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Spectral approach for kernel-based interpolation

BERTRAND GAUTHIER(Y), XAVIER Bay(®

ABSTRACT. — We describe how the resolution of a kernel-based inter-
polation problem can be associated with a spectral problem. An integral
operator is defined from the embedding of the considered Hilbert subspace
into an auxiliary Hilbert space of square-integrable functions. We finally
obtain a spectral representation of the interpolating elements which allows
their approximation by spectral truncation. As an illustration, we show
how this approach can be used to enforce boundary conditions in kernel-
based interpolation models and in what it offers an interesting alternative
for dimension reduction.

RESUME. — Nous décrivons comment la résolution d’un probléme d’inter-
polation & noyaux peut étre associée a un probléme spectral. Un opérateur
intégral est défini & partir d’un plongement du sous-espace hilbertien con-
sidéré dans un espace de Hilbert auxiliaire composé de fonctions de carré
intégrable. On obtient une représentation spectrale des éléments inter-
polants permettant leur approximation par troncature du spectre. A titre
d’exemple, nous montrons comment cette approche peut étre utilisée afin
d’intégrer des informations de type conditions aux limites dans un modeéle
d’interpolation et en quoi elle offre une alternative intéressante pour la
réduction de dimension.
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1. Introduction

This work is devoted to the study of kernel-based interpolation meth-
ods (see for instance and among others [26, 23, 5, 20]). In order to cover
a relatively wide class of problems, we consider the general framework of
interpolation in a separated topological real vector space E. We denote by E’
the topological dual of £ and by (-, ) i » the associated duality bracket. For
a linear subspace M of E’ and e € E, we say that f € E is an interpolator
of e for M (or on M) if

ve' € M (f.€')pp = (e.€)p -

In this context, we focus on the two linked kernel-based methods that
are optimal interpolation in Hilbert subspaces of E and Gaussian process
models based on the conditioning of zero-mean Gaussian processes with
sample paths in E.

We consider interpolation problems associated with general sets M, in-
cluding more particularly the case where M is infinite dimensional (infinite
data set). Such a situation for instance occurs when one aims at enforc-
ing boundary values conditions in a given interpolation problem. As this
overall framework is, in our knowledge, not of the most widespread in the
interpolation literature, a significant part of this article is devoted to some
recalls.

We propose and analyze an overall process which associates the reso-
lution of kernel-based interpolation problems with the spectral decomposi-
tion of particular integral operators. This finally leads to an original spec-
tral representation of the solutions of the considered interpolation problem
(Theorem 4.1). By spectral truncations, one then naturally obtains approx-
imations of the interpolating elements which can be proved to be optimal
in a given sense (Proposition 6.4).

From a theoretical point of view, we want to point out that the spectral
properties presented and used in this article are well-known and related to
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extensions of the Mercer’s Theorem. On the applied point of view, the use
of spectral methods in approximation and learning problems is not new ei-
ther. Let us for instance quote the article of F. Cucker and S. Smale [6],
where recalls and discussions concerning Mercer kernels and their applica-
tions in learning theory can be found. One can also refer to the works of E.
Parzen [16] (also mentioned in [5, Section 2.4]), or among others, the articles
[27, 14, 18]. The main objective of the present article is to give a theoretical
description, in the general context of topological vector spaces, of the pro-
cesses involved in the association of a kernel-based interpolation problem
with a spectral problem. We also aim at showing the potential interests of
such an approach.

Let us remark that the construction of the involved integral operator is
based on the embedding of the considered Hilbert subspace into an auzil-
iary Hilbert space of squared integrable real-valued functions. The various
applications and structures we consider can in this sense be compared with
the ones appearing in the work of M. Nashed and G. Wahba [15].

The first part of this article (Section 2) is devoted to the description
of optimal interpolation in Hilbert subspaces. In Section 3, we define the
notion of regular embedding adapted to an interpolation problem. We also
show how this embedding defines an integral operator, which is referred to
as problem-adapted. In Section 4, we use the spectral decomposition of the
considered operator in order to study the initial interpolation problem and
its approximation by spectral truncation.

In Section 5, we consider the case where the number of data is finite
and explicit calculations are carried out to illustrate the use of spectral con-
siderations for the construction of interpolating elements. Section 6 is next
devoted to Gaussian process models. The spectral representations consid-
ered in the previous sections are extended to the conditioning problem. In
particular, we show the IMSE-optimal character of the approximation by
truncation in this context.

We finally develop (Section 7) a theoretical example of application in
which we consider a Hilbert subspace composed of continuously differen-
tiable real-valued functions on R?. We consider a particular class of kernels
and show how to enforce Robin-type constraints on a circle (values and
derivatives) in the associated interpolation models. The difference between
approximation by truncation and discretization is illustrated.
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2. Optimal interpolation in Hilbert subspaces

2.1. Hilbert subspace and RKHS

The L. Schwartz theory of Hilbert subspaces [21] is an equivalent for-
malism for the more widespread theory of reproducing kernel Hilbert spaces
(RKHS), introduced by N. Aronszajn in [1], this equivalence is for instance
discussed in Remark 2.1. The abstract formalism of L. Schwartz is adapted
to the framework of topological vector spaces. It also allows to draw inter-
esting parallels with operator theory (see for instance Proposition 3.7).

2.1.1. Hilbert subspace

The general framework of the Hilbert subspaces of E requires the (real)
topological vector space E to be also locally convex and quasi-complete
(see for instance [19, 21]), what we assume thereafter. Remark that these
properties are verified by most of the classical functions spaces, or by Fréchet
and Banach spaces. We denote by E’ the topological dual space of E.

A Hilbert subspace H of E is a linear subspace of F endowed with a
Hilbert structure such that the inclusion of the Hilbert space H into E
is continuous. We use the notation H € Hilb(E). We then denote by Ty
the Hilbert kernel naturally associated with H € Hilb(E). We remind that
Ty : B — H C F is a linear, symmetric and positive application,

i.e. Vel and f' € B (Tye', f') p gy = (Tuf',€) p g and (Tye' ') g p > 0.
The kernel T% is in particular characterized by the representation property,
Vh e H,Ve € B (h,e)p g = (h|Txe')y, (2.1)

where (-|-),, is the inner product of H. If {h;, j € J} is an orthonormal basis
of H € Hilb(E), its associated Hilbert kernel T3 can be written under the
form

TH = Zh] ® hj, i.e. Ve' S E/,Tq.[e/ = Z <hj, e/>E,E/ hj. (2.2)
jel jed

2.1.2. Reproducing kernel Hilbert space

A RKHS H of real-valued functions on a set X is a Hilbert subspace of
RY (space of real-valued functions on X') endowed with the topology of the
pointwise convergence (see [1, 21, 5]).
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The reproducing kernel K(-,-) of H is hence linked with the Hilbert
kernel T3 by the relation, for all x and y € X,

K(I,y) = <TH52?552J>E7E/ ’ (23)

where 4, is the Dirac measure centered on € X (i.e. (f,0z) g g = f(x) for
all f € E =RY). This definition is therefore exactly equivalent to the more
common definition of a RKHS ; namely that H is a Hilbert space of real-
valued functions on X such that, for all x € X, the linear map L, : H — R,
h +— h(z), is continuous.

Remark 2.1. — The RKHS theory can first appear to be a particular case
of the Hilbert subspaces one. In reality, this two theory are equivalent and
only differs by their formalism (see [21, 10]). Indeed, one can for instance
consider E as a linear subspace of R” " and then assimilate a Hilbert subspace
of F with a RKHS of real-valued functions on E’.

2.2. Optimal interpolation

Let H € Hilb(E) and M be a linear subspace of E’. For a given ¢ € H,
the set of all elements in ‘H which interpolate ¢ on M can be easily described
thanks to the Hilbert subspace structure of 4. In what follows, we resume
some of the main results concerning the study of such problems. Through-
out this article, we will frequently speak about the interpolation problem
associated with H € Hilb(E) and M, without necessarily mentioning the
element of H which has to be interpolated.

Let us introduce the set

MO = {e €E:Ve €M, {e,e) = 0}.

We define Hg = MONH = Ty (M)L7 where Ty (M)l denotes the orthogo-
nal, in H, of Ty (M) (and T3 (M) is the set of all Tye’ with ¢/ € M). Then,
for a fixed ¢ € H,

e+ (M°NH)

is the set of all interpolators, in H, of ¢ for M.

o+ (M N 7—[) is a non-empty closed affine subspace of H and is therefore
also convex. Thus ¢+ (M N H) admits a minimal norm element, which we
denote hy s and call minimal norm interpolator, or optimal interpolator.
he,ar is then the orthogonal projection of 0 onto ¢ + (MO ﬂ’H). Let us
remark that this first characterization of the optimal interpolator is essen-
tially non-constructive, in the sense that it does not allow the construction
of hy v from the only knowledge of the values of ¢ on M.
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By definition of the orthogonal projection, h,, a7 — 0 is orthogonal to Ho,
i.e.

L
hoat € Mg = (T (M)") " =T (M) = Mo,
with Hps the closure, in H, of the linear space spanned by Tye’, ¢/ € M.

This introduces the orthogonal decomposition H = Hg + Has and implies
in particular that h, s is the only interpolator, in Has, of ¢ for M.

Finally, let Py,, be the orthogonal projection of H onto Hys. We know
that ¢ — Py,, [¢] is orthogonal to H s, thus ¢ — Py, [¢] € Ho, i.e. Py, [¢]
interpolates ¢ for M. We finally obtain that

h%M = PHM [90]

and this second characterization is suitable for the construction of hy ars
from the only knowledge of (p,€’) ., for ¢’ € M.

h;,A\I

Figure 1. — Schematic representation of optimal interpolation in a Hilbert subspace.

The Hilbert kernel T%,, of the Hilbert subspace Has, (-|-)4, is linked
with T by the relation
Ty = PHMTH~

Hence, the knowledge of T,, defines the orthogonal projection Py,, and
reciprocally, this result staying true for any closed linear subspace of H.
This implies in particular that the Hilbert kernel T3, of Ho, (+|-)4, is given
by Tyy =T — Ty, -
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3. Problem adapted integral operators

Let H € Hilb(E) and let M be a linear subspace of E’. In all this Section
3, we consider the interpolation problem associated with H and M. We use
the same notations and definitions as in Section 2. Let us in particular
remind the linked orthogonal decomposition H = Hy + Has-

We introduce the notion of regular embeddings associated with an in-
terpolation problem and study the integral operators naturally defined by
them. This leads to the construction of specific orthonormal bases of H s
which are suitable (in the sense of equation (3.14)) for the resolution of the
considered interpolation problem.

The results of Sections 3 and 4 hold for any Hilbert subspace H of FE,
separable or non-separable. However, if H is non-separable, the existence
of a regular embedding requires H s to be separable (see Remark 3.4). Let
us mention that complementary considerations concerning Section 3 can be
found in [10].

3.1. Regular embedding and parameterization

Let (S,A,v) be a general measured set with v a o-finite measure. We
denote by L?(S,v) the Hilbert space of square-integrable real-valued func-
tions on S with respect to v. Let us remind that L?(S,v) is in fact a quo-
tient space; nevertheless, we make the widespread abuse of notation which
consists in assimilating elements of L?(S,v) with functions on S (instead
of considering equivalence classes of v-almost everywhere equal functions).
We will call L?(S,v) the auxiliary Hilbert space.

Let (-|-);2 and ||-|| ;= be respectively the inner product and the norm of
L?(S,v). We recall that

Vi and g € L3(S,v). (flg) 2 = /S £(5)g(s)du(s).

Let us consider an application v : S — E’. For all h € H, v allows us to
define the function

Sh: S — R with §h(s) = (h,V8) g forall s €S. (3.1)
We now introduce conditions concerning L?(S,v), v and H, namely:
C-i. for all h € H, the function Fh : S — R is measurable,
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C-ii. the function (s,t) € S xS = (Tyvs,7t) g = (Tuys|Tut)y is
measurable,

CHill, N = / | Tovs|, du(s) < +oc.
S

ProroSITION 3.1. — Under Conditions C-i, C-ii and C-iii, we have
Sh € L*(S,v) for all h € H and

2 2
IRl < N [R5, - (3.2)
Hence, the linear application § : H — L?(S,v), h — Fh is continuous.

Proof. — Representation property (2.1), Cauchy-Schwarz inequality ap-
plied to (:|-),, and finally Condition C-iii give

/ (o 5% o di(5) = / (W Twys)2, dv(s) < N [BIE,  (3.3)
S S

each integral being well-defined thanks to Conditions C-i and C-ii. O

We now consider the orthogonal decomposition H = Hg + Has and add
the following condition on the application § : H — L%(S,v),

C-iv. for all h € H, ||Fh| - = 0 if and only if h € H,.

DEFINITION 3.2. — We call regular embedding of H,s into L?(S,v)
adapted to the interpolation problem associated with H and M an ap-
plication § : H — L*(S,v) defined from a parameterization v: S — E’ via
equation (3.1) and which verifies Conditions C-i, C-ii, C-iii and C-iv.

Let §: H — L?(S,v) be a regular embedding of H,; into L?(S,v). We
consider the linear subspace §(H) of L?(S,v) given by §(H) = {Fh,h € H}
(the image of H through §). From C-iv, F(Ho) = 0, hence F(H) = F(Hu)-
We endow this space of the following inner-product:

Vh and g € Har, (3h|39)g(7-[) = (hlg), - (3.4)

PROPOSITION 3.3. — Let § : H — L%(S,v) be a regular embedding of
Har into L2(S,v), then §(Har), ([)z(30) is a Hilbert space. It is isomet-
ric to Har, (+]-)y, the isometry being the restriction to Has of the regular
embedding §.

In addition, the inclusion of the Hilbert space F(Har), (|)z(3 into
L2(8,v) is continuous. In other words, § (Hr) € Hilb (L*(S,v)).
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Proof. — The fact that F(Has) is a Hilbert space isometric to Hpy
directly follows from its construction. Further, from Proposition 3.1, we
have for all h € Hyy,

IBhII72 < N 1Bl5, = N IFhl500)
thus § (H]V[) € Hilb (LZ(S, V)) O

Remark 3.4. — One can for instance consult [9] for a discussion on the
conditions appearing in Definition 3.2. The ones we use here are of similar
type but specially adapted to the study of the interpolation problem asso-
ciated with H and M. Indeed, let § be a regular embedding of Hj; into
L?(S,v) and consider

/S £(5) (B v8) e () = (fI3) 2 (3.5)

where f is a fixed element of L?(S,v) and h € H. From Condition C-iv,
the value of expression (3.5) does not vary if one replaces h by h + hg, with
ho € Ho. Hence, it only depends of the values of h on M (i.e. of (h,e’)p g
for ¢’ € M), which are the only available informations when considering an
interpolation problem associated with M and an element h of H.

When S is a topological space (endowed with its Borel o-algebra) and
Conditions C-i, C-ii and C-iii are already verified, C-iv will for instance
be realized if for all h € H, the functions §h are continuous and if M =
span {y(supp(v))} (i.e. M is the linear subspace of E’ spanned by ~(supp(v))
with supp(v) the support of v).

Finally, note that the existence of a regular embedding § associated with
the interpolation problem defined by H and M implies in particular that
H o is separable ; see for instance Proposition 3.8.

Example 3.5. — Let us consider a RKHS #H of continuous real-valued
functions on a topological space X and the problem consisting in the in-
terpolation of an element ¢ of H at given points x1,---,z, of X (i.e.
M =span{d,,, " *,0z,})-

One can for instance define a regular embedding for this problem by
introducing the measure v = Y"1 | w;d,, (with w; > 0) on & = X (endowed
with its Borel o-algebra) and the parameterization v : x — J, (a different
possible parameterization for this problem is given in Section 5).

More generally, if we suppose that the values of ¢ are known on a closed
subset D of X (i.e. M = span {d,,x € D}) while keeping the same param-
eterization 7, one just has to consider a measure v on & whose support is
D and such that Conditions C-iii is also verified.
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Note that in this particular example, if one identifies elements of L?(S, )
with functions on & = X, then the application § is in fact the identity
operator on ‘H, with Fh(x) = h(z), for all h € H and © € X.

PROPOSITION 3.6. — Let § : H — L%(S,v) be a regular embedding of
Har into L2(S,v) and consider its adjoint operator '§ : L*(S,v) — H

defined by equation (3.7) hereafter. Then for all f € L?(S,v), 'Ff € Hu
and we have the following integral representation,

Ve LA(S,v),'5f = / f(8)Tyysdv(s), (3.6)
s
this expression having to be understood in the sense of equation (3.8).
Proof. — We remind that 'F : L2(S,v) — H is defined by

Vhe HYF € 12(S,0), (W35 5, = (BhIS) e (37)
From C-iv, we directly deduce that 'Ff € Hps for all f € L?(S,v). Next,
by applying the preceding equation to h = Tye’ with ¢’ € E’, we obtain
(51 g = [ 16) (T’ 38 (o)
= /Sf(s) (Turys, ) g g dv(s), (3.8)

which corresponds to equation (3.6) (one can refer to [4] for details about
the notion of vectorial integral). (]

3.2. Integral operator defined by a regular embedding

We still consider the same interpolation problem associated with H and
M. Thanks to Proposition 3.3, we know that a regular embedding § of Hs
into L2(S,v) defines a Hilbert subspace §(Hus), 1)z of L?(S,v). Hence,
from the Hilbert subspaces theory, it admits a unique associated Hilbert
kernel. If one identifies the continuous dual of L?(S,v) with itself (Riesz-
Fréchet representation Theorem), the Hilbert kernel of F(H ) relatively to
L?(8,v) is the unique linear application

Loy (L3(S,v)) = L3(S,v) = § (M) C L*(S,v)
which verifies the representation property, for all h € H and f € L*(S,v),

(§h1f) g2 = GPILy o[ D0 - (3.9)
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PROPOSITION 3.7. — Let § : H — L?(S,v) be a reqular embedding of
Hr into L?(S,v) and let L., ,, be the Hilbert kernel of § (Har) € Hilb (L?(S,v)),
then L., = F'F, i.e. forallt €S and f € L*(S,v),

Lo lf(0) = /S (o8| Tty £(s)di(s). (3.10)

Proof. — By combining equations (3.9), (3.7) and (3.4), we obtain that
for h € H and f € L*(S,v), Fhlf)p: = (h'Ff)y = GRF T )50 =
(Sh|£%,,[f])s(m. We finally deduce equation (3.10) from the integral ex-
pression of 'F given in Proposition 3.6 (equation (3.6)) by applying the
preceding relation to h = Ty~yt € H, with t € S. O

Let us remark that the Hilbert subspace §(Has) of L?(S,v) can be
assimilated to the RKHS of real-valued functions on S associated with the
reproducing kernel

V(s,t) € S x 8§, K (s,t) = (Tyyt|Trys)y - (3.11)

Hence, L, can be seen as a classic integral operator on L?(S,v) defined
by the symmetric and positive kernel K(-,-) on & x S (see for instance [22,
§10] and [9])

We deduce from the theory of integral operators that £, , is a Hilbert-
Schmidt operator and therefore a compact operator. So L., : L*(S,v) —
L?(S,v) is diagonalizable and its eigenvalues are positive. We denote by \;
those eigenvalues (repeated according to their algebraic multiplicity) and

by ¢; € L2(S,v) the associated eigenfunctions, with i € I (and where I is
a general index set). We remind that {&,z’ € ]I} forms a orthonormal basis

of L?(S,v) and that the set of all strictly positive eigenvalues is at most
countable.

PROPOSITION 3.8. — Let § : H — L%(S,v) be a regular embedding of
Har into L?(S,v) and consider its associated integral operator

Ly, =F'F: L*(S,v) = §F(Hu) C L2(S,v).

Denote by {An,n € 1} the at most countable set (i.e. 1. C N) of its strictly
positive eigenvalues (repeated according to their multiplicity) and let ¢, €
L3(8,v) be their associated eigenfunctions. For all n € 1, we define

Pn = A_lnt%n = Ai /S Gn(s)Trys dv(s) € Har. (3.12)

Then {\//\ngén,n € ]I+} is an orthonormal basis of the Hilbert space Hpy
endowed with the inner product (-|-),,.
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Proof. — First remark that from Proposition 3.6, the elements ¢,, of
Has are well-defined. By definition, we have that, for all n € I} and for all
heH,

1 ~ 1 /~
n :7(1‘/ nh) :7(71/1) . 3.13
(@nlh)yy = 5 (86al2),, = 3 (6n[30) (3.13)

As for all m € Iy, Fom = <;~Sm, the preceding equation (3.13) applied to
h = ¢, gives that {\/)\nqﬁnn € ]I+} is an orthonormal system of H ;.

From Proposition 3.7 and the properties of Hilbert kernels, we know
that the linear subspace spanned by the L. ,[f], f € L?(S,v), is dense
in §(Har), ([)z3 (and in particular {\/)\nggmn € ]I+} is one of its or-
thonormal bases). Hence, by the isometry between § (Har), (+[-)z(5) and

Har, (+]-)4, the linear space span {v/A,¢,,n € I, } is dense in F(H), which
concludes the proof. O

In our context of interpolation, the main interest of the elements ¢, of
H, n € I, appearing in Proposition 3.8 is that (see equation (3.13))

Vh e H, (¢nlh)y = % /S Gn(5) (h,v8) . v dv(s). (3.14)

Hence, as for equation (3.5) of Remark 3.4, the evaluation of the inner
product (¢,|h),, can be directly obtained from the only knowledge of the
values of h on M.

We are now able to formulate our representation Theorem 4.1, which
simply consists in the use of this particular orthonormal basis and of equa-
tion (3.14) in order to describe the orthogonal projection of H onto Hyy.

Before this, we conclude this section by some additional remarks on the
structures and applications we have introduced. This will be useful for the
rest of our study.

3.3. Some important remarks

The definition of a regular embedding § of H s into L?(S,v) allows the
construction of many applications and structures in addition to the ones
studied until now. This section aims at introducing a few of them. Let us
mention the article [15], where a similar situation is studied.

3.3.1. Operator on H defined by a regular embedding

In the same way as an embedding § : H — L?(S,v) defines an integral
operator £, = §'F on L*(S,v) (see Proposition 3.7), it also defines an
operator on H.
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PROPOSITION 3.9. — Let § : H — L?(S,v) be a reqular embedding of
Ha into L?(S,v) and consider the framework of Proposition 3.8. We define
the following linear operator on H :

Vh € H, L, ,[h] ='FTh = / (h.v8) g Trys dv(s). (3.15)
S

L., is a continuous symmetric and positive Hilbert-Schmidt operator on the
Hilbert space H, (-|-)y,. It is diagonalizable, the eigenspace associated with
the null eigenvalues is Ho and \/An¢n, n € 1y are the eigenvectors (with
H\/E‘ﬁ"HH = 1) associated with the eigenvalues A, n € 1.

Proof. — The properties of symmetry and positivity of L, , are obvious.
Let us give a direct proof of the fact that it is a Hilbert-Schmidt operator.
Let {hj,j € J} be an orthonormal basis of H. Using equation (2.2) and
Fubini’s Theorem, we obtain:

S|y 5|5, :/S/S(TH'YS|TH’W)§-L dv(s)dv(t) < N?, (3.16)
jel

the last inequality being a consequence of the Cauchy-Schwarz inequality
applied to the inner product of H and of Condition C-iii.

For all hg € Hy, we obviously have ‘FFho = 0 ; in addition, for h € H
and n € I,

1. ~

B) = Cubnly. @)
H

This equation combined with Proposition 3.8 completes the spectral decom-
position of L., and also proves its continuity. 0

3.3.2. Two additional Hilbert structures

2

We introduce two Hilbert spaces WL and Hy; " which naturally
appear when considering a regular embedding § of Hj;. Note that these
two structures will be useful to us for the application of our approach to
Gaussian processes conditioning in Section 6.2.

2

— I
S(H) s the closure in L?(S,v) of the linear subspace F(H). Let us
notice that {%n,n € ]I+} is obviously one of its orthogonal bases for the

inner product (-|-);2.
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Let us now define Hy; ", We start by introducing the following sym-
metric and positive bilinear form on H, for all A and g € H,

(Hla),, = GH30) 2 = [ (9 (0790 p ). (18)

We also set Hh||f“, = (h[h), . Condition C-iv implies that the null space
of (:|),, is Ho (i.e. for h € H, ||h[|,, = 0 if and only if h € Ho) and
Har endowed with (-[-), , is hence a pre-Hilbert space. We then denote by

Har " the completed of Hyy for [

Remark that the operator L., ,, (considered as an operator on Hys) can be
naturally extended to H ) by continuity. L., is then a Hilbert-Schmidt
operator on ’HM’Y"D, (|)'y .- It is symmetric and positive definite, its eigen-

values are A, n € I and each one is associated with the eigenvector ¢,
(and [|gn],, = 1).

3.3.3. Isometries

We are finally in presence of four isometric Hilbert spaces,
2

Hor, §(H), OH) and Har ™.

As we have seen in Proposition 3.3, the isometry between Has, (+|-),, and

S(H), ([)z(3) is the restriction of § to Has. The continuous extension of
. 12

this first isometry defines the isometry between Hyy ', (1), and F(H)

(1) e

72

The isometry between F(H) , (-|-) .. and F(H), (-[-)z is given by

vn €Ly, én <V Andn.

72

It is in fact the restriction of the square-root of £, to F(H) , with
1 ~ -
L3 Z Q;¢i| = Z @iV Aigi,
i€l i€l

where } 7, ¢ a;d; € L2(S,v). We obviously have Ly, = E%W o E%,y.
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3.3.4. Pseudoinverse of a regular embedding

Let us consider the framework of Proposition 3.8. One can define the
pseudoinverse (or generalized inverse) §' of § by

vn el 3 on = ¢ = Aitgan (3.19)

and for ¢ € ]I\]I_+(i.e. Ai = 0), ST@ = 0. Then, § is well-defined from
L2(S,v) onto Hyy " and

VfeLX(S,v), 3 f=> (f!?ﬁn)w ¢n € Har . (3.20)

n€H+

— 12
The restriction of §' to F(H)  defines the inverse of the isometry between
— I
Hy " and F(H) . In the same way, its restriction to H,; gives the inverse

of the isometry between H s and §F(H). We have in particular
Py, =33, (3.21)

which is in fact an equivalent formulation of Theorem 4.1.

4. Representation and approximation
of the optimal interpolator

For H € Hilb(FE), we consider the optimal interpolation problem in H
defined by ¢ € H and a linear subspace M of E’. In order to apply Section
3 results, we suppose M such that Hjs is separable (thus, M can be an
arbitrary linear subspace of E’ if H is itself separable).

4.1. Spectral representation for optimal interpolation

Once an orthonormal basis of Hj; known, one can easily express the
orthogonal projection of H onto H ;. Then, in order to compute the optimal
interpolator of ¢ € H for M (see Section 2), we need to be able to evaluate
the inner-product in H between ¢ and each elements of the considered basis
of Hyy ; and this from the only knowledge of the values of ¢ on M (which are
in our context of interpolation the only available informations concerning
). This is precisely the property of the orthonormal basis of H»; associated
with a regular embedding §F, its elements indeed verify equation (3.14).

Remark that in order to be applied to a given interpolation problem
(associated with H and M), our approach requires the preliminary choice
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of a measurable space (S,A,v) and of a parameterization v : S — E’
allowing the definition of a regular embedding § of H,; into the auxiliary
space L%(S,v). Some considerations concerning this choice are discussed in
Section 4.3.

THEOREM 4.1. — Let § be a regular embedding of Hyar into L*(S,v) and
consider the orthonormal basis {\/)\n@ln € ]I+} of Hyr associated with §.
Then, for ¢ € H, we have

P = 3 b [ 01955 (0090 prdv(s). (4)
n€]1+ S
Proof. — Tt is a simple consequence of Proposition 3.8 and equation
(3.13),
Py o] = Z V An®Pn (\/ An®n 90)7_[ = Z An®Pn ((En S(p)S(H)
nely nely
= 2 on(9f3e) .-
nely
See also equation (3.21) for an equivalent formulation of this result. O

Let us remark that the sum appearing in equation (4.1) converges by
construction in H. Since H € Hilb(E), it also converges for the initial topol-
ogy of E and for its weak topology o(E,E’). Then, in particular, for all
e eF,

(P 0] ae/>E,E’ = Z <¢na€/>E,E/ /S <¢m’75>E,E/ <<P7’YS>E,E/ dv(s).

’I’LEH+

Finally, because of the continuous inclusion of Hyy, (+|-),, into HM%V, the

considered sum also converges for |-, .

4.2. Truncated approach and approximation

In practice, even if the spectral decomposition of the operator £, =
% is known, it is not always possible, for instance for numerical reasons,
to consider all the terms appearing in the Mercer decomposition of Ty,,,
i.e.

Ve' € B Ty = D Ao (bnr€) s b

TLGH+
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A classic alternative simply consists in not considering each of the sum
terms, but only a part of them. In this case, one currently speaks about
spectrum truncation and these are usually the largest eigenvalues which are
conserved. The following section aims at giving a first brief study of the
use of this alternative in our context. Let us signalize that considerations
about the optimal character of the approximation by truncation based on
the largest eigenvalues are developed in Section 6.4.

Note that we also have to keep in mind that, in the most part of ap-
plication cases, the true analytical spectral decomposition of £, , would be
unknown. Hence, the study of the behavior of the proposed approach when
dealing with approximated spectrum is of great importance in regards of
applications.

4.2.1. Spectrum truncation

Let us assume that we dispose of an approximated kernel defined from
a subset Iy of I, that is, for all ¢’ € F’,

T'Hf{,ce'z Z An <¢n7e/>E,E’ P

n€lyre

For ¢ € H, we then obtain an approximation of the optimal interpolator
Py, ] that we denote by Pyytre [¢]. We have

' ’ ’ _ e )
Ve' € E', <P’;_L§&c [¢],e >E7E, = ((p‘THM e )H (4.2)
= 3 nhnp [0l (079 ),
nGHtrc s

where HYF is the closure in H of the subspace spanned by the ¢,, for
n e ]It'rc~

THEOREM 4.2. — Let us consider the general framework of Section 4.2.
We also introduce the set I1"¢ =1, \I., then

err

2
2
ve' € B, <]PHM [(,0] - PHMC [90] 7el>E = < ||80||3.L Z An <¢n7e/>E7E/ (4.3)

e
nellys

2
and [[o = Buge 6l < llellz 20 A (4.4)

neltre

err
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Proof. — By definition, we have for all ¢/ € E:

(P bl - Pr ), = (¢ T Mlondomsn) - 49

E.E
neltre H

To obtain expression (4.3), we just have to remark that the Cauchy-Schwarz
inequality applied to equation (4.5) gives
2

2
(Pross 6] = Prge [e] ') <lglia|| 32 An(@n € 6

t
nelire

H

and that from Proposition 3.8,

= > MlbnVpp -

H neltre

S Al g ]|

t
nelrs.

Next, from equation (4.3) and the definition of ||H3 ., (see section 3.3), we
have,

(B el =B el ovs) | avl) < el 2 e [ (0017903 ).

neltre

This inequality gives, combined with the fact that ||gi>n||,2Y , = 1 and C-iii,

[Presli) = g 6] <ol 3 dw

nelirs
To conclude, we remark that by definition of |||, ,
2 2
[Brs ) =B ]| = || —Pragze el (4.6)

O

We call ) pere A the spectral error term. It will be in practice evalu-
ated by considering

S = D = > A

neltre nE]Lr n€lyre

/||TH75||Hd1/ > (4.7)

n€lire

A good indicator (see also Section 6.4) of the overall quality of the obtained
approximation can classically be found in the ratios

Spctehn _ | Soegs

Zn€l[+ An a ZnGL_ An

— 456 —



Spectral approach for kernel-based interpolation
4.3. About the choice of the parameterization

In this section, we mention some general considerations concerning the
choice of the parameterization. By parameterization, we mean here the over-
all process leading to the construction of a regular embedding of Hj; into
an auxiliary Hilbert space.

4.3.1. Computational aspects

In the interpolation context of Theorem 4.1, the parameterization can
just appear as a tool allowing to obtain the representation formula (4.1).
No matter its choice from the moment it allows the definition of a regular
embedding § of H .

Nevertheless, if one envisages the computation of the elements constitut-
ing the orthonormal basis of H s associated with the considered embedding
(Proposition 3.8), this choice takes importance. Indeed, it in part determines
the operator which has to be diagonalized. It then appears reasonable to try
to make a choice that defines a simplest as possible spectral problem. One
will for instance try to be in a position allowing an analytical resolution, or
the use of a particular numerical method.

In such a context, an illustration of what appears to us as relatively
judicious choices of parameterizations can be found in [10, Section 3.3]. In
this particular example, appropriated choices allow to obtain an analytical
expression for many of the involved objects and certain prediction formulas
concerning the two parameters Brownian sheet are hence obtained in an
original way.

4.3.2. The approximation case

In addition of this first consideration, the choice of the parametrization
has a direct influence on the behavior of the optimal interpolator approxi-
mation obtained by spectral truncation in equation (4.3). Indeed, different
choices of parameterization for a same problem lead to different approxima-
tions of the optimal interpolator, and this even if the spectral ratios of the
considered truncations are equal.

The parameterization directly influences the way ]P’HRTIC [¢] approximates
Py, 0] on M. It hence offers a way to modulate the accuracy of the ap-
proximation in function of the elements of M. This characteristic of tunable
precision could offer interesting possibilities in regards of applications.
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5. Finite Case

5.1. Context and notations

We suppose that M is of finite dimension, i.e. M = span{u1,- -+, tn},
with n € N*. Let us define the matrix T € R™"*™ by

for 1 < ’L,j < n,Ti,j = (THMZITHM])H . (51)

For simplicity and without loss of generality, we assume that the p; € E’ are
such that the symmetric and positive matrix T is invertible. For convenience,
we introduce the following matrix type notations

T
H = (,Ltl, T 7Mn) and T = (THIJ’|THHT)'H = <T’Hu” lJ’T> = <IJ'7T'HIJ/T> )
where Ty p = (Typ, -+ - ,THMH)T is a column vector. Hence, for ¢ € H, the
optimal interpolator of ¢ for M can be written under the form

hgo,M = THIJ'TT_l <l"’a <P> ) (52)

T
with (u, @) = <<907“1>E,E’ 3"'7<%Mn>E,E’> . Remark for instance that
with our notations, (p,¢)’ = (p,pu”), and for ¢ € E and ¢ € F/,
(e,€) g g = (e,€') = (€/,e). So, we will write, for &’ € E', (hy u,€)
(¢, Tup™) T~ (1, ).

The aim of this section is to prove, by explicit calculations, that the
expression of the minimal norm interpolator given in equation (5.2) is equal
to the one given in equation (4.1) of Theorem 4.1.

E.E'

5.2. Parameterization

Let us define a trivial parameterization of this problem. Let S = {1,---,n}
and consider the measure v on § which assigns a weight w; > 0 to each
i €S ={1,---,n}. The auxiliary space L*(S,v) can then be identified to
the space R" endowed with the inner-product (x|y)w = x! Wy, where x
and y are two column vectors of R and with W the matrix

W = diag (wy, -+, wy) .

Let us remark that we identify a vector of R™ with the column vector of its
coeflicients in the canonical basis of R™.

We next consider the application v : S — E’, given by vi = u; for all
i € {1,---,n}. The associated application § is trivially a regular embedding
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associated with our problem. It verifies, for all h € H, Fh = (u,h) € R
(and §h(i) = (b, pi) g g for all i € {1,---,n} = S). If we identify L*(S,v)
with R™, then for o € R™
Fa=Tup " Wa € Hyy. (5.3)
We finally obtain that £, = §'F in given by
§'5a = TWa (5.4)

In the same way, we have (see Proposition 3.9)
WheH Ly, h = '3Fh= / (b 8) 5 0 Ty d(s)
Z h ,uz E,E’ TH/M = TH”’ w <Ha h> . (55)

The symmetric and positive bilinear form (-|-), , on H, associated with §

via equation (3.18), is given by, for h and g € H,

(hlg).,. sz (hy i) g 95 i) . = Cho ) W (ke g)

=1

5.3. Spectral decomposition

Let Ay > 0,---, A, > 0 be the eigenvalues of TW and let vy, ---,v,
their associated eigenvectors, i.e. TW = PAP~! with

A :diag(Ala"'vAn) and P = (Vll"'lvn)'
Note that {vy,---,v,} forms an orthonormal basis of R™, (:|-)w, i.e.
PTWP =1d,,,,, where Id, v, is the n x n identity matrix. (5.6)

For k € {1,---,n}, let
1, 1.
S = ~—"8vk = —Tup Wvy € Hys. (5.7)
Ak Ak

PRrROPOSITION 5.1 Under the assumptions of Section 5, we have for all
pcH,

THNTT Z¢k/ ¢ka73 E,E <<P '78>E B dv (S)
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Proof. — We have

Tup T () = Tup" WW T ()
= Typ"WPAT'P™! (u, ).

Let us study the terms appearing in this last expression. First, from equation
(5.7),
Ty WPA™! = (1, 6n) -

Next, using equation (5.6), we find
_ —1
P (o) = (PTWP) PT"W (u,0) =P "W (i, 0) .

To conclude, we remark that, for k € {1,---,n},

/S <¢k7’75>E,E/ <S07’YS>E,E/ dv(s) = sz (e, Mi)E,E/ <¢’kaﬂi>E,E/

i=1

is the k-th component of the vector PTW (1, ¢). O

6. Application to Gaussian process models

Optimal interpolation in Hilbert subspaces and Gaussian process models
are intrinsically linked. In this section, we recall some of the main proper-
ties concerning the conditioning of Gaussian processes in the framework of
topological vector spaces. We also apply the spectral approach developed in
Sections 3 and 4 to the conditioning problem. The IMSE-optimal character
of the approximation by truncation is finally addressed in Section 6.4.

6.1. Notations an recalls

Let H be a separable Hilbert subspace of E. In all Section 6, we assume
that H is the Cameron-Martin space of a centered Gaussian process Y
defined on a probability space (2, F,P). We denote by H the Gaussian
Hilbert space associated with Y (see [13]). We remind that H is a closed
linear subspace of the Hilbert space L2 (Q,F,P) of second order centered
real random variables (r.v.) on (Q, F,P).

For the sake of simplicity, we assume that F is a Banach space (see [7, 24]
for more general frameworks). We also consider that Y takes its values in E

with probability 1 (i.e. the triplet (j,H,gE> is an abstract Wiener space,

where ﬁE is the completed of H in E and j the continuous inclusion of H
into ﬂE7 see [11]).
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We denote by Z : H — H the isometry between H and H, it verifies
E (ZhZg) = (hlg)y ,

where E (ZhZg) represents the inner-product in L? (Q, F,P) between the
two centered random variables Zh and Zg € H. Let us also add, for ¢’ € E’,

tati
Y, s g (notation) Yo = T (Twe).

One can consult, among others, [3, 25, 10] for more details about the pre-
vious notions.

For a linear subspace M of E’, Py,, denotes the orthogonal projection
of H onto Hs. We then introduce the orthogonal projection Pyy,, of H onto
H); = Z (Har). We have the commutative diagram

H — H
| P | P (6.1)
Haur — Hy
Ty, = Py, Ty is the Hilbert kernel of H s, hence, by isometry,

tati
(no azlon) E

ve' e E/,I(THMG/) = Pu,, [Ye/] (Y61|Yf/, f/ S M) . (62)

For all ¢/ € E’| the r.v. Pu,, [Ye] is called the conditional mean of Yo
knowing Yy for f' € M and Ty, is the associated conditional covariance
kernel. The notion of conditional law of the process Y is addressed in Section
6.3.

6.2. Spectral approach for conditioning
We now consider the general framework of Section 3.

PROPOSITION 6.1. — Let us consider the centered Gaussian process (Yys)
Under the assumptions of Theorem 4.1, the sample paths of (Y73)86$ are in
L?(S,v) with probability 1. In addition,

Bl [ 00 )] = au(= M),

nely

Proof. — For s € S, we remind that Y., = Z (T~s). Let {h;,j € J}
be an orthonormal basis of H. As in equation (2.2), (Y4s),.s admits the
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Karhunen-Loeve expansion

Vs € Say’ys = Z<hj”ys>E,E’I(hJ)’ (63)
jel

where the Z (h;) = ¢;, j € J, form by isometry an orthonormal basis of H
(such independent N(0,1) r.v. are sometime called orthogaussian, see [8]).
We then deduce from Condition C-i that the sample paths of (V) s are
measurable (as real-valued functions on §) with probability 1.

One can obviously choose the orthonormal basis {h;,j € J} of H such
that it coincides on Hj; with its orthonormal basis {\/Eqﬁnn € ]I+} asso-
ciated with the considered regular embedding § (Proposition 3.8). Then,
from C-iii and C-iv,

> [ B[ 0)] arts

> I35

Jjel jel
~ 2
- ¥ Hm% = 37 A < 4o
nely nel;

Thus, the sum >,y ||ShjCj||2Lz(l,®P) is convergent, which, form Tonelli’s
Theorem, implies the convergence in L?(v ® P) of

(5,w) > Y §hj(s)¢(w), with s €S and w € Q
jel
and finally completes the proof. O

THEOREM 6.2. — Let Y be a centered Gaussian process with values in
E and covariance kernel Ty. Let M be a linear subspace of E'. Under the
assumptions of Theorem 4.1, we have for all ¢’ € F’,

EValVpn ' e M)= Y (b ¢)pp /8 (8 Vpedi(s).  (6.4)
nely

In addition, the centered Gaussian process with covariance kernel Ty, (that
is the process corresponding to E (Yo |Yy, f' € M), € € E') takes its values
. A7 Y . ..

in Hyr ' with probability 1.

Proof. — We have to verify that the right member of equation (6.4) is
well-defined. From Proposition 3.8, we know that for all ¢’ € E’,

Trp = D A (bn€) s s

n€H+
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this series being convergent in H. Hence,

THM Z An ¢7H E E' I(¢n) : (6'5)

TLG]I+

For n € I, we remind that the ¢,, € s are given by (equation (3.12))

On = )\in/sgn(s)TH'ysdu(s).

Now, Proposition 6.1 assures that the expression

n) = %/‘S&L(s) (Tyys) dv(s /d)n s)Y,.dv(s) (6.6)

keeps sense under our working hypotheses. The last point of Theorem 6.2

is consequence of expansion (6.4), Proposition 6.1 and isometry between
2

FH) adHy". O

6.3. A note on regular conditional probabilities

We now study the conditional laws of the process Y relatively to the
knowledge of the values take by its sample paths on M. Because, in our
study, Hys can be infinite dimensional, the construction of a regular condi-
tional probability requires some precautions. We consider a case where such
a conditional probability exists (see for instance [25], this is for instance
always true if Hyy is finite dimensional). We finally introduce an additional
assumption which assures the existence of a spectral representation for the
mean of the conditional laws and corresponding to a natural extension of
equation (4.1).

Let us consider the following condition
H =Hy oo, (6.7)
which means that 7~ = Ha; + Ho  with Ha NHo = {0}.

Condition (6.7) assures us of the existence of the linear continuous pro-
jection P of H' onto Hpyr ' parallel to Ho (i.e. Pho = 0 for all hy € Hy' ).

We then consider the family of Gaussian measures on gE with mean
P[] € ’HME for U € H' and covariance kernel Ty, From [25, Theorem

3.11], such a family defines a regular conditional probability over ﬁE relative
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to the knowledge of Y on M. In such case, the following notation is often
used
P¥] = E(Ye

Yf’:<\I/,f/>E7E,,f’€M). (6.8)

Note that if we denote by puy the Gaussian measure on H  associated
with Y, the preceding regular conditional probability corresponds to the
disintegration of py relatively to .

Now, let us also suppose that Hjy; can be continuously injected into
as 71‘/ .
Ha W, what we write

oo — Har (6.9)

We next consider the extension § of § to ﬁE defines by S’ho = 0 for all

hg € H_OE and, on mE, by the continuous extension of the restriction of

F to Hps. From Section 3.3 and condition (6.9), § is well-defined from ﬁE
2

L
on §(H)
Then, as for Py,, = %, we have B = §'§. Remark that this last

expression is well-defined in regards of the definition of F' given in Section
3.3. We finally obtain the spectral representation formula

Ve TP = Y (60 /S Gu() (U, 78) s o di(s). (6.10)

nely
Remark 6.3. — We have the well known equality, for o € H and ¢’ € E’,

(Pro [, €) g pr = BE(Yer|Yyr = (0, f)p v, [ € M). (6.11)

6.4. Optimal approximation

The results and considerations of Section 4.2 can also be extended to the
Gaussian processes case. In this section, we discuss of the optimal character
of the approximation by truncation.

Let Y be a centered Gaussian process with values in £ and covariance
T3. Under the assumptions of Theorem 6.2, we consider a subset I;,.. of I+
composed of the largest eigenvalues of L. ,, in the sense that,

if i € 17¢ =T, \I}. and n € Ly, then A; < Ay (6.12)

err

PROPOSITION 6.4. — Let H}7" be any closed linear subspace of Hyr and
denote by Tyare its associated Hilbert kernel. For ¢’ € E', we introduce the

Y=o, f)pp - I €M),
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Zle =1 (Twce') and ZPP =T (Twpe') : (6.13)
If HiE and HYEP have the same finite dimension N € N*, then under equa-

tion (6 12),
E(ly —z"|2,) <E(IY - 2|3 ,). (6.14)

Proof. — From Theorem 4.2 and Proposition 6.1, we have IE(HZ"CHi,V ) =

2
B (f (22)7 () = Js |Trgess| av(s) = Spen, M
rel|? 2 re
and E([[Y - 2[7,) =E(IYI5,,) —E([| 2, )- (6.15)
Let f1,---, fn be an orthonormal basis of H}}” and consider its decom-
position in the orthonormal basis associated Wlth the considered regular
embedding, that is

Vie{l,-- N}, fi=>_ cirv/ Deor, with o € R
k€H+
and where, for i and j € {1,---, N}, 375, airaje = d;; (Kronecker
delta). We hence easily obtain that E(||Z“1’p||,2w) = Zil > kel o7 Ak

Next, using for instance convex combinations arguments, we remark that

N
STz > el (6.16)

nelere i=1 kel
We finally conclude thanks to equation (6.15). O

In the same way as in equation (4.6), let us remark that we have
a 2 a 2
E(|lY -Z W’H%U) =E(|Zz-2 WHW/). (6.17)

Thus, in regards of ||-[|, , (i.e. in the sense of equation (6.14)), for ¢’ €
E’, Z!7¢ is the best approximation of the conditional mean E( o
<<P,f/>E7E/ e M) based on N elements of Hjys. One can hence speak
about a certain IMSE-optimality (Integrated Mean Square Error) of the

approximation by truncation. This point is for instance illustrated in Section
7.5.
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7. Example of application

7.1. The problem

Let X = R? and H be the RKHS of real-valued functions on X (see
Section 2.1) associated with the kernel (squared exponential or Gaussian
kernel, see for instance [20]), for x and y € X,

llz—y?
K(z,y) =¢" %~ with o > 0 and I - || the euclidean norm.

For m € N, let £ C R?* be the subspace of functions of class C™
endowed with the topology of the uniform convergence on the compact
subsets of X for all the derivatives of order < m (of general order if m =
+00). From [21, Proposition 25], for all m € N (and also for m = +00), H is
a Hilbert subspace of £™. In what follows, we will consider H as a Hilbert
subspace of E = £,

Let = (x1,x2) € X, we also use polar coordinates, i.e. x = (7, cos oy,
Ty sinq,) with r, € Ry and «, € [0,27]. For € X, we define §, € E' and
1. € E' by

of

Vf € Ev <f7 5x>E,E’ = f(ﬂf) and <f’ nx>E,E’ = W

(),

0 is the Dirac measure centered on z and 7, corresponds to the evaluation
of the radial derivative at x.

Let C C R? be the circle of center 0 and radius R > 0. We consider the
linear subspaces of E’

Mp =span{d;,t € C} and My = span{m,t € C}

and Mr = Mp + My (D and N stand for Dirichlet and Neumann condi-
tions, R for Robin). The aim of this example is to approximate the kernel
Ko, (-,-) of the subspace H, of functions h € H such that

vt € C, <h75t>E7E/ =0 and <h777t>E,E’ =0.

Nevertheless, let us remark that what follows contains all the necessary
informations to treat the general interpolation problem associated with #,
an element ¢ € H and Mg (see [10]).

We present a two steps methodology. The first step (Section 7.2) consists
in considering independently the interpolation problems in A associated
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with My and Mp. Thanks to the study of a third operator (Section 7.3), we
finally combine our results in Section 7.4 and obtain a model in which both
values and radial derivatives are controlled on the circle (Robin condition).
Numerical computations are finally presented in Section 7.5.

7.2. The two independent problems

Let us introduce the linear subspaces of H naturally associated with Mp
and My:

Hur, = Hy, =span{K(t,-),t € C}rH and
H

0K
Hary =1, =span { G2 1)

We denote by T3, and Ka, (-, -) the Hilbert kernel and the reproduc-
ing kernel of Has, respectively. We use similar notations for the kernels
associated with M.

7.2.1. Parameterization

Let & = [0,27] endowed with its natural Lebesgue measure (up to
the multiplicative constant R) and consider the Hilbert space L?([0,27])
of squared integrable real-valued functions (with respect to the Lebesgue
measure) on [0, 27], endowed with the norm

27
Vf € L*([0,2n]), | fI7= = ; F(0)* Rdo.

L?([0,27]) will play the role of the auxiliary Hilbert space introduced in
Section 3.

We pose spp = (Rcosd, Rsinf) € C and introduce the parameteriza-
tions

vp : 0,27] = Mp,0 — 6 and vy : [0,27] = My, 0 15y ,-

SR,0

One easily verifies that they implicitly define two regular embeddings §p
and §n of respectively Hys, and Hpr, into L2([0,27]) (see also Remark
7.2) which are given by

Fph(0) = (h,vp8)  p and Fnh(8) = (h,w8) . for all h € H and 6 € [0, 27].

The associated integral operators Lp = §p '§p and Ly = Fn ‘Fn are
defined on L%(]0,27]) and

27

ED[f](a) = A K (xR,a73R,0) f(&)RdG, (71)
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2 aQK
Ly[fl(e) = . Or.or, (ZR,a,sR,0) [(0)Rd0, (7.2)
where 7 o = (Rcosa, Rsina) € C, a € [0,27] and f € L? ([0, 27]).
Remark 7.1. — Let x = (ry cos g, rysina,) and y = (1, cos oy, 1y sinay,) €
&,

1
K(z,y) = exp {——2 (7“3, + ri — 211y cos(ay — ay))} ,
o
—(z,y) = f—(rz — 1y cos(ay — ozy))K(x,y) and

= — cos(ay — ay) K (z,y)
o

+% (rm — 71y cos(ag —ay)) (ry — 1y cos(ay —ay))K(x, Y).

7.2.2. Spectral decomposition

Using for instance some arguments of parity, we obtain that the eigen-
values of Lp are, for n > 0:

2T 2
AP = Re~%oF / " 0% cos(nd)do.
0

The ones of Ly are, for n > 0:

n

27 2
AV = / [Acos® + B(1 + cos® 0)] e o7 17500 cos(nf) R,
0

. 2 2
with A = 2 — 88~ and B = 4£°,
o o (e

The two operators Lp and Ly admit the same eigenfunctions. )\{)3 and
A are of multiplicity 1 and associated with

do: [0,21] — 11} (7.3)

« V27R

For n > 1, AD and AY are of multiplicity 2 and associated with, for
a € [0,27],

5‘;(01) 1 cos na and a‘;(a) S sin na. (7.4)

VTR VTR
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2 2

Remark 7.2. — The two spaces 3D(H)L and %N(’H)L are the same

and correspond to the linear subspace of 27-periodic functions of L? (R).

As the set of all eigenfunctions of each operator Lp and Ly coincides with

the classical discrete Fourier basis, Lp and £y do not admit other non-null
eigenvalue.

Concerning the operator L£p, one can for instance consult [12] where
similar spectral problems are studied (see also Remark 7.5).

We are now able to express the orthonormal bases of Hus, and Hary ,
associated with Fp and Fy respectively (see Proposition 3.8). For Fp, we
introduce the elements ¢, 52 and ¢5° € Hyy,,, n > 1, with for instance

I sin(nd)
Vn>1,Vz e X, 3P K(spg,x Rd#. 7.5
¢ ( ) )\D ( R,0 ) \/ﬁ ( )

For §n, we introduce ¢, ¢¢V and ngle € Hury, n = 1, with

1 [ 8K( )cos(ne)
SR,0,T

>\N 0 are V ™R

Examples of numerical computations are presented in Section 7.5. We are

now going to study the behavior on the circle C of this two families of
functions.

Vn > 1,Vr € X, 0N () =

Rd9.  (7.6)

7.3. An interesting operator

For zr o € C, let us consider the values
<¢O Y YIR, a>E E’ <¢)CN 53¢R Q>E E’ a‘nd <¢SN §$R1Q>E7E/ fOI' n 2 17

<¢07”IRQ>EE/7<¢W, ’ana>EE’ and <¢n aana>EE/ fOI"I’L?l.

It appears that those ones are all linked with the integral operator J, given
by:
T OK

Vf e L2([0,27]), J,[f](a) = . or (R,aySR.0) f(O)RAD. (7.7)

Indeed, we have for instance, for n > 1,

1 ™ OK cos(nf
<¢CN 5zR’a>E7E, = )\Tv/o ——(5R,0,TR,a) ( )Rdﬂ,

87"5 V TR
1 [P 0K cos(nf)
cD —
< n 777:ER,Q>E7E/ _E o arw(SR,QaiCR,a) \/ﬁ Rdf
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0K
5 (SR.0:TRa) = BT(SR’G’QCR’O‘)' The operator J, is self-adjoint but

£ x
not positive. For, n > 0, its eigenvalues are

and

™ _9R _282 (1o p)
Pn :/0 > (1 —cosB)e™ == 1759 co5(nf) Rd6.
We remark in particular that py < 0. The eigenvalue pg is of multiplicity
1 and is associated with the same eigenfunction ¢ than AP and \}'. For
n 2= 1, the p, are of multiplicity 2 and are also associated with the same
eigenfunctions ¢¢ and ¢ than A2 and AY. The same argument than the
one used in Remark 7.2 assures that J, does not admit other non-null
eigenvalue.

The spectrum of the operator J,, has a particular behavior since the
number of its negative eigenvalues depends of the ratio between R and o2,
The values of p,, 0 < n < 30, for R = 3 and 02 = 2 are presented in
Figure 2.

Concerning the orthonormal basis of H s, associated with §x, we finally
obtain, for g o = (Rcosa, Rsina) € C,

p ~
<¢6V56IR,O¢>E’E/ = ﬁ%(a) and for all n > 1,

c Pn Te s Pn Ts (78)
<¢nN761R,0>E7E’ - )\7N¢n(a) and <¢nN’5mR,W>E',E’ = )\7N¢n(a)
As for the one of H s, associated with §n, we find
<¢(IJD’T7IR,a>E o= f—%&o(a) and for all n > 1,
’ 0 (7.9)

. Pn Te ; Pn 7
< ’(I’/LD7775UR,C¢>E7E/ = )\_Z)(b%(a) and < ;SzDﬂan?R,a>E7E/ = )\—Zqﬁi(a)
n n

7.4. Double Constraint

We combine the results of the two preceding sections in order to obtain a
model that both takes account of the values of the function and its radial
derivative on C. We present an original way to express the kernel Ko, (-, ")
of the subspace Hy,, of functions A € H such that

Vt S C, <h”r’t>E7E/ = 0 and <h, §t>E,El == O.

We use Section 7.2 in order to describe the kernels Ty, = of Ho, and T3, of
Ho, ). We now consider the interpolation problem associated with Ty, and
Mp (arbitrary choice, we could equivalently consider the problem associated
with T, ~and My, see Remark 7.4).
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Remark 7.3. — This two approaches consist, roughly speaking, in con-
sidering the two decompositions PHoR = Py, Pu,, or PHoR = Py, Puy,
where PHOR» PHoD and P’HoN are the orthogonal projections of 7 onto H,,,
Hop, and Ho, respectively.

So, let us consider the kernel Ky, (-, -) of Ho, , the subspace of functions
h € H such that g—i(t) =0 for all ¢ € C. We recall that

KON (:Evy) = K(:L'vy) - KMN(x?y) with

Ky (2,9) = A 0 ()60 () + > AN [0 (2)8eN () + 65 ()N ()] -

n=1

Thanks to the parameterization yp and the kernel Ky, (+,-), we define a
regular embedding of H s, N Ho, into L2([0,27]). We finally obtain the
integral operator Lg; defined by, for f € L%([0,27]) and « € [0, 27]:
2m
Lri[fl(a) = Koy (TR,a,8R,0) f(0)RdD.
0

From the study of the operator J,, (Section 7.3), we obtain that the eigen-
values A1 n € N, of Lr; are given by

ARL = \D _ Pn (7.10)

The eigenvalue \*! is associated with the eigenfunction (;~50 of equation (7.3),
for n > 1, A1 is of multiplicity 2 and associated with ¢¢ and ¢% (equation

(7.4)).

We finally introduce the elements ¢{t!, ¢¢ft and ¢5# n > 1, which are
associated with £ via Proposition 3.8. Straightforward calculations give

1
&= —= (AP 08 — podd) and for n > 1,

T
C 1 C C S 1 S S
¢nR1 = W ()‘gﬁan - pn¢nN) and ¢an = W ()‘T?gan - p"¢"N) ’
(7.11)
Remark 7.4. — Instead of first considering My and next Mp, one can

operate in an inverse way. This leads to the study of the operator

27 aQKOD
. Or.or (TR,a»5R,0) [(0)RdO,
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which is associated with Ko, (-,+) and My via the parameterization yy.
Using the results of Section 7.3, we find that the eigenvalues \*?, n € N, of
Lo are

R2 N_ Ph
A2 is of multiplicity 1 and is associated with 50. A2 for n > 1 are of
multiplicity 2 and associated with ¢¢ and ¢;. We finally obtain

1
= W (N @) — podd’) and for n > 1,
1 , . s 1
= s (W en —pndfl) and 6772 =
n

¢%R2 - AEQ (AT]Lng’fLN - pn(b:LD) .

(7.13)

Remark 7.5. — If one conserves the same parameterizations yp and vy
and the same auxiliary space L%([0,27]), one can in fact obtain similar
results for any stationary covariance kernel with required regularity (in the
sense that it defines a Hilbert subspace of E = £') and of the type

K(z,y) = /IR e~€le=vlgr(c),

with ||-|| the euclidean norm of R? (and i = 1) and where 7 is a finite sym-
metric positive measure on R (see the Bochner’s Theorem, for instance in
[6]). In particular, from the same arguments of parity than the ones leading
to the spectral decomposition of the operators Lp, Ly and J, of Sections
7.2 and 7.3, we deduce that the eigenfunctions of the integral operators as-
sociated with such a kernel K (-,-) are still the same functions ¢g, ¢ and
%;, for n > 1, of equations (7.3) and (7.4) (discrete Fourier basis) ; only the
eigenvalues change.

7.5. Numerical application
In this last section, we compute some of the involved quantities for R = 3
and o2 = 2. All computations have been performed with the free software R

[17]. In particular, the implied integrals have been evaluated by quadrature
(rectangle method).

7.5.1. Spectral computations

We first compute the eigenvalues A2, A\ and p,, of the operators Lp,
Ly and J, for 0 < n < 30. Using equations (7.10) and (7.12), we then
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directly obtain the values of AZ! and AF2. The results are listed in Figure
2 (we do not represent the eigenvalues \%?).

eigenvalues \2 eigenvalues AL
—e [
° 1 e
o
~ ] ® S e
- e |
[ ]
o
— 7 ° 2 n °
o ° | °
[ ] [ ]
o | L o | %00e,
ST T T T T T T ST T T T T T T
0 5 10 15 20 25 30 0 5 10 15 20 25 30
. 1 . )\Rl
eigenvalues pn eigenvalues A,
o~ -
s .o. o
- ° =
o | e °, S e
o
— [ ]
[a\} (==}
s ° =7 °
— - [ ]
< | e .
=T (==} Og,
T [ ] =
T T T T T 1 S T—T T T T T 1
0 5 10 15 20 25 30 0 5 10 15 20 25 30

Figure 2. — Eigenvalues A2, AY | p,, and AZ1 for 0 < n < 30, R=3 and 02 = 2.

The second step consists in the computation, thanks to expressions (7.5)
and (7.6), of the orthonormal bases of H s, and Hys, associated with Fp
and §n respectively.

From equation (7.11) and (7.13), we then directly obtain the elements
associated with the operators Lr; and Lrs. Examples are given in Figure 3.
As expected, 32 vanishes on the circle C and the radial derivative of ¢St
also vanishes on C.

7.5.2. Approximations by truncation

We now consider approximation by truncation of the different involved
kernels. In each case, we conserve the terms which are associated with the
most important eigenvalues. We use the same notations and numberings
that in Sections 7.2 and 7.4. For [ € N*, we introduce the following truncated
kernels (associated with Mp and My),
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Figure 3. — Graphs of d)(l)j (top-left), ¢ZN (top-right), d)fRQ (bottom-left)
and ¢§ft (bottom-right) on [—5,5]2, R =3 and % = 2.

Kge(z,y) = K(z,y) — K§¢ (2,y) where

l
K3 (2,9) = W08 @)0f )+ 3 A7 [07 @65 () + 67 ()65 ()] and
n=1
K§(z,y) = K(z,y) — K3 (@,y) where

l
K3 () = A0 (2)60 (v) + Y AN [¢N ()6 () + o3 (2)o3N (v)] -

n=1
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Such a kernel K¢ (-, -) is hence the approximation by truncation of Kz (-, -)
based one the Ny.. = 21+ 1 largest eigenvalues of the operator £y. Remark
that for each eigenvalue (of multiplicity 2) AN, 1 < n < [, we have chosen
to consider the both associated eigenvectors ¢V and ¢35V,

We finally define the approximated kernel K§'¢ (-, ) given by,

Vo and y € X, K77 (zy) = Koo(zy) — A g (2)65 ()
l
=Y AT B (@) (y) + o5 ()85 ()]
n=1

We pose | = 15 and compute the kernel K{"¢ (-, -). This approximated kernel
is hence based on the NVy,.. = 31 largest eigenvalues of the operators £y and
Lr1. Figure 4 shows the sample path of a centered Gaussian process with
covariance K§'¢ (-,-) and the graph of the function z — K{’¢ (z, z).

x = Kz, z)

1

5
1.0 "‘ ()
N A
03 \&\\{\N\\\\\\ /I";’"“‘“\“\"'i
N
0y \&\Qg‘\‘ m“ k
N\

Figure 4. — Sample path of a centered Gaussian process with covariance Ké;cl (+y4)
(left) and Graphical representation of x +— Ké;"l (x,z) on [—4,4]? (right),
R =3, 02 =2 and N = 31.

The kernel Ko, (-,-) = Kog, (+, ) vanishes on C (in particular Ko, (t,t) =
0 for all t € C). Concerning its approximation K¢ (-,-), we deduce from
Sections 7.3 and 7.4 that for all ¢ € C, the value of K{¢(t,t) is constant

and

l
rc rc re 1
K(t)Ri (t’t) = SD (tat) = KéN (t’t) - ﬁ <A(})%1 + 22 )\1}.?1>
n=0
1 l
= 1——— AP +2) A\ ).
o (0 +2200)
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For [ = 15, we obtain K{'¢ (t,t) ~ 1.402309e-06 for all ¢ € C. Additional
considerations concerning this approximation are given in Section 7.5).

As for the radial derivative, we also find a constant value, i.e. for all
ted,

aQKtrc 82Ktrc
rg:l(xay) = or 80: (.T,y)
=y r=y=t ¥y r=y=t

l
2 1 N N
:ﬁ_ﬁ*%“2%>
n=1

~ 1.483913e-05.

2 prtre

.0
For | = 15, we obtain W(m Y)

r=y=t
7.5.3. Comparison with discretization

In this last section, we focus on the interpolation problem associated
with 4 and Mp and compare the approximations obtained by truncation
and discretization.

Hence, we consider a set of Ny;s € N* points xg g, = (R cos0y, Rsinfy) €
C for k € {0,---, N — 1} uniformly distributed on C, that is 8, = % We
then introduce the linear subspace of E’

ME* = span {5”7%,/@ € {0, -+, Najs — 1}} .

We approximate the interpolation problem associated with Mp by replac-
ing it by M&* (let us signalize that it is, up to a rotation, the optimal
way to discretize this problem in regards of [|-||, ). This finally leads to
the orthogonal decomposition H = H%’; + 7—[‘“5 and solutions of this new
discretized problem can be computed by the classical approach of Section
5.1. We denote by Kggs( -) the reproducing kernel of the subspace Hd“)

In order to compare the overall quality of the approximations obtained
by truncation and discretization, we consider the terms
27 2m

ErrdDis = Kd“’ (sr,0,5R,0) RdO and Errl)¢ = K”C (sr0,5R,0) RdO.
0 0

(7.14)
We remind that this kind of terms naturally arises when one aims at study-
ing, for instance in the discretization case, quantities of the type (see The-
orem 4.2 and Proposition 6.4)
2
[Press 6] = P ]| with 0 € 3.

el
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Because of the optimality of K{7¢(-,-) in regards of ||-||., , (see Section

6.4), for Ngis = Nire, we always have ErrtDTC < ErrdDiS (note that these two
terms tend to zero as Ng;s and Ny.. approach +o0o, see also Figure 5). For
instance, for R = 3, 02 = 2 and Ng;s = Nype = 31, we obtain

Err$}® ~ 4.438046e-05 and Errf}® ~ 2.64329¢-05.

o discretization points is + .
! 24\ . Err’,]j’”S in function of Ny

~dis (. \ . . .
-—- 0 [\of (Sro> SRY) ‘ —e— ErrgC in function of Ny,
0 — ]('6;‘: (SR,g, 51?,0)

1

5e-06  6e-06 Te-06

2e-06 3e-06 4e-06

I
0.5
1
/
/
7

= / v ) . ey
S |y ‘e ‘- v s | by o
4y S +—o—o
= T T T T T T T T T T T T T T T
0.4 0.5 0.6 0.7 0.8 0.9 1.0 10 12 14 16 18 20 22 24
Nyis = Nipe = 31 Ngis and Ny

Figure 5. — Graphs of 6 — Kégc (SR,Q,SR’Q) and 6 — Kglf_)s (sR,g,sR’g)
(with 6 € [0,27]) for Nire = Ny;5 = 31 (left) and values of the terms Err%*
and Errfl¢ for 10 < Ng;s, Nere < 24 (right) with R = 3 and 02 = 2.

Although the gain in considering truncation instead of discretization
could in this case appear numerically negligible, one has to remark that the
behavior on C of this two kinds of approximation is totally different (see
Figure 5). It can hence be said that truncation leads to a global approxi-
mation on C (with respect to |||, ,) whereas discretization leads to a local
approximation (localized at the discretization points).
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