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An �-algebra approach to Artin’s solution of
Hilbert’s Seventeenth Problem

Stuart A. Steinberg
(1)

Dedicated to Melvin Henriksen

ABSTRACT. — Using lattice-ordered algebras it is shown that a totally
ordered field which has a unique total order and is dense in its real closure
has the property that each of its positive semidefinite rational functions
is a sum of squares.

RÉSUMÉ. — En utilisant les algèbres réticulées, on montre qu’un corps
totalement ordonné qui a un unique ordre total et qui est dense dans
sa clôture réelle a la propriété que chacune des ses fonctions rationnelles
positives semi-définies est une somme de carrés.

Hilbert’s seventeenth problem asks if a rational function with rational
coefficients which is positive semidefinite over the field of real numbers is a
sum of squares of rational functions with rational coefficients. Artin [1] (or
[10]) showed that this is indeed the case and, in fact, proved the stronger
theorem that any subfield of the reals which has a unique total order also
has this property. In [8, p. 641] (also see [7, p. 295]), Jacobson presented this
result for totally ordered fields that were not necessarily archimedean, and
McKenna gave the converse of this theorem in [11]. In this note I will give
a proof, using some aspects of the theory of lattice-ordered rings given in
Henriksen and Isbell [6], of Jacobson’s version of Artin’s theorem. I believe
this proof of Artin’s solution to Hilbert’s problem was known to Weinberg in
1968. One aspect of this approach is that it avoids any use of model theory.
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Let K be a totally ordered field. A rational function r(x1, · · · , xn) ∈
K(x1, · · · , xn) is positive semidefinite on K, abbreviated P.S.D., if r(a1, · · · ,
an) � 0 for all a1, · · · , an in K for which r(a1, · · · , an) is defined. The positive
cone of the partially ordered group G will be denoted by G+, and S(R)
denotes the set of sums of squares in the commutative ring R. If F is an
extension field of the totally ordered field K it is well-known that K+S(F )
= {Σiaif

2
i : ai ∈ K+, fi ∈ F} is the intersection of those total orders of F

which contain K+. The subfield K of the totally ordered field F is dense in
F if for all a, b in F with a < b there exists some c ∈ K with a < c < b.
According to McKenna the totally ordered field K has Hilbert’s property if,
for every n, each rational function in K(x1, · · · , xn) that is P.S.D. on K is
a sum of squares in K(x1, · · · , xn). The theorem to be proved, as stated in
[8, p. 641], is

Theorem 0.1. — (Artin [1]). Let F be the real closure of the totally
ordered field K. If K has a unique total order and is dense in F , then K
has Hilbert’s property.

The cardinality of the set X will be denoted by |X|. If A and B are
subsets of the partially ordered set X, then A < B (respectively, A � B)
means a < b (a � b) for every a ∈ A and b ∈ B. For an ordinal number α, X
is called an ηα-set (respectively, an almost ηα-set) if whenever A and B are
subsets of X with A < B (A � B) and |A ∪B| < ℵα, then A < c < B (A �
c � B) for some c ∈ X; in these definitions either A or B could be empty.
The cardinal number ℵα is regular if |

⋃
i∈I Ai| < ℵα provided |I| < ℵα and

|Ai| < ℵα for every i ∈ I. We start with a well-known embedding theorem.

Theorem 0.2. — Suppose α � 1 and ℵα is a regular cardinal. Let K be
a totally ordered subfield of the totally ordered field L and let F be a real
closed ηα-field. If σ : K −→ F is an embedding of totally ordered fields with
|K| < ℵα and |L| � ℵα, then σ can be extended to an embedding of totally
ordered fields τ : L −→ F .

Proof. — A proof for the case K = Q is contained in the proof of
Theorem 2.1 of [3]. A slight modification of the proof of Theorem 4.4.3 in
[13, p. 95] proves this stronger result. �

Our construction of a totally ordered η1-field will use the following fact
about lattices.

Lemma 0.3. — ([14, p. II-62] ; also, see [4, p. 176]). Let f : L −→ M be a
lattice homomorphism of the lattice L onto the lattice M . If S is a countable
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subset of M then there exists a subset T of L such that f : T −→ S is an
order isomorphism.

Proof. — We assume that S is infinite; the case that S is finite is done
similarly. Suppose S = {f(x1), f(x2), · · ·}. Let t1 = x1. Suppose t1, · · · , tn−1

have been chosen so that f : {t1, · · · , tn−1} −→ {f(x1), · · · , f(xn−1)} is an
order isomorphism with f(ti) = f(xi). Let X = {ti : f(ti) < f(xn)},
Y = {tj : f(xn) < f(tj)}, x =

∨
i ti, y =

∧
j tj and tn = (x ∨ xn) ∧ y). If X

or Y is empty just delete x or y from the definition of tn; we will assume
neither X nor Y is empty since the other cases follow in a similar way. Now,
X < Y since f(ti) < f(tj) and hence ti < tj for ti ∈ X and tj ∈ Y . Thus
x � y,

f(x) =
∨
i

f(ti) � f(xn) �
∧
j

f(tj) = f(y),

and
f(tn) = (f(x) ∨ f(xn)) ∧ f(y) = f(xn) ∧ f(y) = f(xn).

Now, ti < tn iff f(ti) < f(tn)(i = 1, · · · , n − 1). For, ti < tn gives f(xi) =
f(ti) � f(tn) = f(xn) and hence f(ti) < f(tn); and f(ti) < f(tn) = f(xn)
gives ti � x � y, ti � (x∨xn)∧y = tn, and hence ti < tn. Similarly, tn < tj
iff f(tn) < f(tj) for j = 1, · · · , n− 1. �

Theorem 0.4. — ([15]; also [14, p. II-63]). Let {Mn : n ∈ N} be a
sequence of nonzero �-groups. Then M = ΠnMn/ ⊕n Mn and all of its
homomorphic images are almost η1-groups.

Proof. — The homomorphisms in “homomorphic images” are, of course,
morphisms between �-groups. We will only consider M since the same proof
works for M/C where C is a normal convex �-subgroup of ΠnMn which
contains ⊕nMn. Suppose A < B are countable subsets of M . We assume A
and B are infinite. From Lemma 0.3 we can find subsets A = {an : n ∈ N} <
{bn : n ∈ N} = B of ΠnMn such that A = {an : n ∈ N}, B = {bn : n ∈ N}
and A∪B −→ A∪B is an order isomorphism. For each n ∈ N take gn ∈ Mn

with
{a1(n), · · · , an(n)} � gn � {b1(n), · · · , bn(n)},

and let g ∈ ΠnMn be defined by g(n) = gn. Then A � g � B. To see
that A � g fix k ∈ N. If n ∈ N and ak(n) � gn, then k > n; that is,
n ∈ {1, · · · , k − 1}. So if hk ∈ ΠnMn is defined by

hk(n) =
{
−gn + ak(n) if ak(n) � gn

0 if ak(n) � gn

then hk ∈ ⊕nMn and ak � g + hk; hence ak � g. Similarly, g � B. �
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The following well-known result follows quickly from Theorem 0.4.

Corollary 0.5. — Suppose K is a real closed field and F is an ultra-
filter on N which contains all complements of finite subsets of N. Then the
ultraproduct KN/F is a real closed η1-field.

Proof. — For f ∈ KN let Z(f) = {n ∈ N : f(n) = 0}. Recall that
KN/F = KN/I(F) where I(F) = {f ∈ KN : Z(f) ∈ F} is a maximal ideal
of KN which is an �-ideal (all of the ideals of KN are �-ideals). Using the
standard characterization of a real closed field as a totally ordered field in
which each positive element is a square and each polynomial of odd degree
has a root it is clear that KN/F is real closed. Since I(F) contains ⊕nK,
KN/F is a totally ordered almost η1-field. But a totally ordered almost
ηα-division ring D is an ηα-division ring. For suppose, for example, that
A � c � B with |A ∪ B| < ℵα, c ∈ A, and B has no least element. Then
0 < B − c has no least element, (B − c)−1 < u−1 for some u ∈ D since
(B − c)−1 has no largest element, u < B − c, and A < c + u < B. �

An �-ring R which is an algebra over the partially ordered ring C is called
an �-algebra if C+R+ ⊆ R+. Let S be a set of words in the free �-algebra on
a countably infinite free generating set. The variety of �-algebras determined
by S is the class V(S) consisting of all those �-algebras R which satisfy each
word in S : g(a1, · · · , an) = 0 for all a1, · · · , an ∈ R and all g(x1, · · · , xn) ∈ S.
According to Birkhoff’s theorem [2, p. 169] a class of �-algebras V is a variety
if and only if each �-subalgebra and each homomorphic image of an �-algebra
in V also belongs to V, and the direct product of any set of �-algebras from
V is in V. If K is an �-algebra, then VC(K) denotes the variety of �-algebras
generated by K. The �-algebra R belongs to VC(K) if and only if it satisfies
each �-algebra identity that K satisfies. A small extension of a result from
[6] is crucial to this proof.

Theorem 0.6 ([6, 3.8]). — Let C be a common totally ordered subring
of the totally ordered fields K and L. If K is real closed then L ∈ VC(K).

Proof. — Suppose g(x1, · · · , xn) is a word in the free (commutative)
C-f -algebra that K satisfies. Let α1, · · · , αm be all the elements of C which
occur in g(x1, · · · , xn) and let a1, · · · , an ∈ L. If F is an ultrafilter on N

which contains the complement of each finite subset of N, then by Corollary
0.5 and Theorem 0.2 the embedding

Q(α1, · · · , αm) −→ K −→ KN/F
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can be extended to an embedding ψ : Q(α1, · · · , αm, a1, · · · , an) −→ KN/F .
Since ψ fixes each αi we have ψ(g(a1, · · · , an)) = g(ψ(a1), · · · , ψ(an)) = 0.
�

We will now give the proof of Theorem 0.1.

Suppose r(x1, · · · , xn) = f(x1, · · · , xn)g(x1, · · · , xn)−1 ∈ K(x1, · · · , xn)
is P.S.D. on K and let h(x1, · · · , xn) = f(x1, · · · , xn)g(x1, · · · , xn). Then
h(α1, · · · , αn) � 0 for all α1, · · · , αn ∈ F and hence h(x1, · · · , xn)− = 0 is an
identity for the K-�-algebra F . Let P be a total order of K(x1, · · · , xn)
which extends K+ and let E be the real closure of (K(x1, · · · , xn), P ).
Then VK(F ) = VK(E) by Theorem 0.6 and hence h(x1, · · · , xn)− = 0 is
also an identity for the K-�-algebra E. So h(x1, · · · , xn) ∈ P and hence
r(x1, · · · , xn) ∈ K+S(K(x1, · · · , xn)) = S(K(x1, · · · , xn)) since K+ = S(K).
�

The proof I have given of Theorem 0.1 also proves the following addi-
tional versions of Artin’s theorem. The first version is given in [5] and [7, p.
295] and the second version which, along with the reference [5], was kindly
pointed out to me by Delzell, comes from Lang [9, p. 387]. Of course, for the
second version one needs to use the well-known fact that for a field E whose
characteristic is not 2, S(E) is the intersection of all of the total orders of
E [7, p. 288].

Let K be a subfield of the real closed field F with the total order
it inherits from F . If r(x1, · · · , xn) ∈ K(x1, · · · , xn) is P.S.D. on F , then
r(x1, · · · , xn) ∈ K+S(K(x1, · · · , xn)).

Let r(x1, · · · , xn) ∈ K(x1, · · · , xn) where K is a field whose characteristic
is not 2. If r(x1, · · · , xn) is P.S.D. on each algebraic extension L of K, for
any total order of L, then r(x1, · · · , xn) is a sum of squares in K(x1, · · · , xn).

Bibliography
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