
ANNALES
DE LA FACULTÉ

DES SCIENCES

Mathématiques
PHILIPPE BOUAFIA

Retractions onto the Space of Continuous Divergence-free Vector Fields

Tome XX, no 4 (2011), p. 767-779.

<http://afst.cedram.org/item?id=AFST_2011_6_20_4_767_0>

© Université Paul Sabatier, Toulouse, 2011, tous droits réservés.
L’accès aux articles de la revue « Annales de la faculté des sci-
ences de Toulouse Mathématiques » (http://afst.cedram.org/), implique
l’accord avec les conditions générales d’utilisation (http://afst.cedram.
org/legal/). Toute reproduction en tout ou partie de cet article sous quelque
forme que ce soit pour tout usage autre que l’utilisation à fin strictement
personnelle du copiste est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://afst.cedram.org/item?id=AFST_2011_6_20_4_767_0
http://afst.cedram.org/
http://afst.cedram.org/legal/
http://afst.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/
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Retractions onto the Space of Continuous
Divergence-free Vector Fields

Philippe Bouafia(1)

ABSTRACT. — We prove that there does not exist a uniformly continuous
retraction from the space of continuous vector fields onto the subspace
of vector fields whose divergence vanishes in the distributional sense. We
then generalise this result using the concept of m-charges, introduced by
De Pauw, Moonens, and Pfeffer: on any subset X ⊆ Rn satisfying a
mild geometric condition, there is no uniformly continuous representation
operator for m-charges in X.

RÉSUMÉ. — On prouve qu’il n’existe pas de rétraction uniformément con-
tinue de l’espace des champs de vecteurs continus à valeurs dans le sous-
espace des champs dont la divergence est nulle au sens des distributions.
Les m-charges, telles que définies par De Pauw, Moonens, et Pfeffer per-
mettent de généraliser le résultat précédent. On prouve qu’il n’y a pas
d’opérateur de représentation uniformément continu des m-charges dans
une partie X ⊆ Rn vérifiant une hypothèse faible.

1. Introduction

According to the theory of elliptic equations, a solution of the Poisson
equation div∇u = f on Rn is C1,1−n/p when f ∈ Lp(Rn) and p > n.
However in the critical case p = n, such a solution u need not be C1. John
Nirenberg gave the following counterexample (n � 2)

u(x) := ϕ(x)x1| ln ||x|||α, α ∈
(

0,
n− 1

n

)
,
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where ϕ is a compactly supported smooth function such that ϕ(0) �= 0. One
checks that ∆u ∈ Ln(Rn), yet ∇u is not even locally bounded. The papers
[8] and [9] deal with characterizing distributions F such that the divergence
equation div v = F admits a continuous solution. The paper [9] focuses on
solutions vanishing at infinity and we will first work in this setting. Let 1∗

be the Sobolev conjugate exponent 1∗ := n/(n − 1) and BV1∗(Rn) be the
space of functions ϕ ∈ L1∗(Rn) whose gradient ∇ϕ is a finite vector valued
measure, i.e.

sup

{∫

Rn
ϕdivv : v ∈ C1

c (Rn;Rn), ‖v‖∞ � 1

}
<∞.

The following holds [9, Theorem 6.1 and Section 7]:

Theorem 1.1. — Let F be a linear functional on BV1∗(Rn). There is a
continuous vector field v : Rn → Rn vanishing at infinity such that for all
ϕ ∈ BV1∗(Rn)

F (ϕ) = −
∫

Rn
v · d(∇ϕ)

if and only if F (ϕi) → 0 whenever (ϕi) is a sequence weakly converging to
0 in L1∗(Rn) satisfying supi ||∇ϕi|| < ∞ — where ||∇ϕ|| denotes the total
variation of a function ϕ ∈ BV1∗(Rn).

A functional F satisfying the hypothesis of Theorem 1.1 is called a charge
vanishing at infinity. A function f ∈ Ln(Rn) is a charge vanishing at infinity,
and so is the distributional divergence of a continuous vector field vanishing
at infinity (see [9, Propositions 3.4 and 3.5]). Let us rephrase Theorem 1.1:
there is continuous surjective linear operator

div : C0(Rn,Rn)→ CH0(Rn),

where CH0(Rn) stands for the space of charges vanishing at infinity. Con-
trary to the Poisson equation, the nonhomogeneous equation div v = F
lacks of uniqueness properties.

It is necessary to investigate the functional analytical properties of ker div
in order to study the equation div v = F . For example, it is not possible to
select a solution v depending on F in a continuous linear manner (equiva-
lently, ker div is not complemented in C0(Rn,Rn)). Indeed, it is proved by
considering a dual problem. The adjoint mapping of div maps a space of
BV functions into the space of vector valued measures C0(Rn,Rn)∗; thus
we are led to consider the subspace {∇ϕ : ϕ ∈ BV1∗(Rn)} ⊆ C0(Rn,Rn)∗.
In dimension one it is easy to find, in a measure theoretic way, a BV func-
tion whose derivative is a given signed measure with finite total variation.
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However in larger dimensions, there are restrictions for a measure to be
the gradient of a BV function; it must be for example absolutely contin-
uous with respect to the integral-geometric measure I n−1 (see [2] for an
extensive study of BV functions).

The theory of Lipschitz free spaces together with the separability of
CH0(Rn) allows us to improve on this result: there is no Lipschitz continu-
ous right inverse to div (see [7, Corollary 3.2]). We are therefore interested
in the best regularity for such an inverse. It is a general fact that a sur-
jective linear map between Banach spaces has a continuous right inverse.
However our main Theorem 3.2 proves that a right inverse to div cannot be
uniformly continuous. In fact what we prove is slightly stronger: ker div is
not a uniform retract of C0(Rn,Rn). In Section 4 we prove a related result
on the representation of charges with positive codimension, as developped
in [8].

In the sequel n will be a fixed integer larger than 2. I is the unit seg-
ment [0, 1]. We denote by C0(Rn,Rn) the space of continuous vector fields
vanishing at infinity, i.e. continuous maps v : Rn → Rn such that for any
ε > 0 there exists a compact K ⊆ Rn with |v| < ε outside K. We en-
dow C0(Rn,Rn) with the supremum norm || · ||∞. A locally integrable map
ϕ : Rn → R is said to have bounded variation if

||∇ϕ|| := sup

{∫

Rn
ϕdiv g : g ∈ C∞c (Rn,Rn), ||g||∞ � 1

}
<∞.

If X is a subset of Rn we denote by BV(X) the space of maps ϕ ∈ L1(Rn)
of bounded variation and compact support in X. We endow BV(X) with
the norm ||ϕ||BV(X) := ||ϕ||L1(Rn) + ||∇ϕ||.

We let BV1∗(Rn) be the space of maps ϕ ∈ L1∗(Rn) of bounded varia-
tion. We norm it by ||ϕ||BV1∗ (Rn) := ||∇ϕ||. Indeed || · ||BV1∗ (Rn) is a norm
by Gagliardo-Nirenberg-Sobolev inequality in BV1∗(Rn) (see [9, Proposition
2.5]).

Note that BV(X) is a subset of BV1∗(Rn) and || · ||BV1∗ (Rn) induces a
norm equivalent to || · ||BV(X) in BV(X) whenever X is a Lebesgue measur-
able set with finite measure and the characteristic function χX has bounded
variation. However ||·||BV(X) has the geometrical meaning of a normal mass
and will be useful in Section 4 where we define charges as linear functionals
on a space of normal currents.
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We let CH0(Rn) be the space of charges vanishing at infinity. CH0(Rn)
can be made into a Banach space by norming it with

||F ||CH0(Rn) := sup {F (ϕ) : ϕ ∈ BV1∗(Rn), ||∇ϕ|| � 1} .

The operator div : C0(Rn,Rn) → CH0(Rn) is defined by (div v)(ϕ) :=
−

∫
Rn v · d(∇ϕ). A subspace Y of a Banach space X is said to be comple-

mented (in X) whenever there exists a bounded linear retraction onto Y .
Recall that an exact sequence of Banach spaces is a diagram

0 −→ X
f−→ Y

g−→ Z −→ 0,

involving bounded linear maps f, g such that f is an embedding into Y , g
is onto and imf = ker g. Such a sequence is said to split linearly if there
exists a bounded linear right inverse to g, or equivalently, a bounded linear
left inverse to f .

2. Preliminary results

An L 1 space is a Banach space X for which there exists λ > 1 such that
for all finite-dimensional subspaces E ⊆ X, there exist a finite-dimensional
F ⊆ X containing E and an isomorphism T : F →  1dimF (where  1dimF

denotes the space RdimF with the  1 norm ||(xk)||1 :=
∑ |xk|) such that

||T || · ||T−1|| < λ. For any measure space (X,B, µ), the space L1(X,B, µ)
is an L 1 space (see [3, Theorem F.2]). The following proposition is well-
known, but we could not find a reference. We thus give an easy proof.

Proposition 2.1. — Let K be a compact Hausdorff topological space.
C(K)∗ is an L 1 space.

Proof. — Recall that C(K)∗ is the space of signed Radon measures
on K normed by the total variation. Fix λ > 1. Let E ⊆ C(K)∗ be a
finite dimensional subspace generated by a family µ1, . . . , µn. Each Radon
measure µi (1 � i � n) is absolutely continuous with respect to µ := |µ1|+
· · ·+|µn| (|µi| is the total variation measure). The embedding ι : L1(K,µ)→
C(K)∗, f → fµ is an isometry. We denote by fi ∈ L1(K,µ) the Radon-
Nikodým derivative of µi with respect to µ. Since L1(K,µ) is an L 1 space,
there exist a finite dimensional subspace F ⊆ L1(K,µ) which contains fi
(1 � i � n) and an isomorphism T : F →  1dimF , such that ||T || · ||T−1|| < λ
— where ||·|| stands for the standard operator norm. Tι−1 is an isomorphism
between ι(F ) ⊇ E and  1dimF such that ||Tι−1|| · ||(Tι−1)−1|| < λ. Hence
C(K)∗ is an L 1 space. �

In fact we can prove that C(K)∗ is actually an L1 space, using Kakutani’s
theory of abstract Lebesgue spaces or the fact that the parameter λ in the
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definition of an L 1 space is here arbitrary, but Proposition 2.1 is enough
for our purposes.

Definition 2.2. — Let X,Y be Banach spaces, and 1 � p < ∞. A
linear operator T : X → Y is called p-absolutely summing if there exists a
constant C � 0 such that for any choices of (xk)

n
k=1 in X we have

(
n∑

k=1

||T (xk)||p
)1/p

� C sup

{(
n∑

k=1

|〈ξ, xk〉|p
)1/p

: ξ ∈ X∗, ||ξ|| � 1

}

The least such constant C is denoted πp(T ) and is called the p-absolutely
summing norm of T .

We now gather useful facts concerning absolutely summing operators
and L 1 spaces. Points 1 to 3 are easy facts, whereas Grothendieck theorem
is nontrivial and will be the key element in the proof of Theorem 3.1 below.
We refer to [10, III.F] for proofs.

Proposition 2.3. —

1. Let U : W → X, T : X → Y , V : Y → Z be bounded operators between
Banach spaces. If T is p-absolutely summing, then V TU is p-absolutely
summing and πp(V TU) � ||V ||πp(T )||U ||.

2. Suppose 1 � r < p <∞. Let T be an r-absolutely summing operator between
Banach spaces X and Y . Then T is p-absolutely summing and πp(T ) �
πr(T ).

3. Let H be a Hilbert space, and let T : H → H be a bounded operator. T is a
Hilbert-Schmidt operator if and only if T is 2-absolutely summing (for the
definition of a Hilbert-Schmidt operator, see [3, Appendix J]).

4. (Grothendieck theorem) Let X be an L 1 space, H a Hilbert space. Every
bounded operator T : X → H is 1-absolutely summing.

3. Main theorem

We will need this following theorem, which is of independent interest.
Let us recall that n � 2.

Theorem 3.1. — Neither BV(In) nor BV1∗(Rn) is complemented in
an L 1 space. In particular none of these is itself an L 1 space.
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Proof. — The following proof is inspired from [4, second proof of Propo-
sition 2]. Let L be an L 1 space containing BV(In). Suppose there exists
a continuous left inverse π to the inclusion map ι : BV(In) → L. Let
f : L2((0, 1)n) → W 1,1((0, 1)n) be the linear map such that for any multi-
index α ∈ Zn,

f : cos(2πα · x)) → cos(2πα · x)√
1 + |α|2

, sin(2πα · x) → sin(2πα · x)√
1 + |α|2

.

f is easily seen to be continuous since it factors through W 1,2((0, 1)n):

f : L2((0, 1)n) −→W 1,2((0, 1)n)
incl.−→W 1,1((0, 1)n)

Let g : L1∗((0, 1)n) → L2((0, 1)n) be the bounded (by Sobolev embedding
theorem) multiplier operator

g : cos(2πα · x) → cos(2πα · x)

(1 + |α|)n/2−1
, sin(2πα · x) → sin(2πα · x)

(1 + |α|)n/2−1
,

for every α ∈ Zn. We have the following commutative diagram :

ι1 is the inclusion map W 1,1((0, 1)n) ⊆ BV(In). ι2 is the Sobolev inclusion
map BV(In) ⊆ L1∗((0, 1)n), and Ψ := gι2ι1f . The boundedness of the
inclusion map ι1 is guaranteed by the boundedness of the extension by zero
operator for BV maps (see [5, Section 5.4, Theorem 1]). The linear map
gι2π maps an L 1 space into a Hilbert space; we infer from Grothendieck
theorem that it is 1-absolutely summing. So is Ψ : L2((0, 1)n)→ L2((0, 1)n)
by virtue of Proposition 2.3 (1). Thus it is 2-absolutely summing according
to Proposition 2.3 (2). Then by Proposition 2.3 (3), it is a Hilbert-Schmidt
operator. However we have

||Ψ||2HS = ||Ψ(1)||2+
1

2n

∑

α∈Zn\{0}

(
||Ψ(cos(2πα · x))||2L2 +||Ψ(sin(2πα · x))||2L2

)

= 1 +
1

2n−1

∑

α∈Zn\{0}

1

(1 + |α|2)(1 + |α|)n−2
= +∞,

and this is contradictory.
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Now let us remark that BV1∗(Rn) contains BV(In) and the norm in-
duced by || · ||BV1∗ (Rn) is equivalent to || · ||BV(In) (by Gagliardo-Nirenberg-
Sobolev inequality). Let χIn be the characteristic map of In. f → χInf
is a linear retraction from BV1∗(Rn) to BV(In), and it is bounded (see [5,
Section 5.4, Theorem 1] to justify this step). Thus BV(In) is complemented
in BV1∗(Rn) and by the above part, BV1∗(Rn) cannot be complemented in
an L 1 space. �

This result is false if n = 1. In fact, the map f → (f(0), f ′) defines an
isomorphism between BV [0, 1] and R×C[0, 1]∗. R×C[0, 1]∗ is a product of
L 1 spaces, and thus is an L 1 space. We can now prove the main theorem
of this paper. If there exists a uniformly continuous right inverse s to div,
then v → v − s(div v) is a uniformly continuous retraction of C0(Rn,Rn)
onto its subspace ker div. Such a retraction is forbidden by the following
result:

Theorem 3.2. — There is no uniformly continuous retraction from
C0(Rn,Rn) onto ker div.

Note that if we replace “uniformly continuous” with “bounded linear”,
this theorem is an easy consequence of the preceding result. Indeed, a
bounded linear retraction r : C0(Rn,Rn) → ker div would split the exact
sequence

0 −→ ker div −→ C0(Rn,Rn)
div−→ CH0(Rn) −→ 0.

Therefore the dual sequence

0 −→ CH0(Rn)∗ −→ C0(Rn,Rn)∗
div−→ (ker div)∗ −→ 0

would also split. The key observation is that CH0(Rn)∗ is in fact isomorphic
to BV1∗(Rn) (see [9, Remark 5.2]). BV1∗(Rn) is complemented in the L 1

space C0(Rn,Rn)∗ (see the following proof), and this is contradictory.

Now, if we suppose there is a uniformly continuous retraction r, we wish
to linearize r to obtain a contradiction. However, we will not try to dif-
ferentiate r; even differentiation (at one point) of Lipschitz maps between
most non reflexive Banach spaces is difficult to obtain, and false in general.
Instead we will use the method of invariant means, which applies to general
uniformly continuous functions. An invariant mean on C0(Rn,Rn) is a func-
tional M : L∞(C0(Rn,Rn))→ R which integrates functions with respect to
a finitely additive measure (see [3, Appendix C]). If X is a dual space, one
can construct a vector-valued invariant mean M̂ : L∞(C0(Rn,Rn);X)→ X
in the same way the Pettis integral is defined from the Lebesgue integral.
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However ker div is not a dual space (otherwise, since it is separable, it would
be a Radon-Nikodým space by Dunford-Pettis theorem, but the space c0 of
convergent sequences is embeddable in ker div). This leads to a small com-
plication in the proof below: we will embed ker div into its bidual (ker div)∗∗.

Proof. — For sake of brevity, we denote ker div by Z. One argues by
contradiction, assuming the existence of a uniformly continuous retraction
r. We refer to [3, Theorem 7.2] to infer the existence of a bounded linear
map S : C0(Rn,Rn) → Z∗∗ whose restriction to Z is the evaluation map
evZ : Z → Z∗∗

evZ(z)(z∗) := z∗(z).

We let evZ∗ be the evaluation map Z∗ → Z∗∗∗ and ι : Z → C0(Rn,Rn) be
the inclusion map, and consider the following commutative diagram

The map S∗◦evZ∗ is a right inverse to ι∗, because one easily checks that ev∗Z◦
evZ∗ = idZ∗ . Therefore, the exact sequence splits linearly, and CH0(Rn)∗ is
complemented in C0(Rn,Rn)∗. Since CH0(Rn)∗ is isomorphic to BV1∗(Rn),
it remains to be proven that C0(Rn,Rn) is an L 1 space.

To do so, remark that the n-sphere Sn is the Alexandroff compacti-
fication of Rn, so C0(Rn,Rn) is isomorphic to a (closed) hyperplane of
C(Sn,Rn). This space is isomorphic to its hyperplanes (it is an immedi-
ate consequence of [1, Proposition 4.4.1]), thus

C0(Rn,Rn)∗ � C(Sn,Rn)∗ � (C(Sn)n)∗ � (C(Sn)∗)n,

and (C(Sn)∗)n is an L 1 space as a finite product of L 1 spaces. �

Remark. — Let us mention what follows: a corollary of Michael’s selec-
tion theorem (see [3, Chapter 1, Section 3]) asserts that each surjective
linear map between Banach spaces has a continuous right inverse, or equiv-
alently, each closed subspace of a Banach space is a continuous positively
homogeneous retract. But the proof of Michael’s theorem does not provide
us with a concrete continuous retraction. One also obtains the existence of
a non continuous linear retract C0(Rn,Rn) → ker div by elementary linear
algebra.
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4. Adaptation to charges of positive codimension

We mainly use the notations of [8], which explains in greater details
the basic properties of charges in middle dimension. For m � 0, we denote
by ∧mRn and ∧mRn the spaces of m-vectors and m-covectors in Rn. If
m > n these spaces are null spaces and we let the same be true by definition
if m < 0. The inner product in Rn induces canonical inner products in
∧mRn and ∧mRn, and we still denote by | · | the associated Euclidean norm.
We denote by Dm(Rn) the space of smooth compactly supported m-forms
on Rn and we give it the usual locally convex topology of test functions
described in [6, 4.1.1]. The space of m-currents Dm(Rn) is defined to be
the dual space Dm(Rn)∗ and we endow it with the weak* topology. The
support of T ∈Dm(Rn), suppT , is defined to be the smallest closed subset
X ⊆ Rn for which T (ω) = 0 whenever suppω ⊆ Rn \X. The extended real
number1

M(T ) := sup{T (ω) : ω ∈Dm(Rn), ||ω||∞ � 1},
where ||ω||∞ := sup{|ω(x)| : x ∈ Rn}, is the mass of the m-current T . For
any subset X ⊆ Rn, we introduce the linear space

Mm(X) := {T ∈Dm(Rn) : M(T ) <∞, suppT ⊆ X}
normed by M. d : Dm−1(Rn)→Dm(Rn) denotes the exterior differentia-
tion of smooth forms, and the boundary map ∂ : Dm(Rn) → Dm−1(Rn)
is defined by ∂T (ω) := T (dω). For any m-current the extended real number
N(T ) := M(T ) + M(∂T ) is its normal mass. We similarly define the space
Nm(X) of m-currents of finite normal mass, compactly supported in X. In
top dimension a normal current T ∈ Nn(X) is represented by a function
f ∈ BV(X)

T (ωdx1 ∧ · · · ∧ dxn) =

∫

Rn
ωf.

For a normal current T ∈ Nm(Rn), we define its flat norm

F(T ) := inf{M(S) + M(T − ∂S) : S ∈ Nm+1(Rn)}
= sup{T (ω) : ω ∈Dm(Rn), ||ω||∞, ||dω||∞ � 1}.

A m-charge α on X is a linear functional on Nm(X) such that for every
ε > 0 and every bounded set K ⊆ X, there exists θ > 0 such that

α(T ) � θF(T ) + εN(T )

for every normal current T ∈ Nm(K). We denote by CHm(X) the linear
space of all m-charges on X and give it the Fréchet topology induced by

(1) Note that we do not use Federer’s notation here.
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the family of seminorms

||α||K := sup{α(T ) : T ∈ N(K),N(T ) � 1},

indexed by all bounded subsets K ⊆ X.

If Y ⊆ Rp and f : X → Y is a Lipschitz map, the pushforward
map f# : Nm(X) → Nm(Y ) induces a continuous pullback map f# :
CHm(Y ) → CHm(X). We denote by Cu(X,∧mRn) the linear space of all
m-forms which are uniformly continuous on any bounded subset of X, and
give it the Fréchet topology of uniform convergence on bounded subsets.
There is a linear continuous map Cu(X,∧mRn) → CHm(X) (see [8, Ex-
ample 5.3]), which allows us to consider each uniformly continuous form
on bounded subsets as a charge. There is actually a unique locally convex
topology Fm,X such that CHm(X) is precisely the set of FX,m continuous
linear functionals, but we will not use this fact except indirectly in Proposi-
tion 4.2. We denote by Em,X := Cu(X,∧mRn)× Cu(X,∧m−1Rn) with the
product Fréchet topology. We let Θm,X : Em,X → CHm(X) be the map
(ω, η) → ω+dη. We now state the representation theorem [8, Theorem 6.1],
which is a generalization of Theorem 1.1

Theorem 4.1 (De Pauw, Moonens, Pfeffer). — For any α ∈
CHm(X), there exists (ω, η) ∈ Em,X such that α = ω + dη, i.e the map
Θm,X is onto.

In case X is a bounded set, CHm(X) is a Banach space normed by

||α||CHm(X) := sup{α(T ) : T ∈ Nm(X),N(T ) � 1}.

We now state a duality proposition between the dual Banach space CHm(X)∗

and the space Nm(X) normed by N.

Proposition 4.2. — Let X ⊂ Rn be compact. Then the linear map Υ :
Nm(X) → CHm(X)∗ defined by Υ(T )(α) := α(T ) is an isomorphism of
Banach spaces.

Proof. — It is straightforward to check that Υ is a continuous linear
mapping. From the closedness of X and [8, Theorem 3.16], we deduce
that Υ is a bijection. The proposition follows then from the open mapping
theorem. �

We also need the following elementary lemma (see [6, 4.1.8]), which we
state for the sake of clarity.
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Lemma 4.3. — Let T ∈Dm1
(Rn1) and S ∈Dm2

(Rn2). Let p : Rn1+n2 →
Rn2 be the projection onto the last n2 coordinates. Suppose that suppT is
compact. Then

p#(T × S) =

{
T (1)S whenever m1 = 0,
0 otherwise.

The representation theorem 4.1 shows that the map Θm,X is onto. Rep-
resenting charges deals with picking one right inverse to Θm,X . Michael’s
selection theorem is also true for Fréchet spaces (the proof of [3, Theorem
1.1] remains valid in the case of Fréchet spaces), therefore the existence of
a continuous right inverse to Θm,X is guaranteed. The following theorem
proves that one cannot however require such an inverse to be uniformly
continuous.

Theorem 4.4. — Assume n � 2 and 2 � m � n. Let X a subset of Rn
which contains a bilipschitz copy of the m-cube. The linear map

Θm,X : Em,X −→ CHm(X)

has no uniformly continuous right inverse.

Proof. — Suppose that Θm,X has a uniformly continuous left inverse S.
The map

(ω, η) → (ω, η)− S(ω + dη)

is a uniformly continuous retraction of Em,X onto ker Θm,X . Proceeding as
in Theorem 3.2, one proves that the dual sequence

0 −→ CHm(X)∗
Θ∗m,X−→ E

∗
m,X −→ (ker Θm,X)∗ −→ 0

splits linearly. We now prove Theorem 4.4 in three steps.

Step 1. — We prove the theorem in top dimension m = n, for X = In.

Suppose there exists a continuous right inverse for Θn,In , from CHn(In)
to En,In . We dualize it and obtain a continuous left inverse

σ : Mn(I
n)×Mn−1(I

n)→ BV(In)

for the isometry Θ∗n,In . Note that Mn−1(I
n) is an L 1 space. Indeed,

Mn−1(I
n) ∼= C(In,∧n−1Rn)∗ ∼= C(In,Rn)∗ ∼= (C(In)∗)n ,

Proposition 2.1 proves that C(In)∗ is an L 1 space and a finite product of
L 1 spaces is still an L 1 space. Similarly Mn(I

n) is an L 1 space and so is
E
∗
n,In = Mn(I

n) ×Mn−1(I
n). Thus BV(In) is a complemented subspace

of an L 1 space and this is contradictory with Theorem 3.1.
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Step 2. — We prove the theorem under the hypothesis 2 � m < n and
X = Im × {0} ⊆ Rn.

Suppose Θm,Im×{0} : Em,Im×{0} → CHm(Im × {0}) has a continuous
linear right inverse τ , we dualize it and obtain a continuous linear map

τ∗ : Mm(Im × {0})×Mm−1(I
m × {0})→ Nm(Im × {0})

such that τ∗(T, ∂T ) = T for all T ∈ Nm(Im ×{0}). We let δ0 ∈M0(I
n−m)

be the Dirac mass at 0, i.e. δ0(ω) := ω(0) for all ω ∈ D 0(Rn−m). Let
p : Rn → Rm be the projection onto the last m coordinates. We define
σ : Mm(Im)×Mm−1(I

m)→ Nm(Im) by setting

σ(T, S) = p#τ∗(δ0 × T, δ0 × S)

for all T ∈Mm(Im) and S ∈Mm−1(I
m). σ is linear continuous, with norm

bounded by ||τ∗||. Now let T ∈ Nm(Im), the following holds

σ(T, ∂T ) = p#τ∗(δ0 × T, δ0 × ∂T ) = p#τ∗(δ0 × T, ∂(δ0 × T )) = p#(δ0 × T ).

δ0 is compactly supported, Lemma 4.3 hence implies p#(δ0×T ) = δ0(1)T =
T . This is contradictory by step 1.

Step 3. — We prove the theorem under the general assumption.

Let X ⊆ Rn such that X contains a bilischiptz copy of the m-cube. Up to
a bilipschitz transformation, we suppose that X contains Im×{0}. Suppose
there exists a continuous right inverse ϕ : CHm(X)→ Em,X for Θm,X . We
denote by ι : Im × {0} → X the inclusion map and by π : X → Im × {0}
the projection onto the compact convex set Im×{0}. Note that ι and π are
Lipschitz continuous. We define ψ := ι#ϕπ#.

ψ is a continuous left inverse for Θm,X : Em,Im×{0} → CHm(Im × {0})
since

Θm,Xψ = Θm,Xι#ϕπ# = ι#Θm,Xϕπ# = ι#π# = (πι)# = id,

and this is impossible by step 2. �
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