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Non-axiomatizability of real spectra in L∞λ

Timothy Mellor(1), Marcus Tressl(2)

ABSTRACT. — We show that the property of a spectral space, to be
a spectral subspace of the real spectrum of a commutative ring, is not
expressible in the infinitary first order language L∞λ of its defining lattice.
This generalises a result of Delzell and Madden which says that not every
completely normal spectral space is a real spectrum.

RÉSUMÉ. — Nous montrons que la propriété d’un espace spectral d’être
un sous-espace spectral du spectre réel d’un anneau commutatif n’est
pas exprimable dans le langage infinitaire du premier ordre L∞λ de son
treillis de définition. Ceci généralise un résultat de Delzell et Madden qui
dit qu’en général, un espace spectral complètement normal n’est pas un
spectre réel.
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1. Introduction

For a while it was an open question whether real spectra are precisely the
completely normal spectral spaces. In [3], a counterexample is given, hence a
completely normal spectral space is constructed, which is not homeomorphic
to the real spectrum of any (commutative, unital) ring. We extend this result
here in two ways:

1. We show that the spectral space constructed in [3] is also not home-
omorphic to any spectral subspace of a real spectrum.

2. We show that there is no infinitary first order description which char-
acterises real spectra.

The second point needs explanation. By Stone duality, the category
of spectral spaces and spectral maps is anti-equivalent to the category of
bounded distributive lattices and bounded lattice homomorphisms. Hence
the question what the topological type of real spectra is, can also be asked
on the lattice side: Classify all lattices that correspond to real spectra via
Stone duality.

Now the class of all bounded distributive lattices is first order axioma-
tisable in the language of posets (consisting of one binary relation symbol)
and we can rephrase our question in terms of model theory: Is the class of
those lattices that correspond to real spectra via Stone duality, first order
axiomatizable? It should be mentioned here that this indeed generalises the
original question, since the class of all lattices corresponding to completely
normal spectral spaces is easily seen to be first-order axiomatizable (by ex-
pressing that for each element a of the lattice L, the lattice {b∧¬a | b ∈ L}
is normal, cf. [8]).

Now our theorem 5.1 also negates this more general question in a strong
way: For every cardinal λ, the class of all lattices that correspond to real
spectra via Stone duality is not first order axiomatizable in the infinitary
language L∞λ of posets.

In this context it must be mentioned that the (specialisation-)order type
of real spectra is know by [5]. Whereas the (specialisation-)order type of
arbitrary spectral spaces is still unknown (this is called Kaplansky’s problem
and asked in [9, chap. 1]). The topological type of Zariski spectra of rings
has been determined by Hochster in the first place: these are precisely the
spectral spaces (cf. [6]).

For model theoretic terminology see [7]; the definition of L∞λ can be
found in [4, p.65]. For basic properties of spectral spaces we refer to [6], [2]
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and [8]; a summary can be found in [15, section 2]). The definition of the
real spectrum and the fact that it is indeed a completely normal spectral
space can be found in [1].

Acknowledgement. — We would like to thank Niels Schwartz for valu-
able discussions and comments on the topic during the “Passauer Obersem-
inar Reelle Geometrie”.

2. Spectral spaces from Dedekind complete orders

Recall that a totally ordered set X = (X,�) is Dedekind complete if
every subset of X has a supremum in X. In this case, every subset of X has
an infimum, X has a largest element, denoted by � and a smallest element,
denoted by ⊥.

If X is a totally ordered set, then the Dedekind completion of X is
defined to be “the” Dedekind complete set X, containing X as an ordered
subset, such that X is dense in X, i.e. for all y1, y2 ∈ X with y1 < y2, if
there is no point x ∈ X with y1 < x < y2, then y1, y2 ∈ X. An explicit
description of X is

X := X ∪ {+∞,−∞} ∪ {the non-principal cuts of X}

together with its natural order. Of course we won’t add ±∞ if X has already
a largest or a smallest element. Recall that a cut (L,R) of X is called
principal, if the set L has a supremum in X ∪ {±∞}; these are the cuts of
the form ±∞ or of the form x+ or x− for some x ∈ X.

We recall a few easy facts related to Dedekind complete (total) orders.
Firstly, recall that the interval topology (or order topology) of a totally
ordered set (X,�) is defined to have the subbasis of open sets of the form
(−∞, x) and (x,+∞), where x ∈ X.

Fact 2.1. — For every totally ordered set X, the following are equiva-
lent:

(i) X is compact in the interval topology.

(ii) X is Dedekind complete.

Fact 2.2. — If X and Y are Dedekind complete (total) orders, then the
lexicographical product X × Y is again Dedekind complete.
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Fact 2.3. — The following are equivalent for every totally ordered set X:

(i) X is compact and connected in the interval topology.

(ii) X is Dedekind complete and there is no jump in X, i.e. there are no
x < y in X such that the open interval (x, y) is empty.

Fact 2.4. — The following are equivalent for every totally ordered set X:

(i) X is boolean (i.e. X is compact and every connected subset of X is
a singleton) in the interval topology.

(ii) X is Dedekind complete and jump dense, i.e. for all x < y from X
there are x � a < b � y such that (a, b) = ∅.

If this is the case, then the clopen subsets of X are the finite unions of closed
intervals [a, b] such that a has an immediate predecessor in X ∪ {±∞} and
b has an immediate successor in X ∪ {±∞}.

Lemma 2.5. — Let X be a Dedekind complete totally ordered set and
let Y be a Dedekind complete, totally ordered set that is boolean in the order
topology and that has at least two elements. Then X × Y is again Dedekind
complete and boolean in the lexicographical order topology.

Proof. — By 2.2 and 2.4 we only need to show that X × Y is jump
dense. This is obvious. �

Let S be a finite totally order set with at least 2 elements. We will
now consider X × S lexicographically ordered together with the
induced order topology.

By 2.5 the lexicographic product X × S is a boolean and Dedekind
complete (total) order. It is worth noting that the order topology on X ×S
is in general incompatible with the product topology on X × S, i.e. neither
refines nor coarsens this topology.

Definition 2.6. — Let S be an arbitrary boolean space. A partial order
� on S is called a spectral order on S if for all x, y ∈ X with x �� y there
is a clopen subset C of X such that x ∈ C, y �∈ C and such that C is a
final segment of �, i.e. for all c, z ∈ X, c ∈ C and c � z implies z ∈ C.
The pair (S,�) is called a Priestley space (cf. [10]).

A morphism between Priestley spaces (X,�X) and (Y,�Y ) is a contin-
uous map f : X −→ Y which preserves the spectral orders, i.e. a �X b ⇒
f(a) �Y f(b).
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We shall use basic properties and terminology of spectral spaces. IfX is a
spectral space, then K(X) denotes the set of closed and constructible subsets
of X. Note that K(X) is the bounded distributive lattice corresponding
to X via Stone duality (in our setup, such a lattice L is mapped to the
spectral space SpecL of prime filters of L which has the sets VL(a) := {∈
SpecL | a ∈ L} as a basis of closed sets). We refer to [15, section 2] for more
details.

Theorem 2.7. — The functor from the category of spectral spaces to-
gether with spectral maps to the category of Priestley spaces, which sends X
to (Xcon,�X) is an isomorphism. Here Xcon denotes the patch space of X
and �X denotes specialisation in X.

Proof. — This is the content of [11]. �

Example 2.8. — If X = (X,�) is a totally ordered set and boolean in
the order topology, then there is a (unique) spectral topology τ on X such
that

(a) The constructible topology of τ is the order topology of X.

(b) For all x, y ∈ X, x � y X if and only if y is in the closure of x w.r.t. τ .

Hence the category of Dedekind complete, totally ordered and jump
dense sets is isomorphic to the category of spectral spaces which have a
total specialization order.

Proposition 2.9. — Let X be a Dedekind complete total order and let
S be a finite spectral space. Let � be any total order of S such that ⊥S
and �S are minimal points in the spectral topology of S (of course, such a
total order only exists if S is a singleton or not irreducible). Let X × S be
equipped with the order topology of the lexicographic order of X and (S,�).
Then the partial order

(x, s) � (y, t) :⇐⇒ x = y and s� t in S (i.e. t ∈ {s})

is a spectral order on the boolean space X × S.

Proof. — X × S is boolean by 2.5.

Take α = (x, s), β = (y, t) ∈ (X,S) with α �� β. We have to find a clopen
subset of X×S that is a final segment w.r.t. � such that α ∈ C and β �∈ C.

Case 1. x < y.
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If x < y is a jump of X, then take C := (−∞, (x,�S)] = (−∞, (y,⊥S)).
If x < y is not a jump of X, then there is some z ∈ X with x < z < y.
Let v ∈ S be the predecessor of �S in the total order of S. Then, as �S is
minimal in the spectral order of S, the clopen subset C := (−∞, (z, v)] =
(−∞, (z,�S)) of X × S is a final segment w.r.t. �.

Case 2. y < x.

If y < x is a jump of X, then take C := [(x,⊥S),+∞) = ((y,�S),+∞).
If y < x is not a jump of X, then there is some z ∈ X with y < z < x.
Let u ∈ S be the successor of ⊥S in the total order of S. Then, as ⊥S is
minimal in the spectral order of S, the clopen subset C := [(z, u),+∞) =
((z,⊥S),+∞) of X × S is a final segment w.r.t. �.

Case 3. x = y. Hence, since α �� β we know s�t in S.

We first claim that for every r ∈ S, there is a clopen set Cr ⊆ X×S such
that Cr \({x}×S) is closed under � and such that Cr∩({x}×S) = {(x, r)}:

• If r �= �S and r �=⊥S , then the point (x, r) is isolated in the order
topology of X × S, hence Cr := {(x, r)} has the required properties.

• If r = �S , then let v ∈ S be the predecessor of �S in the total
order of S. Then Cr = [(x, r),+∞) = ((x, v),+∞) has the required
properties.

• If r =⊥S , then then let u ∈ S be the successor of ⊥S in the total
order of S. Then Cr = (−∞, (x, r)] = (−∞, (x, u)) has the required
properties.

So we can find Cr as claimed and we define C as the finite union

C :=
⋃

r∈S,s�r
Cr.

Then C is clopen in X × S and C \ ({x} × S) is closed under � (as each

Cr has this property). But C ∩ ({x}× S) is equal to {x}× {s}S , which is a
final segment w. r. t. �, too. Thus C is a final segment w.r.t. � such that
α ∈ C and β �∈ C. �

Definition 2.10. — Let X be Dedekind complete and let S be a finite
spectral space which is not irreducible. Let � be any total order of S such
that ⊥S and �S are minimal points in the spectral topology of S.
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We define
X#(S,�)

as the spectral space whose patch space is the Dedekind complete total order
X × S and whose specialisation order is the partial order from 2.9. If S

is the spectral space consisting of three elements −1, 0, 1 with specialization
order −1, 1� 0 and total order −1 < 0 < 1, then we write

X# instead of X#(S,�).

For x ∈ X we write x− := (x,−1), x+ := (x, 1) and we identify X with
X × {0} in X#.

Proposition 2.11. — Let X = (X,�) be Dedekind complete and densely
totally ordered. A subset Y of X# is closed and constructible if and only if
Y is a finite union of sets of the form [(x, 0), (x′, 0)], where x, x′ ∈ X and
x � x′.

In particular K(X#) is order isomorphic to the lattice generated by the
closed intervals of X in the powerset of X

Proof. — This is clear with the characterization of the constructible
subsets of X# in 2.4: Observe that the constructible subsets of X# are by
definition the clopen subsets of the lexicographic order X×{−1, 0, 1}. �

3. Completely normal spectral spaces not
occurring in real spectra

We use standard notation from commutative algebra: Let A be a ring
(this means, commutative and unital always). For f ∈ A, we denote by V (f)
the set of all prime ideals of A containing f and D(f) = SpecA \ V (f).

Following [3] we shall work with Zariski spectra of real closed rings (in
the sense of N. Schwartz) instead of real spectra of commutative rings.
Note that every real spectrum is (naturally) homeomorphic to the Zariski
spectrum of a real closed ring. We refer to [12] and [13] for real closed rings.

Proposition 3.1. — Let A be a real closed ring and let X ⊆ SpecA.
Suppose we are given

(I) an open quasi-compact subset U of SpecA such that U ∩ X is con-
nected and such that there are points x, y ∈ U ∩X which do not have
a common specialization in U ;
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(II) an ordinal λ and for each α < λ, fα ∈ A such that for all α < β < λ
we have

fα(u) > fβ(u) > 0 (u ∈ U ∩X).

Then there is a collection (Uα)α<λ of open, nonempty and disjoint sub-
sets of U ∩X.

Proof. — Since A is real closed, there is some s ∈ A such that U = D(s).
Since x, y ∈ X do not have a common specialization in U , there are ϕ,ψ ∈ A
with x ∈ V (ϕ)∩D(s), y ∈ V (ψ)∩D(s) and V (ϕ)∩ V (ψ)∩D(s) = ∅. Then
ϕ2 + ψ2 is a unit in As, hence there is some h ∈ A such that

sn · (h · (ϕ2 + ψ2)− s2k) = 0.

Define

g := f0 · ϕ2 · h.
Then g(x) = 0 and g(y) = f0(y) · s2k(y). We take

Uα := {u ∈ U ∩X | s2k · fα(u) < g(u) < s2k · fα+(u)} (α < λ).

Clearly the Uα are open and disjoint subsets of X. It remains to show that
each Uα is nonempty.

Otherwise U∩X ⊆ {g � s2k ·fα}∪{g � s2k ·fα+} is covered by two closed
subsets of SpecA, which have empty intersection in U ∩X by assumption.
Since g(x) = 0 � s2k(x)fα(x) and g(y) = s2k(y) · f0(y) � s2k(y) · fα+(y)
both sets are nonempty. This contradicts the assumption that U ∩ X is
connected. �

Corollary 3.2. — Let A be a real closed ring and let X ⊆ SpecA
contain at least two points. Suppose

(I) X is quasi-compact, connected and there is no specialization inside
X.

(II) There are an ordinal λ and for each α < λ, fα ∈ A such that for all
α < β < λ we have

fα(u) > fβ(u) > 0 (u ∈ X).

Then there is a collection (Uα)α<λ of open, nonempty and disjoint subsets
of X.
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Proof. — Take x, y ∈ X, x �= y and suppose x, y have a common spe-
cialization in SpecA. Let z be the first common specialization of x, y in
SpecA.

Then for each w ∈ X we have z�w, hence there is an open quasi-compact
subset Uw of SpecA with w ∈ Uw and z �∈ Uw. Then X ⊆ ⋃

w∈X Uw and
sinceX is quasi-compact, there is an open quasi-compact subset U of SpecA
containingX and not containing z. Since z is the first common specialization
of x, y in SpecA, x, y do not have a common specialization in U . Now we
may apply 3.1. �

Recall that for an infinite cardinal κ, a κ-set X is a totally ordered set
with the property that for all A,B ⊆ X of size strictly less than κ, if A < B,
then there is some x ∈ X with A < x < B. For example every κ-saturated
totally ordered set is a κ-set.

Proposition 3.3. — Let D = E× I, where E is the Dedekind comple-
tion of a κ-set Y , κ an infinite cardinal, and I is Dedekind complete.

Suppose D# is a proconstructible subset of SperA for some ring A. Then
there are fα ∈ A and xα, yα ∈ Y (α < κ) such that for all α < β < κ we
have

xα < xβ < yβ < yα and
for all u ∈ D with (xβ ,⊥I) < u < (yβ ,�I) : fα(u) > fβ(u) > 0.

Proof. — Let f0 = 1 and suppose xµ < xν < yν < yµ, fµ > fν > 0 on
[(xν ,⊥I), (yν ,�I)], have already been constructed for µ < ν < λ, λ < κ.
We define xν < xλ < yλ < yν and fλ ∈ A with fν > fλ > 0 on [(xλ,⊥I),
(yλ,�I)] as follows:

Pick u, v ∈ Y with xν < u < v < yν (ν < λ). Then the set [(u,�I)+,
(v,⊥I)−] ⊆ D# is open and quasi-compact, there is some fλ ∈ A that is
> 0 on that set and 0 on the complement of this set in D#.

Pick µ < λ. Then {fµ > fλ}∩D# is open and quasi-compact containing
(u,�I). Since the open quasi-compact subsets of D# are finite unions of sets
of the form [d+

0 , d
−] with d0, d ∈ D there is some dµ ∈ D with (u,�I) < dµ

such that [(u,�I), d−µ ) ⊆ {fµ > fλ}. From (u,�I) < dµ we get some e ∈ E
with u < eµ � dµ. Since u ∈ Y and E is the Dedekind completion of the
dense set Y , there is some uµ ∈ Y with u < uµ < dµ.

Hence fµ > fλ > 0 on [(u,�I)+, (uµ,�I)]. Since Y is a κ-set, there is
some yλ ∈ Y with u < yλ < xµ for all µ < λ. Now choose xλ ∈ Y with
u < xλ < yλ. �
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Theorem 3.4. — Let D = E × I, where E is the Dedekind completion
of a κ+-set Y , κ an infinite cardinal, and I is a compact and connected
Dedekind complete total order with at least two points, such that there is no
collection of nonempty, open and disjoint subsets of I of size κ. Then the
completely normal spectral space D# is not homeomorphic to any spectral
subspace of the real spectrum of any ring.

The main example here is I = [0, 1] ⊆ and κ = ℵ1.

Proof. — By 3.3, there are fα ∈ A and xα, yα ∈ Y such that for all
α < β < κ we have xα < xβ < yβ < yα and

fα(u) > fβ(u) > 0

when u ranges in the interval ((xβ ,⊥I), (yβ ,�I)) of D. Since Y is a κ+-set,
there are x, y ∈ Y with xα < x < y < yα for all α < β < κ. Hence

fα(u) > fβ(u) > 0 (u ∈ D, (x,⊥I) < u < (y,�I)).

Pick z ∈ Y with x < z < y and let X := {z} × I. Then

fα(u) > fβ(u) > 0 (u ∈ X).

Since X is homeomorphic to I, X is compact and connected by assumption.
Hence we may apply 3.2, which gives a collection (Uα)α<κ of open, nonempty
and disjoint subsets of X. Since X is homeomorphic to I, this contradicts
our assumption on I. �

4. Back and forth equivalence of lattices generated
by closed intervals

Let X = (X,�) be a totally ordered set. A closed interval of X is any
subset of the form [a, b], [a,+∞), (−∞, b] or (−∞,∞) with a, b ∈ X. The
boundary points of [a, b] are defined to be a, b if a � b, the only boundary
point of [a,+∞) is defined to be a (provided X has no largest element) and
the only boundary point of (−∞, b] is defined to be b (provided X has no
smallest element). The empty set and X (provided X has no smallest and
no largest element) do not have boundary points. Observe that a boundary
point according to this definition is in general not a boundary point w.r.t.
the order topology of X (X might be discrete).

Let L(X) be the set of finite unions of closed intervals of X. Obviously,
L(X) is the sublattice of the powerset of X generated by the set of closed
intervals.
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For α ∈ L(X), a closed interval of X contained in α and maximal with
this property is called a component of α; observe again that this is in
general not a connected component of α in the sense of the order topology
of X. However, it is clear that α is the disjoint union of its components and
there are only finitely many of them.

For α ∈ L(X), a boundary point of α is a boundary point of one of
its components. We write bd(α) for the (finite) set of boundary points of α.
It is useful to notice the following:

Observation 4.1. — Let α ∈ L(X).

(i) If α = I1 ∪ ... ∪ In with closed intervals I1, ..., In of X, then bd(α) ⊆⋃n
k=1 bd(Ik).

(ii) There are n ∈ N0 and nonempty closed intervals I1, ..., In of X with
α = I1 ∪ ... ∪ In such that for each k ∈ {1, ..., n − 1} there is some
x ∈ X with Ik < x < Ik+1.

Moreover, whenever α is represented in this form, then I1, ..., In are
precisely the components of α.

Given S ⊆ X, we define

L(X,S) := {α ∈ X | bd(α) ⊆ S}.

Remark 4.2. — L(X,S) is a bounded sublattice of L(X) and for every
other set S′ ⊆ X we have S ⊆ S′ ⇐⇒ L(X,S) ⊆ L(X,S′).

Proof. — By 4.1(i) it is clear that L(X,S) is a bounded sublattice of
L(X). The equivalence follows with the observation {s} ∈ L(X,S). �

Now let X,Y be totally ordered sets and let S ⊆ X, T ⊆ Y be arbitrary
sets. Suppose we are given an order isomorphism f : S −→ T . We define a
map Ff : L(X,S) −→ L(Y, T ) as follows: For a closed interval α of X we
define the closed interval Ff (α) of Y by

Ff (α) =





∅ if α = ∅
Y if α = X
[f(s),+∞) if α = [s,+∞) and s is not the smallest element

of X
(−∞, f(s)] if α = (−∞, s] and s is not the largest element

of X
[f(s1), f(s2)] if s1 � s2, α = [s1, s2] and s1 is not the smallest

element of X and s2 is not the largest element
of X
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Now we define Ff on all of L(X,S) by

Ff (α) =
⋃
{Ff (γ) | γ is a component of α}.

In the situation above, we say that the order isomorphism f : S −→ T is
faithful if the following two conditions are satisfied:

(a) For every s ∈ S, s is the smallest or largest element of X if and only
if f(s) is the smallest or largest element of Y , respectively.

(b) For all s1, s2 ∈ S we have

s1 < s2 is a jump in X ⇐⇒ f(s1) < f(s2) is a jump in Y.

Proposition 4.3. — If f is faithful, then Ff is a lattice isomorphism
L(X,S) −→ L(Y, T ) and the inverse is Ff−1 . If S′ ⊆ X, T ′ ⊆ Y and
f ′ : S′ −→ T ′ is another faithful order isomorphism, then f ′ extends f if
and only if Ff ′ extends Ff .

Proof. — On the level of closed intervals, the map Ff−1 is inverse to Ff ,
since f satisfies condition (a) of the definition of ”faithful”. Using 4.1(ii)
and because f satisfies condition (b) of the definition of “faithful”, Ff maps
a component γ of α ∈ L(X,S) to the component F (γ) of F (α). It is then
clear that Ff−1 is inverse to Ff . Since both maps obviously are monotone,
the first assertion follows.

For the equivalence, only ⇐ needs a proof. However if Ff ′ extends Ff
and s ∈ S then {f(s)} = Ff ({s}) = Ff ′({s}) = {f ′(s)} and so f ′ extends
f . �

Recall that a back-and-forth system of first order structures M and
N (in an arbitrary first order language) is a non-empty family (fi : Mi −→
Ni | i ∈ I) of isomorphisms fi between substructures Mi of M and Ni of
N , respectively, satisfying the following conditions:

Forth: For all i ∈ I and a ∈ M there is j ∈ I with a ∈ Mj such that fj
extends fi; hence also Mi ⊆Mj , Ni ⊆ Nj .

Back: For all i ∈ I and b ∈ N there is j ∈ I with b ∈ Nj such that fj
extends fi.

If there is a back and forth system between M and N , then M and N
are called back and forth equivalent.

If λ is a cardinal, then a back and forth system (fi : Mi −→ Ni | i ∈ I)
is said to have the λ-extension property if for all J ⊆ I of cardinality
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< λ such that the family (fj : Mj −→ Nj | j ∈ J) is totally ordered by
extension, there is some i ∈ I such that fi extends fj for all j ∈ J . So
trivially, every back and forth system satisfies the ℵ0-extension property.

If there is a back and forth system of M and N that has the λ-extension
property, then M and N are called strongly λ-back and forth equiva-
lent.

Let X and Y again be totally ordered sets and let (fi : Si −→ Ti | i ∈ I)
be a back and forth system of X and Y .

Let Fi := Ffi in the notation introduced before 4.3. Since (fi : Si −→
Ti | i ∈ I) is a back and forth system of X and Y , it is clear that every fi
is faithful. By 4.3,

Fi : L(X,Si) −→ L(Y, Ti)

is a lattice isomorphism and we claim that (Fi : L(X,Si) −→ L(Y, Ti) | i ∈
I) is a back and forth system of L(X) and L(Y ).

By 4.2 we already know that L(X,Si) and L(Y, Ti) are sublattices of
L(X), L(Y ) respectively. By symmetry we then only need to check the
“Forth” condition. Let i ∈ I and α ∈ L(X). Then bd(α) is finite and
by applying the “Forth” condition of the system (fi : Si −→ Ti | i ∈ I)
finitely many times, there is some j ∈ I such that bd(α) ⊆ Sj . By 4.1(ii),
α ∈ L(X,Sj) and as fj extends fi, also Fj extends Fi.

Thus we know that (Fi : L(X,Si) −→ L(Y, Ti) | i ∈ I) is a back and
forth system of L(X) and L(Y ).

Now suppose (fi : Si −→ Ti | i ∈ I) is a back and forth system of X
and Y that has the λ-extension property for some cardinal λ.

Then also (Fi : L(X,Si) −→ L(Y, Ti) | i ∈ I) has the λ-extension prop-
erty. To see this, it is enough to recall that Fi extends Fj if and only if fi
extends fj (cf. 4.3).

Theorem 4.4 [4, Thm 5.3.7, p. 316 and the notation before Thm.
5.3.2]. — If M,N are elementary equivalent, λ-saturated, first order struc-
tures, then they are strongly λ-back and forth equivalent.

Moreover, strongly λ-back and forth equivalent structures are elementary
equivalent in the infinitary language L∞λ.

Scholium 4.5. — Let λ be a cardinal and let X,Y be λ-saturated totally
ordered sets. Suppose X and Y are elementary equivalent (for example if
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X and Y are dense and totally ordered with endpoints). Then the lattices
L(X) and L(Y ) are strongly λ - back and forth equivalent.

Moreover L(X) and L(Y ) are elementary equivalent in the infinitary
language L∞λ.

Proof. — By 4.4, X and Y are strongly λ - back and forth equivalent.
We have shown in this section that in this case, also the lattices L(X) and
L(Y ) are strongly λ - back and forth equivalent. By 4.4 again, L(X) and
L(Y ) are elementary equivalent in the infinitary language L∞λ. �

5. Main Theorem

Theorem 5.1. — For every cardinal λ, there are bounded distributive
lattices L and L′, such that

(i) The lattices L and L′ are strongly λ-back and forth equivalent; in
particular, they are elementary equivalent in the infinitary language
L∞λ.

(ii) L = K(C) for some spectral space C that is not homeomorphic to any
proconstructible subset of any real spectrum of a ring.

(iii) L′ = K(SperA) for some ring A.

Proof. — Definition of L′ and A:

We choose a λ-saturated real closed field R. Let A be the ring of contin-
uous semi-algebraic functions [0, 1] −→ R, where [0, 1] is the unit interval
in R and define L′ = K(SperA).

Definition of L and C:

Let I be a densely totally ordered, λ-saturated set. Let κ � λ be such
that there is no collection of nonempty, open and disjoint subsets of I of
size κ. Let Y be a κ+-saturated total order. Now define L = K((Y × I)#)
(recall that Y , I denote the Dedekind completions of Y , I respectively).

(i) We show that L ∼= L(Y ×I), L′ ∼= L([0, 1]) and verify the assumptions
of 4.5 for Y × I and [0, 1]:

• Since I and Y are λ-saturated, also the Dedekind completions Y and
I are λ-saturated. Thus, Y × I is λ-saturated, too.

• By 2.11 we have L ∼= L(Y × I).
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• Since R is λ-saturated, the totally ordered set [0, 1] is λ-saturated,
too.

• It is well known that L′ is naturally homeomorphic to the lattice
L([0, 1]) of finite unions of closed intervals from [0, 1], thus L′ ∼=
L([0, 1]).

• Both [0, 1] and Y×I are dense and totally ordered sets with endpoints,
so they are elementary equivalent.

Hence all assumptions of 4.5 are satisfied and we obtain (i) from 4.5.

(ii) holds by 3.4 applied to Y , I and the choice of C.

(iii) holds by definition of L′. �

A possible answer to the question on the determination of the topological
type of real spectra can thus not be formulated in terms of infinitary first
order languages; at least not in an obvious way.

An interesting alteration of the question is the following: Is every spectral
subspace of the real spectrum of a ring A itself the real spectrum of a ring
B? More importantly, can we even construct B in a natural way out of A
and the given set?
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