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Lelong numbers on projective varieties

Rodrigo Parra(1)

ABSTRACT. — Given a positive closed (1,1)-current T defined on the reg-
ular locus of a projective variety X with bounded mass near the singular
part of X and Y an irreducible algebraic subset of X, we present uniform
estimates for the locus inside Y where the Lelong numbers of T are larger
than the generic Lelong number of T along Y .

RÉSUMÉ. — Étant donnés un courant positif fermé de type (1, 1) T , défini
sur le lieu régulier d’une variété projective X, de masse bornée au voisi-
nage du lieu singulier de X, et un sous-ensemble algébrique irréductible
Y de X, nous donnons des estimées uniformes sur le sous-ensemble de Y
des points où les nombres de Lelong de T sont supérieurs au nombre de
Lelong générique le long de Y .

1. Introduction

A key step in the study of positive closed currents is the analysis of their
singular locus, namely, the locus where the Lelong numbers are large. In
this paper we present a result concerning estimates of the locus of positive
Lelong numbers for positive closed currents defined on projective varieties
with respect to a fixed irreducible subvariety. More precisely, let X be a
(possibly singular) projective variety and let T be a positive closed (1,1)-
current on Xreg with bounded mass near Xsing (see Definition 2.3) and

Y ⊂ X an irreducible algebraic subset of codimension l in X. We want to
study the locus inside Y where the Lelong numbers of T are larger than the
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generic Lelong number of T along Y . For every c > 0 we denote by Ec(T )
the Lelong upper level sets of T defined as the analytic subset

Ec(T ) := {x ∈ Xreg | ν(T, x) � c}

and by EY
c (T ) = Ec(T ) ∩ Y the Lelong upper level sets of T at Y . Let

0 � β1 � β2 . . . � βdim(X)−l+1

be the jumping numbers of ET
c (T ), i.e. for every c ∈]βp, βp+1] the algebraic

set EY
c (T ) has codimension p in Y with at least one component of codi-

mension exactly p. Let {Zp,r}r�1 be the countable collection of irreducible
components of

⋃
c∈]βp,βp+1]

EY
c (T ) of codimension exactly p in Y and denote

by νp,r the generic Lelong number of T at Zp,r. Note that β := ν(T, Y ) the
generic Lelong number of T along Y corresponds to β1. Then we obtain the
main result of this paper

Theorem 1.1. — With the same notation as above, there exist a positive
constant C, depending only on the geometry of X and Y , such that

∑

r�1

(νp,r − β)p
∫

Zp,r

ωk−l−p � C

∫

Xreg

T ∧ ωdim(X)−1,

for all p = 1, . . . ,dim(X)− l + 1, where ω is the Fubini-Study metric of X.

As an example, consider the case where X is the complex projective
plane P2, Y ⊂ P2 an irreducible curve and T a positive closed (1,1)-current
on P2 with Lelong number β = ν(T, Y ) along Y ; by Siu’s decomposition
theorem, it is easy to see that T−β[Y ] is also a positive closed (1,1)-current.
Let’s pretend that we can restrict T − β[Y ] at Y , i.e. T − β[Y ] admits local
potentials that are not identically −∞. Then we can study the locus of T
inside Y directly. Unfortunately, it is not always possible to restrict currents
to a given subvariety, therefore having an estimate as the one of Theorem
1.1 is useful even when Y has codimension 1. Moreover, if the codimension
of Y in X is bigger than one (say X = P3 and Y an irreducible curve in
P3) then it is not even possible to use Siu’s decomposition theorem since
the dimensions do not match.

Let us compare Theorem 1.1 with the previous results by Demailly. If X
is a projective manifold (i.e. smooth) and Y = X, hence l = 0, β = 0 and
EY

c (T ) = Ec(T ), then the inequality of Theorem 1.1 can be written as

∑

r�1

νp
p,r

∫

Zp,r

ωp � C.
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In [2] Theorem 7.1, J.P. Demailly proved that under the same assump-
tions as above, we have that there is a positive constant C ′ > 0 such that

∑

r�1

(νp,r − β1) · · · (νp,r − βp)

∫

Zp,r

ωp � C ′,

where β1 � . . . � βk+1 are the jumping numbers of T . Observing that

νp,r � νp,r − βj ∀ j = 1, . . . , p

Theorem 1.1 shows that

∑

r�1

(νp,r − β1) · · · (νp,r − βp)

∫

Zp,r

ωp �
∑

r�1

νp
p,r

∫

Zp,r

ωp � C

implying Demailly’s result.

In the same setting, it is also interesting to observe the two extreme
cases p = 1 and p = k:

a) The case p = 1 follows immediately from Siu’s decomposition theo-
rem, since

T =
∑

j�1

λj [Aj ] + R

with R � 0 and {Z1,r}r ⊂ {Aj}j , therefore

T �
∑

r�1

ν1,r[Z1,r]

and the result follows after integrating this inequality with
∫
·∧ωk−1.

b) The case p = k is especially interesting when Ec(T ) is countable for
all c > 0. A remarkable result proved in Corollary 6.4 of [2] is that if
Ec(T ) countable then the class {T} is nef. Moreover, Demailly gave
the more refined inequality

∑

r�1

νk
k,r +

∫

X

T k
ac �

∫

X

{T}k,

where Tac is the absolutely continuous part in the Lebesgue decom-
position of the coefficients of T .

Theorem 7.1 in [2] has been extended to positive closed currents of higher
degree by Meo (see [8]) for the case X a projective manifold and by Vigny
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(see [11]) for the case X a compact Kähler manifold. It would be interesting
to try to extend Theorem 1.1 to higher degree currents too.

Our inequality will allow us to prove equidistribution results in complex
dynamics once we know how to control the singular locus of the critical set
of iterates of holomorphic maps. The details of this will appear elsewhere.
We note that Demailly’s inequality was already used for the same purposes
by Dinh-Sibony in [6].

In Section 2 we present some basic facts on positive closed currents and
Lelong numbers needed in the sequel. In Section 3 we give a fairly detailed
sketch of how to approximate positive closed (1,1)-currents by closed cur-
rents with analytic singularities and attenuated Lelong numbers; this tech-
nique represents the most important tool in our proof. Finally, in Section 4
we give the proof of our main result.

Acknowledgements. — I would like to take the opportunity to thank
Christophe Mourougane who carefully read this manuscript giving me valu-
able comments and corrections. Special thanks to Sébastien Boucksom who
spent many hours explaining to me some of the technicalities involved in
Complex Differential Geometry, and I would also like to thank the referee
for his/her valuable suggestions. Finally, I am deeply thankful to my advisor
Mattias Jonsson who has been my major source of knowledge and guidance
during all these years.

2. Basic facts on positive closed currents

In this section we introduce the main results concerning positive closed
currents and Lelong numbers. The basic reference for this section will be
the book [4], chapter III unless otherwise stated.

2.1. Lelong numbers

The main tool we have in order to ‘measure’ the size of the singular locus
of a current are the Lelong numbers. Let X be a compact Kähler manifold
with Kähler form ω and let T be a positive closed (p, p)-current on X. By
definition, the (k, k)-form

σT := T ∧ ωk−p

is a finite positive measure on X.

If x ∈ X and B(x, r) is an Euclidean ball with center x and radius r > 0,
then the function

r �→ ν(T, x, r) :=
σT (B(x, r))

πpr2p
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is increasing in r > 0. We define the Lelong number ν(T, x) of T at x as the
limit

ν(T, x) := lim
r→0+

ν(T, x, r).

This limit always exists and ν(T, x) does not depend on neither the
chosen local chart nor ω. The quantity defined above can be seen as a gen-
eralization of the multiplicity multx(Z) of a variety Z at x. More precisely,
if Z is an irreducible analytic subvariety of X, then

ν([Z], x) = multx(Z),

where [Z] denotes the current of integration along Z.

A very important feature of Lelong numbers is the upper semicontinuity
in both variables, which can be obtained from its definition. But the upper
semicontinuity of ν(T, ·) is remarkably stronger since it is not only true in
the standard topology but also in the Zariski topology: For every positive
closed (p, p)-current T and every c > 0 we denote by Ec(T ) the Lelong upper
level set

Ec(T ) := {x ∈ X | ν(T, x) � c}.
A fundamental theorem proved by Siu [9] states that Ec(T ) is always an
analytic subset of X, hence ν(T, ·) is Zariski upper semicontinuous.

Note that by Siu’s theorem, given any irreducible analytic subset V of
X, the quantity

ν(T, V ) := min
x∈V

ν(T, x)

is equal to ν(T, x) for x generic, i.e. for x outside a proper analytic subset
of V . We define the Lelong number of T along V as ν(T, V ).

As a consequence of Siu’s theorem, it is possible to prove the following
decomposition formula: If T is a positive closed (p, p)-current, then there
is a unique decomposition of T as a (possibly infinite) weakly convergent
series

T =
∑

j�1

λj [Aj ] + R

where [Aj ] is the current of integration over an irreducible analytic variety
Aj ⊂ X of codimension p, λj > 0 the generic Lelong numbers of T along
Aj and R is a positive closed current such that for every c > 0, the level set
Ec(R) has dimension strictly less than dim(X)− p.

This formula (known as Siu’s decomposition theorem) states that the
singular locus of a positive closed current can be decomposed into a union
of analytic subsets plus a residual part with small size.
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2.2. Extensions and intersections of currents

We state here some known results on positive closed currents that we
will need in this paper.

A subset P ⊂ X is said to be complete pluripolar if for every x ∈ P
there exist an open neighborhood U � x and a plurisubharmonic function
u not identically −∞ such that

P ∩ U = {z ∈ U | u(z) = −∞}.
In particular all analytic subsets of X are closed complete pluripolar sets.

Theorem 2.1 (El Mir). — Let P ⊂ X be a closed complete pluripolar
subset and let T be a positive closed current on X \ P with bounded mass
on a neighborhood of every point of P . Then, the trivial extension by zero
of T on X is a positive closed current.

It is well known that for any irreducible analytic subset A ⊂ X, the
current of integration [Areg] has finite mass in a neighborhood of every
point of Asing, hence the current of integration [A], meaning its extension
by zero through Asing, is a well defined positive closed current on X.

We finally discuss intersection of currents. Given an open set Ω ⊂ Ck, a
plurisubharmonic function ϕ and a positive closed current T in Ω, we would

like to have a notion of intersection
√−1
2π ∂∂̄ϕ ∧ T on Ω. More precisely, we

would like to define
√
−1

2π
∂∂̄ϕ ∧ T :=

√
−1

2π
∂∂̄(ϕT ).

The equation above does not always make sense but it is well defined as long
as the sizes of the singular sets involved are not too big; note in particular
that it is well defined if ϕ is locally integrable with respect to the trace
measure of T . We proceed to introduce a more general result concerning
intersection of currents.

Let T1, . . . , Tq be positive closed (1,1)-currents with local potentials
ϕ1, . . . , ϕq respectively. We denote by L(ϕj) the unbounded locus of ϕj ,
namely, the set

L(ϕj) := {x ∈ X | ϕj is not bounded near x}.

Theorem 2.2. — Let Θ be a positive, closed (k − p, k − p)-current. As-
sume that for any choice of indices j1 < · · · < jm in {1, . . . , q} the set

L(ϕj1) ∩ · · · ∩ L(ϕjm,) ∩ Supp(Θ)
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has (2p − 2m + 1)-Hausdorff measure zero. Then the wedge product T1 ∧
· · · ∧Tq ∧Θ is well defined. Moreover, the product is weakly continuous with
respect to monotone decreasing sequences of plurisubharmonic functions.

We end this subsection with a useful comparison of Lelong numbers of
products of currents: If T1 is a positive closed (1,1)-current and T2 is a
positive closed (p, p)-current such that the product T1 ∧ T2 (which is given
locally by the local potentials of T1) is well defined, then

ν(T1 ∧ T2, x) � ν(T1, x)ν(T2, x) (2.1)

for every x ∈ X.

2.3. Currents on singular projective varieties

We will need to deal with positive closed currents defined on singular
varieties. If X is a projective variety and ι : X ↪→ PN an embedding, we
will say that ω is a Fubini-Study form on X if ω = ι∗ωPN |X , where ωPN is
the Fubini-Study form on PN . Note that ω is a positive smooth differential
form on Xreg.

Definition 2.3. — If X is a (possibly singular) projective irreducible
variety and T is a positive closed (p, p)-current defined on Xreg, we will say
that T has bounded mass around Xsing if there exist an open neighborhood

U of Xsing such that

∫

U∩Xreg
T ∧ ωdim(X)−p < +∞.

It is possible to see that the definition above does not depend of the
embedding of X (see for instance [5]).

3. Approximation of (1,1)-currents

In this section we will discuss the approximation of (1,1)-currents by
currents with analytic singularities. The entire section is based on the work
of J. P. Demailly (particularly [3], [2]). However, we add some details of the
proof of Theorems 3.2 and 3.4 since these techniques are crucial for this
work and the author believes that they are not very well known.

The main ingredients of the approximation are the mean value inequality
and the Ohsawa-Takegoshi L2-extension theorem
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Theorem 3.1 (Ohsawa-Takegoshi’s L2-Extension Theorem). — Let X
be a projective manifold. Then there is a positive line bundle A → X over
X with smooth hermitian metric hA and a constant C > 0 such that for
every line bundle L→ X provided with a singular hermitian metric hL and
for every x ∈ X such that hL(x) �= 0, there exist a section σ of L + A such
that

‖σ‖hL⊗hA � C|σ(x)|.

For a proof of Theorem 3.1 see for example [10].

3.1. Approximation by divisors

Let X be a projective manifold and let T be a positive closed current
representing the first Chern class c1(L) of a hermitian line bundle L→ X.
More precisely, we can endow L → X with a singular hermitian metric hL

and curvature form Θ(hL) where

T ∈ c1(L) = {Θ(hL)} .

Now, let A → X be an ample line bundle with smooth hermitian metric

hA = e−ϕA . Its positive curvature form ω :=
√−1
2π ∂∂̄ϕA endows X with a

Kähler metric. We can fix a smooth hermitian metric h on L, hence we can

write hL = he−2ϕ and T = Θ(hL) = Θ(h) +
√−1
2π ∂∂̄ϕ. We endow mL + A

with the (singular) metric h⊗m
L ⊗ hA and we define the (finite dimensional)

Hilbert space Hm ⊂ H0(X;OX(mL + A)) as

Hm :=
{
σ ∈ H0(X;OX(mL + A)) | ‖σ‖2m < +∞

}

where the norm ‖ · ‖2m is given by

‖σ‖2m :=

∫

X

h⊗m
L ⊗ hA(σ)dVω.

We present the following theorem which can be found in [3] (see also
[1]).

Theorem 3.2. — Let X, T , L → X, ϕ and A → X be as before. Let
{σm,j}Nmj=1 be an orthonormal basis of Hm and define

ϕm(x) :=
1

2m
log




Nm∑

j=1

h⊗m ⊗ hA(σm,j(x))


 .
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Then there exist positive constants C1 and C2 independent of m such
that, for every x ∈ X we have:

ϕ(x)− C1

m
� ϕm(x) � sup

z∈B(x,r)

ϕ(z) +
C2

m
+ C(x, r),

where C(x, r) tends to 0 as r → 0.

Proof of Theorem 3.2. — First we cover X by finitely many small open
balls {B} giving local trivializations for both line bundles A and L. On
L, A|B � B × C ⊂ Ck × C we pick smooth metrics ψ, ψA for L and A
respectively, i.e. for all (x, v) ∈ B × C

h(x, v) = |v|2e−2ψ(x), hA(x, v) = |v|2e−2ψA(x),

hence if σ ∈ Hm is a section supported on B we have that

h⊗m ⊗ hA(σ(x)) = |σ(x)|2e−2mψ(x)−2ψA(x).

Since σ : B → C is holomorphic, by the mean value inequality for all x ∈ B
and r < dist(x, ∂B) we have

|σ(x)|2 � k!

πkr2k

∫

B(x,r)

|σ(z)|2dV (z),

implying

h⊗m ⊗ hA(σ(x)) � C

r2k
e−2mψ(x)−2ψA(x)

∫

B(x,r)

|σ(z)|2dV (z) �

� C

r2k
e2m[supB(x,r) ψ−ψ(x)]+2[supB(x,r) ψA−ψA(x)]

∫

B(x,r)

h⊗m⊗hA(σ(z))dV (z).

(3.1)
Denote by c(x, r) := supB(x,r) ψ − ψ(x), cA(x, r) := supB(x,r) ψA − ψA(x)
and note that

∫

B(x,r)

h⊗m ⊗ hA(σ(z))dV (z) �
(

sup
B(x,r)

e2mϕ

)
‖σ‖2m,

therefore

h⊗m ⊗ hA(σ(x)) � C

r2k
emc(x,r)+cA(x,r)

(
sup

B(x,r)

e2mϕ

)
‖σ‖2m. (3.2)

We can write ϕm as

e2mϕm(x) = sup
‖σ‖=1

h⊗m ⊗ hA(σ(x));
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therefore taking log of eq1 and the supremum over ‖σ‖m = 1 we obtain

2mϕm(x) � log

(
C

r2k

)
+ mc(x, r) + cA(x, r) + 2m sup

B(x,r)

ϕ =⇒ (3.3)

=⇒ ϕm(x) � sup
B(x,r)

ϕ + C(x, r) +
1

m
log

(
C ′

rk

)
,

where C ′ > 0 and C(x, r)→ 0 as r → 0.

For the other inequality we use Ohsawa-Takegoshi’s L2 Extension The-
orem: Let x ∈ X such that hL(x) �= 0. Since hL = he−2ϕ we can find a
section σ ∈ Hm such that

‖σ‖2m � C2|σ(x)|2 = C2h⊗m ⊗ hA(σ(x))e−2mϕ(x),

for some C > 0. Using (again) that

e2mϕm(x) = sup
‖σ‖m=1

h⊗m ⊗ hA(σ(x)),

we take log of the inequality and the supremum over ‖σ‖m = 1 obtaining

ϕ(x) � ϕm(x) +
C ′

m
.

This concludes the proof. �

As a consequence of the theorem above, we have obtained the following
corollary

Corollary 3.3. — Let X be a projective complex manifold and let T
be a positive closed (1,1)-current in the cohomology class of a line bundle.
Then there exist a sequence of closed (1,1)-currents Tm in the cohomology
class of T such that

(i) Tm � − 1
mω;

(ii) The sequence Tm converges weakly to T ;

(iii) For every x ∈ X the Lelong numbers at x satisfy

ν(T, x)− C

m
� ν(Tm, x) � ν(T, x),

for some C > 0. In particular, the Lelong numbers ν(Tm, x) converge
uniformly to ν(T, x).
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Proof. — Let L→ X be a positive hermitian line bundle with singular
hermitian metric hL such that T ∈ {Θ(hL)}. We can take a smooth metric
h on L such that hL can be written as hL = he−2ϕ and therefore we can
define

Tm := Θ(h) +

√
−1

2π
∂∂̄ϕm,

with ϕm as in the theorem above. Now it is routine to check that the se-

quence Tm converges to T = Θ(h) +
√−1
2π ∂∂̄ϕ and that it has the desired

properties. �

3.2. Attenuation of Lelong numbers

We finish this section with a refined version of the theorem of the sub-
section above which will allow us to approximate positive closed currents
by currents with analytic singularities and attenuated Lelong numbers. We
state the main theorem of this section proved in [3].

Theorem 3.4. — Let X be a projective manifold and let T be a posi-
tive closed (1,1)-current representing the class c1(L) of some hermitian line
bundle L → X. Fix a sufficiently positive line bundle G over X such that
TX ⊗G is nef. Then for every c > 0 there exist a sequence of closed (1,1)-
currents Tc,m converging weakly to T over X such that

• Tc,m � − 2
mω − cu, where u is the curvature form of G and;

• max (ν(T, x)− c− dim(X)/m, 0) � ν(Tc,m, x) � max (ν(T, x)− c, 0) .

The proof of the above theorem in a more general case, namely X is a
compact Kähler manifold and T is any almost positive closed (1,1)-current
can be found in [2]; the proof involves a very technical gluing procedure
which is beyond the scope of what we want to present here. For the case X
projective and T the curvature current of a positive line bundle, the proof
is simpler and can be obtained in a more direct way; we present the proof
given in [3] with some details added.

Proof. — As in Theorem 3.2 it is possible to construct sections σm,j ∈
H0(X;mL + A), 1 � j � Nm such that

ν(T, x)− dimX

m
� 1

m
min

j=1,...,Nm
ordx(σm,j) � ν(T, x).

We consider the l-jet sections J lσm,j with values in the vector bundle
J lOX(mL + A). We have the exact sequence

0→ SlT ∗X ⊗OX(mL + A)→ J lOX(mL + A)→ J l−1OX(mL + A)→ 0.
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Dualizing the above sequence we obtain the short exact sequence

0→(J l−1OX(mL+A))∗→(J lOX(mL+A))∗→(SlT ∗X⊗OX(mL+A))∗→0

which can be rewritten as

0→(J l−1OX(mL+A))∗ → (J lOX(mL+A))∗ → SlTX⊗OX(−mL−A)→0.

Twisting this exact sequence with OX(mL + 2A + lG) we obtain that

0→ (J l−1OX(mL + A))∗ ⊗OX(mL + 2A + lG)→ (3.4)

→ (J lOX(mL + A))∗ ⊗OX(mL + 2A + lG)→ SlTX ⊗OX(lG + A)→ 0

is exact. By hypothesis, the vector bundle TX ⊗ G is nef and therefore
Sl(TX ⊗ OX(G)) = SlTX ⊗ OX(lG) is nef for all symmetric powers of
order l, hence

SlTX ⊗OX(lG + A) =
(
SlTX ⊗OX(lG)

)
︸ ︷︷ ︸

nef

⊗OX(A)︸ ︷︷ ︸
ample

is ample. Since hte extremes of the exact sequence (3.4) are ample, we use
induction on l � 1 to conclude that the middle term

(J lOX(mL + A))∗ ⊗OX(mL + 2A + lG)

is also ample.

By definition of amplitude of vector bundles there exist q � 1 such that

Sq
(
J lOX(mL + A)

)∗ ⊗OX(qmL + 2qA + qlG)

is generated by holomorphic sections gm,i. Using this together with the
pairing of (J lOX(mL + A))∗ and J lOX(mL + A) we obtain sections

Sq(J lσm,j)gm,i ∈ H0(X;OX(qmL + 2qA + qlG))

which in a trivialization give us the metric

ϕm,l :=
1

qm
log

∑

i,j

|Sq(J lσm,j)gm,i| −
2

m
ψA −

l

m
ψG.

Note that ψA and ψG are smooth; therefore we have

ν(ϕm,l, x) =
1

m
min

j
ordx(J lσm,j) =

1

m

(
min

j
ordx(σm,j)− l

)
.
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This gives us the inequality

max

(
ν(T, x)− l + dim(X)

m
, 0

)
� ν(ϕm,l, x) � max

(
ν(T, x)− l

m
, 0

)
.

Finally, for every c > 0 and every m � 0 it is possible to find l > 0 such
that c < l/m < c + 1/m, hence

√
−1

π
∂∂̄ϕc,m � −

2

m
ω − cu,

where ϕc,m := ϕm,l for this choice of m, l, and ω and u are the curvature
forms of A and G respectively.

Now, for any smooth metric h on L, the sequence of currents

Tc,m := Θ(h) +

√
−1

π
∂∂̄ϕc,m,

converges weakly to T and satisfies the desired properties. �

4. Proof of the main theorem

We will divide the proof of Theorem 1.1 into three steps. In the first step
we will assume that our projective variety X is smooth and that the coho-
mology class of T is nef. We can then find suitable smooth representatives of
{T} which, together with the sequence obtained in Theorem 3.4, will allow
us to approximate T by a sequence of currents Tc,m of bounded potentials
and therefore we will be able to intersect such sequence with the current
of integration [Y ]; this procedure will be the key for obtaining our result
in this setting. In the second step, we still assume X smooth but {T} not
necessarily nef; using that H1,1(X;R) is finite dimensional and the upper
semicontinuity of Lelong numbers, we will replace T by a current T̂ with
nef class {T̂} but the same Lelong numbers as T everywhere; then we apply
our result in Step 1 to T̂ implying the same conclusion to T . Finally, in Ste
p 3 we prove the general case when X is a projective variety, not necessarily
smooth, by taking a resolution of singularities of X, and applying Step 2 to
the strict transform of T , Y and Zp,r.

We recall the notions of numerically effective (nef), pseudoeffective (psef)
and Kähler cones (for details see [7], also [1]). The space of classes of real
(1,1)-forms H1,1(X;R) is defined as

H1,1(X;R) := H1,1

∂̄
(X;C) ∩H2(X;R) =

{
α ∈ H1,1

∂̄
(X;C) | ᾱ = α

}
,

where H1,1

∂̄
(X;C) is the Dolbeault (1,1)-cohomology of X.
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The Kähler cone K(X), the Psef cone P(X) and the Nef cone N (X)
are defined as

K(X) := {α ∈ H1,1(X;R) | α can be represented by a Kähler form},

P(X) := {α ∈ H1,1(X;R) | α can be represented by

a positive closed (1,1)-current},
and

N (X) := {α ∈ H1,1(X;R) | if for every ε > 0, α can be represented by a

smooth form αε such that αε � −εω}
respectively. Note that if X is Kähler (or projective) the set K(X) is not
empty.

It follows from the definitions above that

∅ �= K(X) ⊂ N (X) ⊂ P(X) and K(X) = Int(N (X)).

We prove now our Main Theorem:

Step 1. — Assume X to be a (smooth) complex projective manifold and
the class {T} to be nef. For this case, we will actually prove a slightly more
general result, where we will be able to ’kill Lelong numbers’ locally. More
precisely, given any subset Ξ of Y and p = 1, . . . ,dim(X)− l+ 1, we denote
the jumping numbers bp = bp(T,Ξ) of EY

c (T ) with respect to Ξ as

bp := inf{c > 0 | codimx(EY
c (T );Y ) � p, ∀x ∈ Ξ}.

In our situation, the subset Ξ will be a Zariski dense subset of Y with
a prescribed geometrical condition, namely, Ξ will be the complement of
all irreducible components of EY

c (T ) of codimension strictly less than p.
Following Demailly we prove the following lemma

Lemma 4.1. — Let Ξ be any subset of Y and 0 � b1 � b2 � . . . �
bdim(X)−l+1 the jumping numbers of EY

c (T ) with respect to Ξ. Fix a positive
line bundle with smooth curvature u as in Theorem 3.4 and assume that the
class {T} is nef. Then for every p = 1, . . . ,dim(X) − l + 1 there exists a
positive closed (l + p, l + p)-current Θp in X with support on Y such that

{Θp} = {Y } · ({T}+ b1{u}) · · · ({T}+ bp{u}) ∈ H l+p,l+p(X;R), (4.1)

Θp �
∑

r�1

(νp,r − b1) · · · (νp,r − bp)[Zp,r]. (4.2)
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Proof. — Let c > b1 and let α ∈ {T} be a smooth real (1,1)-form. Take

the sequence of currents Tc,m = α +
√−1
2π ∂∂̄ϕc,m as in Theorem 3.4 where

ϕc,m is singular along Ec(T ) and Tc,m � − 2
mω− cu. Since we are assuming

{T} to be nef, for every m ∈ N we can pick αm ∈ {T} smooth such that

αm � − 2
mω and we can write αm as αm = α+

√−1
2π ∂∂̄ψm with ψm smooth.

Set
ϕc,m,L := max{ϕc,m, ψm − L},

for L � 0 and Tc,m,L := α +
√−1
2π ∂∂̄ϕc,m,L. Observe that by adding the

local potentials of ω and cu to the the max between ϕc,m and ψm − L we
easily conclude that the closed current Tc,m,L satisfies

Tc,m,L +
2

m
ω + cu � 0.

The family of potentials {ϕc,m,L} is bounded everywhere, therefore

Θ1,c,m,L := [Y ] ∧
(
Tc,m,L +

2

m
ω + cu

)

is a well defined positive closed (l + 1, l + 1)-current on X with support on
Y by Theorem 2.2. By extracting a weak limit we define

Θ1,c,m := lim
L→+∞

Θ1,c,m,L

on X. Since the potentials ϕc,m,L decrease monotonically to ϕc,m as L →
+∞ we have that

Θ1,c,m = [Y ] ∧
(
Tc,m +

2

m
ω + cu

)

in a neighborhood of Ξ, since for every point x ∈ Ξ we can find a neigh-
borhood U of x such that the unbounded locus of [Y ] and Tc,m has codi-
mension � l + 1 in U (or real dimension � 2 dim(X) − 2l − 2) hence by
Theorem 2.2 the current Θ1,c,m is well defined in a neighborhood of Ξ, and
{Θ1,c,m} = {Y } ·

(
{T}+ 2

m{ω}+ c{u}
)

for every m � 1 and every c > b1
and for every x ∈ X,

ν(Θ1,c,m, x) � ordx(Y )ν(Tc,m, x) � ordx(Y )(max{ν(T, x)−c−dim(X)/m, 0}).

Note also that the total mass of the family {Θ1,c,m} is uniformly bounded.
We extract (modulo a subsequence) a limit

Θ1 := lim
c↘b1

lim
m↗+∞

Θ1,c,m,
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which satisfies {Θ1} = {Y } · ({T}+ b1{u}) and by the upper semicontinuity
of Lelong numbers we obtain

ν(Θ1, x) � (ν1,r − b1), ∀x ∈ Z1,r ∀ r � 1.

By Siu’s decomposition theorem, Θ1 can be written as

Θ1 =
∑

j�1

λj [Vj ] + R1,

where for every j � 1, Vj is an irreducible variety of codimension l + 1 in
X, λj is the generic Lelong number of Θ1 along Vj and R1 is a positive
closed current with upper level sets Ec(R1) of codimension strictly bigger
than l+ 1 for all c > 0. This in particular implies that for all r � 1 we have
that Z1,r = Vjr for some jr and for a generically chosen x ∈ Z1,r we obtain

λjr = ν(Θ1, x) � (ν1,r − b1) =⇒ Θ1 �
∑

r�1

(ν1,r − b1)[Z1,r].

Now we proceed by induction on 2 � p � dim(X)− l+1. We assume we
have constructed Θp−1 with the desired properties and in the exact same
way as before, for c > bp we define the positive closed (l + p, l + p)-current

Θp,c,m,L := Θp−1 ∧
(
Tc,m,L +

2

m
ω + cu

)
,

which is well defined everywhere. The current

Θp,c,m := lim
L→+∞

Θp,c,m,L

satisfies

• Θp,c,m = [Y ] ∧
(
Tc,m + 2

mω + cu
)

in a neighborhood of Ξ,

• {Θp,c,m} = {Y } ·
(
{T}+ 2

m{ω}+ c{u}
)

for every m � 1 and every
c > bp and,

• ν(Θp,c,m, x) � ν(Θp−1, x) max{(ν(T, x)−c−dim(X)/m), 0} for every
x ∈ X.

We extract a weak limit (modulo a subsequence)

Θp := lim
c↘bp

lim
m↗+∞

Θp,c,m,
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which (by the same arguments as above) satisfies the desired properties.
�

Step 2. — Now assume that X is a complex projective manifold and let
ω be any Kähler form on X. However, the class {T} is not necessarily nef.

Let
P1 := {α ∈ P(X) | ‖α‖ = 1} ⊂ H1,1(X;R) (4.3)

be a slice of the pseudoeffective cone of X, where ‖ · ‖ is any norm on the
finite dimensional real vector space H1,1(X;R). Since P1 is compact and
Int(N (X)) = K(X) �= ∅ we can pick A0 = A0({ω}) > 0 such that A{ω}+α
is nef for every A � A0 and every α ∈ P1. Note also that the set of of
positive closed currents T with a fixed cohomology class is also (weakly)
compact. Moreover, by the upper semicontinuity in both variables of the
Lelong numbers is easy to see that there exists a constant τ = τ(X) such
that ν(T, x) � τ for every x ∈ X and every positive closed (1,1)-current T
so that {T} ∈ P1.

Now, fixing A � A0 we define the positive closed (1,1)-current T̂ :=
T + Aω. It satisfies:

• {T̂} ∈ N (X),

• ν(T̂ , x) = ν(T, x) for every x ∈ X (in particular, the Lelong upper
level sets EY

c (T̂ ) and EY
c (T ) coincide, giving us the same decompo-

sition in terms of jumping numbers).

Taking β = ν(T, Y ) = ν(T̂ , Y ) and defining the set

Ξp := �
(
∪c>β(Irreducible components of EY

c (T ) of codimension < p)
)
,

we obtain that the jumping numbers with respect to Ξp satisfy

b1(T,Ξp) = . . . = bp(T,Ξp) = β.

If {Zp,r}r�1 are the irreducible components of EY
c (T̂ ) = EY

c (T ) for c ∈
]βp, βp+1] of codimension exactly p in Y and νp,r the generic Lelong numbers,

we apply the previous lemma to T̂ , hence we obtain a positive closed (l +
p, l+p)-current Θp on X with support on Y such that {Θp} = {Y }·({T̂}+
b1{u}) · · · ({T̂}+ bp{u}) =
= {Y } · ({T}+ A{ω}+ b1{u}) · · · ({T}+ A{ω}+ bp{u}) and

∑

r�1

(νp,r − β)p[Zp,r] � Θp.
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We apply
∫
X
· ∧ ωdim(X)−l−p to the inequality, giving us

∑

r�1

(νp,r − β)p
∫

Zp,r

ωdim(X)−l−p �
∫

X

Θp ∧ ωdim(X)−l−p =

=

∫

X

[Y ] ∧ (T + Aω + b1u) ∧ · · · ∧ (T + Aω + bpu) ∧ ωdim(X)−l−p �

�
∫

X

[Y ] ∧ ((1 + A)ω + τu)
p ∧ ωdim(X)−l−p =: C.

Step 3. — We now prove the theorem in the general case.

Let π : X̃ → X be a resolution of singularities. Since Y and Zp,r are

not contained in Xsing, we can define Ỹ and Z̃p,r the strict transforms of

Y and Zp,r, respectively. Let T̃ be the positive closed (1,1)-current defined
by

T̃ := π∗T on π−1(Xreg).

By assumption, T̃ has locally bounded mass around π−1(Xsing) hence

by Theorem 2.1 the extension by zero of T̃ is a positive closed (1,1)-current
on X̃. On the other hand, since π : π−1(Xreg)→ Xreg is a biholomorphism

we can conclude that ν(T̃ , Z̃p,r) = νp,r and ν(T̃ , Ỹ ) = β.

We know by Step 2 that if ω̃ is the Fubini-Study metric on X̃ we can
find a positive constant C depending only on X̃, Ỹ and ω̃ such that

C �
∑

r�1

(νp,r − β)p
∫

Z̃p,r

ω̃dim(X)−l−p.

We prove the following lemma

Lemma 4.2. — Let A be an ample line bundle defined on X and ω̃ the
Fubini-Study metric on X̃. Then, there exist δ > 0 depending only on ω̃
and A such that for every irreducible algebraic set Z ⊂ X not contained in
Xsing of dimension q and strict transform Z̃ the following holds

∫

Z̃

ω̃q � δ(Aq · Z).

Proof of Lemma. — First observe that

(Aq · Z) =

∫

Z

c1(A)q =

∫

π∗Z̃
c1(A)q =

∫

Z̃

π∗(c1(A)q) =

∫

Z̃

(π∗c1(A))q.

– 798 –



Lelong numbers on projective varieties

Since ω̃ is positive, we can find ε > small enough such that the class of
{α} := {ω̃} − επ∗c1(A) is numerically effective (even ample) on X̃. Then

∫

Z̃

ω̃q =

∫

Z̃

(επ∗c1(A) + α)q =

=

∫

Z̃

(επ∗c1(A))q +

q−1∑

i=0

qi

∫

Z̃

(επ∗c1(A))i ∧ αq−i �

� εq
∫

Z̃

(π∗c1(A))q � δ(Aq · Z),

where δ := εdim(X). This proves the lemma. �

Now picking ω̃ on X̃ and δ > 0 as above, and taking A = OX(1) the
theorem follows since

C ′ := Cδ−1 �
∑

r�1

(νp,r − β)pδ−1

∫

Z̃p,r

ω̃p+l �
∑

r�1

(νp,r − β)p
∫

Zp,r

ωp+l.

This completes the proof of the Main Theorem.
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