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A differential Puiseux theorem
in generalized series fields of finite rank

Mickaël Matusinski(1)

ABSTRACT. — We study differential equations F (y, . . . , y(n)) = 0 where
F is a formal series in y, y′, . . . , y(n) with coefficients in some field of
generalized power series Kr with finite rank r ∈ N∗. Our purpose is to
express the support Supp y0, i.e. the set of exponents, of the elements
y0 ∈ Kr that are solutions, in terms of the supports of the coefficients of
the equation, namely Supp F .

RÉSUMÉ. — Nous étudions des équations différentielles F (y, . . . , y(n)) = 0
où F est une séries formelle en y, y′, . . . , y(n), à coefficients dans un corps
de séries généralisées Kr de rang fini r ∈ N∗. Notre objet est d’exprimer
le support – c’est-à-dire l’ensemble Supp y0 des exposants – des éléments
y0 ∈ Kr solutions, en fonction des supports des coefficients de l’équation,
dont l’union est notée Supp F .

1. Introduction – About differential Puiseux theorems

In his PhD thesis [vdH97, Theorem 12.2], van der Hoeven proves that
any well-ordered transseries solution to an algebraic differential equation
with grid-based transseries coefficients is itself grid-based. Another version
of this result can be found in [vdH06, Corollary 8.38]. Without entering into
the details of definitions, transseries are formal series built from R, x, field
operations, composition with exponential and logarithmic functions, and
an infinite summation process analogous to the construction of generalized
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series. Grid-based transseries are those whose support is included in a grid,
that is to say the translation of a lattice. They were introduced by J. Ecalle
in his proof of Dulac conjecture [É92]. Well-ordered transseries are those
built with well-ordered supports.

This result for transseries addresses two difficulties concerning formal
resolution of ordinary differential equations. On the one hand, it shows that
what we may call the rank of any well-ordered transseries solution f (i.e. the
Archimedean rank of the elements of the support of f) is finite, following the
fact that it is finite for the grid-based coefficients of the equation [vdH06,
Theorem 4.15: the rank of any grid-based transseries is bounded by the
number of elements of a transbasis for it]. On the other hand, the support
of such a finite rank well-ordered transseries solution is actually grid-based.
This is a Puiseux type result [KP02, for instance] in the context of dif-
ferential equations, which generalizes several recent results. Grigoriev and
Singer [GS91, Corollary 3.1] considered polynomial differential equations
P (y, . . . , y(n)) = 0 with P ∈ Q[[x]][y, . . . , y(n)] (i.e. the coefficients are for-
mal power series in x with rational coefficients), and solutions that are power
series with real exponents. Then they showed that these exponents belong to
a finitely generated Z-module in R. Independently, J.Cano [Can93, Theorem
1] studies equations f(x, y, y′ . . . , y(n)) = 0, where f ∈ R[[x]][[y, . . . , y(n)]],
i.e. f is a power series in the n + 1 variables y, . . . , y(n) and in x. He shows
that any series with rational exponents greater than n which is a solution,
is in fact a Puiseux series. In their proof of a desingularisation theorem,
F.Cano, Moussu and Rolin used a generalization [CMR05, Appendix] of
J. Cano’s result to the case of real exponents: given a differential equation
f(x, y, xy′, xy′′) = 0, where f ∈ R[[x]][[y, xy′, xy′′]], then the support of a so-
lution is included in a lattice (i.e. a finitely generated sub-semigroup of R�0).

The main purpose of this paper is to prove a generalization (Theorem
1.2) of this second Puiseux type part of van der Hoeven’s result (and so, of
the other cited results) to the context of generalized series fields (which have
well-ordered supports and do not carry any log-exp structure a priori) and
for differential equations defined by formal series (not only by polynomials:
see the equation (1.2)). Given a totally ordered abelian group Γ and a
field C, a generalized series with exponents in Γ and coefficients in C is a
formal sum a =

∑
γ∈Γ aγt

γ , where t is an abstract variable, the coefficients
aγ = a(γ) belong to C and its support Supp a = {γ ∈ Γ | aγ �= 0} is well-
ordered in Γ (for classical definitions and properties in well-ordering theory,
see [Bou70]). The series with empty support is denoted by 0. The set of
such series endowed with component-wise sum and convolution product is
a field [Hah07], which we denote by K. We endow it also with the classical
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valuation v : K→ Γ ∪ {∞}, v(a) = min(Supp a) for a �= 0 and v(0) = ∞,
with the usual conventions.

In particular, we consider a group of exponents Γ of finite rank r ∈ N∗
(i.e. with a finite number of Archimedean classes) which is also a real vector
space, and R as field of coefficients (see Section 2.1). We denote by Kr the
corresponding series field. We also suppose that this field is endowed with
a derivation which behaves like the one in Hardy fields (see Definition 2.2).
For any I ∈ Nn+1, we denote y(I) = yi0(y′)i1 · · · (y(n))in . Let the following
non trivial differential series

F (y, . . . , y(n)) =
∑

I∈Nn+1

cIy
(I) ∈ Kr[[y, . . . , y

(n)]] \ {0} (1.1)

of arbitrary fixed order n ∈ N of differentiation, with coefficients in Kr and
with well-ordered support Supp F = ∪I∈Nn+1Supp cI , be given. Then we
consider the corresponding differential equation:

F (y) = F (y, y′, . . . , y(n)) = 0. (1.2)

By a solution of this equation, we mean a generalized series y0 ∈ Kr such
that F (y0) is well-defined (Definition 2.12) and F (y0) = 0. Note that the

condition v(y
(i)
0 ) > 0 is sufficient for F (y0) to be well-defined (Proposition

3.6). In the case where F is a differential polynomial, F (y0) is well-defined
for any y0 ∈ Kr.

Example 1.1. —

1. There are natural settings in which such differential fields of series
arise: algebraic or analytic differential equations. For example, following
[CMR05], take X : t′k = Fk(t1, . . . , tr), k ∈ {1, . . . , r} to be an analytic
vector field over a real analytic r-dimensional manifold m. Consider γ :
t �→ γ(t), t � 0, an integral curve of X having a unique ω-limit point p
and assume that γ is sub-analytically non-oscillating. It is shown in Section
2 of [CMR05] that one can associate a Hardy field Kγ to γ which has at
most rank r. So, in the case of maximal rank r, we consider as formal
counterpart of Kγ the field Kr endowed with the derivation determined by
X (see Example 2.8).

2. As cited before, one can take any finite rank differential subfield of
the field of well-ordered transseries closed under real powers. For instance,
take the field of generalized series R((Γ)) with Γ = {log(x), x, exp(x)}R, the
group of words in t1 = exp(−x), t2 = 1/x and t3 = 1/ log(x) with real
exponents, the usual comparison relations and derivation. Thus t′1 = −t1,
t′2 = −t22 and t′3 = −t2t

2
3.
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The following Puiseux type result is obtained as an immediate corollary
of our Theorem 2.14.

Theorem 1.2. — Given a differential equation F (y) = 0 as in (1.2), the

support of any solution y0 ∈ Kr such that v(y
(i)
0 ) > 0 for any i = 0, . . . , n,

is obtained by finitely many elementary transformations from the supports
of F and t′k/tk, k = 1, . . . , r.

The reader will find the necessary precisions in Definition 2.2 and Nota-
tion 2.1. We emphasize that the t′k/tk’s do not depend on the equation (1.2),
but only on the differential field Kr. Our notion of “being deduced by finitely
many elementary transformations” generalizes those of “being grid-based”
and “belonging to a lattice” to the setting of well-ordered supports (Re-
mark 2.15). Moreover, beyond this Puiseux type result, our Theorem 2.14
shows a dichotomy result identical to the one for pseudo-Cauchy sequences
in valuation theory [Kuh00, Section 0.1]. In the case of non resolution of the
equation, there is a stabilization of the valuation. This situation is also anal-
ogous to the one of monomialization of sub-analytic differential equations in

[MR06]. The assumption that v(y
(i)
0 ) > 0 for any i = 0, . . . , n, means that

y0 and all its derivatives are infinitesimal. In other words, we can say that
the solution is supposed to “tend to (0, . . . , 0) ∈ Rn+1”, this point being
possibly a singular point for the equation (1.2). We intend to obtain the
same result for arbitrary generalized series solutions, i.e. possibly non in-
finitesimal. In the Section 4.3, we show that such is the case for polynomial
differential equations: see Theorem 4.17.

Our article is organized into four parts. In Section 2, we state the main
Theorem 2.14. Since we are working with formal equations as in (1.2) rather
than with polynomial ones, there may be some restrictions on the opera-
tions we can make. In Section 3, we check whether the differential series
F (y, . . . , y(n)) we consider can be evaluated at some series y0 ∈ Kr. In do-
ing so, we also characterize the support of the obtained generalized series

F (y0, . . . , y
(n)
0 ). Section 4 deals with three transformations of differential

series. Two of them, namely additive conjugations and multiplicative conju-
gations, are the ones used already in [vdH97] and [vdH06]. The third ones,
namely changes of derivations, are not needed in van der Hoeven’s work since
he uses shiftings corresponding to the logarithmic-exponential structure. A
first application of these transformations, in Section 4.3, is the reduction
of the case of polynomial differential equations with arbitrary generalized
series solutions, to our main Theorem 2.14. Then we use them to prove this
Theorem 2.14 in Section 5. This proof, as is the case for the cited results,
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uses an inductive method, evaluating the differential series F (y, . . . , y(n))
at some longer and longer initial parts of a solution. But all the proofs of
the above cited differential results, rely on an adaptation of the classical
Newton polygonal method to the differential case: the Newton-Fine polyg-
onal method [Fin89]. Instead of such a polygonal representation, we use a
valuative approach and express directly the relation between the exponents
of the solution and those of the coefficients of the equation.

Acknowledgment. — The major part of this work was done while the
author was a doctoral fellow of J.-P. Rolin at the University of Bourgogne
[Mat07]. Another version of this article was written while the author was
a visiting postdoctoral fellow at the University of Saskatchewan, and was
partially supported by Salma Kuhlmann’s NSERC Discovery Grant. The
author thanks gratefully Salma Kuhlmann for providing many good advises
and interesting comments on this work. He thanks also the referee from the
Annales de la Faculté des Sciences de Toulouse for his careful reading and
interesting comments.

2. The main result

2.1. The Hahn field of rank r

For any positive integer r, the Hahn group of rank r is the product

of r copies of R ordered lexicographically, say
−→R r

. By Hahn’s embedding
theorem in [Hah07], any totally ordered group Γ with finite rank (i.e. with a
finite number of Archimedean classes) embeds in such a Hahn group. From

now on, we fix a positive integer r, and Γ =
−→R r

, which is called the group of
exponents of the generalized series. We write 0 its neutral element (0, . . . , 0).
Note that we consider the whole Hahn group instead of one of its subgroups,
because the resolution of the differential equations leads to adjoint new real
exponents to the support of the solutions with respect to the supports of the
coefficients of the equation (see Definition 2.13 and Theorem 2.14 below).

We denote by Kr the corresponding field of generalized series with real
coefficients and by K≺r (respectively K0

r, K�r , K�r ) the subset of Kr given by
{a ∈ Kr | v(a) > 0 (respectively = 0, < 0, � 0)}. The symbols ≺,� and
� denote the usual dominance relations for functions (tα ≺ tβ ⇔ α > β).
With this notation, K�r is the valuation ring of K and K≺r its maximal ideal.
Given α, β ∈ Γ\{0}, we write α� β if |α|/k > k|β| > 0 for any k ∈ N. The
corresponding symbol for the series is ��. We require the coefficients of the
series to be real so that they will be compatible with the real exponents of
the monomials, applying the Leibniz rule (HD0) below. We will also use the
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Mickaël Matusinski

notion of leading term of a series a, namely δ(a) = av(a)t
v(a) for any non

zero a ∈ Kr, and the classical equivalence relations

a � b⇔ v(a) = v(b) and a ∼ b⇔ v(a− b) > min{v(a), v(b)}.

From now on, we also use another notation for elements of Kr. For any
i ∈ {1, . . . , r}, we set tk = tek , where ek = (0, . . . , 1, . . . , 0), with 1 in the
kth position. So any element a ∈ Kr can be written

a =
∑

α∈Γ

aαt
α

=
∑

α1∈R
tα1
1


 ∑

α2∈Iα1

tα2
2


· · ·


 ∑

αr∈Iα1,...,αr−1

aαt
αr
r


 · · ·





 ,

where the Iα1,...,αk ’s are subsets of R. Thus, any element a of K≺r can be
written

a =
∑

αr>0 a(0,...,0,αr)t
αr
r +

∑
αr−1>0 t

αr−1

r−1

(∑
αr∈Ir a(0,...,0,αr−1,αr)t

αr
r

)

+ · · ·
= ar + · · ·+ a1,

with v(ai) � v(aj) for any i, j ∈ {1, . . . , r}, i < j, whenever aj �= 0.

Notation 2.1. — For any k ∈ {1, . . . , r}, we denote by Kr,k the additive
subgroup of K≺r , of elements

ak =∑
αk>0 tαkk

(∑
αk+1∈Iαk

t
αk+1

k+1

(
· · ·

(∑
αr∈Iαk,...,αr−1

a(0,...,0,αk,...,αr)t
αr
r

)
· · ·

))
,

Note that K≺r = Kr,r ⊕ · · · ⊕Kr,1 with 0 < v(K∗r,r) � · · · � v(K∗r,1).

2.2. Endowing the series with a Hardy type derivation

We suppose from now on that Kr is endowed with a derivation D0 as
follows:

Definition 2.2. — We say that a map D0 : Kr → Kr, a �→ a′ with
t′k �= 0 for any k = 1, . . . , r, is a Hardy type derivation if the following
conditions are satisfied:

(HD0) ∀α ∈ Γ, D0(t
α) = (tα)′ = (tα1

1 · · · tαrr )′ = tα(α1t
′
1/t1+· · ·+αrt

′
r/tr);
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(HD1) for any a =
∑

α∈Γ aαt
α in Kr, D0(a) = a′ =

∑
aα(tα)′.

For any a, b ∈ Kr with v(a), v(b) �= 0,

(HD2) L’Hospital’s rule : v(a) � v(b) ⇔ v(a′) � v(b′);

(HD3) Compatibility with the logarithmic derivatives :
|v(a)| � |v(b)| > 0 ⇒ v(a′/a) � v(b′/b). Moreover, v(a) � v(b)
⇔ v(a′/a) < v(b′/b).

For any k ∈ {1, . . . , r}, we denote δ(t′k) = Tkt
τ(k)

, dk := tτ
(k)

/tk.

Remark 2.3. — Such a Hardy type derivation D0 is a derivation in the
usual sense, i.e. for any a, b ∈ K, (a + b)′ = a′ + b′ and (ab)′ = a′b + ab′.
We note also that such a derivation is uniquely determined by its restric-
tion to the tk’s. Indeed, for any non zero a ∈ Kr, a′ =

∑
aα(tα)′ =

[
∑

(aαα1)t
α]t′1/t1 + · · ·+ [

∑
(aααr)t

α]t′r/tr.

Hypothesis (HD0) is an extension to real exponents of the usual Leibniz
rule that holds for rational exponents for any derivation. Likewise, Hypoth-
esis (HD1) is an extension of the linearity property for derivations. Thus D0

is a strong derivation in the sense of van der Hoeven [vdH06, Section 5.1].

The valuation v is a differential valuation in the sense of Rosenlicht
[Ros80]. Moreover, (HD3) is an additional property that holds in Hardy
fields [Ros83, Propositions 3 and 4] as well as in pre-H-fields [AvdD05,
Lemma 3.5]. Otherwise we are in the case that Rosenlicht calls a Hardy type
valuation [Ros81]. To obtain a structure of H-field [AvdD05], it suffices to
endow Kr with the ordering associated to the notion of leading coefficient,
and to require that for any k, t′k > 0, i.e. Tk > 0.

In our context, the hypotheses (HD2) and (HD3) can be substituted by
their reduction to the ti, i = 1, . . . , r:

(HD2’) for all k = 1, . . . , r − 1, v(t′k) � v(t′k+1);

(HD3’) for all k = 1, . . . , r − 1, v(t′k/tk) < v(t′k+1/tk+1).

Corollary 2.4. — Supposing that (HD0) and (HD1) hold, we have:

(HD2′) ∧ (HD3′) ⇔ (HD2) ∧ (HD3)

Proof. — By (HD1), to prove l’Hospital’s rule, it suffices to check it for
monomials. Thus, consider tα, tβ with α � β. By (HD0), (tα)′ = tα(αkt

′
i/ti+
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· · · + αrt
′
r/tr) and (tβ)′ = tβ(βjt

′
j/tj + · · · + αrt

′
r/tr) where α = (0, . . . , 0,

αi, . . . , αr) and β = (0, . . . , 0, βj , . . . , βr). Using (HD2’) and (HD3’), it is a
routine to verify that v((tα)′) = α + v(di) � v((tβ)′) = β + v(dj).

Consider now a, b ∈ Kr such that |v(a)| = α � |v(b)| = β > 0. Suppose
that α = (0, . . . , 0, αi, · · · , αr) and β = (0, . . . , 0, βj , . . . , βr). We have that
v(a′) = α + v(di) and v(b′) = β + v(dj). So, v(a′/a) = di and v(b′/b) = dj .
The Property (HD3) therefore follows from (HD3’). �

Corollary 2.5. — The field of constants of D0 is R ⊂ Kr.

Proof. — If there was a non constant series a with a′ = 0, then by (HD2),
this would imply that there exists a non constant monomial m with deriva-
tive 0. Then, taking any other monomial m̃ with non zero derivative, we
would have either v(m̃) < v(m) or −v(m̃) < v(m), but v(m′) = ∞ <
v((m̃±)l′). This contradicts (HD2). �

In [KM10], we develop these ideas in greater details for more general
series fields. To conclude this section, we give some key properties of the
values v(t′k) = τ (k).

Notation 2.6. — For k = 1, . . . , r, whenever v(dk) �= 0, we write

v(dk) = θ(k) = (0, . . . , 0, θ
(k)

k̃
, . . . , θ

(k)
r ) where θ

(k)

k̃
�= 0.

Proposition 2.7. — For any k > l, there exists m ∈ {l+1, . . . , r} such
that:

v(dk/dl) = (0, . . . , 0, θ
(k)
m − θ

(l)
m , . . . , θ

(k)
r − θ

(l)
r ) with θ

(k)
m − θ

(l)
m > 0.

Proof. — Let k ∈ {1, ..., r} be given. We show that:

• for any i = 1 · · · k − 1, τ
(k+1)
i = τ

(k)
i ;

• τ
(k+1)
k = τ

(k)
k − 1 ;

• (0, . . . , 0, τ
(k+1)
k+1 − 1, . . . , τ

(k+1)
r ) > (0, . . . , 0, τ

(k)
k+1, . . . , τ

(k)
r ).

From Definition 2.2, v(t′k) > v(t′k+1) and v(dk) < v(dk+1). So

(τ
(k+1)
1 − τ

(k)
1 , . . . , τ

(k+1)
k − τ

(k)
k , τ

(k+1)
k+1 − τ

(k)
k+1, . . . , τ

(k+1)
r − τ

(k)
r ) < 0

and

(τ
(k+1)
1 − τ

(k)
1 , . . . , τ

(k+1)
k − τ

(k)
k +1, τ

(k+1)
k+1 −1− τ

(k)
k+1, . . . , τ

(k+1)
r − τ

(k)
r ) > 0.
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Thus, for any i = 1 · · · k−1, τ
(k+1)
i = τ

(k)
i and τ

(k)
k � τ

(k+1)
k � τ

(k)
k −1. But,

for all αk, βk+1 ∈ R∗, (tαkk )′ = αkt
αk
k t′k/tk and (t

βk+1

k+1 )′ = βk+1t
βk+1

k+1 t′k+1/tk+1.

Moreover, for any αk > 0, v(tαkk ) > v(t
βk+1

k+1 ) which implies that v((tαkk )′) >

v((t
βk+1

k+1 )′). So for any αk > 0 and βk+1 ∈ R∗, we obtain that

(0, . . . , 0, αk,−βk+1, 0, . . . , 0) > v(dk+1/dk) =

(0, . . . , 0, τ
(k+1)
k − τ

(k)
k + 1, τ

(k+1)
k+1 − 1− τ

(k)
k+1, . . . , τ

(k+1)
r − τ

(k)
r ),

and so

τ
(k+1)
k − τ

(k)
k + 1 � 0 ⇔ τ

(k+1)
k � τ

(k)
k − 1.

Thus τ
(k+1)
k = τ

(k)
k − 1. We conclude recalling that v(dk) < v(dk+1). �

Example 2.8. — Consider a formal vector field X : t′k = Fk(t1, . . . , tr),

k ∈ {1, . . . , r}. For all i ∈ {1, . . . , r}, denote τ (k) = (τ
(k)
1 , . . . , τ

(k)
r ) to be the

least multi-exponent for the lexicographical ordering among those appearing

in the monomials t
τ
(k)
1

1 · · · tτ
(k)
r

r of Fk(t1, . . . , tr). Proposition 2.7 gives that the
corresponding field of series Kr can be endowed with a Hardy type derivation

if and only if the matrix (τ
(k)
j )1�j,k�r is such that:

– for any j = 1, · · · , k − 1, τ
(k+1)
j = τ

(k)
j ;

– τ
(k+1)
k = τ

(k)
k − 1;

– (0, . . . , 0, τ
(k+1)
k+1 − 1, . . . , τ

(k+1)
r ) >lex (0, . . . , 0, τ

(k)
k+1, . . . , τ

(k)
r ).

It may be interesting to classify, up to a change of coordinates, the vector
fields which verify such a property.

Corollary 2.9. — With the Notation 2.6, the following dichotomy holds:

– either there exists k ∈ {1, . . . , r} such that k̃ = k. Then such k is
unique. We denote it by k0. Moreover, for any k < k0, k̃ > k, and
for any k � k0, k̃ = k0 and θ(k), θ(k0) have same leading exponent,

i.e. θ
(k)

k̃
= θ

(k0)
k0

;

– or for any k ∈ {1, . . . , r− 1}, k̃ > k, and θ(r) = 0. By convention, we
set k0 = r.
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Corollary 2.10. — v((tα)′) = 0 if and only if α = −v(dk0
).

Corollary 2.11. — Consider k ∈ {1, . . . , r}. If v(dk) = 0, then

d
(i)
k = 0 for any i ∈ N∗. If not, then we have:

1. if k � k0, then v(d
(i)
k ) = v(dk) + iv(dk0) for any i ∈ N;

2. if k < k0, then:

(a) if k̃ < k0, then v(d
(i)
k ) = v(dk) + iv(dk̃) for any i ∈ N∗;

(b) if k̃ > k0, then v(d
(i)
k ) = v(dk) + v(dk̃) + (i − 1)v(dk0

) for any
i ∈ N∗;

(c) if k̃ = k0, then:

– either ∃j ∈ N∗, θ
(k)
k0

= −jθ
(k0)
k0

. Then, v(d
(i)
k ) = v(dk) +

iv(dk0
) for any i = 1, . . . , j, and v(d

(i)
k ) = v(dk) + v(dk̂) +

(i− 1)v(dk0) for some k̂ > k0 and any i > j;

– or v(d
(i)
k ) = v(dk) + iv(dk0

) for any i ∈ N∗.

2.3. The main Theorem

To formulate our main theorem, we need the following definitions:

Definition 2.12. — Given a differential series F (y, . . . , y(n)) as in (1.1)
and a non zero generalized series y0 ∈ Kr, we say that:

– the series y0 is compatible with F if the family (cIy
(I)
0 )I∈Nn+1 is

strongly summable (see Definition 3.4). This implies that for any ini-
tial part p of y0, the evaluation of F at p, is well-defined: F (p, . . . , p(n))
∈ Kr. A solution of the corresponding differential equation (1.2) is a

compatible y0 such that F (y0, . . . , y
(n)
0 ) = 0 ∈ Kr;

– the series y0, supposed to be compatible with F , stabilizes on F with
initial part p0 if there exists a proper initial part p0 of y0 such that,
for any longer initial part p of y0 (in particular for p = y0), we have

v(F (p, . . . , p(n))) = v(F (p0, . . . , p
(n)
0 )) �= v(0).

Note that, in the case where F is a differential polynomial, any y0 ∈ Kr is
compatible with it.

This notion of stabilization is identical to that of monomialization of
sub-analytic differential equations proved in [MR06].
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Definition 2.13. — Given two well-ordered subsets X1 and X2 of Γ�0,
elements α > 0 and β of Γ, we call elementary transformations:

– the sum of two sets: X1 + X2 = {ξ1 + ξ2 | ξ1 ∈ X1, ξ2 ∈ X2};

– the generation of the additive semi-group:
〈X1〉 = {k1ξ1 + · · ·+ kqξq | ki ∈ N, ξi ∈ X1, q ∈ N};

– the addition of a new generator: X1 + Nα;

– the negative translation by β: (X1)�β − β = {α ∈ X1 | α � β} − β.

Theorem 2.14. — Given a differential series F (y, . . . , y(n)) as in (1.1)

and a series y0 ∈ Kr with v(y
(i)
0 ) > 0 for any i = 0, . . . , n (so, in particular,

y0 is compatible with F : see Proposition 3.6), there exists a well-ordered
subset R of Γ>0 obtained from Supp F and Supp t′k/tk, k = 1, . . . , r, by a
finite number of elementary transformations such that:

– either Supp y0 ⊆ R;

– or the series y0 stabilizes on F with initial part p0 and Supp p0 ⊆ R.
In this case, y0 can not be a solution of the corresponding differential
equation F (y) = 0.

As an immediate corollary, we obtain Theorem 1.2.

It can happen that y0 does not stabilize on F while also F (y0) �= 0 (for
instance, consider x near 0 in R>0, the equation y−∑

k∈N xk+exp(−1/x) =

0 and the series y0 =
∑

k∈N xk with the usual valuation).

Remark 2.15. — We can deduce from the theorem more particular re-
sults in the case that the supports are assumed to be grid-based or included
in a lattice of Γ�0. For instance, suppose that the supports of the equation
and of t′k/tk, k = 1, . . . , r, are included in some lattice. It suffices to show
that applying each elementary transformation in Definition 2.13 to some
lattice again produces a lattice. For the three first transformations, it is a
consequence of Proposition 2.1 and Exercise 2.1 in [vdH06]. For the fourth
one, namely the negative translation, we prove the following claim:

Claim. — Let l ∈ N∗, λk ∈ Γ�0 for k ∈ {1, . . . , l}, and Λ = 〈λ1, . . . , λr〉
be the corresponding lattice. Then, for any β ∈ Γ, Λ�β − β, the negative
translation by β of Λ, is included in some lattice 〈ν1, . . . , νm〉.
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Proof. — We proceed by induction on l, the number of generators of
Λ. If l = 1, we denote k0 := min{k ∈ N | kλ1 � β}. Any element α of
Λ�β − β = 〈λ1〉�β − β can be written kλ1 − β with k ∈ N and kλ1 � β.
Thus α = (k− k0)λ1 + (k0λ1 −α). Then we set ν1 = λ1 and ν2 = k0λ1 − β.

If l � 2, we suppose that the lemma holds for lattices generated by at
most l − 1 elements. We consider a lattice Λ = 〈λ1, . . . λl〉. Let k0 be the
least natural number k such that kλl � β. Any element α of 〈Λ〉�β − β can

be written as
∑l−1

i=1 kiλi + klλl − β. If kl � k0, then

α =
∑l−1

i=1 kiλi + (kl − k0)λl + k0λl − β.

So α belongs to 〈λ1, . . . , λl−1, λl, k0λl − β〉. If kl < k0, then α belongs to
a set 〈λ1, . . . , λl−1〉�(β−klλl) − (β − klλl) to which we apply the induction

hypothesis. It follows that α belongs to some lattice Λ̃kl . Then

〈Λ〉�β − β ⊂ (〈λ1, . . . , λl−1, λl, k0λl − β〉+
∑

kl<k0
Λ̃kl).

�

3. Differential series

3.1. Introducing new derivations

From D0 we build r other derivations corresponding to the r Archimedean
classes of the value group of Kr.

Definition 3.1. — For any k ∈ {1, . . . , r}, we set Dk(y) = y′/dk where
dk is as in Definition 2.2.

Proposition 3.2. — For any k ∈ {1, . . . , r}, Dk is a Hardy type deriva-
tion on Kr such that, for any monomial tµ = tµkk · · · tµrr in Kr,k, we have

Di
k(t

µk
k · · · tµrr ) ∼ µi

kt
µk
k · · · tµrr .

Proof. — The derivations Dk, k = 1, . . . , r inherit the properties of D0

(see Definition 2.2). Moreover, by (HD0) for D0, we deduce that for any
µ = (0, . . . , 0, µk, . . . , µr),

(tµ)′ = tµ(µkt
′
k/tk + · · ·+ µrt

′
r/tr) ∼ tµµkt

′
k/tk,

and so Dk(t
µ) ∼ µkt

µ. �

– 258 –



Diff. Puiseux Theo. in generalized series fields of finite rank

For our proof of the Theorem 2.14, we will work with differential equa-
tions F (y) = 0 as in (1.2), but using as derivation some of these Dk,
k = 1, . . . , r, instead of the initial derivation D0. For any k ∈ {1, . . . , r}, for
any I ∈ Nn+1, we denote y(I)k = yi0(Dky)i1 · · · (Dn

k y)in . Let the following
non trivial differential series

F (y) = F (y, . . . ,Dn
k y) =

∑

I∈Nn+1

cIy
(I)k ∈ Kr[[y,Dky, . . . ,D

n
k y]] \ {0}.

(3.3)
of arbitrary fixed order n ∈ N of differentiation, with coefficients in Kr and
with well-ordered support Supp F = ∪I∈Nn+1Supp cI , be given. Then the
corresponding differential equation is:

F (y, . . . ,Dn
k y) = 0 (3.4)

The problem of checking whether a change of derivation from an equation
as in (1.2) to an equation as in (3.4) is well-defined, is the object of the
Section 4.2.

Proposition 3.3. — Let a non zero series y0 ∈ Kr and k ∈ {1, . . . , r}
be given. If v(y0) > 0, then v(Di

k(y0)) > 0 for all i ∈ N.

Proof. — We denote v(y0) = µ = (0, . . . , 0, µl, . . . , µr) for some
l ∈ {1, . . . , r} with µl �= 0. For the case l = k, the result follows from
Proposition 3.2.

For the case k < l, we show by induction on i that for any i ∈ {0, . . . , n},

v(Di
ky0) = (0, . . . , 0, βki , . . . , βr)

for some ki > k and βki > 0. If i = 0,

v(y0) = (0, . . . , 0, µl, . . . , µr)

with l > k and µl > 0. Subsequently, we suppose that

v(Di
ky0) = (0, . . . , 0, βki , . . . , βr)

with ki > k and βki > 0. But

Di+1
k y0 = Dk(D

i
ky0) = (dki/dk)Dki(D

i
ky0) ∼ βkiD

i
ky0dki/dk.
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So v(Di+1
k y0) = v(Di

ky0) + v(dki/dk) and from Lemma 2.7, v(dki/dk) > 0
with the expected property.

For the case k > l, we show that i ∈ {0, . . . , n}, Di
ky0 ∼ µi

ly0(dl/dk)
i.

We suppose that Di
ky0 ∼ µi

ly0(dl/dk)
i for some i ∈ {0, . . . , n}. So

v(Di
ky0) = (0, . . . , 0, µl, µl+1 + i(θ

(l)
l+1 − θ

(l)
l+1), . . .),

which implies that

Di+1
k y0 = Dk(D

i
ky0) ∼ Dk(µ

i
ly0(dl/dk)

i) ∼ Dl(µ
i
ly0(dl/dk)

i)dl/dk ∼
µi+1
l y0(dl/dk)

i+1.

So v(Di
ky0) and v(y0) have the same sign. �

3.2. Dealing with formal equations rather than polynomial ones

There is an additional difficulty in dealing with a formal differential
equation F (y) = 0 as in (1.2) rather than only a polynomial one: we have

to verify when the evaluation F (y0, . . . , y
(n)
0 ) of the differential series F at

some series y0 is well-defined. We state without proof the following easy
generalization of a classical property [Fuc63, Ch.VIII,Sec.5,Lemma].

Definition 3.4. — Given an index set I, a family F = (ai)i∈I ∈ KI
r is

said to be strongly summable if:

– Supp F :=
⋃

i∈I Supp ai is a well-ordered subset of Γ;

– for all α ∈ Supp F , the set {i ∈ I | α ∈ Supp ai} is finite.

Lemma 3.5. — Given a strongly summable family (ai)i∈I ∈ KI
r, then∑

i∈I ai is well defined and, if we set ai =
∑

α∈Supp ai
ai,αt

α for all i ∈ I,
then

∑
i∈I ai =

∑
α∈Γ(

∑
i∈I ai,α)tα.

Proposition 3.6. — Given a differential series F (y, . . . , y(n)) and a

generalized series y0 ∈ K≺r with v(y
(i)
0 ) > 0 for all i ∈ {0, . . . , n}, then

y0 is compatible with F (see Definition 2.12).

Proof. — We proceed by induction on n, considering an arbitrary y0 ∈
K≺r with v(y

(i)
0 ) > 0 for all i ∈ {0, . . . , n}. If n = 0, we show that the fam-

ily (ciy
i
0)i∈N is strongly summable. On the one hand,

⋃
i∈N Supp (ciy

i
0) ⊂
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⋃
i∈N Supp ci + 〈Supp y0〉. By hypothesis

⋃
i∈N Supp ci = Supp F and

Supp y0 are well-ordered. Moreover Supp y0 ⊂ Γ>0, so 〈Supp y0〉 is also
well-ordered. On the other hand, for any α ∈ Γ and m ∈ N, the set of
(γ(m), j1α1 + · · ·+ jlαl) ∈ Supp cm × 〈Supp y0〉 such that j1 + · · ·+ jl = m
and γ(m) + j1α1 + · · ·+ jlαl = α is clearly finite.

If n > 0, it suffices to consider a differential series F (y, . . . , y(n)) as an
element of Kr[[y, . . . , y

(n−1)]][[y(n)]] and then apply the induction hypothesis
and the preceding lemma. �

Corollary 3.7. — Given a differential series F (y, . . . ,Dn
k y) as in (3.3),

any series y0 ∈ K≺r is compatible with it.

This last result is an immediate consequence of the Proposition 3.3. The
next one follows from the Corollary 2.9:

Corollary 3.8. — We consider k0 as defined in the Corollary 2.9.

Given a generalized series y0 ∈ Kr, v(y
(i)
0 ) > 0 for all i ∈ {0, . . . , n} if

and only if:
v(y0) > max{0,−nv(dk0

)}. (3.5)

Remark 3.9. —

– Note that in the case where v(dk0
) < 0, if y0 ∈ Kr is such that

v(y0) > −nv(dk0
) as in the preceding corollary, then its analysis as

in the Notation 2.1, spells y0 = y0,k + · · ·+ y0,r with k � k0.

– This condition (3.5) generalizes the condition ρi > n used in [Can93]
for the rational exponents ρi, i ∈ N of the series solution considered.

3.3. Controlling the supports

The purpose of this section is to understand the support of the evaluation
of a differential series F as in (1.1) or (3.3) at some series
y0 =

∑
µ∈Supp y0

mµt
µ ∈ Kr.

Notation 3.10. — For any multi-indexes I = (i0, . . . , in), J = (j0, . . . , jn)
∈ Nn+1, we set |I| = i0 + · · · + in, ‖I‖ = 1i1 + 2i2 + · · · + nin and
I! = i0! i1! · · · in!;
• I + J , I − J , denote respectively the termwise addition, subtraction.
• We will use the classical partial ordering on Nn+1:

I � J ⇔ il � jl for any l = 0, . . . , n.
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• F (I) = ∂|I|F/[∂yi0 · · · (∂y(n))in ];
• For any initial segment S of Supp y0, we denote by pS , or simply by p
if the context is clear, the initial part of y0 with support S, i.e. p = pS =∑

µ∈S mµt
µ.

• For any k = 0, . . . , r, p(I)k = pi0Dkp
i1 · · ·Dn

kp
in . (Recall that D0 is the

original derivation.) If Dk is known from the context, we denote simply
p(I)k = p(I);

• f
(I)
p = F (I)(p) and fp = F (p);

• v
(I)
p = v(F (I)(p)) and vp = v(F (p));

• For any proper initial segment S � Supp y0 and any successor segment S̃
to S in Supp y0 (that is to say any initial segment of Supp y0\S), we call
p̃ = pS̃ a successor part to p = pS in y0. By the Taylor expansion formula,
we have:

fp+p̃ =
∑

I∈Nn+1

f
(I)
p

I!
p̃(I). (3.6)

Now we introduce the following well-ordered subsets of Γ>0 useful for
the description of the supports of the differential series.

Definition 3.11. — For all k ∈ {1, . . . , r}, we define:

Tk =

n∑

i=1

r∑

l=k

〈
Supp Di

ktl/tl
〉
.

Lemma 3.12. — For any k ∈ {1 . . . , r}, Tk is a well-ordered subset of
Γ>0, obtained from Supp t′k/tk, k = 1, . . . , r, by finitely many elementary
transformations.

Proof. — It follows from Definition 2.2 and the proof of Proposition 3.3,
that for all k � l ∈ {1, . . . , r} and i ∈ {1, . . . , n}, v(Di

ktl/tl) > 0. So the
Tk’s are well-ordered subsets of Γ>0.

From Remark 2.3, we deduce that, for any series a ∈ Kr and any k =
1, . . . , r:

Dk(a) = a′/dk
= [

∑
α(aαα1)t

α]t′1/(t1dk) + · · ·+ [
∑

α(aααr)t
α]t′r/(trdk).

Thus, Supp Dk(a) ⊂ (
∑r

l=1 Supp a + Supp t′l/tl)− dk, and therefore is ob-
tained from Supp a and Supp t′l/tl, l = 1, . . . , r, by finitely many elementary
transformations. �
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Proposition 3.13. —

1. Let k � l ∈ {1, . . . , r}, a differential series F (y,Dly, . . . ,D
n
l y), and

y0,k ∈ Kr,k be given. Then:

Supp (F (y0,k, . . . , D
n
l y0,k)) ⊂ Supp F + Tl + 〈Supp y0,k〉.

2. Consider a differential series F (y, . . . , y(n)), and a compatible series
y0,k ∈ Kr,k for some k ∈ {1, . . . , r}. Then, with the notations of
Corollary 2.9:

(a) if k < k0, then we have:

Supp (F (y0,k, . . . , y
(n)
0,k )) ⊂

Supp F + Tk + 〈⋃n
i=0 Supp y0,k + iv(dk)〉;

(b) if k � k0, then we have:

Supp (F (y0,k, . . . , y
(n)
0,k )) ⊂

Supp F + Tk0
+ 〈⋃n

i=0 Supp y0,k + iv(dk0
)〉

and

Supp (F (y0,k, . . . , y
(n)
0,k )) ⊂

(
⋃

I Supp cI + ‖I‖v(dk0
) + Tk0

+ 〈Supp y0,k〉.

Proof. — We treat the two cases at a time, by taking l ∈ {0, . . . , r}.
For any I ∈ Nn+1, we have Supp (cIy

(I)
0,k) ⊂ Supp cI + Supp yi00,k + . . . +

Supp (Dn
l y0,k)

in . But, for any element µ = (0, . . . , 0, µk, . . . , µr) with µk �= 0
of Γ, we have:

Dl(t
µ) = tµ(µkDltk/tk + · · ·+ µrDltr/tr).

By induction, one can deduce the following intermediate result (for a de-
tailed proof, see [Mat07, Lemma 4.2.12]):

Lemma 3.14. — Let k ∈ {1, . . . , r}, l ∈ {0, . . . , r}, and i ∈ {1, . . . , n}.
Let y0,k ∈ Kr,k. Then

Supp Di
ly0,k ⊂ Supp y0,k +⋃

Supp [(Dltk/tk)
j
(k)
1 · · · (Di

ltk/tk)
j
(k)
i · · · (Dltr/tr)

j
(r)
1 · · · (Di

ltr/tr)
j
(r)
i ]

where the union is taken over
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j
(k)
1 + · · ·+ ij

(k)
i + · · ·+ j

(r)
1 + . . . + ij

(r)
i = i.

In the case where k � l ∈ {1, . . . , r}, we deduce that:

Supp Di
ly0,k ⊂ Supp y0,k + Tk.

Now, we note that, for any series a ∈ K and any j ∈ N∗, Supp aj ⊂
〈Supp a〉. So, for any I ∈ Nn+1:

Supp (cIy
(I)l
0,k ) ⊂ Supp cI + 〈Supp y0,k〉+ Tk.

which implies the case (1).

For the case (2), we show by induction on i that:

Case (a) ∀i = 1, . . . , n ∀j � k, Supp(t
(i)
j )/tj ⊂ Tk + iθ(k);

Case (b) ∀i = 1, . . . , n ∀j � k � k0, Supp(t
(i)
j )/tj ⊂ Tk0

+ iθ(k0).

Indeed, for i = 1, we have t′j = dkDk(tj) = dk0
Dk0

(tj). Suppose that

the property holds for some i = 1, . . . , n − 1. Thus, in the case (a), t
(i)
j =

diktj
∑

m m for some series
∑

m m with support in

i∑

s=1

r∑

p=k

〈Supp Ds
ktp/tp〉,

which is a subset of Tk (see Definition 3.11). Therefore:

t
(i+1)
j = dkDk(t

(i)
j )

= idikDk(dk)tj
∑

m m + di+1
k Dk(tj)

∑
m m + di+1

k tj
∑

m Dk(m)

= idi+1
k tj [θ

(k)

k̃
Dk(tk̃)/tk̃ + · · ·+ θ

(k)
r Dk(tr)/tr]

∑
m m+

di+1
k tjDk(tj)/tj

∑
m m + di+1

k tj
∑

m Dk(m).

Then it suffices to remark that for any k ∈ {1, . . . , r}, for any monomial m
with support in Tk, Dk(m) has also its support in

i+1∑

s=1

r∑

p=k

〈Supp Ds
ktp/tp〉,

also included in Tk.

In the case (b), t
(i)
j = dik0

tj
∑

m m for some series
∑

m m with support
in
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i∑

s=1

r∑

p=k0

〈
Supp Ds

k0
tp/tp

〉
,

which is a subset of Tk0 . Therefore:

t
(i+1)
j = dk0Dk0(t

(i)
j )

= idik0
Dk0

(dk0
)tj

∑
m m + di+1

k0
Dk0

(tj)
∑

m m + di+1
k0

tj
∑

m Dk0
(m)

= idi+1
k0

tj [θ
(k0)
k0

Dk0
(tk0

)/tk0
+ · · ·+ θ

(k0)
r Dk0

(tr)/tr]
∑

m m+

di+1
k0

tjDk0
(tj)/tj

∑
m m + di+1

k0
tj

∑
m Dk0

(m).

The conclusion follows as for the preceding case.

Now, from the Lemma 3.14, we deduce that for any I ∈ Nn+1:

Case (a) Supp(cIy
(I)
0,k) ⊂ Supp cI + ‖I‖θ(k) + Supp y

|I|
0,k + Tk;

Case (b) Supp(cIy
(I)
0,k) ⊂ Supp cI + ‖I‖θ(k0) + Supp y

|I|
0,k + Tk0

.

�

Note that, in the case (2)(a) (k < k0), since k̃ > k (see Corollary 2.9),
v(y0,k) + iθ(k) has same sign as v(y0,k) for any i ∈ N. The following result
provides some criteria of compatibility.

Corollary 3.15. — Let a differential series F (y, . . . , y(n)) as in (1.1)
and a generalized series y0,k ∈ Kr,k be given. The series y0,k is compatible
with F if:

either k < k0

or k � k0 and v(y0,k) > max{0,−nθ(k0)}

or k � k0, θ(k0) < 0, 0 < v(y0,k) � −nθ(k0), and for all but finitely many

I ∈ Nn+1, cI = d
‖I‖
k0

aI for some strongly summable family (aI)I ,
aI ∈ Kr.

3.4. The Weierstrass order of an equation

The following notion is a key one in our proof of Theorem 2.14 in Section
5. It plays a role comparable to the one of Newton degree in the Newton
polygon method [vdH97, Section 2.3.5], [vdH06, Section 8.3.3]. We will need
also to control its evolution when applying the transformations of the equa-
tions described in the next section.
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Definition 3.16 (Weierstrass order). — A differential series F (y) as
in (1.1) or (3.3) has Weierstrass order w ∈ N if:

– for any I ∈ Nn+1, v(cI) � 0;

– there exists I ∈ Nn+1 with |I| = w and v(cI) = 0;

– for any I ∈ Nn+1 with |I| < w, v(cI) > 0.

Given a differential series F , if we divide it by tmin(Supp F ) (min(Supp F
exists since the support of F is well-ordered), we obtain a series with Weier-
strass order equal to the minimum of |I| for multi-indexes I ∈ Nn+1 such
that v(cI) = min(Supp F ). Then, note that the support of the factored
series is equal to Supp F − min(Supp F ), which is the application of an
elementary transformation to Supp F .

So, without loss of generality, we will suppose from now that the differ-
ential series we consider has such a Weierstrass order.

4. Transformations of differential series

4.1. Changes of variable: additive and multiplicative conjugations

In [Mat07], we used these transformations respectively under the name
“shiftings” and “blow-ups”. Then we became aware of, and now we resume
the terminology ”additive and multiplicative conjugations” for the same
kind of transformations, which was introduced by van der Hoeven in [vdH97,
Sections 5.2.2 and 5.2.3] and in [vdH06, Sections 8.2.1 and 8.2.2]. They play
a role in particular in the proof of his Theorem 12.2 cited before.

Definition 4.1. — Given a differential series F (y) as in (1.1) or (3.3),
and some series a ∈ Kr, we call additive conjugation by a the change of
variable y = a + ỹ and we denote the differential series thus obtained:

Fa(ỹ, . . . , D
n
k ỹ) = F (a + ỹ, . . . , Dn

ka + Dn
k ỹ) (k ∈ {0, . . . , r})

Proposition 4.2. —

1. Let k ∈ {1, . . . , r}, a differential series F (y, . . . ,Dn
k y) as in (3.3),

and a ∈ K≺r with a = ak + · · · + a1, be given. The differential series
Fa derived from (3.3) by additive conjugation by a has a well-ordered
support. Moreover:

Supp Fa ⊂ Supp F + Tk + 〈Supp a〉.
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2. Let a differential series F (y, . . . , y(n)) as in (1.1) and a series a ∈ K≺r
with v(a(i)) > 0 for all i = 0, . . . , n, be given. The differential series
Fa derived from (1.1) by additive conjugation by a, has a well-ordered
support. Moreover, if a = al ∈ Kr,l for some l = 1, . . . , r, then we
consider the following cases:

(a) if l < k0, then we have:

Supp Fa ⊂ Supp F + Tl + 〈⋃n
i=0 Supp a + iv(dl)〉;

(b) if l � k0, then we have:

Supp Fa ⊂ Supp F + Tk0
+ 〈⋃n

i=0 Supp a + iv(dk0
)〉

and

Supp Fa ⊂ (
⋃

I Supp cI + ‖I‖v(dk0
)) + Tk0

+ 〈Supp a〉.

Proof. — By the additive conjugation y = ỹ+a, we have in the two cases
of the proposition Di

ky = Di
kỹ + Di

ka for any i ∈ {1, . . . , n}, k ∈ {0, . . . , r}.
By the Taylor expansion formula 3.6, we have:

Fa(ỹ, . . . , D
n
k ỹ) = F (ỹ + a, . . . ,Dn

k ỹ + Dna) =
∑

J∈Nn+1(f
(J)
a /J !)ỹ(J).

Note that F (J) =
∑

I�J cIy
(I−J), which implies that Supp F (J) ⊂ Supp F

for any J . By hypothesis, a is compatible with any differential series f (J),

J ∈ Nn+1: f
(J)
a = F (J)(a, . . . ,Dn

ka) is a well-defined element of Kr. More-
over, from Proposition 3.13, we deduce that for any J ∈ Nn+1:

1. if k �= 0, then Supp f
(J)
a ⊂ Supp F + Tk + 〈Supp a〉;

2. if k = 0, then:

(a) if l < k0, then: Supp f
(J)
a ⊂ Supp F (J)+Tk+〈

⋃n
i=0 Supp a + iv(dk)〉

(b) if l � k0, then: Supp f
(J)
a ⊂ Supp F (J)+Tk0+〈

⋃n
i=0 Supp a + iv(dk0)〉

and also
Supp f

(J)
a ⊂ (

⋃
cI 
=0, I�J Supp cI + ‖I − J‖v(dk0

)) + Tk0
+

〈Supp a〉.

So, we deduce for Supp Fa = ∪JSupp f
(J)
a , the desired properties. �

Remark 4.3. — Consider a differential series F (y) as in (1.1) or (3.3),

and a series y0 ∈ K≺r such that v(y
(i)
0 ) > 0 for any i = 0, . . . , n. If we denote

F =
∑

I∈Nn+1 cIy
(I) and Fa =

∑
I∈Nn+1 c′I ỹ

(I), we have cI = F (I)(0)/I!

and c′I = f
(I)
a /I!. So, v(cI) = 0 if and only if v(c′I) = 0, and for any such

I’s, δ(cI) = δ(c′I). Therefore, the differential series F and Fa have same
Weierstrass order.
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In the sequel, we will use anti-lexicographical ordering for multi-indexes: for
any I = (i0, . . . , in) and any J = (j0, . . . , jn) ∈ Nn+1,

I <antilex J ⇔ Supp (I − J) �= ∅ and ik < jk where
k = max(Supp (I − J)).

Definition 4.4. — Let m = tλ, λ ∈ Γ, be a monic monomial. We call
multiplicative conjugation by m the change of variable y = mz.

Proposition 4.5. —

1. Let a differential series F (y, . . . ,Dn
k y) as in (3.3) and a monic mono-

mial m = tλ with λ = (0, . . . , 0, λl, . . . , λr), λk > 0, for some l =
k, . . . , r, be given. Performing the multiplicative conjugation y = mz,
we obtain a differential series

F̂ (z, . . . ,Dn
k z) =

∑
J∈Nn+1 ĉJz

(J)k

with well-ordered support such that:

Supp F̂ ⊂ Supp F + Nλ + Tk.

2. Let a differential series F (y, . . . , y(n)) as in (1.1) and a monic mono-
mial m = tλ with λ = (0, . . . , 0, λl, . . . , λr), λ �= 0 be given. Perform-
ing the multiplicative conjugation y = mz, we obtain a differential
series

F̂ (z, . . . , z(n)) =
∑

J∈Nn+1 ĉJz
(J)

such that:

(a) if l < k0, then we have:

Supp F̂ ⊂ Supp F + Tl +
∑n

i=0 N(λ + iv(dl));

(b) if l � k0, then we have:

Supp F̂ ⊂ Supp F + Tk0 +
∑n

i=0 N(λ + iv(dk0))

and

Supp F̂ ⊂ (
⋃

cI 
=0

⋃
0�j�‖I‖ Supp cI + |I|λ + jv(dk0)) + Tk0 .

If m is strongly compatible with F , then F̂ has well-ordered support.

Proof. — We treat the two cases at a time, taking k = 0, . . . , r. For any
j = 0, . . . , n, Dj

ky =
∑j

i=0 Ci
jD

j−i
k mDi

kz. So, for any I ∈ Nn+1,
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y(I) = (mz)i0(Dkmz + mDkz)
i1 · · · (∑n

i=0 Ci
nD

n−i
k mDi

kz)
in =∑

lJ,Km(K)z(J)

where lJ,K ∈ N∗ and the sum is taken over J,K ∈ Nn+1 such that |J | =
|K| = |I|, ‖K‖+ ‖J‖ = ‖I‖ and J,K �antilex I. We deduce that:

Lemma 4.6. — For any J ∈ Nn+1, ĉJ =
∑

kI,KcIm
(K) where kI,K ∈ N∗

and the sum is taken over the I,K ∈ Nn+1 such that |I| = |J | = |K|,
‖I‖ = ‖K‖+ ‖J‖ and J,K �antilex I.

Therefore, we have:

Supp ĉJ =
⋃

I,J,K Supp cI + Suppm(K).

Then the result is obtained as for the proof of the Proposition 3.13. �

Remark 4.7. — In the case where l = k ∈ {1, . . . , r} and λk > 0, we have

for any multi-index K, m(K) ∼ λ
‖K‖
l m|K|. Then, by Lemma 4.6, we obtain

that

ĉJ =
∑

kI,JcIλ
‖K‖
l m|K| =

∑
kI,Jλ

‖K‖
l cIm

|I|.

It means that a term Di
ky generates by multiplicative conjugation an analo-

gous term mDi
kz, plus terms with order of derivation in z lower than i. Fix

l ∈ N and consider the terms cIy
(I) of F with |I| = l (suppose that there

exists at least one). We denote v0 = min{v(cI) | |I| = k}, and

Al = {I ∈ Nn+1 | v(cI) = v0, |I| = l}.

Then the terms cIy
(I) for I ∈ Al provide by multiplicative conjugation

at least one term ĉI0z
(I0) with v(ĉI0) = v0 + lv(M): the one for I0 =

maxanti−lex(Al) (its leading term can not be canceled by any other term).

In particular, for a differential series with Weierstrass order w, we con-
sider Aw the set of multi-indexes I for which v(cI) = 0. Then there exists
a coefficient ĉI0 with |I0| = w and with valuation wv(M). Since for any I
with |I| > w, we have v(ĉI) � (w + 1)v(M) which is bigger than w.v(M),
then, denoting

vmin = min{v(ĉI) | I ∈ Nn+1},

we have vmin � w.v(M). Thus if we divide the new series F̂ by tvmin , we
obtain a series with Weierstrass order ŵ at most equal to w the Weierstrass
order of the initial series F .

– 269 –
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4.2. Changes of derivation

Given a differential series F (y) as in (1.1) or (3.3), denoted equally with
Dk for some k ∈ {0, . . . , r−1}, can we transform it into some F̃k,l(y, . . . ,D

n
l y)

for some l ∈ {k+1, . . . , r} ? To do this, on the one hand we need to express
the transformation, i.e. find formal formulas connecting F and F̃k,l. This
is the purpose of Proposition 4.8. On the other hand, since it may happen
that F̃k,l does not have a well-ordered support, we must check when such a
transformation is well defined (Proposition 4.11). Finally we determine the
support of such a well-defined F̃k,l (Proposition 4.14).

Proposition 4.8. — Let k, l ∈ {0, . . . , r}, we denote m = dl/dk (setting
d0 = 1). We set for any i ∈ {1, . . . , n},

Di
ky = q1,iDly + q2,iD

2
l y + . . . + qi,iD

i
ly

where the multi-sequence (qj,i)j=1,..,i;i=1,..,n is defined by:




q1,1 = m,
q1,i+1 = Dkq1,i, ∀i = 1, · · · , n− 1,
qj+1,i+1 = qj,im + Dkqj+1,i, ∀i = 1, · · · , n− 1, ∀j = 1, · · · , i− 1,
qi+1,i+1 = qi,im, ∀i = 1, · · · , n− 1,

Then we denote F (y, . . . ,Dn
k y) = F̃k,l(y, . . . ,D

n
l y) (note that F̃k,l may

not have a well-ordered support). In particular, q1,i = Di−1
l m and qi,i = mi

for any i ∈ {1, . . . , n}.

Proof. — We proceed by induction on i. If i = 1, we have Dky = y′/dk =
(dl/dk).(y

′/dl) = (dl/dk)Dly. Thus we set q1,1 = m. For the induction, we
suppose that

Di
ky = q1,iDly + q2,iD

2
l y + . . . + qi,iD

i
ly.

Therefore:

Di+1
k y = Dkq1,iDly + q1,iDkDly + . . . + Dkqi,iD

i
ly + qi,iDkD

i
ly

= Dkq1,iDly + q1,i(dl/dk)D
2
l y + . . . + Dkqi,iD

i
ly + qi,i(dl/dk)D

i+1
l y

= Dkq1,iDly + (q1,im + Dkq2,i)D
2
l y + . . . + (qi−1,im + Dkqi,i)D

i
ly

+qi,imDi+1
l y.

The property holds at the step i + 1. �

Lemma 4.9. — For any i ∈ {1, . . . , n} and j ∈ {1, . . . , i}, qj,i is a differ-
ential polynomial in m such that qj,i =

∑
qj,i,Im

(I)k ∈ Kr where the sum
is taken over I ∈ Ni with |I| = j and ‖I‖ = i− j.
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Proof. — We proceed by induction on i. If i = 1, q1,1 = m and we set
q1,1,(1) = 1. If i = 2, q1,2 = Dkm and q2,2 = m2. So q1,2,(0,1) = q2,2,(2,0) = 1.

For the induction, we suppose that q1,i+1 = Di
km, q1,i+1,(0,..,1) = 1 and

qi+1,i+1 = mi+1, qi+1,i+1,(i+1,0,..) = 1. Then

qj+1,i+1 = mqj,i + Dkqj+1,i =∑
|I|=j,‖I‖=i−j qj,i,Im

(I+(1,0,..,0))k +
∑
|I|=j+1,‖I‖=i−j−1 qj,i,IDk(m

(I)k).

In the right hand term, for the first sum, we set J = I + (1, 0, .., 0). So
|J | = j + 1 and ‖J‖ = i + 1− j − 1. For the second one, we have

Dk(m
(I)k) = Dk(m

i0(Dkm)i1 . . . (Di−1
k m)ii−1) =∑i−1

l=0 ilm
i0 . . . (Dl

km)il−1(Dl+1
k m)il+1 . . . (Di−1

k m)ii−1 .

We set K = I + (0, ..,−1, 1, .., 0) with -1 in lth position. So |K| = j + 1 and
‖K‖ = i + 1− j − 1. Then we obtain, for any l = 1, . . . , i− 1,

qj+1,i+1,I = qj,i,I−(1,0,..,0) + (il + 1)qj,i,I−(0,..,−1,1,..,0)

and for all I ∈ Ni+1 with |I| = j+1, ‖I‖ = i+1−j−1, i1 � 1 and il+1 � 1.
�

As an example, we provide in the following table some polynomials qj,i.

i\j 1 2 3 4
1 m - - -

2 Dkm m2 - -

3 D2
km 3mDkm m3 -

4 D3
km 4mD2

km + 3(Dkm)2 6Dkm.m2 m4

5 D4
km 5mD3

km + 10DkmD2
km 10m2D2

km + 15m(Dkm)2 10m3Dkm

Remark 4.10. — From Proposition 4.8 and Lemma 4.9, Di
kz =

∑i
j=1 qi,j

Dj
l z with qi,j =

∑
qj,i,Im

(I)k ∈ K≺r where m = dl/dk, qj,i,I ∈ N and
the sum is taken over multi-indexes I ∈ Ni such that |I| = j and ‖I‖ =
i − j. In particular, the coefficient of Di

lz is qi,i = mi. So, given some
differential monomials aIy

(I)k with coefficients that have same valuation
v(0), by the change of derivation they generate new differential monomials
bJy

(J)l with |I| = |J | and with one of them (the one with J = I0 where
I0 is the greatest multi-index for the anti-lexicographical ordering among
these I’s) with coefficient that has valuation v(0) + ‖I0‖v(m). But v(m) =
(0, . . . , 0, µl1 , . . . , µr) with µl1 > 0 and l1 > k (see Proposition 2.7). So such
a coefficient has a valuation of type

v(0) + ‖I‖(0, . . . , 0, µl1 , . . . , µr)
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with µl1 > 0 and l1 > k. This remark will be useful to control the evolu-
tion of the Weierstrass order of the differential series through a change of
derivation.

Proposition 4.11. —

1. We consider a differential series F (y, . . . ,Dn
k y) as in (3.3). The changes

of derivation

F (y, . . . ,Dn
k y) = F̃k,l(y, . . . ,D

n
l y)

are well defined for any k < l in {1, . . . , r}.

2. We consider a differential series F (y, . . . , y(n)) as in (1.1), the integer
k0 ∈ {1, . . . , r} defined in the Corollary 2.9, and some l ∈ {1, . . . , r},
with l � k0 if v(dk0

) < 0 (see Corollary 3.8).

(a) If v(dl) � 0, then, by the change of derivation

F (y, . . . , y(n)) = F̃0,l(y, . . . ,D
n
l y),

we obtain a differential series F̃0,l with well-ordered support.

(b) If v(dl) < 0, then l � k0. We apply successively to F the mul-
tiplicative conjugation y = d−nl z, and the change of derivation

F = F̃0,l. Then, F̃0,l has well-ordered support.

Proof. — Given k, l ∈ {0, . . . , r}, by the Proposition 4.8, if for any i ∈
{0, . . . , n}, v(Di

km) � 0 (where m = dl/dk), then by the change of derivation

F (y, . . . ,Dn
k y) = F̃k,l(y, . . . ,D

n
l y), we obtain a differential series F̃k,l which

has clearly a well-ordered support. But, in the case (1), m = dl/dk with
l > k. So v(m) = v(dl) − v(dk) > 0, and therefore, v(Di

km) > 0 for all
i ∈ {0, . . . , n} (see Proposition 3.3).

In the case (2)(a), m = dl. By the Corollary 2.11, v(m(i)) = v(d
(i)
l ) � 0

for any i.

For the case (2)(b), we denote M = d−nl . Combining the results of the
Propositions 4.5 and 4.8, we show that:

Lemma 4.12. — For any i ∈ N, y(i) becomes a linear combination with
positive integer coefficients, of terms

M (i−k−j)d(I)
l Dk

l z = M (i−k−j)di0l (d′l)
i1 · · · (d(j)

l )ijDk
l z

where k = 0, . . . , i, j = 0, . . . , i− k, I ∈ Nj+1 with |I| = k and ‖I‖ = j.
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Proof. — Consider such a term M (i−k−j)d(I)
l Dk

l z. Then its derivative is:

(M (i−k−j)d(I)
l Dk

l z)
′ = M (i+1−k−j)d(I)

l Dk
l z + M (i−k−j)[i0d

(I+(−1,1,0,···))
l

+ · · ·+ ijd
(I+(0,...,0,−1))
l d

(j+1)
l ]Dk

l z+

M (i−k−j)d(I)
l dlD

k+1
l z

= M (i+1−k−j)d(Ĩ)
l Dk

l z + M (i+1−k−(j+1))

[i0d
(Ĩ+(−1,1,0,···,0))
l + · · ·+ ijd

(Ĩ+(0,...,0,−1,1))
l ]Dk

l z

+M (i+1−(k+1)−j)d(Ĩ+(1,0,...,0))
l Dk+1

l z,

where Ĩ ∈ Nj+2 is defined as the multi-index I expanded by the addition
of a new component 0 at its end. All the new exponents have the desired
properties. �

Recall that M = d−nl . We show that:

Lemma 4.13. — For any m ∈ N∗, M (m) is an integral linear combina-
tion of terms

d−n−pl d
(Q)
l = d−n−pl (d′l)

q1 · · · (d(m−p)
l )qm−p+1

where p = 1, . . . ,m, Q ∈ Nm with |Q| = p and ‖Q‖ = m.

Proof. — By induction on m, we consider such a general term d−n−pl d
(Q)
l .

Then its derivative is:

(d−n−pl d
(Q)
l )′ = (−n− p)d

−n−(p+1)
l d

(Q)
l + d−n−pl [q1d

(Q+(−1,1,0,...))
l + · · ·+

qm−p+1d
(Q+(0,...,−1))
l d

(m−p+2)
l ]

= (−n− p)d
−n−(p+1)
l d

(Q̃)
l + d−n−pl [q1d

(Q̃+(−1,1,0,...,0))
l + · · ·+

qm−p+1d
(Q̃+(0,...,−1,1))
l ].

where Q̃ ∈ Nm−p+2 is defined as the multi-index Q expanded by the addition
of a new component 0 at its end. All the new exponents have the desired
properties. �

Now, combining the results of the two preceding lemmas, as the general
term generated by y(i) we obtain

M (i−k−j)d(I)
l Dk

l z = d−n−i+k+j
l di0l (d′l)

i1+q1 · · · (d(m)
l )im+qmDk

l z

where m = max{j, i−k−j−p} and the multi-indexes I or Q are completed

by zeros when needed. But, by the Corollary 2.11, since l � k0, v(d
(q)
l ) �

(q + 1)v(dl) for any q ∈ N. Thus we deduce that the valuation of the coeffi-
cient of this general term is bigger than the minimum of:
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v(M (i−k−j)d(I)
l ) � v(d−n−i+k+j

l d
|I|+‖I‖+|Q|+‖Q‖
l )

� (−n + k + j + p)v(dl)
� (−n + i)v(dl)
� 0

since |I| = k, ‖I‖ = j, |Q| = p, ‖Q‖ = i − k − j, with p = 1, . . . , i− k − j,
j = 0, . . . , i− k, k = 0, . . . , i and i = 0, . . . , n. �

Proposition 4.14. — For any k < l ∈ {0, . . . , r}, with the same hy-
pothesis as in the Proposition 4.11, we have:

1. Supp F̃k,l ⊂ Supp F + Tk
2. (a) (i) if l < k0, then Supp F̃0,l ⊂ Supp F + N v(dl) + Tl;

(ii) if l � k0, then Supp F̃0,l ⊂ Supp F + N v(dk0
) + Tk0

;

(b) Supp F̃0,l ⊂ Supp F − Nv(dl) + Tl.

Proof. — (1) We denote m = dl/dk. From Lemma 2.7, we have

Supp m = {v(m)} = {v(dl)− v(dk)} = {(0, . . . , 0, βj , . . . , βr)}

for some j > k and some βj , . . . , βr ∈ R with βj > 0. The change of

derivation reads Di
ky =

∑i
j=1 qi,jD

j
l y for any i ∈ {0, . . . , n}, with

qi,j =
∑

I∈Ni,|I|=j,‖I‖=i−j q
j,i,Im(I)k .

From Lemma 3.13, for any i ∈ {0, . . . , n}, we have Supp Di
km ⊂ v(m) +

Tk. Then it suffices to note that m = dl/dk ∼ t′l/tldk = Dktl/tl and so
Supp m ⊂ Tk.

(2) (a) If v(dl) � 0, by the Propositions 3.13, 4.8 and the Lemma 4.9,
we have, for any i ∈ {1, . . . , n} and any j ∈ {1, . . . , i}:

(i) if l < k0, then Supp qi,j ⊂ Supp dl + Nv(dl) + Tl;
(ii) if l � k0, then Supp qi,j ⊂ Supp dl + Nv(dk0) + Tk0 .

We have Supp dl = {v(dl)} ⊂ Supp t′l/tl. But, t′l/tl = dk0Dk0tl/tl. So,
v(dl) ∈ v(dk0) + Tk0 . We deduce that:

(i) if l < k0, then Supp qi,j ⊂ Nv(dl) + Tl;
(ii) if l � k0, then Supp qi,j ⊂ Nv(dk0) + Tk0 ,

which leads directly to the desired conclusion.
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(2) (b) As in the proof of the Proposition 4.11, by combination of the
multiplicative conjugation y = d−nl and the change of derivation F = F̃0,l,
a term y(i) for some i = 0, . . . , n generates an integral linear combination of
terms

d−n−i+k+j
l di0l (d′l)

i1+q1 · · · (d(m)
l )im+qmDk

l z

where |I| = k, ‖I‖ = j, |Q| = p, ‖Q‖ = i− k − j, with p = 0, . . . , i− k − j,
j = 0, . . . , i− k, k = 0, . . . , i.

We rewrite such a term as:

d−n−i+k+j
l d

|I|+‖I‖+|Q|+‖Q‖
l (d′l/d

2
l )

i1+q1 · · · (d(m)
l /dm+1

l )im+qmDk
l z =

d−n+p+k+j
l (d′l/d

2
l )

i1+q1 · · · (d(m)
l /dm+1

l )im+qmDk
l z.

Note that 0 � p + k + j � n.

Now, it suffices to show that:

Lemma 4.15. — For any s ∈ N∗, Supp d
(s)
l ⊂ (s + 1)v(dl) + Tl.

Proof. — We proceed by induction on s. Since l � k0, we have for some

l̃ � l, d′l = dl(θ
(l)

l̃
t′
l̃
/tl̃ + · · · + θ

(l)
r t′r/tr). So d′l = d2

l (θ
(l)

l̃
Dl(tl̃)/tl̃ + · · · +

θ
(l)
r Dl(tr)/tr) which has a support as desired.

Suppose that, for some s ∈ N∗, we have d
(s)
l = ds+1

l

∑
cγt

γ for some
series

∑
cγt

γ with support in Tl. Then:

d
(s+1)
l = ds+1

l [(s + 1)(d′l/d
1
l )

∑
cγt

γ +
∑

cγ(tγ)′]
= ds+2

l [(s + 1)(d′l/d
2
l )

∑
cγt

γ +
∑

cγDl(t
γ)].

�

To conclude, note that d′l/d
2
l and

∑
cγDl(t

γ) have support included in
Tl (the first one by the result for s = 1 here above, the second one by the
case (1) of the Proposition 3.13). �

4.3. Reducing to positive valuation solutions for polynomial
equations

We consider a differential polynomial

P (y) = P (y, . . . , y(n)) =
∑

I∈S⊂Nn+1, S finite

cIy
(I) ∈ Kr[y, . . . , y

(n)] \ {0}.

(4.7)
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We remind that in this case, any generalized series y0 ∈ Kr is compatible

with (4.7) (see Definition 2.12: the family (cIy
(I)
0 )I , being finite, is strongly

summable). The purpose of this section is to derive from Theorem 2.14 the
same result, but for any generalized series y0 ∈ Kr.

We consider a generalized series

y0 = m0t
µ0 + m1t

µ1 + · · · ∈ Kr

where δ(y0) = m0t
µ0 , such that v(y

(i)
0 ) � 0 for some i = 0, . . . , n, i.e. (see

Corollary 3.8) such that:

µ0 � α0 := max{0,−nv(dk0
)}.

Lemma 4.16. —

1. By the additive conjugation y = ỹ + m0t
µ0 (see Definition 4.1), we

obtain from P (y) as in (4.7) a new differential polynomial

Pm0tµ0 (ỹ, . . . , ỹ(n)) =
∑

I∈S c̃I ỹ
(I) ∈ Kr[ỹ, . . . , ỹ

(n)] \ {0}

with associated series

ỹ0 = y0 −m0t
µ0 = m1t

µ1 + · · · ∈ Kr.

2. By the multiplicative conjugation ỹ = tµ0−α0 ŷ (see Definition 4.4),
we obtain from Pm0tµ0 a new differential polynomial

P̂ (ŷ, . . . , ŷ(n)) =
∑

J∈Ŝ finite ĉJ ŷ
(J) ∈ Kr[ŷ, . . . , ŷ

(n)] \ {0}

with associated series

ŷ0 = ỹ0/t
µ0−α0 = m1t

µ1−µ0+α0 + · · · ∈ Kr.

which has valuation v(ŷ0) = µ1 − µ0 + α0 > α0.

Proof. — (1) By the Taylor expansion formula (3.6), we have

Pm0tµ0 (ỹ, . . . , ỹ(n)) = P (y + m0t
µ0 , . . . , y(n) + m0(t

µ0)(n))
=

∑
I∈S

(
P (I)(m0t

µ0 , . . . ,m0(t
µ0)(n))/I!

)
ỹ(I).

Since P (I) is a differential polynomial for any I, we have P (I)(m0t
µ0 , . . . ,

m0(t
µ0)(n)) ∈ Kr. Then Pm0tµ0 is well-defined and has well-ordered support

(which is the finite union of the supports of c̃I).
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(2) By the Lemma 4.6, we have ĉJ =
∑

kI,K c̃I(t
µ0−α0)(K) where kI,J ∈

N∗ and the sum is taken over the I,K ∈ Nn+1 such that |I| = |J | = |K|,
‖I‖ = ‖K‖ + ‖J‖ and J,K �antilex I. Therefore, we have a finite number
of coefficients ĉJ , any of which is itself a finite sum of generalized series
c̃I(t

µ0−α0)(K). Thus, P̂ is a differential polynomial. �

Thanks to the preceding lemma, in the case of a differential polynomial
together with an arbitrary generalized series y0 ∈ Kr, we can reduce to
the hypothesis of the Theorem 2.14. So, assuming that the latter holds, we
obtain:

Theorem 4.17. — We denote α0 := max{0,−nv(dk0)}. Given a dif-
ferential polynomial P (y) as in (4.7) and a non zero series y0 ∈ Kr, there
exists a well-ordered subset R of Γ�0 obtained from Supp F and Supp t′k/tk,
k = 1, . . . , r, by a finite number of elementary transformations such that:

– either Supp y0 ⊆ v(y0)− α0 +R;

– or the series y0 stabilizes on F with initial part p0 and Supp p0 ⊆
v(y0) − α0 + R. In this case, y0 can not be a solution of the corre-
sponding differential equation P (y) = 0.

As a direct consequence, we obtain that:

Theorem 4.18. — Given a differential equation

P (y, . . . , y(n)) = 0 (4.8)

where P is a differential polynomial as in (4.7), the subset (Supp y0) −
v(y0) + α0 of Γ>0, is obtained by finitely many elementary transformations
from the supports of F and t′k/tk, k = 1, . . . , r.

In the case of a general differential series F (y, . . . , y(n)) as in (1.1), the
changes of variable defined in the Lemma 4.16 may not generate a differ-
ential series F̂ with well-ordered support. Nevertheless, we conjecture that
the Theorems 4.17 and 4.18 (or slighlty adapted versions of them) hold in
this more general context.
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5. Proof of the Theorem 2.14

5.1. The main lemma

The Theorem 2.14 is a consequence of the following lemma:

Lemma 5.1. — Given k ∈ {1, . . . , r} and w ∈ N, we consider a dif-
ferential series F (y, . . . ,Dn

k y) as in (3.3) and a generalized series y0 =
y0,k + · · · + y0,1 ∈ K≺r with y0,l ∈ Kr,l for any l ∈ {1, . . . , k}. Then there
exists a well-ordered subset R of Γ>0 obtained from Supp F, Tk, . . . , Tr by
a finite number of elementary transformations such that:

– either the exponents of y0,k belong to R;

– or the series y0 stabilizes on F with initial part p0 which is also a
proper initial part of y0,k. Moreover the exponents of p0 belong to R.

Proof of Theorem 2.14. — Indeed, we consider a series y0 ∈ K≺r with

v(y
(i)
0 ) > 0 for any i = 0, . . . , n, as in the statement of Theorem 2.14. We

denote by y0 = y0,k + · · · + y0,1 its decomposition as in the Notation 2.1.
Then, applying the point (2) of the Proposition 4.11, we consider two cases.
If v(dk) � 0, then, by the change of derivation

F (y, . . . , y(n)) = F̃0,k(y, . . . ,D
n
k y),

the new differential series F̃0,k has well-ordered support. So it has some
Weierstrass order w ∈ N (see Definition 3.16). Moreover, by the Proposition
4.14, the support of the new series F̃0,k is derived from the one of F and

the set Tk by elementary transformations. Thus, considering this series F̃0,k

with y0, we are reduced to the hypothesis of the Lemma 5.1.

If v(dk) < 0, as in the case (b) of the Proposition 4.11, we have k � k0,
and we can apply successively to F the multiplicative conjugation y = d−nk z,

and the change of derivation F = F̃0,k. Then, we obtain a differential series

F̃0,k with well-ordered support. As above it has some Weierstrass order. Its
support is also derived from Supp F and Tk by elementary transformations.
The associated generalized series ỹ0 = y0d

n
k .

If k < k0, by the Corollary 2.9, then k̃ > k. It implies that

ỹ0 = y0,kd
n
k + · · ·+ y0,1d

n
k

= ỹ0,k + · · ·+ ỹ0,1 ∈ K≺r
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as required to apply the Lemma 5.1. Note that the support of y0 is then equal
to Supp ỹ0 − nv(dk). Therefore, it is included into Supp ỹ0 + N(−v(dk)),
which is the application of an elementary transformation to Supp ỹ0.

If k = k0, since v(y
(i)
0 ) > 0 for any i = 0, . . . , n, then v(y0) verifies the

Condition 3.5. So, v(ỹ0) is also positive, and ỹ0 is of the form

ỹ0 = ỹ0,l + · · ·+ ỹ0,1 ∈ K≺r

with l � k0. Then, if necessary, we apply in the differential series F̃0,k0
just

obtained, the change of derivation from Dk0
to Dl. Then we can apply to

the latter, together with the series ỹ0, the Lemma 5.1. As before, Supp y0

is deduced from Supp ỹ0 by an elementary transformation.

In any case, we are reduced to the hypothesis of the Lemma 5.1. To
simplify the notations, let us denote in any of the described cases, the ob-
tained differential series with Weierstrass order w by G(y, . . . ,Dn

k y), and
the corresponding generalized series by y0 = y0,k + · · ·+ y0,1. Applying the
Lemma 5.1, we obtain a dichotomy for y0,k, the second case being exactly
the second one in the statement of Theorem 2.14.

For the first one, we have Supp y0,k ⊂ Rk, where Rk is a well-ordered
subset of Γ>0 obtained from Supp G (and therefore from Supp F ) and
Tk, . . . , Tr by a finite number of elementary transformations. Then we per-
form the additive conjugation y = ỹ + y0,k in the original differential
series F , and we get a new one Fy0,k

(ỹ, . . . , ỹ(n)) together with a series
ỹ0 = y0,l + . . . + y0,1 for some l < k. Moreover, by the Proposition 4.2,
the support of Fy0,k

is obtained from the one of F and the sets Tk and
Supp y0,k by finitely many elementary transformations. But Supp y0,k ⊂ Rk

is obtained itself from Supp F, Tk, . . . , Tr by a finite number of elementary
transformations. Then, so Supp Fy0,k

is. We can resume the preceding ar-

guments with Fy0,k
(ỹ, . . . , ỹ(n)) and ỹ0.

Thus we prove gradually in the case where there is no stabilization
that Supp y0 ⊂ R =

∑k
l=1 〈Rl〉, the latter being obtained from Supp F ,

Tk, . . . , Tr by finitely many elementary transformations as desired. �

Concerning the proof of our main lemma, we consider the set {1, . . . , r}
endowed with the reverse ordering 1 > 2 > · · · > r, and we denote it

{r, . . . , 1}. Then we define the lexicographical product
−−−−−−−−−−→N× {r, . . . , 1}, re-

mark that it is a well-ordered set, and denote (w, k) its elements. To prove

Lemma 5.1, we proceed by transfinite induction on (w, k) ∈ −−−−−−−−−−→N× {r, . . . , 1}.
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First, if the differential series F (y, . . . ,Dn
k y) has Weierstrass order 0,

then for any k ∈ {r, . . . , 1} and any initial part p of y0,

F (p, . . . ,Dn
kp) = c0 +

∑
I∈Nn+1\{0} cIp

(I).

But for any I ∈ Nn+1 with |I| � 1, v(y
(I)k
0 ) > 0 (Lemma 3.3) and by

hypothesis v(c0) = 0 � v(cI). So v(F (p, . . . ,Dn
kp)) = v(c0) = 0, which

means that y0 stabilizes on F with initial part 0.

Second, we consider (w, k) ∈ −−−−−−−−−−→N∗ × {r, . . . , 1} and suppose that the The-
orem 2.14 holds for any (w̃, k̃) < (w, k). We treat separately the case w = 1.

5.2. The case w = 1

Notation 5.2. — Given a differential series F (y, . . . ,Dn
k y) as in (3.3)

with Weierstrass order 1, we denote:

– A the set of all multi-index I with length 1 such that v(cI) = 0;

– for all I ∈ Nn+1, cI,0 the leading coefficient of cI .

Definition 5.3. — With the terminology of [Inc44], we call indicial
polynomial associated to a Weierstrass order 1 series F (y, . . . ,Dn

k y) the poly-
nomial π(X) =

∑
I∈A cI,0X

‖I‖. We denote {ρ1, . . . , ρm} the set of its real
positive roots (m � n since its degree is at most n).

Lemma 5.4. — Given a Weierstrass order 1 differential series F (y, . . . ,Dn
k y)

as in (3.3) and a series y0 ∈ K≺r with initial part

y0,k =
∑

µ∈Supp y0,k
mµt

µ ∈ Kr,k,

there are two cases:

1. either for any proper initial part p of y0,k with successor term mµt
µ

with µ = (0, . . . , 0, µk, . . . , µr) (µk > 0), we have µ = vp, or µk ∈
{ρ1, . . . , ρm};

2. or there exists a proper initial part p0 of y0,k with successor term

m0t
µ(0)

such that the two following properties hold:

(a) for any successor part p̃ of p0 in y0, we have

vp0+p̃ = v
p0+m0tµ

(0) = min{vp0 , µ
(0)} � µ(0);
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(b) for any proper initial part p of p0 with successor term mµt
µ,

µ = (0, . . . , 0, µk, . . . , µr) < µ(0), we have µ = vp or µk ∈
{ρ1, . . . , ρm}.

Proof. — We consider a proper initial part p of y0,k with successor term
mµt

µ, and some successor part p̃ of p (so mµt
µ is the leading term of p̃).

From the Taylor expansion formula (3.6):

fp+p̃ =
∑

I∈Nn+1(f
(I)
p /I!)p̃(I).

But p̃ = mµt
µ(1 + ε) and so

p̃(I) = m
|I|
µ µ
‖I‖
k t|I|µ(1 + εI)

for some ε, εI ∈ K≺r (Proposition 3.2). Moreover, for any I ∈ A, δ((f
(I)
p /I!)) =

cI,0. So

δ
(
(f

(I)
p /I!)p̃(I)

)
= mµt

µµ
‖I‖
k cI,0.

For any J ∈ Nn+1\{0}, J /∈ A, we have

v((f
(J)
p /J !)p̃(J)) = v

(J)
p + |J |µ > µ.

Thus we obtain fp+p̃ = fp + mµt
µ(π(µk) + ε) for some ε ∈ K≺r . Then the

dichotomy of the lemma follows from the ultrametric triangular inequality
for the valuation v. For the second case, p0 is the shortest initial part such

that µ(0) �= vp0 and µ
(0)
k /∈ {ρ1, . . . , ρm}. Then for any successor part p̃ of

p0, we have

vp0+p̃ = v
p0+m0tµ

(0) = min{vp0 , µ
(0)}.

�

Returning to the proof of Lemma 5.1, in case k = r, we set

R = 〈Supp F 〉+ 〈(0, . . . , 0, ρ1), . . . , (0, . . . , 0, ρm)〉+ Tr.

Then, from Proposition 3.13, we remark that

vp ∈ Supp F + Tr + 〈Supp p〉

for any initial part p of y0,r. So using the relations µ = vp or µr ∈ {ρ1, . . . , ρm},
by a straightforward transfinite induction, we obtain that Supp y0 ⊂ R in
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case (1) of the preceding lemma, respectively Supp p0 ⊂ R in case (2).
The subcase (2)(a) means exactly that y0 stabilizes on F with initial part

p0 + m0t
µ(0)

.

In case k ∈ {r− 1, . . . , 1}, we consider y0 = y0,k + · · ·+ y0,1 and a differ-
ential series F (y, . . . ,Dn

k y) with Weierstrass order 1. We suppose that the
Lemma 5.1 holds for any l ∈ {r, . . . , k + 1}. According to the dichotomy
in the Lemma 5.4, we show by transfinite induction that Supp y0,k (re-
spectively Supp p0) is included in an additive sub-semigroup Rk of Γ>0 of
type

Rk = 〈Supp F 〉+ Tk + · · ·+ Tr +R1,k + · · ·+Rm,k

where m is the number of positive roots of the indicial polynomial associated
to F (see Definition 5.3), and the Ri,k’s are additive sub-semigroups of
Γ>0 obtained from Supp F , Tk, . . . , Tr by a finite number of elementary
transformations.

Indeed, let us consider a proper initial part p of y0,k (respectively p0)
with successor term mµt

µ, µ = (0, . . . , 0, µk, . . . , µr). We suppose that S is
included in an additive semi-group R that contains 〈Supp F 〉 , Tk, . . . , Tr.
From Lemma 5.4, there are two cases. Either µ = vp. But from Proposition
3.13 we have

vp ∈ Supp fp ⊂ Supp F + Tk + 〈Supp p〉

and 〈Supp p〉 ⊂ R as well as Supp F and Tk. So µ ∈ R.

Or µk ∈ {ρ1, . . . , ρm}. For instance, µk = ρh for some h ∈ {1, . . . ,m}
fixed. We set Sh = {µ ∈ Supp y0,k | µk = ρh}, σ(h) = minSh,

S′h = {µ ∈ Supp y0,k | µ < σ(h)}

and S′′h = S′h ∪ {σ(h)}. So S′h ⊂ S ⊂ R and S′′h ⊂ R+ Nσ(h).

Let us show that there exists an additive sub-semigroup Rh,k of Γ>0 ob-
tained from R, Supp F , Tk, . . . , Tr by a finite number of elementary trans-
formations such that Sh ⊂ Rh,k. We note that

σ(h) = (0, . . . , 0, ρh, 0, . . . , 0, σl,h, . . . , σr,h)

for some l ∈ {k + 1, . . . , r} with σl,h �= 0. So

pSh\{σ(h)}/t
σ(h)

= z0,l + · · ·+ z0,k+1 ∈ K≺r
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with initial part z0,l ∈ Kr,l. Then we reduce to a differential series
G(z, . . . ,Dn

l z) together with the series z0,l ∈ Kr,l so as to apply the in-
duction hypothesis.

The calculations we make are represented symbolically in cases r = 2
and k = 1 by the following picture, in which the black points represent
elements of the support of y0,k. The necessary changes of derivation are also
mentioned.

(1) We perform the additive conjugation y = ỹ + pS′′
h

in the differential
series F (y, . . . ,Dn

k y). From Proposition 4.2 and Remark 4.3, we obtain a
new series

FpS′′
h

(ỹ, . . . , Dn
k ỹ) =

∑
I∈Nn+1 c′I ỹ

(I)

with Weierstrass order 1. We have c′I = f
(I)
pS′′
h

/I! and in particular, for any

I ∈ A, v(c′I) = v(cI) = 0. Moreover:

Supp FpS′′
h

⊂ Supp F + Tk + 〈S′′h〉 ⊂ R+ Nσ(h).

The associated series is ỹ0 = y0 − pS′′
h

with initial part ỹ0,k = y0,k − pS′′
h
∈

Kr,k.

(2) We perform in FpS′′
h

the multiplicative conjugation y1 = tσ
(h)

z. From

Proposition 4.5, we obtain a differential series

F̂ (z, . . . ,Dn
k z) =

∑
J∈Nn+1 ĉJz

(J)

with

v(ĉJ) � min{v(c′I) + v((tσ
(h)

)(K)) | |I| = |J | = |K|, ‖I‖ =
‖K‖+ ‖J‖, J,K �antilex I}

and

(tσ
(h)

)(K) ∼ ρ
‖K‖
h t|K|σ

(h)

= ρ
‖K‖
h t|I|σ

(h)

.

So

v(ĉJ) � min{v(c′I) + |I|σ(h) | |I| = |J |, J �antilex I}.

According to the Remark 4.7, we have v(ĉI0) = σ(h) where I0 is the greatest
multi-index from A for anti-lexicographical ordering (in particular |I0| = 1).
Moreover, from Proposition 4.5,
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Supp F̂ ⊂ Supp FpS′′
h

+ Tk + Nσ(h) ⊂ R+ Nσ(h).

The associated series is z0 = ỹ0/t
σ(h)

, which has z0,l ∈ Kr,l as initial part.

(3) We perform the change of derivation

F̂ (z, . . . ,Dn
k z) = F̃k,l(z, . . . ,D

n
l z) =

∑
L∈Nn+1 c̃Lz

(L)

as in the Proposition 4.11. From the Remark 4.10, the terms ĉJz
(J) with

v(ĉJ) = σ(h) provide at least one term c̃Lz
(L) with |L| = 1 and

v(c̃L) = (0, . . . , 0, ρh, χk+1, . . . , χr)

for some reals χk+1, . . . , χr (L = J0 being the greatest element for anti-
lexicographical ordering among these J ’s is such a good candidate). Then
we observe that

min{v(c̃L), L ∈ Nn+1, |L| � 1} = v(c̃L0) = (0, . . . , 0, ρh, χ
(0)
k+1, . . . , χ

(0)
r )

for some L0 with |L0| = 1. We set v(0) = v(c̃L0
) and there are two cases.

Either v(c̃0) � v(0). Then for any initial part p̃ of z0,l, we have v(f̃p̃) = v(c̃0).

It means that z0 stabilizes on F̃k,l with initial part 0, and equivalently y0

stabilizes on F with initial part pS′′
h
.

Or v(c̃0) > v(0). Then we divide F̃k,l(z, . . . ,D
n
l z) by tv

(0)

and we obtain a
differential series G(z, . . . ,Dn

l z) with Weierstrass order 1. Moreover

Supp G = Supp F̃k,l − v(0) ⊂ (R+ Nσ(h) − v(0))�0.

The associated series is

z0 = ỹ0/t
σ(h)

= (y0 − pS′′
h
)/tσ

(h) ∈ K≺r

that has initial part z0,l ∈ Kr,l. For any initial part S′ of Supp z0,l, we
denote by q = qS′ the corresponding initial part of z0,l and ṽq = v(G(q)).

From the induction hypothesis, there exists a well-ordered subset R′ of
Γ>0 obtained from Supp G, Tl, . . . , Tr by finitely many elementary transfor-
mations such that:

(a) : either Supp z0,l ⊂ R′;

(b) : or z0 stabilizes on G with initial part qS′0 where S′0 is a proper initial
segment of Supp z0,l which is included in R′.
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We note that R′ is obtained from Supp G, Tl, . . . , Tr by a finite number of
elementary transformations and

Supp G ⊂ (R+ Nσ(h) − v(0))�0.

So, in case (ii), S′0 ⊂ R′ where R′ is obtained from R, Supp F , Tk, . . . , Tr
by a finite number of elementary transformations. Moreover, we observe
that any proper initial segment S′ of Supp z0,l corresponds to a proper
initial segment S′ + σ(h) of Supp y1,k, and so to a proper initial segment
S′′h ∪ (S′ + σ(h)) of Supp y0,k. Thus, for any initial segment S′ of Supp z0,l,

ṽq = v(G(qS′)) = v(F̃k,l(qS′)) + v(0).

But

v(F̃k,l(qS′)) = v(F̂ (qS′)) = v(FpS′′
h
(pS′+σ(h)))

and

v(FpS′′
h

(pS′+σ(h))) = v(fp
S′′
h
∪(S′+σ(h))

) = vp
S′′
h
∪(S′+σ(h))

.

So ṽq = vp
S′′
h
∪(S′+σ(h))

+ v(0). It means that, in the case (b), y0 stabilizes on

F with initial segment pS0
where S0 = S′′h ∪ (S′0 + σ(h)). It suffices then to

set

Rh,k = 〈R′〉+ Nσ(h).

In case (a), Supp z0,l ⊂ R′. So

Supp (tσ
(h)

z0,l) ⊂ R′ + σ(h).

We set S̃′h = S′h ∪ Supp (tσ
(h)

z0,l), σ̃(h) its successor element in Supp y0,k

and S̃′′h = σ̃(h)∪{σ̃(h)}. If we denote z̃0 = (y0−pS̃′′
h
)/tσ̃

(h)

, then z̃0 ∈ K≺r with

initial part z̃0,l′ ∈ Kr,l′ for some l′ ∈ {k + 1, . . . , l− 1}. Therefore we repeat
the previous process, starting with the additive conjugation y = y1 + pS̃′′

h
.

There are at most as many steps as

z0 = pSh\{σ(h)}/t
σ(h)

= z0,l + · · ·+ z0,k+1

has elements z0,i ∈ Kr,i in its analysis. If we denote by j this number of steps,
in the case where there is no stabilization, we obtain for any i = 0 · · · j − 1,
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Supp (t
σ̃

(i)

(h) z̃
(i)

0,l(i)
) ⊂ R(i+1)

where R(i+1) is a well-ordered subset of Γ>0 obtained from R, Supp F , and
Tk, . . . , Tr by finitely many elementary transformations. But

Sh =
⋃j−1

i=0 Supp (t
σ̃

(i)

(h) z̃
(i)

0,l(i)
).

So Sh ⊂
⋃j

k=1R(k). Then we set

Rh,k =
〈⋃j

k=1R(k)
〉

which is an additive sub-semigroup of Γ>0 obtained from R, Supp F ,
Tk, . . . , Tr by finitely many elementary transformations.

5.3. The case w > 1

We consider a differential series F (y, . . . ,Dn
k y) as in (3.3) with Weier-

strass order w > 1, together with a series y0 = y0,k + · · · + y0,1 ∈ K≺r . To
prove the Lemma 5.1, we proceed in three steps.

First, since w > 1, there exists at least one multi-index I ∈ Nn+1 with
|I| = w−1 such that F (I) has Weierstrass order 1. Thus we apply the induc-
tion hypothesis to these differential series, and obtain the desired finiteness
property for (at least) some proper initial part pSw−1

of y0,k. We denote

µ(w−1) = (0, . . . , 0, µ
(w−1)
k , . . . , µ

(w−1)
r ) = v(y0 − pSw−1)

and S′′w−1 = Sw−1 ∪ {µ(w−1)}. Then we note that (y0 − pS′′
w−1

)/tµ
(w−1)

has

an initial part z0,l + · · ·+ z0,k for some l ∈ {r, . . . , k}.

In the case where l ∈ {r, . . . , k + 1}, the second step is devoted to deter-
mine the support of z0,l + · · ·+ z0,k+1. We reduce F (y, . . . ,Dn

k y) to another
series G(z, . . . ,Dn

l z) with Weierstrass order w̃ together with a series asso-
ciated z0 with initial part z0,l ∈ Kr,l such that (w̃, l) < (w, k), by means of
three successive transformations.

In the third step, we check the support of z0,k reducing to a differential

series G̃(z̃, . . . , Dn
k z̃) of Weierstrass order lower than w.
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First step. We need some new notations.

Notation 5.5. — We denote:

– A = {I ∈ Nn+1 | |I| = w, v(cI) = 0};
– for any I ∈ A, cI,0 = δ(cI);

– Aw−1 = {I ∈ Nn+1 | ∃J ∈ Nn+1, |J | = 1, I + J ∈ A}.
So we have |I| = w − 1 for all I ∈ Aw−1.

– For any given I ∈ Aw−1, we set:

– AI = {J ∈ Nn+1 | |J | = 1, I + J ∈ A};
– πI(X) =

∑
J∈AI cI+J,0X

‖J‖ (then we have deg πI � n);

– {ρ(I)
1 , . . . , ρ

(I)
mI} the set of the positive roots of πI .

Then we apply the induction hypothesis and the Lemma 5.4 to the
differential series F (I)(y, . . . ,Dn

k y), I ∈ Aw−1 together with the series y0.
We obtain two cases:

– either there exists I0 ∈ Aw−1 such that we are in the first case of
Lemma 5.1: there exists a well-ordered subset RI0 of Γ>0 obtained
from Supp F (I0), T1, . . . , Tr by a finite number of elementary trans-
formations such that Supp y0,k ⊂ RI0 . It suffices then to observe that
Supp F (I0) ⊂ Supp F ;

– or for any I ∈ Aw−1, y0 stabilizes on F (I) with an initial part
pSI∪{µ(I)}, SI being an initial segment of Supp y0,k with successor

element µ(I). Moreover the value of stabilization is at most equal to
µ(I).

In this last case, we set Sw−1 =
⋃

I∈Aw−1
S

(I)
0 , µ(w−1) its successor

element and S′′w−1 = Sw−1 ∪ {µ(w−1)}. So there exists I0 ∈ Aw−1 such that

Sw−1 = S
(I)
0 ⊂ RI0 . We denote

R1 =
〈
RI0 ∪ {µ(w−1)}

〉
= 〈RI0〉+ Nµ(w−1).

So S′′w−1 ⊂ R1. For any I ∈ Aw−1, we denote v̂(I) the value of stabilization

of v
(I)
p , and so v̂(I) = v

(I)
pS′′
w−1

� µ(w−1). We set v̂w−1 = min{v̂(I), I ∈ Aw−1}.
Thus v̂w−1 � µ(w−1).

We examine now the valuations of the differential series F (I)(y, . . . ,Dn
k y)

for I /∈ Aw−1, |I| = w−1. From the Taylor expansion formula (3.6), for any
successor segment S̃ of Sw−1,
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f
(I)
pSw−1

+pS̃
= f

(I)
pSw−1

+
∑
|J|�1(f

(I+J)
pSw−1

/J !)p
(J)

S̃
.

But for any multi-index J , v(p
(J)

S̃
) = |J |v(pS̃) = |J |µ(w−1), and for any J

with |J | = 1, v(f
(I+J)
pSw−1

) > 0 since I /∈ Aw−1. Then there are two possibilities:

(i) : either v
(I)
pS′′
w−1

> µ(w−1). So, from the ultrametric triangular inequality,

v
(I)
pS′′
w−1

+pS̃
> µ(w−1) for any successor segment S̃ of S′′w−1;

(ii) : or v
(I)
pS′′
w−1

� µ(w−1) which implies that

v
(I)
pS′′
w−1

+pS̃
= v

(I)
pS′′
w−1

� µ(w−1).

Then we denote by v̂(I) this stabilized valuation, by Bw−1 the set of
multi-indexes I for whom that situation arises, and ṽw−1 = min{v̂(I) |
I ∈ Aw−1 ∪ Bw−1}. Thus ṽw−1 � µ(w−1).

Second step. (1) We perform the additive conjugation y = ỹ + pS′′
w−1

.

From Proposition 4.2, we obtain a differential series

FpS′′
w−1

(ỹ, . . . , Dn
k ỹ) =

∑
I∈Nn+1 c′I ỹ

(I)

where c′I = f
(I)
pSw−1

/I!. In particular, there exists I0 ∈ Nn+1 with |I0| = w−1
such that

v(c′I0) = ṽw−1 � µ(w−1).

From the Remark 4.3, FpS′′
w−1

(ỹ, . . . , Dn
k ỹ) has also Weierstrass order w.

Moreover

Supp FpS′′
w−1

⊂ Supp F +
〈
S′′w−1

〉
+ Tk ⊂ Supp F + Tk +R1.

The associated series is ỹ0 = y0−pS′′
w−1

with initial part ỹ0,k = y0,k−pS′′
w−1

.

(2) We perform the multiplicative conjugation ỹ = tµ
(w−1)

z in FpS′′
w−1

.

From the Proposition 4.5, we obtain a differential series

F̂ (z, . . . ,Dn
k z) =

∑
J∈Nn+1 ĉJz

(J)
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with

Supp F̂ ⊂ Supp FpS′′
w−1

+ Nµ(w−1) + Tk ⊂ Supp F + Tk +R1

(by Proposition 4.5, since Nµ(w−1) +R1 = R1). Moreover

v(ĉJ) � min{v(c′I) + v((tµ
(w−1)

)(K))}

where the minimum is taken over multi-indexes I ∈ Nn+1 such that |I| =
|J | = |K|, ‖I‖ = ‖K‖+ ‖J‖ and J,K �antilex I. Furthermore

(tµ
(w−1)

)(K) ∼ (µ
(w−1)
k )‖K‖t|I|µ

(w−1)

.

In particular, by the Remark 4.7, v(ĉJ0
) = ṽw−1 + (w − 1)µ(w−1) where J0

is the greatest multi-index for the anti-lexicographical ordering among the
J ’s such that v(c′J) = ṽw−1. So v(ĉJ0

) � wµ(w−1). Moreover, for any J with
|J | � w,

v(ĉJ) � |J |µ(w−1) � wµ(w−1).

So there exists at least one multi-index I with |I| < w such that

v(ĉI) = min{v(ĉJ) | J ∈ Nn+1}.

We denote vmin this minimal valuation and I0 some multi-index with |I0|
as low as possible such that v(ĉI0) = vmin. Then we observe that, dividing
F̂ (z, . . . ,Dn

k z) by tvmin , we obtain a differential series F̃ (z, . . . ,Dn
k z) with

Weierstrass order equal to |I0|, and so lower than w. The associated series

is z0 = ỹ0/t
µ(w−1) ∈ K≺r .

If k ∈ {r − 1, . . . , 1}, then z0 has a priori an initial part

ỹ0,k/µ
(w−1) = z0,l + · · ·+ z0,k

for some l ∈ {r, . . . , k + 1}. We set

S1 = {µ ∈ Supp y0,k | µk = µ
(w−1)
k , µ � µ(w−1)}

(so S1 is a successor segment of Sw−1). We remark that

S1 = (
⋃

i∈{k+1,...,l} Supp z0,i) + µ(w−1).

Now we determine Supp z0,l.
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(3) We perform the change of derivation

F̂ (z, . . . ,Dn
k z) = F̃k,l(z, . . . ,D

n
l z)

as in Proposition 4.11. Then we show as before (proof of Lemma 5.1 in case
w = 1) that there are two cases. Either z0 stabilizes on F̃k,l with initial part
0, which means that y0 stabilizes on F with initial part pS′′

w−1
.

Or dividing F̃k,l by tv
(0)

where v(0) is the minimum of the valuation of

the coefficients of F̃k,l, we obtain a differential series G(z, . . . ,Dn
l z) with

Weierstrass order w̃ � 1. From Remarks 4.7 and 4.10, w̃ � w. Moreover
from Proposition 4.14,

Supp F̃k,l ⊂ Supp F̂ + Tk ⊂ Supp F + Tk +R1.

Thus,

Supp G ⊂ (Supp F + Tk +R1)�v(0) − v(0).

We apply the induction hypothesis to G(z, . . . ,Dn
l z) together with z0 that

has initial part z0,l. There exists a well-ordered subset R̃2 of Γ>0 obtained
from Supp G, Tl, . . . , Tr by a finite number of elementary transformations
such that:

– either the exponents of z0,l belong to R̃2;

– or the series z0 stabilizes on G with initial part q0 which is also a
proper initial part of z0,l, and the support of q0 is included in R̃l. Then

it means that y0 stabilizes on F with initial part p0 = pS′′
w−1

+tµ
(w−1)

q0

and that Supp p0 ⊂ R1 + (R̃2 + µ(w−1)), which is obtained from
Supp F, Tk, . . . , Tr by a finite number of elementary transformations
as desired.

If the preceding first case holds, we perform the additive conjugation

z = z̃+ tµ
(w−1)

z0,l in the differential series F̂ (z, . . . ,Dn
k z) defined above. We

obtain a differential series
ˆ̂
F (z, . . . ,Dn

k z) with coefficients that have also as
minimal valuation vmin for some multi-index I0 (the least multi-index for
anti-lexicographical ordering among the coefficients having valuation vmin:
see Remark 4.3). Moreover

Supp
ˆ̂
F ⊂ Supp F̂ +

〈
R̃2 + µ(w−1)

〉
+ Tk
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(see Proposition 4.2) which is obtained from Supp F, Tk, . . . , Tr by a finite
number of elementary transformations. The associated series is ẑ0 = z0−z0,l,
with initial part z0,l1 for some l1 ∈ {l, . . . , k}. If l1 �= k, we resume the
preceding arguments.

Thus, in the case where there is no stabilization, we prove gradually that
for any i ∈ {l, . . . , k + 1}, Supp z0,i ⊂ R2 with R2 that is a well-ordered
subset of Γ>0 obtained from Supp F , Tk, . . . , Tr by finitely many elementary
transformations. Thus

S1 = Supp (z0,l + · · ·+ z0,k+1) + µ(w−1)

is included in R2 + µ(w−1).

Third step. It remains to examine the support of z0,k so as to obtain
the desired property for the set

{µ ∈ Supp y0,k | µk > µ
(w−1)
k }.

We return to the differential series F̃ = F̂ /tvmin defined in the second step,
which has Weierstrass order |I0| < w. Then we perform the additive conju-
gation

z = z̃ + (z0,l + · · ·+ z0,k+1).

By the Proposition 4.2 and the Remark 4.3, we obtain a new differential
series G̃(z̃, . . . , Dn

k z̃) with the same Weierstrass order |I0| < w, together
with a series z̃0 = z0 − (z0,l + · · ·+ z0,k+1) that has initial part z0,k ∈ Kr,k.
Moreover,

Supp G̃ ⊂ Supp F̃ +
〈
S1 − µ(w−1)

〉
+ Tk ⊂

(Supp F + Tk +R1)�vmin − vmin + 〈R2〉+ Tk.

Then we apply the induction hypothesis to G̃(z̃, . . . , Dn
k z̃) together with z̃0.

There exists a well-ordered subsetR3 of Γ>0 obtained from Supp G̃, Tk, . . . , Tr
by finitely many elementary transformations such that:

– either the exponents of z0,k belong to R3. So if we set

R = R1 + [(R2 +R3) + µ(w−1)],

then Supp y0,k ⊂ R which is obtained from Supp F , Tk, . . . , Tr by a
finite number of elementary transformations as desired;
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– or the series z̃0 stabilizes on G̃ with initial part q0 which is also a
proper initial part of z0,k, and the support of q0 is included in R3.
In this case, it means that y0 stabilizes on F with initial part p0 =

pS′′
w−1

+tµ
(w−1)

q0 which is initial part of y0,k. Moreover, Supp p0 ⊂ R.

This concludes the proof of the Lemma 5.1, and therefore the one of
the Theorem 2.14.
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der Kaiserlichen Akad. der Wissens., Math. - Naturwissens. Klasse (Wien)
116, no. Abteilung IIa, p. 601-655 (1907).

[Inc44] Ince (E. L.). — Ordinary Differential Equations, Dover Publications, New-
York (1944).

[Fin89] Fine (H. B.). — On the functions defined by differential equations, with an
extension of the Puiseux polygon construction to these equations, Amer. J.
Math. 11, no. 4, p. 317-328 (1889).

[vdH97] van der Hoeven (J.). — Asymptotique automatique, Thèse, Université Paris
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