Mathématiques

Józef Siciak
Sets in \mathbb{C}^{N} with vanishing global extremal function and polynomial approximation

Tome XX, no S2 (2011), p. 189-209.
http://afst.cedram.org/item?id=AFST_2011_6_20_S2_189_0
© Université Paul Sabatier, Toulouse, 2011, tous droits réservés.
L'accès aux articles de la revue «Annales de la faculté des sciences de Toulouse Mathématiques» (http://afst.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://afst.cedram. org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques

Sets in \mathbb{C}^{N} with vanishing global extremal function and polynomial approximation

Józef Siciak ${ }^{(1)}$

Abstract. - Let Γ be a non-pluripolar set in \mathbb{C}^{N}. Let f be a function holomorphic in a connected open neighborhood G of Γ. Let $\left\{P_{n}\right\}$ be a sequence of polynomials with $\operatorname{deg} P_{n} \leqslant d_{n}\left(d_{n}<d_{n+1}\right)$ such that

$$
\limsup _{n \rightarrow \infty}\left|f(z)-P_{n}(z)\right|^{1 / d_{n}}<1, z \in \Gamma
$$

We show that if

$$
\limsup _{n \rightarrow \infty}\left|P_{n}(z)\right|^{1 / d_{n}} \leqslant 1, z \in E
$$

where E is a set in \mathbb{C}^{N} such that the global extremal function $V_{E} \equiv 0$ in \mathbb{C}^{N}, then the maximal domain of existence G_{f} of f is one-sheeted, and

$$
\limsup _{n \rightarrow \infty}\left\|f-P_{n}\right\|_{K}^{\frac{1}{d_{n}}}<1
$$

for every compact set $K \subset G_{f}$. If, moreover, the sequence $\left\{d_{n+1} / d_{n}\right\}$ is bounded then $G_{f}=\mathbb{C}^{N}$.
If E is a closed set in \mathbb{C}^{N} then $V_{E} \equiv 0$ if and only if each series of homogeneous polynomials $\sum_{j=0}^{\infty} Q_{j}$, for which some subsequence $\left\{s_{n_{k}}\right\}$ of partial sums converges point-wise on E, possesses Ostrowski gaps relative to a subsequence $\left\{n_{k_{l}}\right\}$ of $\left\{n_{k}\right\}$.
In one-dimensional setting these results are due to J. Müller and A. Yavrian [5].

RÉSUMÉ. - Soit Γ un sous-ensemble non pluripolaire de \mathbb{C}^{N}. Soit f une fonction holomorphe sur un voisinage ouvert connexe G de Γ. Soit $\left\{P_{n}\right\}$ une suite de polynômes de degré $\operatorname{deg} P_{n} \leqslant d_{n}\left(d_{n}<d_{n+1}\right)$ telle que

$$
\limsup _{n \rightarrow \infty}\left|f(z)-P_{n}(z)\right|^{1 / d_{n}}<1, z \in \Gamma
$$

[^0]On démontre que si

$$
\limsup _{n \rightarrow \infty}\left|P_{n}(z)\right|^{1 / d_{n}} \leqslant 1, z \in E
$$

où E is est un sous-ensemble de \mathbb{C}^{N} tel que la fonction extrémale globale $V_{E} \equiv 0$ sur \mathbb{C}^{N}, alors le domaine maximal d'existence G_{f} de f est uniforme, et

$$
\limsup _{n \rightarrow \infty}\left\|f-P_{n}\right\|_{K}^{\frac{1}{d_{n}}}<1
$$

pour tout compact $K \subset G_{f}$. Si, de plus, la suite $\left\{d_{n+1} / d_{n}\right\}$ est bornée alors $G_{f}=\mathbb{C}^{N}$.
Si E est un sous-ensemble fermé de \mathbb{C}^{N} alors $V_{E} \equiv 0$ si et seulement si chaque série de polynômes homogènes $\sum_{j=0}^{\infty} Q_{j}$, ayant une sous-suite $\left\{s_{n_{k}}\right\}$ de sommes partielles convergeant ponctuellement sur E, admet des lacunes de type Ostrowski relativement à une sous-suite $\left\{n_{k_{l}}\right\}$ de $\left\{n_{k}\right\}$. En dimension 1, ces résultats sont dûs à J. Müller and A. Yavrian [5].

1. Introduction

Given an open set Ω in \mathbb{C}^{N}, let $\operatorname{PSH}(\Omega)$ denote the set of all plurisubharmonic (PSH) functions in Ω. Let \mathcal{L} be the class of PSH functions in \mathbb{C}^{N} with minimal growth, i.e. $u \in \mathcal{L}$ if and only if $u \in \operatorname{PSH}\left(\mathbb{C}^{N}\right)$ and $u(z)-\log (1+\|z\|) \leqslant \beta$ on \mathbb{C}^{N}, where β is a real constant depending on u.

If E is a subset of \mathbb{C}^{N}, the global extremal function V_{E} associated with E is defined as follows.

If E is bounded, we put

$$
V_{E}(z):=\sup \{u(z) ; u \in \mathcal{L}, u \leqslant 0 \text { on } E\}, z \in \mathbb{C}^{N}
$$

If E is unbounded, we put (see [7])

$$
V_{E}(z):=\inf \left\{V_{F}(z) ; F \subset E, F \text { is bounded }\right\}, \quad \mathrm{z} \in \mathbb{C}^{\mathrm{N}}
$$

It is known (see e.g. $[6,7]$) that V_{E}^{*} (the upper semicontinuous regularization) is a member of \mathcal{L} iff E is non-pluripolar (non-plp). $V_{E}^{*} \equiv+\infty$ iff E is pluripolar (plp).

If $N=1$ and E is a compact non-polar subset of \mathbb{C}, then $V_{E}^{*}(z) \equiv$ $g_{E}(z, \infty)$ for $z \in D_{\infty}$, where D_{∞} is the unbounded component of $\mathbb{C} \backslash E$, and g_{E} is the Green function of D_{∞} with the logarithmic pole at infinity.

If $N \geqslant 2$ and E is non-pluripolar, the function V_{E}^{*} is called pluricomplex Green function (with pole at infinity).

By [5] a closed subset E of \mathbb{C} is non-thin at ∞ if and only if $V_{E}^{*} \equiv 0$. One can check that for all $E \subset \mathbb{C}^{N}, N \geqslant 1$, we have $V_{E}^{*} \equiv 0$ if and only if $V_{E} \equiv 0$. Therefore, one can agree with the author of [9] that it is reasonable to say that a set $E \subset \mathbb{C}^{N}$ is non-thin at infinity (resp., thin at infinity), if $V_{E} \equiv 0$ (resp., $V_{E} \not \equiv 0$). In particular, if $V_{E}^{*} \equiv \infty$ the set E is thin at infinity.

In chapter 2 of this paper we discuss properties of sets E in \mathbb{C}^{N} with $V_{E} \equiv 0$. Similarly, as in [5] and [9], very important role in our applications is played by the necessary and sufficient conditions stated in section 2.18 (which are a slightly modified version of the conditions of Tuyen Trung Truong's Theorem 2 in [9]).

In chapters 3 and 4 we prove an N-dimensional version of the classical Ostrowski Gap Theorems for power series of a complex variable.

In chapters 5 an 6 we show that properties of sets $E \subset \mathbb{C}^{N}$ with $V_{E} \equiv 0$ $(N \geqslant 1)$ may be applied to obtain results in N-dimensional setting analogous to those obtained earlier by J. Müller and A. Yavrian [5] in the onedimensional case.

2. Sets in \mathbb{C}^{N} with $V_{E} \equiv 0$

Now we shall state several properties of the global extremal function. Most of the properties are known and follow either from the elementary theory of the Lelong class \mathcal{L} and from the definition of the extremal function, or from the Bedford-Taylor theorem on negligible sets in \mathbb{C}^{N}.

In the sequel F, E, E_{n} (resp., K, K_{n}) are arbitrary (resp., compact) subsets of \mathbb{C}^{N}.
2.1. Monotonicity property of the extremal function. $V_{F} \leqslant V_{E}$, if $E \subset F$.
2.2. $V_{E}=\lim _{R \rightarrow \infty} V_{E_{R}}$, where $E_{R}:=E \cap B(0, R)$, and $B(0, R):=$ $\left\{z \in \mathbb{C}^{N} ;\|z\|<R\right\}$ (resp., $B(0, R):=\{\|z\| \leqslant R\}$).
2.3. $V_{E}^{*}(z)=\lim _{R \rightarrow \infty} V_{E_{R}}^{*}(z)=\sup \{u(z) ; u \in \mathcal{L}, u \leqslant 0 \quad$ q.a.e. on $E\}$, where "q.a.e. on E " means that the corresponding property holds quasialmost everywhere on E, i.e. on $E \backslash A$, where A is a pluripolar set.

Hence, if E is non-pluripolar then the pluricomplex Green function V_{E}^{*} is the unique maximal element of the set $\mathcal{W}^{*}(E):=\{u \in \mathcal{L}, u \leqslant 0$ q.a.e. on $E\}$ ordered by the condition: if $u_{1}, u_{2} \in \mathcal{W}^{*}(E)$ then $u_{1} \preceq u_{2}$ if $u_{1}(z) \leqslant u_{2}(z)$ for all $z \in \mathbb{C}^{N}$.
2.4. $V_{K_{n}} \uparrow V_{K}$, if $K_{n+1} \subset K_{n}, K=\cap K_{n}$.
2.5. $V_{E_{n}}^{*} \downarrow V_{E}^{*}$, if $E_{n} \subset E_{n+1}, E=\cup E_{n}$.
2.6. $\left(\lim V_{E_{n}}\right)^{*}=\left(\lim V_{E_{n}}^{*}\right)^{*}=V_{E}^{*}$, if $E_{n+1} \subset E_{n}, E=\cap E_{n}$.
2.7. If E, A are subsets of \mathbb{C}^{N} and A is pluripolar then $V_{E \cup A}^{*} \equiv V_{E}^{*} \equiv$ $V_{E \backslash A}^{*}$.
2.8. Product property of the extremal function [1]. If $E \subset \mathbb{C}^{M}$, $F \subset \mathbb{C}^{N}$ then

$$
V_{E \times F}^{*}(z, w)=\max \left\{V_{E}^{*}(z), V_{F}^{*}(w)\right\}, \quad(z, w) \in \mathbb{C}^{M} \times \mathbb{C}^{N}
$$

Hence, a product $E \times F$ is non-thin at infinity if and only if the both factors are non-thin at infinity (a different proof of this property was given in [9]).

In the sequel we shall omit "at infinity" while speaking about non-thin (resp., thin) sets at infinity.
2.9. A set E in \mathbb{C}^{N} is non-thin if and only if the set $E \backslash B$ (resp., $E \cup B$) is non-thin for every bounded set B.

Without loss of generality we may assume that B is a ball $B(0, R)$. If $E \backslash B$ is non-thin then E is non-thin by the monotonicity property.

Now assume that E is non-thin. Then $E \backslash B$ is non-pluripolar because otherwise we would have $\log ^{+} \frac{\|z\|}{R} \equiv V_{B}^{*}(z) \equiv V_{B \cup(E \backslash B)}^{*}(z) \equiv V_{E}^{*}(z) \equiv 0$. A contradiction. Therefore $V_{E \backslash B}^{*} \in \mathcal{L}$. Put $M=\max _{\|z\|=R} V_{E \backslash B}^{*}(z)$. Then $u:=V_{E \backslash B}^{*}-M \in \mathcal{L}$ and $u \leqslant 0$ q.a.e. on E. Hence $u \leqslant V_{E}^{*} \equiv 0$ in \mathbb{C}^{N} which implies that $E \backslash B$ is non-thin.

It is obvious that $E \cup B$ is non-thin if E is non-thin. In order to show the inverse implication, it sufficient to observe that $E \backslash B=(E \cup B) \backslash B$.
2.10. If E is non-pluripolar then the limit

$$
\sigma:=\lim _{R \uparrow \infty} \max _{\|z\|=R} V_{E}^{*}(z) / \log R
$$

exists and σ either equals 0 (if and only if E is non-thin), or $\sigma=1$ (if and only if E is thin).

The function V_{E}^{*} is a member of the class \mathcal{L}. Therefore the limit exists and $0 \leqslant \sigma \leqslant 1$. One can check that $\sigma=0$ if and only if E is non-thin.

We should show that the case $0<\sigma<1$ is excluded. Indeed, the function $u:=\frac{1}{\sigma} V_{E}^{*}$ is a member of \mathcal{L}, and $u \leqslant 0$ q.a.e. on E. Hence, $\frac{1}{\sigma} V_{E}^{*} \leqslant V_{E}^{*}$ on \mathbb{C}^{N}. It follows that $\sigma \geqslant 1$. Consequently, $\sigma=1$.
2.11. Robin function, Robin constant and logarithmic capacity. If E is non-pluripolar then there exists a uniquely determined homogeneous PSH function $\tilde{V}_{E}(\lambda, z)$ of $1+N$ variables $(\lambda, z) \in \mathbb{C} \times \mathbb{C}^{N}$ such that $\tilde{V}_{E}(1, z)=V_{E}^{*}(z)$ on \mathbb{C}^{N}. One may check that $\tilde{V}(\lambda, z)=\log |\lambda|+V_{E}^{*}(z / \lambda)$ if $\lambda \neq 0$, and $V_{E}(0, z)=\lim \sup _{(\lambda, \zeta) \rightarrow(0, z)}\left(\log |\lambda|+V_{E}(\zeta / \lambda)\right)$.

The homogeneous PSH function $\tilde{V}_{E}(\underset{\sim}{0}, z)$ is called Robin function of E, and the set function $\gamma(E):=\max _{\|z\|=1} \tilde{V}_{E}(0, z)-$ Robin constant of E. The set function $c(E):=e^{-\gamma}$ is called logarithmic capacity of E. It is clear that the Robin constant and the logarithmic capacity of E depend on the choice of the norm $\|\cdot\|$ in \mathbb{C}^{N}.
2.12. A necessary condition for non-thinness. If E is non-thin then $c(E)=\infty$.

Indeed, if $V_{E} \equiv 0$ then $\tilde{V}_{E}(\lambda, z) \equiv \log |\lambda|$. Hence, $\tilde{V}_{E}(0, z) \equiv-\infty$ which implies that $\gamma(E)=-\infty$, i.e. $c(E)=+\infty$.

It is known that the condition 2.12 is not sufficient for closed subsets of the complex plane (and, consequently, for subsets of \mathbb{C}^{N} with $N \geqslant 2$). We shall give a simple example.
2.13. An example of a closed set $E \subset \mathbb{C}$ with $V_{E} \not \equiv 0$ and $c(E)=$ ∞.

Let $\left\{a_{n}\right\},\left\{\epsilon_{n}\right\}$ be two sequences of real numbers such that:

$$
a_{n+1}>a_{n}>0, \quad \epsilon_{n}>0, \quad \sum_{1}^{\infty} \epsilon_{n}=1, \quad \lim _{n \rightarrow \infty} \sum_{1}^{n} \epsilon_{k} \log a_{k}=+\infty
$$

e.g. $\epsilon_{n}=2^{-n}, a_{n}=e^{2^{n}}$.

Put

$$
U(z):=\sum_{1}^{\infty} \epsilon_{n} \log \frac{\left|z-a_{n}\right|}{1+a_{n}}, \quad E:=\{z ; U(z) \leqslant 0\} .
$$

It is clear that E is closed and unbounded. It remains to check that $c(E)=$ $+\infty$ and $V_{E}(z)=U^{+}(z)$, where $U^{+}(z):=\max \{0, U(z)\}$. To this order we put

$$
U_{n}(z):=\left(\sum_{1}^{n} \epsilon_{k}\right)^{-1} \sum_{1}^{n} \epsilon_{k} \log \frac{\left|z-a_{k}\right|}{1+a_{k}}, \quad E_{n}:=\left\{z ; U_{n}(z) \leqslant 0\right\}
$$

One can easily check that E_{n} is compact and regular (E_{n} is a finite union of non-trivial continua), $E_{n} \subset E_{n+1}, V_{E_{n}}(z) \equiv U_{n}^{+}(z) \downarrow U^{+}(z) \equiv V_{E}(z)$, $\tilde{V}_{E_{n}}(\lambda, z)=\left(\sum_{1}^{n} \epsilon_{k}\right)^{-1} \sum_{1}^{n} \epsilon_{k} \log \frac{\left|z-\lambda a_{k}\right|}{1+a_{k}}$ if $|z / \lambda| \geqslant R=R(n)=$ const >0, $\tilde{V}_{E_{n}}(0, z) \equiv \log \|z\|+\gamma\left(E_{n}\right)$ for all $z \in \mathbb{C}$, and hence $\log c\left(E_{n}\right)=-\gamma\left(E_{n}\right)=$ $\left(\sum_{1}^{n} \epsilon_{k}\right)^{-1} \sum_{1}^{n} \epsilon_{k} \log \left(1+a_{k}\right)$ for all $n \geqslant 1$, which gives the required result.

Taking $E \times F$ with E in \mathbb{C} as just above, and with a non-thin subset F of $\mathbb{C}^{N-1}(N \geqslant 2)$, one gets a thin subset of \mathbb{C}^{N} with $c(E \times F)=\infty$.
2.14. A sufficient condition for non-thinness. Using an inequality due to B. A. Taylor [8] one can show (see [9] for details) that a sufficient condition for E to be non-thin is

$$
\limsup _{R \uparrow \infty} \frac{\log c\left(E_{R}\right)}{\log R}>1-\frac{1}{C_{N}},
$$

where C_{N} is a constant depending only on the dimension N with $C_{N}>1$ for $N \geqslant 2$, and $C_{1}=1$.
2.15. Example. Let $\left\{a_{n}\right\}$ be a sequence of distinct points in \mathbb{C}^{N} with $a_{n} \neq 0(n \geqslant 1)$. Let ϵ_{n} be a sequence of positive real numbers such that $\sum_{1}^{\infty} \epsilon_{n}=1$. Let u be the function defined by

$$
u(z)=\sum_{1}^{\infty} \epsilon_{n} \log \frac{\left\|z-a_{n}\right\|}{1+\left\|a_{n}\right\|}, \quad z \in \mathbb{C}^{N}
$$

Then u is a non-constant $\left(u(0) \geqslant-\log 2, u\left(a_{n}\right)=-\infty\right.$ for every $n \geqslant$ 1) member of the class \mathcal{L} such that $E:=\{z ; u(z)<0\}$ is an open set containing the unit ball and all points a_{n}. It is clear that E is thin. Moreover, if the sequence $\left\{a_{n}\right\}$ is dense in \mathbb{C}^{N} then E is a thin unbounded open set dense everywhere.
2.16. Example. Every non-pluripolar real cone E in \mathbb{C}^{N} (without loss of generality, we assume that E has its vertex at the origin, so that $t z \in E$, if $t \in \mathbb{R}, t \geqslant 0, z \in E)$ is non-thin. Indeed, one can check that the sets $E_{R}:=E \cap\{\|z\| \leqslant R\}$ are non-pluripolar, and $E_{R}=R E_{1}$ for all $R \geqslant 1$. Observe that $V_{E}(z) \leqslant V_{E_{R}}(z) \equiv V_{E_{1}}\left(\frac{1}{R} z\right)$ for all z in \mathbb{C}^{N} and for $R \geqslant 1$. It follows that $V_{E}(z) \leqslant V_{E_{1}}(0)$ for all z which gives the required result.
2.17. Example. It follows from Wiener Criterion [3] that if E is a countable union of closed (or open) discs $\left\{z \in \mathbb{C} ;\left|z-a_{n}\right| \leqslant r\right\}$, where $r=$ const $>0, a_{n} \in \mathbb{C}$ and $a_{n} \rightarrow \infty$ as $n \rightarrow \infty$, then E is non-thin at infinity.

We shall show that analogous property is no more true in \mathbb{C}^{N} with $N \geqslant$ 2. Put $E:=\cup_{1}^{\infty} B_{n}$ where $B_{n}:=\left\{\left(z_{1}, z_{2}\right) ;\left|z_{1}-a_{n}\right|^{2}+\left|z_{2}\right|^{2} \leqslant 1\right\}, a_{n} \in \mathbb{C}$
and $a_{n} \rightarrow \infty$ as $n \rightarrow \infty$. It is sufficient to prove that $V_{E}\left(z_{1}, z_{2}\right)=\log ^{+}\left|z_{2}\right|$ for all $\left(z_{1}, z_{2}\right)$. It is clear that $\log ^{+}\left|z_{2}\right| \leqslant V_{E}\left(z_{1}, z_{2}\right)$ on E and hence in the whole space \mathbb{C}^{2}. Now let u be a function of the class \mathcal{L} with $u \leqslant 0$ on E. We want to show that $u\left(z_{1}, z_{2}\right) \leqslant \log ^{+}\left|z_{2}\right|$ in \mathbb{C}^{2}. Without loss of generality we may assume (by taking $\max [u, 0]$) that $u=0$ on E. Fix z_{2}° with $\left|z_{2}^{\circ}\right| \leqslant 1$. Then $u\left(z_{1}, z_{2}^{\circ}\right)=0$ for all z_{1} in the union of the $\operatorname{discs}\left\{\left|z_{1}-a_{n}\right| \leqslant 1\right\}$. Therefore $u\left(z_{1}, z_{2}\right)=0$ for all $\left(z_{1}, z_{2}\right)$ with $z_{1} \in \mathbb{C}$ and $\left|z_{2}\right| \leqslant 1$. Hence $u\left(z_{1}, z_{2}\right) \leqslant \log ^{+}\left|z_{2}\right|$ in \mathbb{C}^{2}.
2.18. Necessary and sufficient conditions for non-thinness. For a non-pluripolar set $E \subset \mathbb{C}^{N}$ the following conditions are equivalent.
(1) If $u \in \mathcal{L}, u \leqslant 0$ q.a.e. on E then $u=$ const $\leqslant 0$;
(2) $V_{E} \equiv 0$;
(3) $V_{E}^{*} \equiv 0$;
(4) If $u_{k} \in \mathcal{L}(k \geqslant 1)$ and $u(z):=\limsup _{k \rightarrow \infty} u_{k}(z) \leqslant 0$ q.a.e. on E then $u^{*}=$ const $\leqslant 0$;
(5) If $\left\{p_{k}\right\}$ is a sequence of polynomials of N complex variables and $\left\{n_{k}\right\}$ is a sequence of natural numbers such that $\operatorname{deg} p_{k} \leqslant n_{k}$ and $v:=\lim \sup _{k \rightarrow \infty} \frac{1}{n_{k}} \log \left|p_{k}\right| \leqslant 0$ q.a.e. on E then $v^{*}=$ const $\leqslant 0$.

Proof.-The implications $(1) \Rightarrow(2) \Rightarrow(3) \Rightarrow(4) \Rightarrow(5)$ are easy to check. In order to show the implication (5) \Rightarrow (1) fix $u \in \mathcal{L}$ with $u \leqslant 0$ q.a.e. on E. Assuming (5) holds, we need to show that $u=$ const $\leqslant 0$.

It is known $[6,7]$ that there exits a sequence of holomorphic polynomials $\left\{p_{n}\right\}$ such that $\operatorname{deg} p_{n} \leqslant n$ and $u=v^{*}$ where $v:=\lim \sup _{n \rightarrow \infty} \frac{1}{n} \log \left|p_{n}\right|$. By theorem on negligible sets [4], we know that $u=v^{*} \leqslant 0$ q.a.e. on E. By (5) it follows that $u=v^{*}=$ const $\leqslant 0$.
2.19. Remark. Consider the following property (1^{\prime}) of E
(1') If $u \in \mathcal{L}, u \leqslant 0$ on E then $u=$ const $\leqslant 0$.
It is obvious that if E has the property (1) then E satisfies (1^{\prime}). The inverse implication does not hold for $N \geqslant 2$ (we do not know if it is true for arbitrary sets on the complex plane). Namely, by Example 1.1. of [2], the set $E:=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} ;\left(z_{1} \in \mathbb{C},\left|z_{2}\right| \leqslant 1\right)\right.$ or $\left.\left(z_{1}=0, z_{2} \in \mathbb{C}\right)\right\}$ satisfies (1') but it does not satisfy (1), because $V_{E}^{*}\left(z_{1}, z_{2}\right) \equiv \log ^{+}\left|z_{2}\right|$.

3. Power series with Ostrowski gaps

Let

$$
\begin{equation*}
f(z)=\sum_{0}^{\infty} Q_{j}(z), \quad \text { where } \quad Q_{j}(z)=\sum_{|\alpha|=j} a_{\alpha} z^{\alpha} \tag{3.1}
\end{equation*}
$$

be a power series in \mathbb{C}^{N}, i.e. a series of homogeneous polynomials Q_{j} of N complex variables of degree j.

The set \mathcal{D} given by the formula $\mathcal{D}:=\left\{a \in \mathbb{C}^{N}\right.$; the sequence (3.1) is convergent in a neighborhood of $a\}$ is called a domain of convergence of (3.1).

It is known that

$$
\mathcal{D}=\left\{z \in \mathbb{C}^{N} ; \psi^{*}(z)<0\right\}
$$

where

$$
\psi(z):=\limsup _{j \rightarrow \infty} \sqrt[j]{\left|Q_{j}(z)\right|}
$$

If ψ^{*} is finite then it is PSH and absolutely homogeneous (i.e. $\psi^{*}(\lambda z)=$ $\left.|\lambda| \psi^{*}(z), \lambda \in \mathbb{C}, z \in \mathbb{C}^{N}\right)$. Therefore the domain of convergence \mathcal{D} is either empty, or it is a balanced (i.e. $\lambda z \in \mathcal{D}$ for all $\lambda \in \mathbb{C}$ with $|\lambda| \leqslant 1$ and $z \in \mathcal{D}$) domain of holomorphy. Every balanced domain of holomorphy is a domain of convergence of a series (3.1).

The number

$$
\rho:=1 / \limsup _{j \rightarrow \infty} \sqrt[j]{\left\|Q_{j}\right\|_{\mathbb{B}}}
$$

where $\mathbb{B}:=\left\{z \in \mathbb{C}^{N} ;\|z\| \leqslant 1\right\}$, is called a radius of convergence of series (3.1) (with respect to a given norm $\|\cdot\|$).

If $N=1$ then $\mathcal{D}=\rho \mathbb{B}$. If $N \geqslant 2$ then $\rho \mathbb{B} \subset \mathcal{D}$ but, in general, $\mathcal{D} \neq \rho \mathbb{B}$.
Series (3.1) is normally convergent in \mathcal{D}, i.e.

$$
\limsup _{j \rightarrow \infty} \sqrt[j]{\left\|Q_{j}\right\|_{K}}<1, \quad \limsup _{n \rightarrow \infty} \sqrt[n]{\left\|f-s_{n}\right\|_{K}}<1
$$

for all compact sets $K \subset \mathcal{D}$, where $s_{n}:=Q_{0}+\cdots+Q_{n}$ is the nth partial sum of (3.1).

For a strictly increasing sequence $\left\{n_{k}\right\}$ of positive integers we say that a power series (3.1) possesses Ostrowski gaps relative to $\left\{n_{k}\right\}$ if there exists a sequence of real numbers $q_{k}>0$ such that $\lim q_{k}=0$ and

$$
\begin{equation*}
\lim _{j \rightarrow \infty, j \in I}\left\|Q_{j}\right\|^{1 / j}=0 \tag{3.2}
\end{equation*}
$$

where \mathbb{B} is the unit ball in \mathbb{C}^{N}, and $I:=\cup_{k}\left[q_{k} n_{k}, n_{k}\right] \cap \mathbb{N}$.
We say that a series (3.1) is overconvergent, if a subsequence $\left\{s_{n_{k}}\right\}$ of its partial sums is uniformly convergent in a neighborhood of some point $a \in \mathbb{C}^{N} \backslash \mathcal{D}$.

Example.- Consider the function $f(z)=\sum_{0}^{\infty}\left(\frac{z(z+1)}{r}\right)^{2^{k^{2}}}$ $=\sum_{0}^{\infty} r^{-2^{k^{2}}}\left(z^{2^{k^{2}}}+\cdots+z^{2^{k^{2}+1}}\right)=\sum_{0}^{\infty} c_{j} z^{j}$, where $c_{j}=0$, when $2^{(k-1)^{2}+1}+1 \leqslant j \leqslant 2^{k^{2}+1}-1, k \geqslant 1$. The function f is given by a power series with Ostrowski gaps relative to the sequence $n_{k}=2^{k^{2}+1}-1$ (with $\left.q_{k}:=\left(2^{(k-1)^{2}+1}+1\right) /\left(2^{k^{2}+1}-1\right)\right)$. The sequence $s_{n_{k}}(z)=\sum_{0}^{2^{k^{2}+1}-1} c_{j} z^{j}=$ $\sum_{0}^{2^{(k-1)^{2}+1}} c_{j} z^{j}=\sum_{0}^{k-1}\left(\frac{z(z+1)}{r}\right)^{2^{j^{2}}}$ is normally convergent to $f(z)$ in the lemniscate $\mathcal{E}_{r}=\{z ;|z(z+1)|<r\}, r>0$.

The radius of convergence of our power series is given by the formula $\rho=\operatorname{dist}\left(0, \partial \mathcal{E}_{r}\right)$. If $0<r \leqslant \frac{1}{4}$ then \mathcal{E}_{r} has two disjoint components. If $r>\frac{1}{4}$ the lemniscate \mathcal{E}_{r} is connected. Our power series is overconvergent at every point of $\mathcal{E}_{r} \backslash\{|z| \leqslant \rho\}$. If G is a a connected component of \mathcal{E}_{r} then the function $\left.f\right|_{G}$ is holomorphic in G and it has analytic continuation across no boundary point of G.

4. Two Ostrowski Gap Theorems in \mathbb{C}^{N}

We say that a compact subset K of \mathbb{C}^{N} is polynomially convex if K is identical with its polynomially convex hull $\hat{K}:=\left\{a \in \mathbb{C}^{N} ;|P(a)| \leqslant\|P\|_{K}\right.$ for every polynomial P of N complex variables $\}$.

We say that an open set Ω in \mathbb{C}^{N} is polynomially convex, if for every compact subset K of Ω the polynomially convex hull \hat{K} of K is contained in Ω.

The aim of this section is to prove the two fundamental Ostrowski gap theorems in N-dimensional setting, $N \geqslant 1$.

Let f be a function holomorphic in a neighborhood of the origin of \mathbb{C}^{N} whose Taylor series development (3.1) possesses Ostrowski gaps relative to a sequence $\left\{n_{k}\right\}$.

Let Ω be the set of points a in \mathbb{C}^{N} such that the sequence $\left\{s_{n_{k}}\right\}$ is uniformly convergent in a neighborhood of a. By classical theory of envelops of holomorphy, each connected component of Ω is a polynomially convex domain. Let G be a connected component of Ω with $0 \in G$.

Theorem 1.- G is the maximal domain of existence of f. Moreover, G is polynomially convex and

$$
\limsup _{k \rightarrow \infty}\left\|f-s_{n_{k}}\right\|_{K}^{1 / n_{k}}<1
$$

for every compact subset K of G.

Corollary 4.1. - The maximal domain of existence G of a function f holomorphic in a neighborhood of the origin of \mathbb{C}^{N} with Taylor series development possessing Ostrowski gaps relative to a sequence $\left\{n_{k}\right\}$ is a onesheeted polynomially convex domain of holomorphy.

Corollary 4.2. - If a function f holomorphic in a neighborhood of $0 \in \mathbb{C}^{N}$ has Taylor series development of the form

$$
f(z)=\sum_{0}^{\infty} Q_{m_{k}}(z), \quad \text { where } \quad m_{k}<m_{k+1}, \frac{m_{k+1}}{m_{k}} \rightarrow \infty
$$

then the domain of convergence of the series is identical with the maximal domain of existence of f.

We need the following lemma (known for $N=1, \quad$ see e.g. [5], Lemma 3).

Lemma 4.3. - If a power series (3.1) with positive radius of convergence possesses Ostrowski gaps relative to a sequence $\left\{n_{k}\right\}$ then for every $R>0$ we have

$$
\begin{equation*}
\limsup _{k \rightarrow \infty}\left\|s_{n_{k}}\right\|_{B_{R}}^{1 / n_{k}} \leqslant 1 \tag{4.0}
\end{equation*}
$$

where $B_{R}:=B(0, R)$ is a ball with center 0 and radius R.

If series (3.1) possesses Ostrowski gaps relative to $\left\{n_{k}\right\}$, then either $\lim q_{k} n_{k}=\infty$, or $\mathbb{N} \backslash I$ is finite and consequently the function f is entire. In the second case (4.0) is obvious. In the first case, we have

$$
\epsilon_{k}:=\max \left\{\left\|Q_{j}\right\|_{\mathbb{B}}^{1 / j} ; q_{k} n_{k} \leqslant j \leqslant n_{k}\right\} \rightarrow 0 \text { as } k \rightarrow \infty .
$$

Fix $R>0$. Since the radius of convergence of the series (3.1) is positive, there exists $M>1$ such that $R M>1$, and

$$
\left\|Q_{j}\right\|_{B_{R}} \leqslant(M R)^{j}, \quad j \geqslant 0
$$

because $\left|Q_{j}(z)\right| \leqslant\left\|Q_{j}\right\|_{\mathbb{B}}\|z\|^{j} \leqslant(M\|z\|)^{j}, j \geqslant 0$, where $M>1$ is sufficiently large. Therefore $\left\|s_{n_{k}}\right\|_{B_{R}}^{1 / n_{k}} \leqslant \sum_{j=0}^{\left\lceil q_{k} n_{k}\right\rceil-1}(M R)^{j}+\sum_{j=\left\lceil q_{k} n_{k}\right\rceil}^{n_{k}}\left(\epsilon_{k} R\right)^{j} \leqslant$ $\left\lceil q_{k} n_{k}\right\rceil(M R)^{q_{k} n_{k}}+\left(n_{k}-\left\lceil q_{k} n_{k}\right\rceil\right)\left(\epsilon_{k} M R\right)^{q_{k} n_{k}} \leqslant n_{k}(M R)^{q_{k} n_{k}}$, where $k \geqslant k_{0}$ and k_{0} is so large that $\epsilon_{k} M R \leqslant 1$ for $k \geqslant k_{0}$, and $\left\|Q_{j}\right\|_{\mathbb{B}}^{1 / j} \leqslant \epsilon_{k}$ for $k \geqslant k_{0}$, $q_{k} n_{k} \leqslant j \leqslant n_{k}$. Therefore

$$
\limsup _{k \rightarrow \infty}\left\|s_{n_{k}}\right\|_{B(0, R)}^{1 / n_{k}} \leqslant \limsup _{k \rightarrow \infty} n_{k}^{1 / n_{k}}(M R)^{q_{k}}=1
$$

Proof of the Lemma is completed.
Proof of Theorem 1. - In the component G of Ω the function f is a locally uniform limit of the sequence of polynomials $\left\{s_{n_{k}}\right\}$ of corresponding degrees $\leqslant n_{k}$.

The function

$$
u_{k}:=\frac{1}{n_{k}} \log \left|f-s_{n_{k}}\right|
$$

is PSH in G. By (4.0), the sequence $\left\{u_{k}\right\}$ is locally uniformly upper bounded in G. Therefore, if $u:=\lim \sup _{k \rightarrow \infty} u_{k}$, then $u^{*} \in \operatorname{PSH}(G), u^{*} \leqslant 0$ in G and $u^{*}<0$ in a neighborhood of 0 . Hence, by the maximum principle for PSH functions, we have $u^{*}<0$ in G. Hence, by Hartogs Lemma,

$$
\limsup _{k \rightarrow \infty}\left\|f-s_{n_{k}}\right\|_{K}^{1 / n_{k}}<1
$$

for every compact subset K of G.
Suppose G is not a maximal domain of existence of f. Then, there exist a point $a \in G$, a real number $r>\operatorname{dist}(a, \partial G)=: r_{0}$, and a function g holomorphic in the ball $B(a, r)$ such that $g=f$ on $B\left(a, r_{0}\right)$. Basing on the inequality (4.0), similarly as just above, we can show that

$$
\limsup _{k \rightarrow \infty}\left\|g-s_{n_{k}}\right\|_{K}^{1 / n_{k}}<1
$$

for every compact subset K of $B(a, r)$. It follows that $s_{n_{k}} \rightarrow g$ locally uniformly in $B(a, r)$ as $k \rightarrow \infty$. Therefore the sequence $\left\{s_{n_{k}}\right\}$ converges uniformly in a neighborhood of some boundary point of G which contradicts the definition of Ω. It follows that G is a polynomially convex maximal domain of existence of f. The proof of Theorem 1 is completed.

ThEOREM 2.-For every polynomially convex open set $\Omega \subset \mathbb{C}^{N}$ with $0 \in \Omega$ there exists a function f holomorphic in Ω whose Taylor series development around 0

$$
\begin{equation*}
f(z)=\sum_{0}^{\infty} Q_{j}(z), \quad Q_{j}(z):=\sum_{|\alpha|=j} \frac{f^{(\alpha)}(0)}{\alpha!} z^{\alpha} \tag{4.1}
\end{equation*}
$$

possesses Ostrowski gaps relative to a sequence $\left\{n_{k}\right\}$ such that:
(i) Every connected component D of Ω is the maximal domain of existence of $f_{\mid D}$;
(ii) The subsequence $\left\{s_{n_{k}}\right\}$ of partial sums of (4.1) converges locally uniformly to f in Ω; in particular, Taylor series (4.1) is overconvergent at every point a of $\Omega \backslash \mathcal{D}$, where \mathcal{D} is the domain of convergence of (4.1);
(iii) If G is the component of Ω with $0 \in G$ then

$$
\limsup _{k \rightarrow \infty}\left\|f-s_{n_{k}}\right\|_{K}^{1 / n_{k}}<1
$$

for every compact subset K of G.
Proof. - Let $\left\{\xi^{(\nu)}\right\}\left(\xi^{(j)} \neq \xi^{(k)}, j \neq k\right)$ be a countable dense subset of Ω. Put $B_{\nu}:=B\left(\xi^{(\nu)}, r_{\nu}\right)$ with $r_{\nu}:=\operatorname{dist}\left(\xi^{(\nu)}, \partial \Omega\right)$. Let $c^{(\nu)}$ be a point of $\partial \Omega \cap \partial B_{\nu}$, and let $E_{\nu}=\left\{a^{(\mu \nu)}\right\}_{\mu \geqslant 1}$ be a sequence of points of the ball B_{ν} such that $a^{(\mu \nu)} \in\left(\xi^{(\nu)}, c^{(\nu)}\right):=\left\{\xi^{\nu}+t\left(c^{(\nu)}-\xi^{(\nu)}\right) ; 0<t \leqslant 1\right\}$ and

$$
\left\|a^{(\mu \nu)}-c^{(\nu)}\right\|<\frac{1}{\mu \nu}, \quad \mu \geqslant 1
$$

Let $\left\{E_{\nu}^{*}\right\}$ denote the sequence

$$
\begin{equation*}
E_{1} ; E_{1}, E_{2} ; E_{1}, E_{2}, E_{3} ; E_{1}, \cdots, E_{\nu} ; \cdots \tag{4.2}
\end{equation*}
$$

in which every set E_{ν} is repeated infinitely many times.
Since Ω is polynomially convex there exists a sequence of polynomially convex compact sets $\left\{\Delta_{k}\right\}$ such that Δ_{k} is contained in the interior of Δ_{k+1} and $\Omega=\cup_{1}^{\infty} \Delta_{k}$.

Taking, if necessary, a subsequence of $\left\{\Delta_{k}\right\}$, we may assume that $0 \in \Delta_{1}$ and

$$
E_{k}^{*} \cap\left(\Delta_{k+1} \backslash \Delta_{k}\right) \neq \emptyset, \quad k \geqslant 1
$$

Let $a^{(k)}$ be an arbitrary fixed point of this intersection. Given $k \geqslant 1$, let W_{k} be a polynomial such that $d_{k}:=\operatorname{deg} W_{k} \geqslant k$, and

$$
\begin{align*}
\left\|W_{k}\right\|_{\Delta_{k}} & <1<\left|W_{k}\left(a^{(k)}\right)\right| . \tag{4.3}\\
& -200-
\end{align*}
$$

Put $f_{0}(z) \equiv 0, \mu_{0}=\nu_{0}=1$, and

$$
\begin{equation*}
f_{k}(z)=\left(\frac{\bar{a}_{1}^{(k)} z_{1}+\cdots+\bar{a}_{N}^{(k)} z_{N}}{\left\|a^{(k)}\right\|^{2}}\right)^{\mu_{k}}\left(W_{k}(z)\right)^{\nu_{k}}, \quad k \geqslant 1, \tag{4.4}
\end{equation*}
$$

where μ_{k}, ν_{k} are positive integers. We claim that integers can be chosen in such a way that the following conditions are satisfied for all $k \geqslant 1$
(a) $\mu_{k-1}+\nu_{k-1} d_{k-1}<\mu_{k} / k$;
(b) $\left\|f_{k}\right\|_{\Delta_{k}} \leqslant 2^{-k}$;
(c) $\left|f_{k}\left(a^{(k)}\right)\right| \geqslant k+\left|\sum_{j=0}^{k-1} f_{j}\left(a^{(k)}\right)\right|$.

Indeed, put $\mu_{1}=1$ and choose $\nu_{1} \geqslant 1$ so large that $\left\|f_{1}\right\|_{\Delta_{1}} \leqslant \frac{1}{2}$. Then the conditions are satisfied for $k=1$. Suppose that μ_{j}, ν_{j} are already chosen for $j=0,1, \cdots, k$ for a fixed $k \geqslant 1$. Observe that $\left|f_{k}\left(a^{(k)}\right)\right|=\mid W_{k}\left(\left.a^{(k)}\right|^{\nu_{k}}\right.$ tends - by right hand side of (4.3) and (c) - to ∞ as $\nu_{k} \rightarrow \infty$ (here ν_{k} denotes a positive integer valued variable). It is clear that one can find an integer μ_{k+1} such that (a) is satisfied with k replaced by $k+1$. Now, applying left hand side (respectively, right hand side) inequality of (4.3) one can find an integer ν_{k+1} so large that (b) (respectively,(c)) is satisfied for k replace by $k+1$. By the induction principle, the claim is true.

We shall prove that the function f, given by the formula

$$
f(z)=\sum_{j=0}^{\infty} f_{j}(z), \quad z \in \Omega
$$

where f_{j} are defined by (4.4), has the required properties.
It follows from (b) that the series is uniformly convergent on compact subsets of Ω. Hence $f \in \mathcal{O}(\Omega)$. Since for $\nu=1,2, \ldots$ the sequence $\left\{a^{(k)}\right\}$ contains a subsequence of the sequence $\left\{a^{(\mu \nu)}\right\}_{\mu \geqslant 1}$, we have

$$
\limsup _{t \uparrow 1}\left|f\left(\xi^{(\nu)}+t\left(c^{(\nu)}-\xi^{(\nu)}\right)\right)\right|=+\infty
$$

It follows that every connected component D of Ω is a maximal domain of existence of $f_{\mid D}$.

The function f_{k} is a polynomial given by

$$
f_{k}(z)=\sum_{j=\mu_{k}}^{\mu_{k}+\nu_{k} d_{k}} Q_{j}(z)
$$

where Q_{j} is a homogeneous polynomial of degree j. By the condition (a), the Taylor series development of f around 0 is given by

$$
\begin{equation*}
f(z)=\sum_{0}^{\infty} Q_{j}(z), \quad\|z\|<\rho \tag{4.5}
\end{equation*}
$$

where $\rho=\operatorname{dist}(0, \partial \mathcal{D})$ and $Q_{j}=0$ for $\mu_{k-1}+\nu_{k-1} d_{k-1}+1 \leqslant j \leqslant \mu_{k}-1$, $k \geqslant 1$.

Put $n_{k}:=\mu_{k}-1$, and $q_{k}:=\frac{\mu_{k-1}+\nu_{k-1}+1}{\mu_{k}-1}$. Then $q_{k}>0$ and, by (a), $\lim _{k \rightarrow \infty} q_{k}=0$. It follows that the series (4.5) has Ostrowski gaps relative to the sequence $n_{k}:=\mu_{k}-1, k \geqslant 1$. It is clear that

$$
s_{n_{k}}(z)=\sum_{j=0}^{n_{k}} Q_{j}(z)=\sum_{j=0}^{k} f_{j}(z)
$$

Therefore the subsequence $\left\{s_{n_{k}}\right\}$ of partial sums of the Taylor series (4.5) converges locally uniformly to f in Ω. Moreover, by Theorem 1 , we conclude that $\left\{s_{n_{k}}\right\}$ satisfies condition (iii), which completes the proof of Theorem 2.

5. Sets E in \mathbb{C}^{N} with $V_{E} \equiv 0$ and power series with Ostrowski gaps

The following theorem is an N-dimensional version of Theorem 2 in [4].
Theorem 3.-Given a closed subset E of \mathbb{C}^{N}, the following two conditions are equivalent:
(a) $\quad V_{E} \equiv 0$.
(b) If a subsequence $\left\{s_{n_{k}}\right\}$ of partial sums of a power series (3.1) satisfies the inequality

$$
\begin{equation*}
\limsup _{k \rightarrow \infty}\left|s_{n_{k}}(z)\right|^{\frac{1}{n_{k}}} \leqslant 1, \quad \text { for every } \quad \mathrm{z} \in \mathrm{E}, \tag{5.1}
\end{equation*}
$$

then series (3.1) possesses Ostrowski gaps relative to a subsequence $\left\{n_{k_{\ell}}\right\}$ of the sequence $\left\{n_{k}\right\}$.

Proof of Theorem 3. - Our proof is an adaptation of the proof in onedimensional case presented in [5].

First we shall show that $(a) \Rightarrow(b)$. To this order observe that - by (a) - we have (5) of section 2.18 which implies - by Hartogs Lemma - that

$$
\begin{equation*}
\limsup _{k \rightarrow \infty}\left\|s_{n_{k}}\right\|_{B(0, R)}^{\frac{1}{n_{k}}} \leqslant 1, \quad \text { for every } \quad \mathrm{R}>0 \tag{5.2}
\end{equation*}
$$

The implication $(a) \Rightarrow(b)$ follows from
Lemma 5.1. - If $\left\{s_{n_{k}}\right\}$ satisfies (5.2) then the power series (3.1) possesses Ostrowski gaps relative to a subsequence $\left\{n_{k_{l}}\right\}$ of $\left\{n_{k}\right\}$.

Proof of Lemma 5.1. - By (5.2), for every $l \geqslant 1$, we can find $k_{l} \in \mathbb{N}$ such that $k_{l}<k_{l+1}$ and

$$
\left\|s_{n_{k_{l}}}\right\|_{B(0, l)} \leqslant\left(1+\frac{1}{l}\right)^{n_{k_{l}}}, \quad l \geqslant 1
$$

Hence, by Cauchy inequalities, we get

$$
\left\|Q_{j}\right\|_{\mathbb{B}}^{1 / j} \leqslant \frac{1}{l}\left(1+\frac{1}{l}\right)^{l \cdot \frac{n_{k_{l}}}{l j}} \leqslant \frac{e}{l}, \quad \frac{n_{k_{l}}}{l} \leqslant j \leqslant n_{k_{l}}, \quad l \geqslant 1
$$

which (with $q_{l}:=\frac{1}{l}$) completes the proof of Lemma 5.1.
$(b) \Rightarrow(a)$. It is enough to prove that $\operatorname{non}(a) \Rightarrow \operatorname{non}(b)$. Let E be a thin closed set in \mathbb{C}^{N}. We shall construct a power series (3.1), for which a subsequence $\left\{s_{n_{k}}\right\}$ satisfies (5.1), but which does not possess Ostrowski gaps relative to any subsequence of $\left\{n_{k}\right\}$.

Our construction is based on the following useful known result.
Lemma 5.2.- If K is a compact subset of \mathbb{C}^{N} then

$$
V_{K}(z)=\sup \left\{\frac{1}{k} \log \left|P_{k}(z)\right| ;\left\|P_{k}\right\|_{K}=1, k \geqslant 1\right\}, z \in \mathbb{C}^{N}
$$

where P_{k} is a polynomial of N complex variables of degree at most k.
Without loss of generality we may assume that $\overline{\mathbb{B}} \subset E$ (because, by property 2.9 we know that E is thin if and only if $E \cup \overline{\mathbb{B}}$ is thin).

Choose a point $a \in \mathbb{C}^{N}$ such that $R_{0}:=\|a\|>1$ and $V_{E}(a)=: \eta>0$. Put $\epsilon_{k}:=\eta / k, R_{k}:=R_{0}+k$, and $E_{k}=E \cap\left\{\|z\| \leqslant R_{k}\right\}$ for $k \geqslant 0$. Then $V_{E_{k}}(a) \downarrow V_{E}(a)$.

Let $p_{0}, q_{0} \geqslant 1$ be arbitrary integers, and let $W_{q_{0}}$ be a polynomial of degree $\leqslant q_{0}$ such that $\left\|W_{q_{0}}\right\|_{E_{0}}=1,\left|W_{q_{0}}(a)\right|>e^{\left(\eta-\epsilon_{0}\right) q_{0}}$, where $0<\epsilon_{0}<1$.

Suppose $p_{j}, q_{j}, W_{q_{j}}(j=0, \ldots, k)$ are already chosen in such a way that $W_{q_{j}}$ is a polynomial of degree $\leqslant q_{j}$ and

$$
\begin{equation*}
p_{j-1}+q_{j-1}<p_{j}<q_{j} / j \tag{5.3}
\end{equation*}
$$

Sets in \mathbb{C}^{N} with vanishing global extremal function

$$
\begin{gather*}
\frac{R_{j}^{p_{j}}}{\left(1+\epsilon_{j}\right)^{q_{j}}} \leqslant \frac{1}{j^{2}} \tag{5.4}\\
\left\|W_{q_{j}}\right\|_{E_{j}}=1, \quad\left|W_{q_{j}}(a)\right|>e^{\left(\eta-\epsilon_{j}\right) q_{j}} . \tag{5.5}
\end{gather*}
$$

Now, it is easy to find integers p_{k+1}, q_{k+1} and a polynomial $W_{q_{k+1}}$ such that (5.3), (5.4), (5.5) are satisfied for $j=k+1$.

First choose an arbitrary integer $p_{k+1}>p_{k}+q_{k}$, next choose an arbitrary integer $q_{k+1}>(k+1) p_{k+1}$ and a polynomial $W_{q_{k+1}}$ such that (5.4) and (5.5) are satisfied with $j=k+1$.

Consider the series

$$
\begin{equation*}
f(z)=\sum_{k=0}^{\infty}\left(\frac{\bar{a}_{1} z_{1}+\ldots+\bar{a}_{N} z_{N}}{\|a\|^{2}}\right)^{p_{k}} \frac{W_{q_{k}}(z)}{\left(1+\epsilon_{k}\right)^{q_{k}}} \tag{5.6}
\end{equation*}
$$

From (5.5) it follows that series (5.6) converges uniformly on every $E_{k}, k \geqslant 0$. In particular, its sum f is a holomorphic function in the unit ball. The k-th component of (5.6) is of the form $\sum_{j=p_{k}}^{p_{k}+q_{k}} Q_{j}$, where Q_{j} is a homogeneous polynomial of degree j. Hence $f(z)=\sum_{k=o}^{\infty}\left(\sum_{j=p_{k}}^{p_{k}+q_{k}} Q_{j}(z)\right), z \in$ \mathbb{B}. After removing the parentheses we get a power series with positive radius of convergence. Put $n_{k}=p_{k}+q_{k}$. It is clear that for every $k \geqslant 1$

$$
\begin{aligned}
\left|s_{n_{k}}(a)\right| \geqslant \frac{\left|W_{q_{k}}(a)\right|}{\left(1+\epsilon_{k}\right)^{q_{k}}}-\left|s_{n_{k-1}}(a)\right| \geqslant \frac{e^{q_{k}\left(\eta-\epsilon_{k}\right)}}{\left(1+\epsilon_{k}\right)^{q_{k}}}-\sum_{0}^{k-1} \operatorname{expq}_{j} V_{E_{j}}(a) \geqslant \\
\frac{e^{q_{k}\left(\eta-\epsilon_{k}\right)}}{\left(1+\epsilon_{k}\right)^{q_{k}}}-k M^{q_{k-1}}
\end{aligned}
$$

where M is a positive constant. Taking into account that $\epsilon_{k} \rightarrow 0,\left(k M^{q_{k-1}}\right)^{1 / q_{k}}$ $\rightarrow 1$ and $p_{k} / q_{k} \rightarrow 0$ as $k \rightarrow \infty$, we have

$$
\liminf _{k \rightarrow \infty}\left\|s_{n_{k}}\right\|_{B\left(0, R_{0}\right)}^{\frac{1}{n_{k}}} \geqslant \liminf _{k \rightarrow \infty}\left|s_{n_{k}}(a)\right|^{\frac{1}{n_{k}}} \geqslant e^{\eta}>1
$$

which by Lemma 4.3 gives the required result.
Remark. - The same idea of proof may be used to show that Theorem 3 remains true if $E \subset \mathbb{C}^{N}$ is of type F_{σ}. The implication $(a) \Rightarrow(b)$ holds for every set E with $V_{E} \equiv 0$.

6. Approximation by polynomials with restricted growth near infinity

Let E be a subset of \mathbb{C}^{N} with $V_{E} \equiv 0$. Let Γ be a non-pluripolar subset of an open connected set G. Let f be a function holomorphic in G. The following theorem is an N-dimensional counterpart of Theorem 1 in [5].

Theorem 4.-If $\left\{P_{n}\right\}$ is a sequence of polynomials of N complex variables with $\operatorname{deg} P_{n} \leqslant d_{n}\left(d_{n}<d_{n+1}, d_{n}\right.$ is an integer $)$ such that

$$
\begin{gather*}
\limsup _{n \rightarrow \infty}\left|f(z)-P_{n}(z)\right|^{1 / d_{n}}<1, \quad z \in \Gamma \tag{6.1}\\
\limsup _{n \rightarrow \infty}\left|P_{n}(z)\right|^{1 / d_{n}} \leqslant 1, \quad z \in E \tag{6.2}
\end{gather*}
$$

then the maximal domain of existence G_{f} of f is a polynomially convex open subset of \mathbb{C}^{N} such that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|f-P_{n}\right\|_{K}^{1 / d_{n}}<1 \tag{6.3}
\end{equation*}
$$

for every compact subset K of G_{f}.
If, moreover, the sequence $\left\{d_{n+1} / d_{n}\right\}$ is bounded then $G_{f}=\mathbb{C}^{N}$.

Observe that the point-wise geometrical convergence (6.1) of $\left\{P_{n}\right\}$ to f on a non-pluripolar set Γ along with the restricted growth (6.2) of $\left\{P_{n}(z)\right\}$ at every point z of a non-thin set E imply the uniform geometrical convergence (6.3) of $\left\{P_{n}\right\}$ to f on every compact subset K of G_{f}.

In Theorem 1 of [5] the authors assume that Γ is a nontrivial continuum in \mathbb{C}, and $\lim \sup _{k \rightarrow \infty}\left\|f-P_{n}\right\|_{\Gamma}^{1 / d_{n}}<1$, which in the case of $\mathbb{N}=1$ is more restrictive than (6.1).

Proof of Theorem 4.- 1^{0}. First we shall show that (6.3) is true for every compact subset K of G. To this order observe that the function

$$
u_{n}(z):=\frac{1}{d_{n}} \log \left|f(z)-P_{n}(z)\right|
$$

is $\operatorname{PSH}(\mathrm{G})$. The condition (6.2) and property (5) of the necessary and sufficient conditions 2.18 for non-thinness imply that for every compact subset K of G and for every $\epsilon>0$ there exist a positive constant $M=M(K, \epsilon)$ and a positive integer $n_{0}=n_{0}(K, \epsilon)$ such that $u_{n}(z) \leqslant \frac{1}{d_{n}} \log \left(M+M(1+\epsilon)^{d_{n}}\right) \leqslant$ $\frac{1}{d_{n}} \log (2 M)+\epsilon, n \geqslant n_{0}, z \in K$. Hence $u:=\limsup _{n \rightarrow \infty} u_{n} \leqslant 0$ in G, and
$u<0$ on Γ by (6.1). The function u^{*} is non-positive and plurisubharmonic in G, and, by the theorem on negligible sets, we have $u(z)=u^{*}(z)<0$ on $\Gamma \backslash A$, where A is pluripolar. By the maximum principle $u^{*}(z)<0$ in G which, by the Hartogs Lemma, implies the required inequality (6.3) for compact sets $K \subset G$.
2^{0}. Put $\Omega:=\left\{a \in \mathbb{C}^{N} ;\right.$ the sequence $\left\{P_{n}\right\}$ is uniformly convergent in a neighborhood of $a\}$. It follows from 1^{0} that $G \subset \Omega$. Let G_{f} denote the connected component of Ω containing G. It is clear that G_{f} is polynomially convex. We claim that G_{f} is the maximal domain of existence of f. It is clear that $\tilde{f}(z):=\lim _{n \rightarrow \infty} P_{n}(z), z \in G_{f}$, is holomorphic in G_{f}, and $\tilde{f}=f$ in G. We need to show that G_{f} is the maximal domain of existence of \tilde{f}. By 1^{0} we have (6.3) with G replaced by G_{f} and f by \tilde{f}.

Suppose, contrary to our claim, that there exist $a \in G_{f}, r>\operatorname{dist}\left(a, \partial G_{f}\right)=$: r_{0} and a function g holomorphic in the ball $B(a, r)$ such that $g(z)=\tilde{f}(z)$ if $\|z-a\|<r_{0}$. By 1^{0} we have $\lim \sup _{n \rightarrow \infty}\left\|g-P_{n}\right\|_{K}^{1 / d_{n}}<1$ for every compact subset K of the ball $B(a r)$. Therefore the sequence $\left\{P_{n}\right\}$ converges locally uniformly in this ball which contains boundary points of G_{f}. This contradicts the definition of the last set.
3^{0}. Let us assume that the sequence $\left\{\frac{d_{n+1}}{d_{n}}\right\}$ is bounded, say $d_{n+1} / d_{n} \leqslant$ α,
$n \geqslant 1$. By 2^{0}, it is sufficient to show that in this case $\Omega=\mathbb{C}^{N}$. Consider the following sequence of elements of the Lelong class \mathcal{L}

$$
u_{n}(z):=\frac{1}{d_{n+1}} \log \left|P_{n+1}(z)-P_{n}(z)\right|, \quad z \in \mathbb{C}^{N}
$$

Put $u(z):=\lim \sup _{n \rightarrow \infty} u_{n}(z), z \in \mathbb{C}^{N}$. It follows from (6.1) that for every $z \in \Gamma$ there exit $\epsilon>0$ and $M>0$ such that $u_{n}(z) \leqslant \frac{1}{d_{n+1}} \log \left[M e^{-\epsilon d_{n+1}}+\right.$ $\left.M e^{-\epsilon d_{n}}\right] \leqslant \frac{1}{d_{n+1}} \log (2 M)-\frac{1}{\alpha} \epsilon, n \geqslant 1$. Hence, $u(z)<0$ for every $z \in \Gamma$.

One can easily check that if $z \in E$, then by $(6.2) u(z) \leqslant 0$. Therefore $u^{*} \in \mathcal{L}$ and $u^{*}(z) \leqslant 0$ for all $z \in E \backslash A$, where A is pluripolar. It follows that $u^{*} \leqslant V_{E}^{*}=0$ in \mathbb{C}^{N}. Hence $u^{*}=c=$ const $\leqslant 0$. But, by the theorem on negligible sets, $u^{*}(z)<0$ on a non-empty subset of Γ which implies that $c<0$. Hence, by Hartogs Lemma, for every compact subset K of \mathbb{C}^{N} and for $0<\epsilon<-c$ there exists $n_{0}=n_{0}(K, \epsilon)$ such that $u_{n}(z) \leqslant-\epsilon$ for all $z \in K$ and $n \geqslant n_{0}$. It follows that the sequence $\left\{P_{n}\right\}$ is uniformly convergent on K. By the arbitrary property of K we get $\Omega=\mathbb{C}^{N}$.

The method of proof of Theorem 4 may be used to show that the following corollaries are true.

Corollary 6.1.- Let E be a subset of \mathbb{C}^{N} with $V_{E} \equiv 0$. Let Γ be a non-pluripolar subset of \mathbb{C}^{N}. Let $\left\{d_{n}\right\}$ be a strictly increasing sequence of positive integers such that $d_{n+1} / d_{n} \leqslant \alpha, n \geqslant 1$, with $\alpha=$ const >1.

If $f: \Gamma \rightarrow \mathbb{C}$ is a function such that there exists a sequence of polynomials $\left\{P_{n}\right\}$ with $\operatorname{deg} P_{n} \leqslant d_{n}$ such that

$$
\begin{gather*}
\limsup _{n \rightarrow \infty}\left|f(z)-P_{n}(z)\right|^{\frac{1}{d_{n}}}<1, \quad z \in \Gamma \tag{6.4}\\
\quad \limsup _{n \rightarrow \infty}\left|P_{n}(z)\right|^{\frac{1}{d_{n}}} \leqslant 1, \quad z \in E \tag{6.5}
\end{gather*}
$$

then f extends to an entire function \tilde{f} such that for every compact set $K \subset \mathbb{C}^{N}$ we have

$$
\limsup _{n \rightarrow \infty}\left\|\tilde{f}-P_{n}\right\|_{K}^{\frac{1}{d_{n}}}<1
$$

Indeed, by (6.4), given $z \in \Gamma$, there are $M>0$ and $0<\theta=\theta(z)<1$ such that $\left|f(z)-P_{n}(z)\right| \leqslant M \theta^{d_{n}}, n \geqslant 1$. Hence $\left|P_{n+1}(z)-P_{n}(z)\right| \leqslant$ $2 M \theta^{\frac{1}{\alpha} d_{n+1}}$ which implies

$$
\limsup _{n \rightarrow \infty}\left|P_{n+1}(z)-P_{n}(z)\right|^{\frac{1}{d_{n+1}}}<1, \quad z \in \Gamma
$$

By (6.5), given $z \in E$ and $\epsilon>0$, there is $M>0$ such that $\mid P_{n+1}(z)-$ $P_{n}(z)\left|\leqslant\left|P_{n+1}(z)\right|+\left|P_{n}(z)\right| \leqslant M e^{d_{n+1} \epsilon}+e^{d_{n} \epsilon} \leqslant 2 M e^{\alpha \epsilon d_{n}}, n \geqslant 1\right.$, which implies that

$$
\limsup _{n \rightarrow \infty} \sqrt[d_{n+1}]{\left|P_{n+1}(z)-P_{n}(z)\right|} \leqslant 1, \quad z \in E
$$

Put $u(z):=\lim \sup \frac{1}{d_{n+1}} \log \left|P_{n+1}(z)-P_{n}(z)\right|, \quad z \in \mathbb{C}^{N}$. Then $u^{*} \in \mathcal{L}$, $u^{*} \leqslant 0$ on E and $u^{*}<0$ on $\Gamma \backslash A$, where A is pluripolar. Therefore $u^{*}=$ const <0. Hence, by Hartogs Lemma, we have limsup $\left\|P_{n+1}-P_{n}\right\|_{K}^{1 / d_{n+1}}<$ 1 for every compact subset K of \mathbb{C}^{N}. It follows that $\tilde{f}:=P_{1}+\sum_{1}^{\infty}\left(P_{n+1}-\right.$ $\left.P_{n}\right)$ is an entire function with the required properties.

In the sequel P_{n} denotes polynomials with $\operatorname{deg} P_{n} \leqslant d_{n}$, where d_{n} are integers with $1 \leqslant d_{n}<d_{n+1} \leqslant \alpha d_{n}, \alpha=$ const $>1, \Gamma$ is a non-pluripolar, subset of \mathbb{C}^{N}, and f is a complex valued function defined on Γ.

Corollary 6.2. - If f is holomorphic in an open connected set G containing Γ such that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left|f(z)-P_{n}(z)\right|^{\frac{1}{d_{n}}}<1, \quad z \in \Gamma \tag{6.6}
\end{equation*}
$$

Sets in \mathbb{C}^{N} with vanishing global extremal function

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left|P_{n}(z)\right|^{\frac{1}{d_{n}}} \leqslant 1, \quad z \in G, \tag{6.7}
\end{equation*}
$$

then f has a holomorphic extension \tilde{f} to G such that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|\tilde{f}-P_{n}\right\|_{K}^{\frac{1}{d_{n}}}<1, \limsup _{n \rightarrow \infty}\left\|P_{n+1}-P_{n}\right\|_{K}^{\frac{1}{d_{n+1}}}<1, \tag{6.8}
\end{equation*}
$$

for every compact set $K \subset G$. If, moreover, G is non-thin at infinity then there is an entire function \tilde{f} satisfying (6.8) for $G=\mathbb{C}^{N}$ such that $\tilde{f}=f$ on Γ.

Corollary 6.3.-If

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left|f(z)-P_{n}(z)\right|^{\frac{1}{a_{n}}}=0, \quad z \in \Gamma, \tag{6.9}
\end{equation*}
$$

then f extends to a unique entire function

$$
\tilde{f}(z)=P_{1}(z)+\sum_{j=1}^{\infty}\left(P_{n+1}(z)-P_{n}(z)\right), \quad z \in \mathbb{C}^{N},
$$

and (6.8) is satisfied.
In order to show the last two corollaries, define

$$
u(z):=\limsup _{n \rightarrow \infty} \frac{1}{d_{n+1}} \log \left|P_{n+1}(z)-P_{n}(z)\right|,
$$

observe that $u^{*} \in \mathcal{L}$, and check that $u^{*}(z)<0$ on G in the case of Corollary 6.2 (resp., $u^{*}(z)=-\infty$ on \mathbb{C}^{N} in the case of Corollary 6.3) which, by Hartogs Lemma, implies Corollary 6.2 (resp., Corollary 6.3).

Bibliography

[1] BŁocki (Z.). - Equilibrium measure of a product subset of \mathbb{C}^{n}, PAMS, 128(12), p. 3595-3599 (2000).
[2] Cegrell (U.), KoŁodziej (S.) and Levenberg (N.). - Two problems on potential theory for unbounded sets, p. 265-276, Math. Scand., 83 (1998).
[3] Hayman (W. K.). - Subharmonic Functions, Vol. 2 Academic Press (1989).
[4] Klimek (M.). - Pluripotential Theory Oxford Univ. Press (1991).
[5] Müller (J.) and Yavria (A.). - On polynomial sequences with restricted growth near infinity, Bull. London Math. Soc., 34, p. 189-199 (2002).
[6] Siciak (J.). - Extremal plurisubharmonic functions in \mathbb{C}^{n}, Ann. Polon. Math., 39, p. 175-211 (1981).

Józef Siciak

[7] Siciak (J.). - Extremal plurisubharmonic functions and capacities in \mathbb{C}^{n}, Sophia Kokyuroku in Mathematics, 14 Sophia University, Tokyo (1982).
[8] BTAYlor (B.A.). - An estimate for an extremal plurisubharmonic function in \mathbb{C}^{n}, Seminaire P. Lelong, P. Dolbeault, H. Skoda (Analyse), Lecture Notes in Math., 1028, Springer Verlag, 318-328 (1983).
[9] Truong Tuyen Trung. - Sets non-thin at ∞ in \mathbb{C}^{m}, J. Math. Anal. Appl., 356(2), p. 517-524 (2009).

[^0]: (1) Institute of Mathematics, Jagiellonian University, Łojasiewicza 6, 30-348 Kraków, Poland
 Jozef.Siciakm.uj.edu.pl

