̇

v
π−1(v) (π the first projection,

⋃̇
denoting

disjoint union). So

RX � {f ∈ RX |f(v, γ) ∈ 1
v

Z ∀ (v, γ)} = B(V )Γ

and

f ∈ B(V )Γ ⇒ f(π−1(v)) ⊆ 1
v

Z ∀v,

and if f is bounded, then f(π−1(v)) is finite, thus closed. Now

(RX)∗ � (B(V )Γ)∗ � A∗ ϕ∗

→ R,

with ϕ∗(A∗) = ϕ(A) (by properties of ( )∗ as in (a) of the proof of 2.1).

Simplify this notation: B = A∗, ψ = ϕ∗, so (RX)∗ � B
ψ→ R. For

f ∈ RX , let Z(f) = {x|f(x) = 0}. Note that Z(b) = ∅ implies b is bounded
away from 0 (since V is finite), so 1 � n |b| for some n ∈ N, thus ψ(b) �= 0.
Therefore, Z(ψ) = {Z(b) | b ∈ kerψ} is a proper filter base on X, so there
is an ultrafilter U ⊇ Z(ψ), and there is a unique v with π−1(v) ∈ U (since
X =

⋃̇

v
π−1(v)).

Whenever F is an ultrafilter on a set Y , for each f ∈ (RY )∗, “f converges
along F”, i.e., ∩{f(F )|F ∈ F} is a singleton, whose element we denote
eF (f). This defines a function eF : (RY )∗ → R, which is easily seen to
be a W -morphism with ker eF ⊇ {f |Z(f) ∈ F}. (These assertions can be
verified directly, but their truth is transparent upon recognizing eF (f) as
βf(F), which means: Discrete Y has its Čech-Stone compactification βY ,
of which F “is” a point, and each f ∈ (RY )∗ has its extension βf ∈ C(βY ).
Then βf(F) = eF (f). See [GJ], 3.17, 4.12, 6.24.)
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Applying this to (Y,F) = (X,U) with the π−1(v) ∈ U ⊇ Z(ψ), we see
that ker eU ⊇ kerψ, and that for b ∈ B (or even (B(V )Γ)∗), b(π−1(v)) =
b(π−1(v)) ⊇ {eU (b)} so eU (b) ∈ 1

vZ.

Thus we have the commuting square inW , where α is defined by α(ψ(b)) =
eU (b).

B
�−−−→ (RX)∗


� ψ



� eU

ψ(B)
α

−−→ R

However, α is just the inclusion ψ(B) ↪→ R (by Hion’s Theorem, [D], p.
147), so ψ(B) = eU (B) ⊆ 1

vZ.

Regarding 3.1(1): J. Madden first pointed out to us that R ∈ HSPQ,
using a representation of free objects in HSPQ. The referee points out that
the corresponding fact in f -rings is noted in [HI], p. 541-542, and that [W],
p. III-44 contains “the sequence proof” of a statement like 3.1(1) (we don’t
know the context; we have not seen [W]).

4. The HSP -classes

We combine sections 2 and 3 as follows. 4.1: 2.3 says HSPG = W if
and only if R ∈ HSPG; we take a closer look at that using 3.1. 4.2: 3.1
and 2.3 show that the proper HSP -classes are the HSPKV ; we interpret
“G ∈ HSPKV .”

Proposition 4.1. — For G ⊆W, the following are equivalent.

(1) R ∈ HSPG.

(2) K(G) contains either a dense member or infinitely many discrete
members of SR.

(3) There is {Gn|n ∈ N} ⊆ G for which R ∈ HS(ΠGn).

Proof. — (3)⇒(1) is obvious.

(1)⇒(2). If (2) fails, then 3.1 (3) says R /∈ HSPK(G). But 2.1 says
HSPG ⊆ HSPK(G).
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(2) ⇒ (3) Let K ∈ HSG ∩ SR be dense. We have G � G � A � K.
Now, R ∈ HS(Kω), by 3.1 (1), as Kω � B � R. Combining these, Gω �
Aω � Kω � B � R. So R ∈ H(SH)S(Gω) ⊆ H(HS)S(Gω) = HS(Gω)
(since SH � HS).

Let {Kn}N ⊆ HSG ∩ SR be distinct, discrete. We have ∀n Gn � An �
Kn. Now, R ∈ HS(ΠKn), by 3.2 (2), as ΠKn � B � R. Combining these,
ΠGn � ΠAn � ΠKn � B � R, so R ∈ · · ·HS(ΠGn) as previously. �

We consider the HSPKV ’s (the proper HSP -classes). We noted in and
before 3.1 that K(KV ) ≡ HSPKV ∩ SR = SKV = KDiv V , so using
2.1, HSPKV = HSPKDiv V . A little further thought shows HSPKU ⊆
HSPKV if and only if SKU ⊆ SKV if and only if U ⊆ Div V. In particular,
1
6Z /∈ HSP{ 1

2Z, 1
3Z}.

For G ∈ W , let V (G) = {n| 1nZ ∈ K(G)}. This may be ∅, or infinite
(in which case our reserving “V ” for finite sets is abused - continuing the
possibility of such abuse) KV (G) = { 1

nZ|n ∈ V (G)} ⊆ K(G), with equality
if and only if all members of K(G) are discrete.

Proposition 4.2. — For finite V ⊆ N − {0}, and G ∈ W , these are
equivalent.

(1) G ∈ HSPKV .

(2) K(G) ⊆ KDiv V .

(3) K(G) = KV (G) and V (G) ⊆ Div V.

Proof. — (1)⇔ (2). G ∈ HSPKV if and only if HSPG ⊆ HSPKV if
and only if K(G) ⊆ K(HSPKV ) = KDiv V using 2.1 and 3.1.

(2) ⇒ (3). If K(G) ⊆ KDiv V , then all members of K(G) are discrete.
So KV (G) = K(G) ⊆ KDiv V and V (G) ⊆ Div V.

(3)⇒ (1). K(G) = KV (G) implies G ∈ HSPKV (G) (by 2.1), and V (G) ⊆
Div V implies HSPKV (G) ⊆ HSPKV (above). �

Let us be more explicit about the association V �→ HSPKV .

Let D be the collection of all finite V ⊆ N − {0} for which V = Div V,
together with N−{0}, partially ordered by inclusion. Let C be the collection
of all HSP -classes in W , partially ordered by inclusion. Both D and C are
complete lattices in which inf is intersection, and the sup of any infinite
subset is the top. Note ∅ ∈ D, and K∅ = {{0}} ∈ C.
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Corollary 4.3. — D and C are lattice-isomorphic by V �→ HSPKV .

See 5.6 below for a discussion of further ramifications of 2.1, 4.2, and
4.3.

5. Assorted Remarks

5.1. W = HSPR. This fact (2.3) can be obtained in other ways:

[H], 7.1 uses full Yosida Representation to show that the free W -object
on the set I is the l-subgroup of C(RI) generated by 1 and the projections
πi : RI → R. 2.3 follows. J. Madden pointed out (see [H]) a more general
algebraic route to this description of the free objects.

Another route to 2.3 is this. (a) If A is countable, then A embeds in some
C(X). From Yosida Representation and the Baire Category Theorem, we can
use X =

⋂

A

a−1R. On the other hand, there is a “point-free” argument using

as X the frame spectrum of the frame of W -kernels; it is shown that the A-
uniformity on the latter is complete [B1], with a countable base, thus spatial
[I]. (b) In a SP -class of abstract algebras, if D ⊆ E are HSP−classes, and
each finitely generated member of E belongs to D, then D = E . (See [P], p.
134.) 2.3 follows from (a) and (b).

5.3. K(HSPG). The question “K(HSPG) = K(G)?” is invited by 2.1.
This is so for G = KV (by 3.1(3) and the definition of K), and of course
it is so if K(G) = SR. In all other cases, it is Not so, by 3.1. For example,
G = Z +

√
2Z is dense, and 1

nZ ∈ K(G) if and only if n = 1.

Related to that, the question “KV ⊆ HSPG?” is invited as a “dual” to
4.2. It is not hard to see that this is so if and only if K(G) = SR or K(G) is
an SKU with V ⊆ Div U .

5.4. HSPZ. In W , this is the least HSP -class (besides {{0}}). The
members, and the category, are examined in [HM].

Consider the class lAb of lattice-ordered abelian groups, and nowH, S, P
meant in lAb. In [D], § 52, it is shown that for each set I, a certain subobject
F (I) of ZI is the free lAb-object on I. Thus HSPZ = lAb, contrasting with
W .

Consider the class Arch of archimedean l-groups (no designated unit;
perhaps no units at all), and now H, S, P meant in Arch. The above F (I) ∈
SPZ in Arch (the lAb S and P preserve Arch, thus applied in Arch are the
Arch S and P ; not so for H). So HSPZ = Arch, contrasting with W .
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5.5. Subdirectly irreducible. Let A be, say, an SP -class of abelian groups.
In A; a subdirect representation ofA is an embeddingA ⊆ ΠAi with πi(A) =
Ai for each i. A is subdirectly irreducible if each subdirect representation
A ⊆ ΠAi has some πi|A one-to-one, equivalently, A has a smallest A-ideal
�= (0). Let siA = {A |A is subdirectly irreducible}.

If A is a variety, then (Birkoff; See [P]) : A ∈ SP (HA ∩ siA)∀A; A =
HSP (siA). ForW , siW = SR (proof below). Thus, by 2.1,W = HSP (siW )
(like a variety), but many A /∈ SP (HA∩SR) (unlike a variety). (Those A ∈
SP (HA∩SR)) may be called real-semi-simple. Some A have HA∩SR = ∅,
e.g., Lebesgue measurable functions on [0, 1] mod null functions; also the
real-valued functions on any countably generated Boolean frame [B2].)

(siW = SR: If K ∈ SR, the only ideals are (0) and K, so K ∈ siW .
Conversely, let G ∈ siW. Then, G is totally ordered (because any a⊥⊥ is
a W -ideal and if G is not totally ordered, there are disjoint a, b > 0, thus
a⊥⊥ ∩ b⊥⊥ = (0). Thus there is no smallest W -ideal). Now G ∈ SR, by
Hölder’s Theorem.)

5.6. With strong unit. For G ∈ W , if G = G∗, the unit eG is called
“strong”. For G ⊆W let G∗ = {G ∈ G|G = G∗}. [HK] studies in some detail
the class of l-groups called “uniformly hyperarchimedean”, which class turns
out to be ∪{(HSPKV )∗| finite V ⊆ N − {0}}. We sketch the connection.
(Present notation differs from [HK].)

As a class of algebras, W ∗ has its H and S inherited from W , but its P
comes from the W ∗-product (ΠGi)∗, Π being the W - product.

For brevity, we use generic notation G for a subclass of W , S for a
subclass of W ∗. As usual, V is a finite subset of N − {0}. 2.1 and 3.1(and
remarks in section 4) easily yield the following.

(a) The HSP -classes of W and W ∗ are in bijective correspondence via
G �→ G∗ ; HSPS ← S(HSP in W ). In W ∗, HSPR = W ∗. S is
proper HSP in W ∗ if and only if ∃V (S = HSPKV in W ∗).

Connecting with [HK]: An l-group is called hyperarchimedean if each
of its l-group quotients is archimedean. In such, any weak unit is strong.
HA denotes {G ∈ W |G is hyperarchimedian} = {G ∈ W ∗ |G is hyper-
archimedean }. L1 is the class of abelian l-groups with strong unit and
unit-preserving homomorphisms; L1 has its H, S, and P (the product be-
ing the l-ideal in ΠGi generated by (ei), ei being the strong unit of Gi and
ΠGi the l-group product). Note W ∗ = L1 ∩W .
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(b) ([HK],4.4(a)) The following are equivalent. S is HSP in L1 and S ⊆
HA; S is proper HSP in W ∗ (i.e., (a) above); ∃V (S = HSPKV in
L1).

The most interesting part of the proof of (b) is : S ∈ W ∗ −HA ⇒ R ∈
HSPS in W ∗. The present 3.1(2) is a version of that.

Also note that the present 4.2 is the correspondent inW of ([HK], 4.4(b)).

Finally, we record briefly the connection with MV -algebras. This is dis-
cussed further in [HK]. The theory of MV -algebras is exposed in [COM].

There is the Chang-Mundici categorical equivalence between L1 and
MV , the latter being a variety, in consequence of which the HSP classes
in L1 and the subvarieties of MV correspond. The latter have been com-
pletely classified (with equations) by Komori. The correspondent of the
S = HSPKV in (b) above is called C({WLv}V ) in [COM], p. 169.
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