
ANNALES
DE LA FACULTÉ

DES SCIENCES

Mathématiques
U. CEGRELL, S. KOŁODZIEJ, A. ZERIAHI

Maximal subextensions of plurisubharmonic functions

Tome XX, no S2 (2011), p. 101-122.

<http://afst.cedram.org/item?id=AFST_2011_6_20_S2_101_0>

© Université Paul Sabatier, Toulouse, 2011, tous droits réservés.
L’accès aux articles de la revue « Annales de la faculté des sci-
ences de Toulouse Mathématiques » (http://afst.cedram.org/), implique
l’accord avec les conditions générales d’utilisation (http://afst.cedram.
org/legal/). Toute reproduction en tout ou partie cet article sous quelque
forme que ce soit pour tout usage autre que l’utilisation à fin strictement
personnelle du copiste est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://afst.cedram.org/item?id=AFST_2011_6_20_S2_101_0
http://afst.cedram.org/
http://afst.cedram.org/legal/
http://afst.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/
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U. Cegrell(1), S. Kolodziej(2) and A. Zeriahi(3)

Dedicated to Professor Nguyen Thanh Van
on the occasion of his retirement

ABSTRACT. — In our earlier [CKZ], we proved that any plurisubharmonic
function on a bounded hyperconvex domain in Cn with zero boundary
values in a quite general sense, admits a plurisubharmonic subextension
to a larger hyperconvex domain. Here we study important properties of its
maximal subextension and give informations on its Monge-Ampère mea-
sure. More generally, given a quasi-plurisubharmonic function ϕ on a given
quasi-hyperconvex domain D ⊂ X of a compact Kähler manifold (X,ω),
with well defined Monge-Ampère measure such that

∫
D

(ω + ddcϕ)n �∫
X
ωn, we prove that ϕ admits a global quasi-plurisubharmonic subex-

tension ϕ̃ to the whole manifold X. If moreover (ω + ddcϕ)n puts no
mass on pluripolar sets of D, the maximal subextension is shown to have
a well defined global Monge-Ampère measure on X. Moreover we give
a good control on the weigthed energy of the subextension in terms of
the weigthed energy of the original function. Finally we provide an exem-
ple in P2 which shows that in general the maximal subextension do not
have a well defined Monge-Ampère measure on P2 if the original function
concentrates some mass in an analytic disc.

RÉSUMÉ. — Dans notre travail précédent paper [CKZ], nous avions
démontré que toute fonction plurisousharmonique sur un ouvert hyper-
convexe borné de Cn ayant des valeurs au bord nulles en un sens assez
général possède une sous-extension plurisousharmonic dans un dmaine
hyperconvex plus grand. D’une façon plus générale, étant donnée une
fonction quasi-plurisousharmonique ϕ sur un domaine quasi-hyperconvex
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Maximal subextensions of plurisubharmonic functions

D ⊂ X d’une variété kählerienne compacte (X,ω), de valeurs au bord
nulle en un sens généralisé et ayant une mesure de Monge-Ampère bien
définie sur D et vérifiant

∫
D

(ω+ ddcϕ)n �
∫
X
ωn, nous démontrons que

ϕ admet une sousextension ϕ̃ à la variété X toute entière. Si de plus
(ω+ddcϕ)n ne charge pas les ensembles pluripolaires de D, la sousexten-
sion maximale possède une mesure de Monge-Ampère globale bien définie
sur X dont nous étudions la mesure de Monge-Ampère. De plus nous don-
nons un contrôle précis en terme d’energie de Monge-Ampère pondérée de
la sousextension maximale en fonction de l’energie pondérée de la donnée
ϕ. Enfin nous donnons un exemple dans P2 qui montre qu’en général
la sousextension maximale n’a pas une mesure de Monge-Ampère globale
bien définie si la mesure de Monge-Ampère de la fonction donné concentre
de la masse sur un disque analytique.

1. Introduction

This is the sequel to our earlier paper [CKZ]. There we proved that
given a plurisubharmonic function ϕ from the class F(Ω) (see the next
section for definitions) in a hyperconvex domain Ω � Cn one can find its
maximal subextension ϕ which is plurisubharmonic in Cn and which has
logarithmic growth at infinity. If, in addition, the Monge-Ampère measure
of ϕ vanishes on pluripolar sets then the Monge-Ampère of ϕ is a well
defined positive measure on Cn in the sense that it is the weak limit of
the sequence of positive measures (ddcϕj)n for any sequence of continuous
plurisubharmonic functions ϕj ↓ ϕ having the same rate of growth at infinity
as ϕ. In Subsection 4.3 of this article we complete this picture studying in
more detail the Monge-Ampère measures of maximal subextensions ϕ̃. If
the sublevel sets of those subextensions are bounded then such a measure
can be split into µ1, dominated by (ddcϕ)n and essentially supported on
the contact set where ϕ = ϕ̃, and µ2 living on the set ∂{ϕ̃ < 0}. In general
the maximal global subextension of a function from the class F(Ω) may
not have well defined Monge-Ampère measure. It is the case for generic
multipole Green function as we show in the last section.

Now, a subextension of a plurisubharmonic function from a domain D in
Cn to a function defined in the whole space and of logarithmic growth can
be viewed upon as a subextension of an ω-plurisubharmonic function (with
ω a multiple of the Fubini-Study form) from a subset of CPn to the whole
manifold. Here the domain D is special since there exists a potential for ω in
D. If, for instance, D ⊂ CPn contains an algebraic set of positive dimension
then there are no strictly plurisubharmonic functions in D. Thus on a com-
pact Kähler manifold X we face a more general problem of subextension of
an ω-plurisubharmonic function in D ⊂ X to an ω-plurisubharmonic func-
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tion in X. In Section 3 we introduce classes of ω-plurisubharmonic functions
on D ⊂ X modelled on the classes defined by Cegrell and prove the subex-
tension results which are generalizations of the ones on global subextensions
in Cn. We refer to [CKZ] for a historical account on subextension problems.

Acknowledgements. — The authors whould like to thank the referee
for his careful reading and his/her suggestions which permits to improve
the exposition.

Dédicace. — C’est avec un grand plaisir que nous apportons cette con-
tribution au volume spécial en l’honneur du Professeur Nguyen Thanh Van
à l’occasion de sa retraite. Ses travaux de recherche notamment en Théorie
du Pluripotentiel et ses applications à la théorie de l’approximation font
partie de ceux nombreux qui ont contribué à la naissance de cette ”belle
théorie” dans les années 1980.

2. Monge-Ampère measure of maximal subextensions

We assume the notational convention dc = i
2π (∂̄ − ∂). Let us recall

some definitions from ([Ce1], [Ce2]). Let D � Cn be a hyperconvex do-
main. We denote by E0(D) the set of negative and bounded plurisubhar-
monic functions ϕ on D which tend to zero at the boundary and satisfy∫
D

(ddcϕ)n < +∞.

Let us denote by F(D) the set of all ϕ ∈ PSH(D) such that there exists
a sequence (ϕj) of plurisubharmonic functions in E0(D) such that ϕj ↘ ϕ
and supj

∫
D

(ddcϕj)
n < +∞.

Before we consider the subextensions from a hyperconvex domain to Cn,
we first need a result on subextensions to just a larger hyperconvex set. Let
D � Ω � Cn be two bounded hyperconvex domains (open and connected)
and and let u ∈ F(D) be a given function. Then u admits a subextension
ũ ∈ F(Ω) i.e. ũ � u on D (see [CZ]). Therefore we can define the maximal
subextension of u to Ω by

(�) ũ = sup{v ∈ PSH(Ω); v < 0, v|D � u}.
It follows from [Ce2] that ũ ∈ F(Ω). The following theorem provides a
description of the Monge-Ampère measure of the maximal subextension.

Theorem 2.1. — Let D ⊂⊂ Ω. For every u ∈ F(D), ũ ∈ F(Ω), (ddcũ)n

� χD(ddcu)n and
∫

{ũ<u}
(ddcũ)n = 0.

For the proof of the last equality we need the following elementary
lemma.
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Lemma 2.2. — Suppose (µj) is a sequence of positive measures on D
with uniformly bounded mass and that to every ε > 0 there is a δ > 0 such
that to every E ⊂ D with cap(E) < δ we have µj(E) < ε for all j. If
limµj = µ and if f, g ∈ PSH(D) then

∫

{f<g}

dµ � lim inf
j

∫

{f<g}

dµj .

To prove the lemma, one can use Bedford-Taylor capacity and the qua-
sicontinuity of g (see [BT2]).

Proof (Of the theorem). — The first statement of the theorem was proved
in [CH].

Observe that the function ũ defined by (�) is plurisubharmonic if u is
just any continuous function on D. Using the balayage procedure, it is easy
to show that in that case we have

∫
{ũ<u}

(ddcũ)n = 0.

Assume now that u ∈ F ∩ L∞(D) and take a sequence of continuous
functions uj on D decreasing to u. Then ũj decreases to ũ and the sequence
(ũj) is uniformly bounded on Ω since ũ � ũj � 0 on Ω. Therefore the Monge-
Ampère measures (ddcũj)

n are uniformly dominated by the Monge-Ampère
capacity.

So if we put µj = (ddcũj)
n we can apply the lemma to conclude that for

every s � 0:
∫

{ũs<u}

(ddcũ)n � lim inf
j

∫

{ũs<u}

(ddcũj)
n � lim inf

j

∫

{ũj<uj}

(ddcũj)
n = 0,

since by the remark at the beginning of this proof
∫

{ũj<uj}
(ddcũj)

n = 0. To

complete the proof in this case, we let s tend to +∞.

If u ∈ F(D) only, consider uj = max{u,−j}. Then, for t > 0 fixed

(1 + max{u/t,−1}) (ddcuj)
n → (1 + max{u/t,−1}) (ddcu)n, j → +∞.

Observe that the function (1 + max{u/t,−1}) vanishes on {u � −t} and
is bounded from above by 1. Moreover for any j > t we have {u > −t} ⊂
{u > −j} and the sequence of measures 1{u>−j}(ddcuj)n increases to the
measure 1{u>−∞}(ddcu)n (see [BGZ]). Therefore we obtain for j > t

(1 + max{u/t,−1}) (ddcuj)
n � 1{u>−j}(dd

cuj)
n � 1{u>−∞}(dd

cu)n.
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It follows that, for every fixed t, the sequence of measures

µj := (1 + max{u/t,−1}) (ddcuj)
n

and therefore (1 + max{u/t,−1}) (ddcũj)
n satisfy the requirements of the

lemma, so we get for every fixed s and t:
∫

{ũs<u}

(1 + max{u/t,−1}) (ddcũ)n � lim inf
j

∫

{ũs<u}

(1 + max{u/t,−1}) (ddcũj)
n

� lim inf
j

∫

{ũs<u}

(ddcũj)
n � lim inf

j

∫

{ũj<uj}

(ddcũj)
n = 0.

We now let t tend to +∞. Then since 1 + max{u/t,−1} ↗ 1{u>−∞} as
t ↗ +∞, it follows from the previous inequalities that

∫
{ũs<u}

(ddcũ)n = 0.

To complete the proof, we let s tend to +∞. �

Remark 2.3. — Independently the above theorem was proved in [P], Lemma
4:5.

Remark 2.4. — It follows that

1{ũ=−∞}(dd
cũ)n = 1{u=−∞}(dd

cu)n.

Indeed, the inequality ”�” follows from Theorem 2.1 and the other one from
Demailly’s inequality [D] (see also [ACCP], Lemma 4.1).

3. Potentials on Kähler domains

Here we want to establish some elementary facts in pluripotential theory
on compact Kähler manifolds with boundary i.e. on domains in a compact
Kähler manifold.

3.1. The comparison principle

The aim of this section is to give a semi global version of the comparison
principle which contains the local one from pluripotential theory on bounded
hyperconvex domains in Cn as well as the global one from the theory on
compact Kähler manifolds (see [GZ2]).

Let X be a Kähler manifold of dimension n and ω the Kähler form on X.
We want to consider bounded ω−plurisubharmonic functions on Kähler do-
mains in X with boundary. For any domain D ⊂ X, denote by PSH(D,ω)
the set of ω−plurisubharmonic functions on D.

– 105 –



Maximal subextensions of plurisubharmonic functions

By definition if ϕ is ω−plurisubharmonic on D then locally in D the
function u := ϕ + p is a local plurisubharmonic function, where p is a
local plurisubharmonic potential of the form ω i.e. ddcp = ω. Therefore by
Bedford and Taylor [BT] the curvature current ωϕ := ddcϕ + ω associated
to ϕ is a globally defined closed positive current on D which can be witten
locally as ωϕ = ddcu. Hence by Bedford and Taylor [BT], the wedge power
ωpϕ is a well defined closed positive current of bidegree (p, p) on D. More
generally, if ϕ1, · · · , ϕq are bounded ω−plurisubharmonic functions on D,
we can define inductively the wedge intersection product

T (ϕ1, · · · , ϕq) := ωϕ1
∧ · · · ∧ ωϕq (3.1)

as a closed positive current of bidimension (n − q, n − q) on D. Moreover
these currents put no mass on pluripolar sets.

Actually all local results from pluripotential theory concerning bounded
plurisubharmonic functions on domains in Cn are valid in the situation
considered here. We will refer to these results as results from the ”local
theory”.

Here we use ideas from the global case (see [GZ2]). Our starting point is
the following “local version” of the comparison principle which follows from
quasi-continuity of plurisubharmonic functions (see [BT2],[BT3]).

Proposition 3.1. — Let T be a closed positive current of bidimension
(p, p) (1 � p � n) of type (3.1) and ϕ,ψ ∈ PSH(D,ω) ∩ L∞(D). Then

1{ϕ<ψ}(ω + ddc sup{ϕ,ψ})p ∧ T = 1{ϕ<ψ}(ω + ddcψ)p ∧ T, (3.2)

in the weak sense of Borel measures on D. In particular

1{ϕ�ψ}(ω + ddc sup{ϕ,ψ})p ∧ T � 1{ϕ�ψ}(ω + ddcψ)p ∧ T, (3.3)

in the weak sense of Borel measures on D.

To perform a useful integration by parts formula, we need to consider
special domains.

Definition 3.2. — We will say that a domain D ⊂ X is quasi-hypercon-
vex if D admits a continuous negative ω−plurisubharmonic exhaustion func-
tion ρ : D �−→ [−1, 0[.

Observe that any domain D ⊂ X with smooth boundary given by
D := {r < 0}, where r is smooth in a neighbourhood of D, is quasi-
hyperconvex since for ε > 0 small enough, the function ρ := ε r is ω−pluri-
subharmonic on a neighbourhood of D and is a bounded exhaustion for D.
Observe that such a domain can be pseudoconcave.
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Here we will consider only quasi-hyperconvex domains D satisfying

∫

D

ωn <

∫

X

ωn. (3.4)

Definition 3.3. — Given a quasi-hyperconvex domain D, we define the
class of test functions P0(D,ω) to be the class of functions ϕ ∈ PSH−(D,ω)∩
L∞(D) such that limz→∂D ϕ = 0 and

∫
D

(ω + ddcϕ)n < +∞.

Observe that for any negative smooth function h with compact support
in D, the function εh is in P0(D,ω) for ε > 0 small enough. Moreover, if ρ
is an ω−plurisubharmonic defining function for D then for any 0 � t � 1,
tρ ∈ P0(D,ω).

Lemma 3.4. — Let T be a closed positive current of bidimension (p, p)
(1 � p � n) and ϕ,ψ ∈ PSH(D,ω) ∩ L∞(D) be such that (ϕ− ψ)� � 0 on
∂D. Assume that

∫
D

(ddcϕ)p ∧ T < +∞. Then we have

∫

{ϕ<ψ}
ωpψ ∧ T �

∫

{ϕ<ψ}
ωpϕ ∧ T,

and ∫

{ϕ�ψ}
ωpψ ∧ T �

∫

{ϕ�ψ}
ωpϕ ∧ T.

and if ϕ � ψ on D then

∫

D

ωpψ ∧ T �
∫

D

ωpϕ ∧ T.

In particular if ϕ ∈ PSH−(D,ω)∩L∞(D) and ϕ→ 0 at the boundary, then

∫

D

ωp ∧ T �
∫

D

ωpϕ ∧ T.

Proof. — Recall that the condition (ϕ − ψ)� � 0 means that for any
ε > 0, {ϕ < ψ − ε} � D. So replacing ψ by ψ − ε and letting ε ↘ 0,
we can assume that {ϕ < ψ} � D. Then the function ϑ := sup{ϕ,ψ} ∈
PSH(D,ω)∩L∞(D) coincides with ϕ near the boundary of D. This implies
that ∫

D

(ω + ddcϑ)p ∧ T =

∫

D

(ω + ddcϕ)p ∧ T. (3.5)

Indeed, using local regularization of plurisubharmonic functions, we see that
(ω+ddcϑ)p∧T − (ω+ddcϕ)p∧T = dS, in the sense of currents in D, where
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S := dc(ϑ−ϕ)
(
(ω + ddc ϑ)p−1 + · · ·+ (ω + ddcϕ)p−1

)
∧T is a well defined

current with measure coefficients and with compact support inD. Therefore,
by definition of the differential of a current, we get

∫
D
χdS = 0 for any test

function χ which is identically 1 in a neignbourhood of the support of S.
This implies the identity (3.5).

Now by Proposition 3.1, we get
∫

{ϕ<ψ}
ωpψ ∧ T =

∫

{ϕ<ψ}
ωpϑ ∧ T.

Then using the identity (3.5) and again Proposition 3.1, we deduce
∫

{ϕ<ψ}
ωpψ ∧ T =

∫

D

ωpϑ ∧ T −
∫

{ϕ�ψ}
ωpϑ ∧ T

�
∫

D

ωpϕ ∧ T −
∫

{ϕ>ψ}
ωpϑ ∧ T

=

∫

D

ωpϕ ∧ T −
∫

{ϕ>ψ}
ωpϕ ∧ T,

which implies ∫

{ϕ<ψ}
ωpψ ∧ T �

∫

{ϕ�ψ}
ωpϕ ∧ T.

Applying this result to ϕ+ε and ψ and letting ε→ 0, we obtain the required
inequality.

To obtain the second inequality, we can assume ϕ,ψ < 0 on D. Now
apply the above inequality to ϕ and tψ with 0 < t < 1 and observe that
(ddc(tψ)+ω)n � tnωnψ. Then letting t→ 1, we obtain the required inequal-
ity. �

If m = 0 we set T0 = 1 and for m � 1 we set Tm := ωu1 ∧ · · · ∧ ωum ,
where u1, · · ·um ∈ P0(D,ω). Thus Tm is a closed positive current on D.
Then we have the following important result.

Corollary 3.5. — 1) The class P0(D,ω) is convex and satisfies the
lattice condition:

ϕ ∈ P0(D,ω), u ∈ PSH−(D,ω) =⇒ sup{ϕ, u} ∈ P0(D,ω).

2) Let 1 � p, q be integers such that p+ q � n and denote by m := n−p− q.
Then for any ϕ,ψ ∈ P0(D,ω),

∫

D

ωpϕ ∧ ωqψ ∧ Tm �
∫

D

ωp+qϕ ∧ Tm +

∫

D

ωp+qψ ∧ Tm. (3.6)
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3) If ϕ1, · · · , ϕn ∈ P0(D,ω), then

∫

D

ωϕ1
∧ · · · ∧ ωϕn � 2n−1

n∑

j=1

∫

D

ωnϕj .

Proof. — Let ϕ ∈ P0(D,ω) and u ∈ PSH−(D,ω) and denote by
σ(ϕ, u) := sup{ϕ, u}. Since ϕ � σ(ϕ, u) � 0, it is clear from the lemma
above that ∫

D

ωn �
∫

D

(ω + ddcσ(ϕ, u))n �
∫

D

ωnϕ,

which implies that σ(ϕ, u) ∈ P0(D,ω).

We first prove the inequality (3.6) when m = 0, Tm = 1 and p+ q = n.
Indeed, by Lemma 3.4 we get

∫

{ϕ+ε<ψ}
ωpϕ ∧ ωqψ �

∫

{ϕ<ψ}
ωp+qϕ �

∫

D

ωp+qϕ .

Applying this result with ψ = 0 we deduce that

∫

D

ωpϕ ∧ ωq �
∫

D

ωp+qϕ . (3.7)

In the same way we obtain

∫

{ψ<ϕ}
ωpϕ ∧ ωqψ �

∫

D

ωp+qψ .

Therefore ∫

D

ωpϕ ∧ ωqψ �
∫

D

ωp+qϕ +

∫

D

ωp+qψ ,

if we choose ε > 0 such that
∫
{ψ+ε=ϕ} ω

p
ϕ ∧ ωqψ = 0 and let ε decrease to 0.

Then the convexity of P0(D,ω) follows since for ϕ,ψ ∈ P0(D,ω) and
0 < t < 1, we have

(ω + ddc(tϕ+ (1− t)ψ))
n

=

n∑

p=0

(
n

p

)
tp(1− t)n−pωpϕ ∧ ωn−pψ ,

which implies by the previous inequality that

∫

D

(ω + ddc(tϕ+ (1− t)ψ))
n �

∫

D

ωnϕ +

∫

D

ωnψ,
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which is finite and thus tϕ+ (1− t)ψ ∈ P0(D,ω). From this, it follows that
for any ϕ1, · · · , ϕn ∈ P0(D), we have u := (ϕ1 + · · · + ϕn)/n ∈ P0(D) and
from the last inequality we deduce that

∫

D

(ω + ddcϕ1) ∧ · · · ∧ (ω + ddcϕn) � nn
∫

D

(ω + ddcu)n < +∞.

Therefore we can apply Lemma 3.4 for Tm and use the same argument as
before to get the inequality (3.6) in the general case. �

3.2. Integration by parts formula

To prove the integration by parts formula (IBP) which will be crucial
for our considerations, we need a semi-global version of the classical (local)
convergence theorem of Bedfod and Taylor for our class P0(D,ω).

Proposition 3.6. — Let (ϕ0
j ), · · · (ϕnj ) be sequences of locally uniformly

bounded ω−plurisubharmonic functions in the class P0(D,ω) converging
monotonically to ϕ0, · · · , ϕn ∈ P0(D,ω) respectively. Then the positive cur-
rents Sj := (ddcϕ1

j + ω) ∧ · · · ∧ (ddcϕnj + ω) and S := (ddcϕ1 + ω) ∧ · · · ∧
(ddcϕn + ω) have uniformly bounded total masses in D and

lim
j→+∞

∫

D

(−ϕ0
j )(dd

cϕ1
j + ω) ∧ · · · ∧ (ddcϕnj + ω) =

∫

D

(−ϕ0)(ddcϕ1 + ω) ∧ · · · ∧ (ddcϕn + ω).

Proof. — Observe first that the local theory of Bedford and Taylor im-
plies that (−ϕ0

j )Sj → (−ϕ0)S weakly on D (see [BT2]). It follows from our
hypothesis that given ε > 0, there exists an open set D′ � D such that
−ε � ϕ0

j � 0 and −ε � ϕ0 � 0 on D \D′. Then

∫

D

(−ϕ0
j )Sj −

∫

D

(−ϕ0)S =

∫

D′
(−ϕ0

j )Sj −
∫

D′
(−ϕ0)S0 + O(ε), (3.8)

uniformly in j ∈ N. Here we have used the fact that the currents Sj have
uniformly bounded mass on D by Lemma 3.4. Now observe that we can
always choose the domain D′ so that the positive measure µ0 := (−ϕ0)S
puts no mass on its boundary ∂D′. Then since the positive measures µj :=
(−ϕ0

j )Sj converge weakly to µ0 in D, it follows that

µ0(D
′) � lim inf

j
µj(D

′) � lim sup
j

µj(D′) � µ0(D′) = µ0(D
′),
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which proves that the first integral on the right hand side converges to 0
and the proposition is proved.

Now we can prove the following integration by parts formula which will
be useful in the sequel.

Lemma 3.7. — Let T := (ω+ddcu1)∧ · · · ∧ (ω+ddcun−1), where u1, · · ·
un−1 ∈ P0(D,ω). Let u, v ∈ P0(D,ω). Then

∫

D

uddcv ∧ T =

∫

D

vddcu ∧ T, (3.9)

and ∫

D

uωv ∧ T −
∫

D

vωu ∧ T =

∫

D

(u− v)ω ∧ T. (3.10)

Proof. — Denote by H(u, v) := uddcv ∧ T − vddcu∧ T . Then by Propo-
sition 3.1 the current H(u, v) has finite total mass in D. It follows from
Stokes formula that if ū, v̄ are bounded ω−plurisubharmonic functions on
D such that ū = u and v̄ = v near the boundary ∂D then

∫

D

H(ū, v̄) =

∫

D

H(u, v).

Indeed observe that since u, v, ū, v̄ are bounded ω−quasiplurisubharmonic
functions on D, it follows from the local theory that the currents S := udcv∧
T − vdcu∧T and S̄ :=:= ūdcv̄∧T − v̄dcū∧T are well defined currents with
measure coefficients on D such that dS = uddcv ∧ T − vddcu∧ T = H(u, v)
and dS̄ = ūddcv̄∧T−v̄ddcū∧T = H(ū, v̄) in the weak sense of currents onD.
Now since S− S̄ is of compact support in D, it follows that

∫
D
d(S− S̄) = 0

and then ∫

D

H(u, v) =

∫

D

H(ū, v̄).

Now for ε > 0 small enough, set uε := sup{u, v− ε} and vε := sup{v, u− ε}
and observe that uε = u and vε = v near ∂D. Thus by the previous remark,
we have for ε > 0 small enough

∫

D

H(uε, vε) =

∫

D

H(u, v). (3.11)

We want to pass to the limit. Here we must use the fact that u = v = 0 on
∂D, which implies that uε = vε = 0 on ∂D. Now for ε > 0 small enough,
we have

H(uε, vε) = uεdd
cvε ∧ T − vεddcuε ∧ T.
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Since uε ↗ g := max{u, v} and vε ↗ g, it follows from Proposition 3.1 that

lim
ε→0

∫

D

uεdd
cvε ∧ T =

∫

D

gddcg ∧ T = lim
ε→0

∫

D

vεdd
cuε ∧ T,

which implies the required integration by parts formula. �

4. Subextension of quasi-plurisubharmonic functions

4.1. Weighted Monge-Ampère energy classes

In the contrast to the local case, the domain of definition of the com-
plex Monge-Ampère operator is not well understood in the global case.
Interesting classes have been investigated in [GZ2] and [CGZ]. We are go-
ing to introduce similar classes in the semi-global case where the complex
Monge-Ampère operator is well defined and continuous under deacreasing
sequences. The first class is modeled on the class defined by Cegrell in ([Ce2])
as follows.

Definition 4.1. — We say that ϕ ∈ F(D,ω) if there exists a decreasing
sequence (ϕj) from the class P0(D,ω) which converges to ϕ on D such that

sup
j

∫

D

ωnϕj < +∞.

Observe that F(D,ω) is a convex set and P0(D,ω) ⊂ F(D,ω). The class
F(D,ω) is the counterpart of the class defined by Cegrell in [Ce2]. Let D be
a hyperconvex domain where the form ω has a plurisubharmonic potential q
on D with boundary values 0 and let F(D) the class defined in [Ce2]. Then
if ϕ ∈ F(D,ω) iff u := ϕ+ q ∈ F(D).

We do not know at the moment if the Monge-Ampère operator is well
defined on the class F(D,ω) but we can define the Monge-Ampère mass of
a function ϕ ∈ F(D,ω) thanks to the following lemma.

Lemma 4.2. — Let ϕ ∈ F(D,ω) be a fixed function. Then the constant

MD(ϕ) := lim
j

∫

D

(ω + ddcϕj)
n = sup

j

∫

D

(ω + ddcϕj)
n

is independant of the decreasing sequence (ϕj) from P0(D,ω) converging
to ϕ.

Moreover if ψ ∈ PSH(D,ω) and ϕ � ψ � 0 then ψ ∈ F(D,ω).
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Proof. — Take a defining sequence (ϕj)j for ϕ. By Lemma 3.4 we know
that the sequence {

∫
D

(ω + ddcϕj)
n}j is increasing and by definition it is

bounded so the limit MD(ϕ) exists. We only need to show that it does not
depend on the sequence. Let (ψj) another decreasing sequence of functions in
the class P0(D,ω) converging to ϕ in D. Fix ε > 0 and j. Since by Bedford-
Taylor continuity theorem ([BT2]), (ω+ ddc sup{ψj , ϕk})n → (ω+ ddcψj)

n

weakly on D as k →∞, it follows that there exists kj such that

∫

D

(ω + ddc sup{ψj , ϕkj})n >
∫

D

(ω + ddcψj)
n − ε.

By Lemma 3.4, we have

∫

D

(ω + ddc sup{ψj , ϕkj})n �
∫

D

(ω + ddcϕkj )
n �MD(ϕ).

Therefore it follows that
∫
D

(ω + ddcψj)
n − ε �MD(ϕ), which implies that

supj
∫
D

(ω + ddcψj)
n �MD(ϕ) and proves the first part of the lemma.

Now set ψj := sup{ψ,ϕj}. Then by Lemma 3.4, ψj ∈ P0(D) and
∫
D

(ω+
ddcψj)

n �
∫
D

(ω + ddcϕj)
n � MD(ϕ). Since (ψj) decreases to ψ, it follows

that ψ ∈ F(D,ω) and from the first part of the proof we deduce that
MD(ψ) �MD(ϕ). �

Let us introduce the following classes of finite weighted Monge-Ampère
energy (see [Ce1], [GZ2], [BGZ]). A weight function is by definition an in-
creasing function χ : R �−→ R such that χ(t) = t is t � 0 and χ(−∞) = −∞.
To any weight function we associate the class Eχ(D,ω) of of ω−plurisubhar-
monic functions ϕ ∈ PSH(D,ω) for which there exists a sequence (ϕj) ∈
P0(D,ω), ϕj ↘ ϕ such that

sup
j

∫

D

|χ(ϕj)|ωnϕj < +∞.

In our case the weight function χ will be convex. From the (IBP) formula,
we can derive the following fundamental inequality which will be useful (see
[GZ2]).

Proposition 4.3 Let χ : R �−→ R be a convex weight function. Then
for any ϕ,ψ ∈ P0(D,ω) with ϕ � ψ, we have

∫

D

|χ(ψ)|ωnψ � 2n
∫

D

|χ(ϕ)|ωnϕ. (4.1)
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We can prove that the complex Monge-Ampère operator is well defined
and continuous on decreasing sequences in the class Eχ(D,ω), where χ is a
convex increasing functions R �−→ R (see [GZ2], [CGZ]).

Proposition 4.4. — The complex Monge-Ampère operator is well
defined on the class Eχ(D,ω). Moreover if (ϕj) is a decreasing sequence
from the class Eχ(D,ω) which converges to ϕ ∈ Eχ(D,ω), then the Monge-
Ampère measures (ωnϕj ) converge to ωnϕ weakly on D. Moreover for any
h ∈ PSH(D,ω) ∩ L∞(D)

lim
j

∫

D

hωnϕj =

∫

D

hωnϕ.

Using the integration by parts formula, the fundamental inequality and
following the same arguments as [GZ2], it is possible to prove the following
result.

Proposition 4.5. — Let ϕ ∈ PSH(D,ω). Assume there exists a de-
creasing sequence (ϕ)j∈N in P0(D,ω) which converges to ϕ ∈ PSH(D,ω)
and satisfies supj

∫
D
|χ(ϕj)|ωnϕj < +∞. Then ϕ ∈ Eχ(D,ω) and

lim
j→+∞

∫

D

|χ(ϕj)|ωnϕj =

∫

D

|χ(ϕ)|ωnϕ.

4.2. A general subextension theorem

We now prove the following general subextension result which generalizes
our previous result with a new proof (see [CKZ]).

Theorem 4.6. — Let D ⊂ X be a quasi-hyperconvex domain satisfying
the condition (3.4). Let ϕ ∈ F(D,ω) such that MD(ϕ) �

∫
X
ωn. Then there

exists a function ϕ ∈ PSH(X,ω) such that ϕ � ϕ on D.

Proof. — Let (ϕj) be a decreasing sequence from the class P0(D,ω)
which converges to ϕ on D. By Lemma 4.2 we have

∫

D

(ω + ddcϕj)
n �MD(ϕ).

First assume that MD(ϕ) <
∫
X
ωn. Then by [GZ2] there exists uj ∈

E1(X,ω) with supX uj = −1 such that

(ω + ddcuj)
n = 1D(ω + ddcϕj)

n + εjω
n
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on X, where εj > 0 is chosen so that the total mass of both sides are equal.
Fix j ∈ N. Since {ϕj < uj} := {x ∈ D;ϕj < uj} � D, and ϕj is bounded,
it follows that for s > 1 large enough, {ϕj < usj} = {ϕj < uj} � D,
where usj := sup{uj ,−s}. Then by the comparison principle (Lemma 3.4),
it follows that∫

{ϕj<usj}
(ω + ddcusj)

n �
∫

{ϕj<usj}
(ω + ddcϕj)

n.

Recall that 1{uj>−s}(ω + ddcusj)
n = 1{uj>−s}(ω + ddcuj)

n (see [GZ2]).
Therefore ∫

{ϕj<uj}
(ω + ddcuj)

n �
∫

{ϕj<uj}
(ω + ddcϕj)

n,

which implies that V olω({ϕj < uj}) = 0 and then uj � ϕj on D. Due to
the normalization of uj , the function u := (lim supj→+∞ uj)

∗ ∈ PSH(X,ω)
and satisfies u � ϕ on D and maxX u = −1 (see [GZ1]).

Now assume ϕ ∈ F(D,ω) with MD(ϕ) =
∫
X
ωn and consider a decreas-

ing sequence (ϕj) in P0(D,ω) converging to ϕ with uniformly bounded
Monge-Ampère masses. Then it follows that for any 0 < t < 1 the function
tϕj ∈ P0(D,ω) and

∫
D

(ω + ddctϕj)
n =

∫
D

(tωϕj + (1 − t)ω)n. By Lemma
3.4 we have

∫
D
ωpϕj ∧ ωn−p �

∫
D
ωnϕj . Therefore since

∫
D
ωn <

∫
X
ωn, it

follows that MD(tϕj) =
∫
D

(ω+ ddctϕj)
n <

∫
X
ωn. By the first part we can

find a subextension ψtj ∈ PSH(X,ω) of tϕj to X satisying maxX ψtj = −1.

Therefore the function ψj := (lim supt↗1 ψj
t)∗ is an ω−plurisubharmonic

subextension of ϕj to X with maxX ψj = −1 . Now observe that, as be-
fore, ψ := (lim supj→+∞ ψj)

∗ ∈ PSH(X,ω) and satisfies maxX ψ = −1 and
ψ � ϕ on D. �

It follows from the above theorem that given ϕ ∈ F(D,ω) such that
MD(ϕ) �

∫
X
ωn, the following function

ϕ = ϕD := sup{ψ ∈ PSH(X,ω);ψ � ϕ on D}
is a well defined ω−plurisubharmonic function on X and will be called the
maximal subextension of ϕ from D to X.

The example below shows that in general the maximal subextension
does not belong to the global domain of definition of the complex Monge-
Ampère operator on X since it may have positive Lelong number along a
hypersurface.

However if the given function has a finite weighted Monge-Ampère en-
ergy in the sense of [GZ2], we will prove that the maximal subextension
satisfies the same property.
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Theorem 4.7. — Let D ⊂ X be an quasi-hyperconvex domain satisfying
the condition (3.4) and let ϕ ∈ Eχ(D,ω) be such that

∫
D
ωnϕ �

∫
X
ωn, where

χ : R �−→ R is a convex weight function. Then the maximal subextension ϕ̃
of ϕ from D to X exists and has the following properties:
(i) ϕ ∈ Eχ(X,ω) and

∫
X
|χ ◦ ϕ|(ω + ddcϕ)n �

∫
D
|χ ◦ ϕ|(ω + ddcϕ)n,

(ii) 1D(ω+ ddcϕ)n � 1D(ω+ ddcϕ)n holds in the sense of measures on X,
(iii) the measure (ω + ddcϕ)n is carried by the Borel set {ϕ = ϕ} ∪ ∂D.

We will need the following lemma which can be proved using the argu-
ment from the first part of the proof of Theorem 2.1.

Lemma 4.8. — Let D be as above and ϕ ∈ P0(D,ω) be such that
∫
D
ωnϕ �∫

X
ωn, then ϕ ∈ PSH(X,ω)∩L∞(X) and 1D(ω+ddcϕ)n � 1D(ω+ddcϕ)n

in the sense of measures on X. Moreover the measure (ω+ddcϕ)n is carried
by the Borel set {x ∈ D̄; ϕ̃(x) = ϕ(x)}.

Proof of the theorem. — Let (ϕj) a sequence (ϕj) ∈ P0(D,ω) which
decreases to ϕ on D. Define ϕ̃j to be the maximal subextension of ϕj from
D to X. Then by the previous lemma ϕ̃j ∈ PSH(X,ω) ∩ L∞(X) and
(ω + ddcϕj)

n is supported on the contact set {x ∈ D̄ : ϕ̃j(x) = ϕj(x)}.
Hence (−χ ◦ ϕ̃j)(ω + ddcϕ̃j)

n � 1D(−χ ◦ ϕj)(ω + ddcϕj)
n in the sense of

measures on X. Therefore there is a uniform constant C > 0 such that for
any j ∈ N,

∫

X

(−χ ◦ ϕ̃j)(ω + ddcϕ̃j)
n �

∫

D

(−χ ◦ ϕj)(ω + ddcϕj)
n � C.

Since (ϕ̃j) ↘ ϕ on X it follows from [GZ2] that ϕ ∈ Eχ(X,ω). Moreover
by the convergence theorem ([GZ2], [CGZ]) it follows that 1D|χ ◦ ϕ̃|(ω +
ddcϕ̃)n � 1D|χ ◦ ϕ|(ω + ddcϕ)n in the sense of measures on X.

The third part of the theorem is proved along the same lines as the last
part of the proof of Theorem 2.1 using Lemma 4.8 and Proposition 4.2.
�

Remark 4.9. — In contrast to the local case it may happen that a part
of the Monge-Ampère measure of ϕ̃ lives on the boundary of D.

As we already said before, the example in the last section shows that
the maximal subextension of a given function ϕ ∈ F(D,ω) may have not a
well defined Monge-Ampère measure. However the following property may
be useful.
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Proposition 4.10. — Let ϕ ∈ F(D,ω) be a given function. Then if
(ϕj) is a decreasing sequence of functions in the class P0(D,ω) converging to
ϕ then the sequence (ϕj) decreases to ϕ on X. Moreover any Borel measure
µ on X which is a limit point of the sequence of measures (ω + ddcϕj)

n on
X satisfies the inequality 1Dµ � 1D(ω + ddcϕ)n in the sense of measures
on X.

Proof. — Observe that for each j ∈ N, ϕ is a global subextension of ϕj
to X and then ϕ � ϕj on X. Therefore it is clear that the sequence (ϕj)
decreases to an ω−plurisubharmonic function ψ on X which satisties the
inequality ϕ � ψ on X. This shows that ψ ∈ PSH(X,ω). On the other hand
since ψ � ϕj � ϕj on D we infer that ψ � ϕ on D, which proves that ψ is a
subextension of ϕ to X and then ψ � ϕ on D. We conclude that ψ = ϕ on
X. We know from the last lemma that 1D(ω + ddcϕj)

n � 1D(ω + ddcϕj)
n

in the sense of measures on X, which implies the last statement of the
proposition. �

4.3. Subextension in Cn

Now we pass to subextensions from a hyperconvex domain D � Cn to
Cn, considered as an open subset of the complex projective space Pn. Recall
that the Lelong class is defined by

L(Cn) := {u ∈ PSH(Cn); sup{u(z)− log+ |z| < +∞}.

Let ω = ωFS be the normalized Fubini-Study metric on Pn defiend in affine
coordinates by

ω := ddc log |ζ|,
where ζ := [ζ0 : · · · : ζn] are the homogeneous coordinates on Pn. As usual
we will consider Cn = Pn\{ζ0 = 0} with the affine coordinates defined as by
zj := ζj/ζ0 (1 � j � n). With these notations we have ω|Cn = ddc6, where
6(z) := (1/2) log(1 + |z|2). Therefore given any u ∈ L(Cn), the function
defined by

ϕ(ζ) := u(z)− (1/2) log(1 + |z|2), ζ0 �= 0

is ω−plurisubharmonic on Pn \ {ζ0 = 0} and locally upper bounded in a
neighbourhood of the hyperplane at infinity H∞ := {ζ0 = 0} so that it
extends to an ω−plurisubharmonic function on Pn which we also denote by
ϕ. It follows that the correspondance u �−→ ϕ is a bijection between L(Cn)
and PSH(Pn, ω) such that ω + ddcϕ = ddcu on Cn.

From the last theorem we can deduce a generalization of our earlier
result (see [CKZ], Theorem 5.3).
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Theorem 4.11. — Let D � Cn be a hyperconvex domain and let u ∈
F(D) be such that (ddcu)n does not put any mass on pluripolar sets in D and∫
D

(ddcu)n � 1. Then its maximal subextension ũ from D to Cn belongs to
L(Cn) and has a well defined global Monge-Ampère measure (ddcũ)n which
is carried by the set {ũ = u} ∪ ∂D and satsifies the inequality 1D(ddcũ)n �
1D(ddcu)n.

Proof. — Assume first that D = BR is an euclidean ball with center at
the origin and radius R > 0. Then the function q := (1/2) log(1 + |z|2) −
(1/2)log(1 + R2) is a potential of the normalized Fubini-Study form ω on
Cn which vanishes on ∂D. In this case ϕ := u − q ∈ F(D,ω). From our
hypothesis (ω + ddcϕ)n({ϕ = −∞}) = (ddcu)n({u = −∞}) = 0. It follows
from standard fact in measure theory that there exists a convex inceasing
function χ :]−∞, 0] −→]−∞, 0] such that

∫
D

(−χ ◦ ϕ)(ω + ddcϕ)n < +∞
(see [GZ 2]. It easily follows that ϕ ∈ Eχ(D,ω) and then we can apply the
last result to find a subextension ϕ̃ ∈ E(Pn, ω) of ϕ to Pn. Then ũ := ϕ̃+ q
is the maximal subextension of u to Cn.

Now in the general case consider an euclidean ball B such that D ⊂ B
and use Theorem 2.1 to produce a subextension v ∈ F(B) of u. Then by
the previous case v has a subextension ṽ such that ψ := ṽ − q is a function
in E(Pn, ω) which is a subextension of ϕ := u− q from D to Pn. Therefore
the maximal subextension ϕ̃ of ϕ exists and since ψ � ϕ̃ it follows that
ϕ̃ ∈ E(Pn, ω). Thus ũ := ϕ+ q ∈ L(Cn) is the maximal subextension of u to
Cn. The other properties follow in the same way as in the proof of Theorem
4.8. �

Now we consider an arbitrary function u ∈ F(D) and a positive γ satis-
fying

γn �
∫

D

(ddcu)n.

Then from Theorem 4.6 the set of entire subextensions of logarithmic growth

{v ∈ PSH(Cn); v|D � u, v(z) � av + γlog+|z|}

is not empty. Thus, using notation

Lγ(Cn) = {v ∈ PSH(Cn); v(z) � av + γlog+|z|}

one can choose the maximal subextension of u of logarithmic growth related
to γ

ũγ = sup{v ∈ Lγ(Cn); v|D � u}.
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As we shall see the Monge-Ampère measure of this subextension may not
exist. If it exists however, one can deduce some information on the support
of such measure.

Define
Nu = {z ∈ Cn; ũγ < 0}.

Proposition 4.12. — Assume that u ∈ F(D) and let γn =
∫
D

(ddcu)n.

Then for any sequence uj ∈ E0(D)∩C(D̄), decreasing to u if µ is an accumu-
lation point of (ddcũj,γ)

n then µ = f(ddcu)n+ ν where 0 � f � 1 is a func-
tion vanishing outside D and where ν is a positive measure, supp ν ⊂ ∂Nu.

Proof. — Assume first that u ∈ E0(D) ∩ C(D̄). Then ũγ is continuous
and the zero sublevel set of ũγ , Nu is hyperconvex.

By definition, D ⊂ Nu and by Theorem 5.1 in [CKZ] D is not relatively
compact in Nu. There are two possibilities:

1) D = Nu.

2) D �= Nu ⊂⊂ Cn.

If 1) occurs then ũγ extends u to a function in Lγ ∩ L∞loc and

1Nu(dd
cũγ)

n = 1D(ddcũγ)
n = 1D(ddcu)n.

In particular, if γn =
∫
D

(ddcu)n then (ddcũγ)
n = 1D(ddcu)n on Cn.

Generically we have 2). Then on Nu, ũγ is equal to ũ, the maximal
local subextension of u from D to Nu. Consider Dj ⊂⊂ Dj+1 ⊂⊂ D an
exhaustion sequence of D. Denote by ũj the corresponding local maximal
subextension to Nu of the solution uj ∈ E0(D) to (ddcuj)

n = 1Dj−1
(ddcu)n.

Then ũ � ũj and (ddcũj)
n � 1Dj−1

(ddcu)n on Nu by Theorem 2.1 and so
(ddcũ)n � 1D(ddcu)n on Nu.

Therefore, (ddcũγ)
n = f(ddcu)n + ν where 0 � f � 1 is a function

vanishing outside D and where ν is a positive measure, supp ν ⊂ ∂Nu ∩∂D.

Now consider the general case. Choose a decreasing sequence (uj) in
E0(D)∩C(D̄), decreasing to u. Then ũj,γ decreases to ũγ and (ddcũj,γ)

n =
fj(dd

cuj)
n + νj where 0 � fj � 1 is a function vanishing outside D and

where νj is a positive measure, supp νj ⊂ ∂Nuj . Also
∫

(ddcũj,γ)
n = γn. So

if µ is any weak limit of (ddcũj,γ)
n, then µ = f(ddcu)n+ ν where 0 � f � 1

is a function vanishing outside D and where ν is a positive measure carried
by ∂Nu. �
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Corollary 4.13. — If, for u ∈ F(D), the set Nu is bounded then
the Monge-Ampère measure of uγ is well defined and equal to the limit
of (ddcũj,γ)

n.

If Nu is not a bounded hyperconvex set, uγ need not to be in the domain
of definition of the Monge-Ampère operator. This is shown in the following
example.

Example 4.14. — The maximal entire subextension of a function from
the class F(B) may not have well defined global Monge-Ampère measure on
C2.

Consider the Green function g in the ball B(0, 2) ⊂ C2 with two poles
at (−1, 0) and (1, 0) of weight 1√

2
each. Then

∫

B(0,2)

(ddcg)2 = 1.

So there exists the maximal entire subextension g̃ = g̃t in the Lelong class
Lt(C2), 1 � t <

√
2. Note that 1√

2
log || z22 || is a subextension. By the defini-

tion of the Green function we have for some R ∈ (0, 1), A > 0 the following
inequalities

|g(z)− 1√
2

log ||(z1 + 1, z2)|| | < A in B((−1, 0), R)

|g(z)− 1√
2

log ||(z1 − 1, z2)|| | < A in B((1, 0), R).

Let 0 < r < R
16 be fixed and let z2 = w be fixed with 0 < |w| < r.

Consider the restriction g̃: g̃w(z) = g̃(z, w). If |z − 1| � r or |z + 1| � r
then ||(z, w)|| < 2 so g̃(z, w) � 0 on {|z − 1| � r} and {|z + 1| � r}.

If −∞ �≡ g̃w ∈ Lt(C) one concludes that the total mass of 1
2π∆g̃w does

not exceed t. By symmerty one can assume that
∫

B(1,R)

∆g̃w � t/2. (4.2)

(Otherwise consider B(−1, R) in place of B(1, R).)

If |z − 1| � |w| we then have

g̃w(z) = g̃(z, w) � 1√
2

log ||(z − 1, w)||+A � 1√
2

log |w|+A+ 1. (4.3)
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Let z be any point on {|w| < |z−1| � r}. Denote by B1 the disk B(z, 2r)
and by B2 the disk B(1, r). Then B2 ⊂ B1 ⊂ B(1, R). If J(K) denotes the
average value of g̃w over a set K ⊂ C then

g̃w(z) � J(B1) �
1

4
J(B2). (4.4)

Since J(B2) is dominated by the average of g̃w over the boundary of B2

one obtains from Riesz representation formula, using that g̃w � 0 and (4.2),
(4.3) :

J(B2) � maxB(1,|w|) g̃w −
∫
{|w|<|x−1|<r} log |x− 1|∆g̃w

� 1√
2

log |w|+A+ 1− t
2 log |w|

� ( 1√
2
− t

2 ) log |w|+A+ 1.

Therefore

g̃(z, w) �
√

2− t
8

log |w|+A+ 1

for ||(z − 1, w)|| < r. Since the Monge-Ampère operator cannot be defined
for v(z, w) = log |w| it follows that the same goes for the function g̃. �

Remark 4.15. — The above example relies on a geometrical effect which
is also responsible for nonexistence of solutions to the Monge-Ampère equa-
tions in CPn where we have on the right hand side a generic combination
of Dirac measures (cf. [Co]).

Remark 4.16. — It follows from [S] that g̃(z, w)−
√

2−t
8 log|w| is plurisub-

harmonic on C2. For an elementary proof, see [Ce4].
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