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Annales de la Faculté des Sciences de Toulouse Vol. XXI, n◦ 3, 2012
pp. 439–479

Spectral approach for kernel-based interpolation

Bertrand Gauthier(1), Xavier Bay(2)

ABSTRACT. — We describe how the resolution of a kernel-based inter-
polation problem can be associated with a spectral problem. An integral
operator is defined from the embedding of the considered Hilbert subspace
into an auxiliary Hilbert space of square-integrable functions. We finally
obtain a spectral representation of the interpolating elements which allows
their approximation by spectral truncation. As an illustration, we show
how this approach can be used to enforce boundary conditions in kernel-
based interpolation models and in what it offers an interesting alternative
for dimension reduction.

RÉSUMÉ. — Nous décrivons comment la résolution d’un problème d’inter-
polation à noyaux peut être associée à un problème spectral. Un opérateur
intégral est défini à partir d’un plongement du sous-espace hilbertien con-
sidéré dans un espace de Hilbert auxiliaire composé de fonctions de carré
intégrable. On obtient une représentation spectrale des éléments inter-
polants permettant leur approximation par troncature du spectre. À titre
d’exemple, nous montrons comment cette approche peut être utilisée afin
d’intégrer des informations de type conditions aux limites dans un modèle
d’interpolation et en quoi elle offre une alternative intéressante pour la
réduction de dimension.
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1. Introduction

This work is devoted to the study of kernel-based interpolation meth-
ods (see for instance and among others [26, 23, 5, 20]). In order to cover
a relatively wide class of problems, we consider the general framework of
interpolation in a separated topological real vector space E. We denote by E′

the topological dual of E and by 〈·, ·〉E,E′ the associated duality bracket. For
a linear subspace M of E′ and e ∈ E, we say that f ∈ E is an interpolator
of e for M (or on M) if

∀e′ ∈M, 〈f, e′〉E,E′ = 〈e, e′〉E,E′ .

In this context, we focus on the two linked kernel-based methods that
are optimal interpolation in Hilbert subspaces of E and Gaussian process
models based on the conditioning of zero-mean Gaussian processes with
sample paths in E.

We consider interpolation problems associated with general sets M , in-
cluding more particularly the case where M is infinite dimensional (infinite
data set). Such a situation for instance occurs when one aims at enforc-
ing boundary values conditions in a given interpolation problem. As this
overall framework is, in our knowledge, not of the most widespread in the
interpolation literature, a significant part of this article is devoted to some
recalls.

We propose and analyze an overall process which associates the reso-
lution of kernel-based interpolation problems with the spectral decomposi-
tion of particular integral operators. This finally leads to an original spec-
tral representation of the solutions of the considered interpolation problem
(Theorem 4.1). By spectral truncations, one then naturally obtains approx-
imations of the interpolating elements which can be proved to be optimal
in a given sense (Proposition 6.4).

From a theoretical point of view, we want to point out that the spectral
properties presented and used in this article are well-known and related to
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extensions of the Mercer’s Theorem. On the applied point of view, the use
of spectral methods in approximation and learning problems is not new ei-
ther. Let us for instance quote the article of F. Cucker and S. Smale [6],
where recalls and discussions concerning Mercer kernels and their applica-
tions in learning theory can be found. One can also refer to the works of E.
Parzen [16] (also mentioned in [5, Section 2.4]), or among others, the articles
[27, 14, 18]. The main objective of the present article is to give a theoretical
description, in the general context of topological vector spaces, of the pro-
cesses involved in the association of a kernel-based interpolation problem
with a spectral problem. We also aim at showing the potential interests of
such an approach.

Let us remark that the construction of the involved integral operator is
based on the embedding of the considered Hilbert subspace into an auxil-
iary Hilbert space of squared integrable real-valued functions. The various
applications and structures we consider can in this sense be compared with
the ones appearing in the work of M. Nashed and G. Wahba [15].

The first part of this article (Section 2) is devoted to the description
of optimal interpolation in Hilbert subspaces. In Section 3, we define the
notion of regular embedding adapted to an interpolation problem. We also
show how this embedding defines an integral operator, which is referred to
as problem-adapted. In Section 4, we use the spectral decomposition of the
considered operator in order to study the initial interpolation problem and
its approximation by spectral truncation.

In Section 5, we consider the case where the number of data is finite
and explicit calculations are carried out to illustrate the use of spectral con-
siderations for the construction of interpolating elements. Section 6 is next
devoted to Gaussian process models. The spectral representations consid-
ered in the previous sections are extended to the conditioning problem. In
particular, we show the IMSE-optimal character of the approximation by
truncation in this context.

We finally develop (Section 7) a theoretical example of application in
which we consider a Hilbert subspace composed of continuously differen-
tiable real-valued functions on R2. We consider a particular class of kernels
and show how to enforce Robin-type constraints on a circle (values and
derivatives) in the associated interpolation models. The difference between
approximation by truncation and discretization is illustrated.
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2. Optimal interpolation in Hilbert subspaces

2.1. Hilbert subspace and RKHS

The L. Schwartz theory of Hilbert subspaces [21] is an equivalent for-
malism for the more widespread theory of reproducing kernel Hilbert spaces
(RKHS), introduced by N. Aronszajn in [1], this equivalence is for instance
discussed in Remark 2.1. The abstract formalism of L. Schwartz is adapted
to the framework of topological vector spaces. It also allows to draw inter-
esting parallels with operator theory (see for instance Proposition 3.7).

2.1.1. Hilbert subspace

The general framework of the Hilbert subspaces of E requires the (real)
topological vector space E to be also locally convex and quasi-complete
(see for instance [19, 21]), what we assume thereafter. Remark that these
properties are verified by most of the classical functions spaces, or by Fréchet
and Banach spaces. We denote by E′ the topological dual space of E.

A Hilbert subspace H of E is a linear subspace of E endowed with a
Hilbert structure such that the inclusion of the Hilbert space H into E
is continuous. We use the notation H ∈ Hilb(E). We then denote by TH
the Hilbert kernel naturally associated with H ∈ Hilb(E). We remind that
TH : E′ → H ⊂ E is a linear, symmetric and positive application,

i.e. ∀e′ and f ′ ∈ E′, 〈THe′, f ′〉E,E′ = 〈THf ′, e′〉E,E′ and 〈THe′, e′〉E,E′ � 0.

The kernel TH is in particular characterized by the representation property,

∀h ∈ H,∀e′ ∈ E′, 〈h, e′〉E,E′ = (h|THe′)H , (2.1)

where (·|·)H is the inner product of H. If {hj , j ∈ J} is an orthonormal basis
of H ∈ Hilb(E), its associated Hilbert kernel TH can be written under the
form

TH =
∑

j∈J
hj ⊗ hj , i.e. ∀e′ ∈ E′, THe

′ =
∑

j∈J
〈hj , e′〉E,E′ hj . (2.2)

2.1.2. Reproducing kernel Hilbert space

A RKHS H of real-valued functions on a set X is a Hilbert subspace of
RX (space of real-valued functions on X ) endowed with the topology of the
pointwise convergence (see [1, 21, 5]).
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The reproducing kernel K(·, ·) of H is hence linked with the Hilbert
kernel TH by the relation, for all x and y ∈ X ,

K(x, y) = 〈THδx, δy〉E,E′ , (2.3)

where δx is the Dirac measure centered on x ∈ X (i.e. 〈f, δx〉E,E′ = f(x) for

all f ∈ E = RX ). This definition is therefore exactly equivalent to the more
common definition of a RKHS ; namely that H is a Hilbert space of real-
valued functions on X such that, for all x ∈ X , the linear map Lx : H → R,
h �→ h(x), is continuous.

Remark 2.1. — The RKHS theory can first appear to be a particular case
of the Hilbert subspaces one. In reality, this two theory are equivalent and
only differs by their formalism (see [21, 10]). Indeed, one can for instance
consider E as a linear subspace of RE′ and then assimilate a Hilbert subspace
of E with a RKHS of real-valued functions on E′.

2.2. Optimal interpolation

Let H ∈ Hilb(E) and M be a linear subspace of E′. For a given ϕ ∈ H,
the set of all elements inH which interpolate ϕ on M can be easily described
thanks to the Hilbert subspace structure of H. In what follows, we resume
some of the main results concerning the study of such problems. Through-
out this article, we will frequently speak about the interpolation problem
associated with H ∈ Hilb(E) and M , without necessarily mentioning the
element of H which has to be interpolated.

Let us introduce the set

M0 =
{
e ∈ E : ∀e′ ∈M, 〈e, e′〉E,E′ = 0

}
.

We define H0 = M0 ∩H = TH (M)
⊥

, where TH (M)
⊥

denotes the orthogo-
nal, in H, of TH (M) (and TH (M) is the set of all THe′ with e′ ∈M). Then,
for a fixed ϕ ∈ H,

ϕ+
(
M0 ∩H

)

is the set of all interpolators, in H, of ϕ for M .

ϕ+
(
M0 ∩H

)
is a non-empty closed affine subspace of H and is therefore

also convex. Thus ϕ+
(
M0 ∩H

)
admits a minimal norm element, which we

denote hϕ,M and call minimal norm interpolator, or optimal interpolator.
hϕ,M is then the orthogonal projection of 0 onto ϕ +

(
M0 ∩H

)
. Let us

remark that this first characterization of the optimal interpolator is essen-
tially non-constructive, in the sense that it does not allow the construction
of hϕ,M from the only knowledge of the values of ϕ on M .
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By definition of the orthogonal projection, hϕ,M −0 is orthogonal to H0,
i.e.

hϕ,M ∈ H⊥0 =
(
TH (M)

⊥
)⊥

= TH (M)
H

= HM ,

with HM the closure, in H, of the linear space spanned by THe′, e′ ∈ M .
This introduces the orthogonal decomposition H = H0 +HM and implies
in particular that hϕ,M is the only interpolator, in HM , of ϕ for M .

Finally, let PHM be the orthogonal projection of H onto HM . We know
that ϕ−PHM [ϕ] is orthogonal to HM , thus ϕ−PHM [ϕ] ∈ H0, i.e. PHM [ϕ]
interpolates ϕ for M . We finally obtain that

hϕ,M = PHM [ϕ]

and this second characterization is suitable for the construction of hϕ,M
from the only knowledge of 〈ϕ, e′〉E,E′ , for e′ ∈M .

H0

+ H0

hϕ,M

HMH

0

ϕ

ϕ

Figure 1. — Schematic representation of optimal interpolation in a Hilbert subspace.

The Hilbert kernel THM of the Hilbert subspace HM , (·|·)H, is linked
with TH by the relation

THM = PHMTH.

Hence, the knowledge of THM defines the orthogonal projection PHM and
reciprocally, this result staying true for any closed linear subspace of H.
This implies in particular that the Hilbert kernel TH0

of H0, (·|·)H, is given
by TH0

= TH − THM .
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3. Problem adapted integral operators

Let H ∈ Hilb(E) and let M be a linear subspace of E′. In all this Section
3, we consider the interpolation problem associated with H and M . We use
the same notations and definitions as in Section 2. Let us in particular
remind the linked orthogonal decomposition H = H0 +HM .

We introduce the notion of regular embeddings associated with an in-
terpolation problem and study the integral operators naturally defined by
them. This leads to the construction of specific orthonormal bases of HM

which are suitable (in the sense of equation (3.14)) for the resolution of the
considered interpolation problem.

The results of Sections 3 and 4 hold for any Hilbert subspace H of E,
separable or non-separable. However, if H is non-separable, the existence
of a regular embedding requires HM to be separable (see Remark 3.4). Let
us mention that complementary considerations concerning Section 3 can be
found in [10].

3.1. Regular embedding and parameterization

Let (S,A, ν) be a general measured set with ν a σ-finite measure. We
denote by L2(S, ν) the Hilbert space of square-integrable real-valued func-
tions on S with respect to ν. Let us remind that L2(S, ν) is in fact a quo-
tient space; nevertheless, we make the widespread abuse of notation which
consists in assimilating elements of L2(S, ν) with functions on S (instead
of considering equivalence classes of ν-almost everywhere equal functions).
We will call L2(S, ν) the auxiliary Hilbert space.

Let (·|·)L2 and ‖·‖L2 be respectively the inner product and the norm of
L2(S, ν). We recall that

∀f and g ∈ L2(S, ν), (f |g)L2 =

∫

S
f(s)g(s)dν(s).

Let us consider an application γ : S → E′. For all h ∈ H, γ allows us to
define the function

Fh : S → R with Fh(s) = 〈h, γs〉E,E′ for all s ∈ S. (3.1)

We now introduce conditions concerning L2(S, ν), γ and H, namely:

C-i. for all h ∈ H, the function Fh : S → R is measurable,
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C-ii. the function (s, t) ∈ S × S �→ 〈THγs, γt〉E,E′ = (THγs|THγt)H is
measurable,

C-iii. N =

∫

S
‖THγs‖2H dν(s) < +∞.

Proposition 3.1. — Under Conditions C-i, C-ii and C-iii, we have
Fh ∈ L2(S, ν) for all h ∈ H and

‖Fh‖2L2 � N ‖h‖2H . (3.2)

Hence, the linear application F : H → L2(S, ν), h �→ Fh is continuous.

Proof. — Representation property (2.1), Cauchy-Schwarz inequality ap-
plied to (·|·)H and finally Condition C-iii give

∫

S
〈h, γs〉2E,E′ dν(s) =

∫

S
(h|THγs)2H dν(s) � N ‖h‖2H , (3.3)

each integral being well-defined thanks to Conditions C-i and C-ii. �

We now consider the orthogonal decomposition H = H0 +HM and add
the following condition on the application F : H → L2(S, ν),

C-iv. for all h ∈ H, ‖Fh‖L2 = 0 if and only if h ∈ H0.

Definition 3.2. — We call regular embedding of HM into L2(S, ν)
adapted to the interpolation problem associated with H and M an ap-
plication F : H → L2(S, ν) defined from a parameterization γ : S → E′ via
equation (3.1) and which verifies Conditions C-i, C-ii, C-iii and C-iv.

Let F : H → L2(S, ν) be a regular embedding of HM into L2(S, ν). We
consider the linear subspace F(H) of L2(S, ν) given by F(H) = {Fh, h ∈ H}
(the image of H through F). From C-iv, F(H0) = 0, hence F(H) = F(HM ).
We endow this space of the following inner-product:

∀h and g ∈ HM , (Fh|Fg)F(H) = (h|g)H . (3.4)

Proposition 3.3. — Let F : H → L2(S, ν) be a regular embedding of
HM into L2(S, ν), then F(HM ), (·|·)F(H) is a Hilbert space. It is isomet-

ric to HM , (·|·)H, the isometry being the restriction to HM of the regular
embedding F.

In addition, the inclusion of the Hilbert space F(HM ), (·|·)F(H) into

L2(S, ν) is continuous. In other words, F (HM ) ∈ Hilb
(
L2(S, ν)

)
.

– 446 –



Spectral approach for kernel-based interpolation

Proof. — The fact that F(HM ) is a Hilbert space isometric to HM

directly follows from its construction. Further, from Proposition 3.1, we
have for all h ∈ HM ,

‖Fh‖2L2 � N ‖h‖2H = N ‖Fh‖2F(H) ,

thus F (HM ) ∈ Hilb
(
L2(S, ν)

)
. �

Remark 3.4. — One can for instance consult [9] for a discussion on the
conditions appearing in Definition 3.2. The ones we use here are of similar
type but specially adapted to the study of the interpolation problem asso-
ciated with H and M . Indeed, let F be a regular embedding of HM into
L2(S, ν) and consider

∫

S
f(s) 〈h, γs〉E,E′ dν(s) = (f |Fh)L2 , (3.5)

where f is a fixed element of L2(S, ν) and h ∈ H. From Condition C-iv,
the value of expression (3.5) does not vary if one replaces h by h+ h0, with
h0 ∈ H0. Hence, it only depends of the values of h on M (i.e. of 〈h, e′〉E,E′
for e′ ∈M), which are the only available informations when considering an
interpolation problem associated with M and an element h of H.

When S is a topological space (endowed with its Borel σ-algebra) and
Conditions C-i, C-ii and C-iii are already verified, C-iv will for instance
be realized if for all h ∈ H, the functions Fh are continuous and if M =
span {γ(supp(ν))} (i.e.M is the linear subspace of E′ spanned by γ(supp(ν))
with supp(ν) the support of ν).

Finally, note that the existence of a regular embedding F associated with
the interpolation problem defined by H and M implies in particular that
HM is separable ; see for instance Proposition 3.8.

Example 3.5. — Let us consider a RKHS H of continuous real-valued
functions on a topological space X and the problem consisting in the in-
terpolation of an element ϕ of H at given points x1, · · · , xn of X (i.e.
M = span {δx1 , · · · , δxn}).

One can for instance define a regular embedding for this problem by
introducing the measure ν =

∑n
i=1 wiδxi (with wi > 0) on S = X (endowed

with its Borel σ-algebra) and the parameterization γ : x �→ δx (a different
possible parameterization for this problem is given in Section 5).

More generally, if we suppose that the values of ϕ are known on a closed
subset D of X (i.e. M = span {δx, x ∈ D}) while keeping the same param-
eterization γ, one just has to consider a measure ν on X whose support is
D and such that Conditions C-iii is also verified.
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Note that in this particular example, if one identifies elements of L2(S, ν)
with functions on S = X , then the application F is in fact the identity
operator on H, with Fh(x) = h(x), for all h ∈ H and x ∈ X .

Proposition 3.6. — Let F : H → L2(S, ν) be a regular embedding of
HM into L2(S, ν) and consider its adjoint operator tF : L2(S, ν) → H
defined by equation (3.7) hereafter. Then for all f ∈ L2(S, ν), tFf ∈ HM

and we have the following integral representation,

∀f ∈ L2(S, ν), tFf =

∫

S
f(s)THγs dν(s), (3.6)

this expression having to be understood in the sense of equation (3.8).

Proof. — We remind that tF : L2(S, ν) → H is defined by

∀h ∈ H,∀f ∈ L2(S, ν),
(
h|tFf

)
H = (Fh|f)L2 . (3.7)

From C-iv, we directly deduce that tFf ∈ HM for all f ∈ L2(S, ν). Next,
by applying the preceding equation to h = THe′ with e′ ∈ E′, we obtain

〈
tFf, e′

〉
E,E′

=

∫

S
f(s) 〈THe′, γs〉E,E′ dν(s)

=

∫

S
f(s) 〈THγs, e′〉E,E′ dν(s), (3.8)

which corresponds to equation (3.6) (one can refer to [4] for details about
the notion of vectorial integral). �

3.2. Integral operator defined by a regular embedding

We still consider the same interpolation problem associated with H and
M . Thanks to Proposition 3.3, we know that a regular embedding F of HM

into L2(S, ν) defines a Hilbert subspace F(HM ), (·|·)F(H) of L2(S, ν). Hence,
from the Hilbert subspaces theory, it admits a unique associated Hilbert
kernel. If one identifies the continuous dual of L2(S, ν) with itself (Riesz-
Fréchet representation Theorem), the Hilbert kernel of F(HM ) relatively to
L2(S, ν) is the unique linear application

Lγ,ν :
(
L2(S, ν)

)′
= L2(S, ν) → F (HM ) ⊂ L2(S, ν)

which verifies the representation property, for all h ∈ H and f ∈ L2(S, ν),

(Fh|f)L2 = (Fh|Lγ,ν [f ])F(H) . (3.9)
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Proposition 3.7. — Let F : H → L2(S, ν) be a regular embedding of
HM into L2(S, ν) and let Lγ,ν be the Hilbert kernel of F (HM ) ∈ Hilb

(
L2(S, ν)

)
,

then Lγ,ν = F tF, i.e. for all t ∈ S and f ∈ L2(S, ν),

Lγ,ν [f ](t) =

∫

S
(THγs|THγt)H f(s)dν(s). (3.10)

Proof. — By combining equations (3.9), (3.7) and (3.4), we obtain that
for h ∈ H and f ∈ L2(S, ν), (Fh|f)L2 = (h|tFf)H = (Fh|F tFf)F(H) =

(Fh|Lγ,ν [f ])F(H) . We finally deduce equation (3.10) from the integral ex-

pression of tF given in Proposition 3.6 (equation (3.6)) by applying the
preceding relation to h = THγt ∈ H, with t ∈ S. �

Let us remark that the Hilbert subspace F (HM ) of L2(S, ν) can be
assimilated to the RKHS of real-valued functions on S associated with the
reproducing kernel

∀(s, t) ∈ S × S,K (s, t) = (THγt|THγs)H . (3.11)

Hence, Lγ,ν can be seen as a classic integral operator on L2(S, ν) defined
by the symmetric and positive kernel K(·, ·) on S × S (see for instance [22,
§10] and [9])

We deduce from the theory of integral operators that Lγ,ν is a Hilbert-
Schmidt operator and therefore a compact operator. So Lγ,ν : L2(S, ν) →
L2(S, ν) is diagonalizable and its eigenvalues are positive. We denote by λi
those eigenvalues (repeated according to their algebraic multiplicity) and

by φ̃i ∈ L2(S, ν) the associated eigenfunctions, with i ∈ I (and where I is

a general index set). We remind that
{
φ̃i, i ∈ I

}
forms a orthonormal basis

of L2(S, ν) and that the set of all strictly positive eigenvalues is at most
countable.

Proposition 3.8. — Let F : H → L2(S, ν) be a regular embedding of
HM into L2(S, ν) and consider its associated integral operator

Lγ,ν = F tF : L2(S, ν) → F (HM ) ⊂ L2(S, ν).
Denote by {λn, n ∈ I+} the at most countable set (i.e. I+ ⊂ N) of its strictly

positive eigenvalues (repeated according to their multiplicity) and let φ̃n ∈
L2(S, ν) be their associated eigenfunctions. For all n ∈ I+, we define

φn =
1

λn
tFφ̃n =

1

λn

∫

S
φ̃n(s)THγs dν(s) ∈ HM . (3.12)

Then
{√

λnφn, n ∈ I+
}

is an orthonormal basis of the Hilbert space HM

endowed with the inner product (·|·)H.
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Proof. — First remark that from Proposition 3.6, the elements φn of
HM are well-defined. By definition, we have that, for all n ∈ I+ and for all
h ∈ H,

(
φn

∣∣h
)
H =

1

λn

(
tFφ̃n

∣∣∣h
)
H

=
1

λn

(
φ̃n

∣∣∣Fh
)
L2
. (3.13)

As for all m ∈ I+, Fφm = φ̃m, the preceding equation (3.13) applied to
h = φm, gives that

{√
λnφnn ∈ I+

}
is an orthonormal system of HM .

From Proposition 3.7 and the properties of Hilbert kernels, we know
that the linear subspace spanned by the Lγ,ν [f ], f ∈ L2(S, ν), is dense

in F (HM ), (·|·)F(H) (and in particular
{√

λnφ̃n, n ∈ I+
}

is one of its or-

thonormal bases). Hence, by the isometry between F (HM ), (·|·)F(H) and

HM , (·|·)H, the linear space span
{√

λnφn, n ∈ I+
}

is dense in F(H), which
concludes the proof. �

In our context of interpolation, the main interest of the elements φn of
H, n ∈ I+, appearing in Proposition 3.8 is that (see equation (3.13))

∀h ∈ H, (φn|h)H =
1

λn

∫

S
φ̃n(s) 〈h, γs〉E,E′ dν(s). (3.14)

Hence, as for equation (3.5) of Remark 3.4, the evaluation of the inner
product (φn|h)H can be directly obtained from the only knowledge of the
values of h on M .

We are now able to formulate our representation Theorem 4.1, which
simply consists in the use of this particular orthonormal basis and of equa-
tion (3.14) in order to describe the orthogonal projection of H onto HM .

Before this, we conclude this section by some additional remarks on the
structures and applications we have introduced. This will be useful for the
rest of our study.

3.3. Some important remarks

The definition of a regular embedding F of HM into L2(S, ν) allows the
construction of many applications and structures in addition to the ones
studied until now. This section aims at introducing a few of them. Let us
mention the article [15], where a similar situation is studied.

3.3.1. Operator on H defined by a regular embedding

In the same way as an embedding F : H → L2(S, ν) defines an integral
operator Lγ,ν = F tF on L2(S, ν) (see Proposition 3.7), it also defines an
operator on H.
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Proposition 3.9. — Let F : H → L2(S, ν) be a regular embedding of
HM into L2(S, ν) and consider the framework of Proposition 3.8. We define
the following linear operator on H :

∀h ∈ H, Lγ,ν [h] = tFFh =

∫

S
〈h, γs〉E,E′ THγs dν(s). (3.15)

Lγ,ν is a continuous symmetric and positive Hilbert-Schmidt operator on the
Hilbert space H, (·|·)H. It is diagonalizable, the eigenspace associated with
the null eigenvalues is H0 and

√
λnφn, n ∈ I+ are the eigenvectors (with∥∥√λnφn

∥∥
H = 1) associated with the eigenvalues λn, n ∈ I+.

Proof. — The properties of symmetry and positivity of Lγ,ν are obvious.
Let us give a direct proof of the fact that it is a Hilbert-Schmidt operator.
Let {hj , j ∈ J} be an orthonormal basis of H. Using equation (2.2) and
Fubini’s Theorem, we obtain:

∑

j∈J

∥∥Lγ,ν [hj ]
∥∥2

H =

∫

S

∫

S
(THγs|THγt)2H dν(s)dν(t) � N2, (3.16)

the last inequality being a consequence of the Cauchy-Schwarz inequality
applied to the inner product of H and of Condition C-iii.

For all h0 ∈ H0, we obviously have tFFh0 = 0 ; in addition, for h ∈ H
and n ∈ I+,

(
tFFφn

∣∣h
)
H = λn

(
1

λn
tFφ̃n

∣∣∣∣h
)

H
= (λnφn|h)H . (3.17)

This equation combined with Proposition 3.8 completes the spectral decom-
position of Lγ,ν and also proves its continuity. �

3.3.2. Two additional Hilbert structures

We introduce two Hilbert spaces F(H)
L2

and HM
γ,ν

which naturally
appear when considering a regular embedding F of HM . Note that these
two structures will be useful to us for the application of our approach to
Gaussian processes conditioning in Section 6.2.

F(H)
L2

is the closure in L2(S, ν) of the linear subspace F(H). Let us

notice that
{
φ̃n, n ∈ I+

}
is obviously one of its orthogonal bases for the

inner product (·|·)L2 .
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Let us now define HM
γ,ν

. We start by introducing the following sym-
metric and positive bilinear form on H, for all h and g ∈ H,

(h|g)γ,ν =
(
Fh

∣∣Fg
)
L2 =

∫

S
〈h, γs〉E,E′ 〈g, γs〉E,E′ dν(s). (3.18)

We also set ‖h‖2γ,ν = (h|h)γ,ν . Condition C-iv implies that the null space
of (·|·)γ,ν is H0 (i.e. for h ∈ H, ‖h‖γ,ν = 0 if and only if h ∈ H0) and
HM endowed with (·|·)γ,ν is hence a pre-Hilbert space. We then denote by

HM
γ,ν

the completed of HM for ‖·‖γ,ν .

Remark that the operator Lγ,ν (considered as an operator onHM ) can be

naturally extended to HM
γ,ν

by continuity. Lγ,ν is then a Hilbert-Schmidt

operator on HM
γ,ν

, (·|·)γ,ν . It is symmetric and positive definite, its eigen-
values are λn, n ∈ I+ and each one is associated with the eigenvector φn
(and ‖φn‖γ,ν = 1).

3.3.3. Isometries

We are finally in presence of four isometric Hilbert spaces,

HM ,F(H),F(H)
L2

and HM
γ,ν
.

As we have seen in Proposition 3.3, the isometry between HM , (·|·)H and
F(H), (·|·)F(H) is the restriction of F to HM . The continuous extension of

this first isometry defines the isometry between HM
γ,ν

, (·|·)γ,ν and F(H)
L2

,
(·|·)L2 .

The isometry between F(H)
L2

, (·|·)L2 and F(H), (·|·)F(H) is given by

∀n ∈ I+, φ̃n ↔
√
λnφ̃n.

It is in fact the restriction of the square-root of Lγ,ν to F(H)
L2

, with

L
1
2
γ,ν


∑

i∈I
αiφ̃i


 =

∑

i∈I
αi

√
λiφ̃i,

where
∑

i∈I αiφ̃i ∈ L2(S, ν). We obviously have Lγ,ν = L
1
2
γ,ν ◦ L

1
2
γ,ν .
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3.3.4. Pseudoinverse of a regular embedding

Let us consider the framework of Proposition 3.8. One can define the
pseudoinverse (or generalized inverse) F† of F by

∀n ∈ I+,F†φ̃n = φn =
1

λn
tFφ̃n (3.19)

and for i ∈ I\I+ (i.e. λi = 0), F†φ̃i = 0. Then, F† is well-defined from
L2(S, ν) onto HM

γ,ν
and

∀f ∈ L2(S, ν),F†f =
∑

n∈I+

(
f
∣∣φ̃n

)
L2
φn ∈ HM

γ,ν
. (3.20)

The restriction of F† to F(H)
L2

defines the inverse of the isometry between

HM
γ,ν

and F(H)
L2

. In the same way, its restriction to HM gives the inverse
of the isometry between HM and F(H). We have in particular

PHM = F†F, (3.21)

which is in fact an equivalent formulation of Theorem 4.1.

4. Representation and approximation
of the optimal interpolator

For H ∈ Hilb(E), we consider the optimal interpolation problem in H
defined by ϕ ∈ H and a linear subspace M of E′. In order to apply Section
3 results, we suppose M such that HM is separable (thus, M can be an
arbitrary linear subspace of E′ if H is itself separable).

4.1. Spectral representation for optimal interpolation

Once an orthonormal basis of HM known, one can easily express the
orthogonal projection ofH ontoHM . Then, in order to compute the optimal
interpolator of ϕ ∈ H for M (see Section 2), we need to be able to evaluate
the inner-product in H between ϕ and each elements of the considered basis
ofHM ; and this from the only knowledge of the values of ϕ on M (which are
in our context of interpolation the only available informations concerning
ϕ). This is precisely the property of the orthonormal basis of HM associated
with a regular embedding F, its elements indeed verify equation (3.14).

Remark that in order to be applied to a given interpolation problem
(associated with H and M), our approach requires the preliminary choice
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of a measurable space (S,A, ν) and of a parameterization γ : S → E′

allowing the definition of a regular embedding F of HM into the auxiliary
space L2(S, ν). Some considerations concerning this choice are discussed in
Section 4.3.

Theorem 4.1. — Let F be a regular embedding of HM into L2(S, ν) and
consider the orthonormal basis

{√
λnφnn ∈ I+

}
of HM associated with F.

Then, for ϕ ∈ H, we have

PHM [ϕ] =
∑

n∈I+
φn

∫

S
〈φn, γs〉E,E′ 〈ϕ, γs〉E,E′ dν(s). (4.1)

Proof. — It is a simple consequence of Proposition 3.8 and equation
(3.13),

PHM [ϕ] =
∑

n∈I+

√
λnφn

(√
λnφn

∣∣∣ϕ
)
H

=
∑

n∈I+
λnφn

(
φ̃n

∣∣∣Fϕ
)

F(H)

=
∑

n∈I+
φn

(
φ̃n

∣∣∣Fϕ
)
L2
.

See also equation (3.21) for an equivalent formulation of this result. �

Let us remark that the sum appearing in equation (4.1) converges by
construction in H. Since H ∈ Hilb(E), it also converges for the initial topol-
ogy of E and for its weak topology σ(E,E′). Then, in particular, for all
e′ ∈ E′,

〈PHM [ϕ] , e′〉E,E′ =
∑

n∈I+
〈φn, e′〉E,E′

∫

S
〈φn, γs〉E,E′ 〈ϕ, γs〉E,E′ dν(s).

Finally, because of the continuous inclusion of HM , (·|·)H into HM
γ,ν

, the
considered sum also converges for ‖·‖γ,ν .

4.2. Truncated approach and approximation

In practice, even if the spectral decomposition of the operator Lγ,ν =
F tF is known, it is not always possible, for instance for numerical reasons,
to consider all the terms appearing in the Mercer decomposition of THM ,
i.e.

∀e′ ∈ E′, THM e
′ =

∑

n∈I+
λn 〈φn, e′〉E,E′ φn.
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A classic alternative simply consists in not considering each of the sum
terms, but only a part of them. In this case, one currently speaks about
spectrum truncation and these are usually the largest eigenvalues which are
conserved. The following section aims at giving a first brief study of the
use of this alternative in our context. Let us signalize that considerations
about the optimal character of the approximation by truncation based on
the largest eigenvalues are developed in Section 6.4.

Note that we also have to keep in mind that, in the most part of ap-
plication cases, the true analytical spectral decomposition of Lγ,ν would be
unknown. Hence, the study of the behavior of the proposed approach when
dealing with approximated spectrum is of great importance in regards of
applications.

4.2.1. Spectrum truncation

Let us assume that we dispose of an approximated kernel defined from
a subset Itrc of I+, that is, for all e′ ∈ E′,

THtrc
M
e′ =

∑

n∈Itrc
λn 〈φn, e′〉E,E′ φn.

For ϕ ∈ H, we then obtain an approximation of the optimal interpolator
PHM [ϕ] that we denote by PHtrc

M
[ϕ]. We have

∀e′ ∈ E′,
〈
PHtrc

M
[ϕ] , e′

〉
E,E′

=
(
ϕ
∣∣∣THtrc

M
e′

)
H

(4.2)

=
∑

n∈Itrc
〈φn, e′〉E,E′

∫

S
φ̃n(s) 〈ϕ, γs〉E,E′ dν(s),

where Htrc
M is the closure in H of the subspace spanned by the φn, for

n ∈ Itrc.

Theorem 4.2. — Let us consider the general framework of Section 4.2.
We also introduce the set Itrcerr = I+\Itrc, then

∀e′ ∈ E′,
〈
PHM [ϕ]− PHtrc

M
[ϕ] , e′

〉2

E,E′
� ‖ϕ‖2H

∑

n∈Itrcerr

λn 〈φn, e′〉2E,E′ (4.3)

and
∥∥∥ϕ− PHtrc

M
[ϕ]

∥∥∥
2

γ,ν
� ‖ϕ‖2H

∑

n∈Itrcerr

λn. (4.4)
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Proof. — By definition, we have for all e′ ∈ E′:
〈
PHM [ϕ]− PHtrc

M
[ϕ] , e′

〉
E,E′

=

(
ϕ

∣∣∣∣
∑

n∈Itrcerr

λn 〈φn, e′〉E,E′ φn
)

H
. (4.5)

To obtain expression (4.3), we just have to remark that the Cauchy-Schwarz
inequality applied to equation (4.5) gives

〈
PHM [ϕ]− PHtrc

M
[ϕ] , e′

〉2

E,E′
� ‖ϕ‖2H

∥∥∥∥
∑

n∈Itrcerr

λn 〈φn, e′〉E,E′ φn
∥∥∥∥

2

H

and that from Proposition 3.8,
∥∥∥∥

∑

n∈Itrcerr

λn 〈φn, e′〉E,E′ φn
∥∥∥∥

2

H
=

∑

n∈Itrcerr

λn 〈φn, e′〉2E,E′ .

Next, from equation (4.3) and the definition of ‖·‖2γ,ν (see section 3.3), we
have,
∫

S

〈
PHM [ϕ]− PHtrc

M
[ϕ] , γs

〉2

E,E′
dν(s) � ‖ϕ‖2H

∑

n∈Itrcerr

λn

∫

S
〈φn, γs〉2E,E′ dν(s).

This inequality gives, combined with the fact that ‖φn‖2γ,ν = 1 and C-iii,

∥∥∥PHM [ϕ]− PHtrc
M

[ϕ]
∥∥∥

2

γ,ν
� ‖ϕ‖2H

∑

n∈Itrcerr

λn.

To conclude, we remark that by definition of ‖·‖γ,ν ,
∥∥∥PHM [ϕ]− PHtrc

M
[ϕ]

∥∥∥
2

γ,ν
=

∥∥∥ϕ− PHtrc
M

[ϕ]
∥∥∥

2

γ,ν
. (4.6)

�

We call
∑

n∈Itrcerr λn the spectral error term. It will be in practice evalu-
ated by considering

∑

n∈Itrcerr

λn =
∑

n∈I+
λn −

∑

n∈Itrc
λn

=

∫

S
‖THγs‖2H dν(s)−

∑

n∈Itrc
λn. (4.7)

A good indicator (see also Section 6.4) of the overall quality of the obtained
approximation can classically be found in the ratios

∑
n∈Itrc λn∑
n∈I+ λn

= 1−
∑

n∈Itrcerr λn∑
n∈I+ λn

.
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4.3. About the choice of the parameterization

In this section, we mention some general considerations concerning the
choice of the parameterization. By parameterization, we mean here the over-
all process leading to the construction of a regular embedding of HM into
an auxiliary Hilbert space.

4.3.1. Computational aspects

In the interpolation context of Theorem 4.1, the parameterization can
just appear as a tool allowing to obtain the representation formula (4.1).
No matter its choice from the moment it allows the definition of a regular
embedding F of HM .

Nevertheless, if one envisages the computation of the elements constitut-
ing the orthonormal basis of HM associated with the considered embedding
(Proposition 3.8), this choice takes importance. Indeed, it in part determines
the operator which has to be diagonalized. It then appears reasonable to try
to make a choice that defines a simplest as possible spectral problem. One
will for instance try to be in a position allowing an analytical resolution, or
the use of a particular numerical method.

In such a context, an illustration of what appears to us as relatively
judicious choices of parameterizations can be found in [10, Section 3.3]. In
this particular example, appropriated choices allow to obtain an analytical
expression for many of the involved objects and certain prediction formulas
concerning the two parameters Brownian sheet are hence obtained in an
original way.

4.3.2. The approximation case

In addition of this first consideration, the choice of the parametrization
has a direct influence on the behavior of the optimal interpolator approxi-
mation obtained by spectral truncation in equation (4.3). Indeed, different
choices of parameterization for a same problem lead to different approxima-
tions of the optimal interpolator, and this even if the spectral ratios of the
considered truncations are equal.

The parameterization directly influences the way PHtrc
M

[ϕ] approximates

PHM [ϕ] on M . It hence offers a way to modulate the accuracy of the ap-
proximation in function of the elements of M . This characteristic of tunable
precision could offer interesting possibilities in regards of applications.
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5. Finite Case

5.1. Context and notations

We suppose that M is of finite dimension, i.e. M = span {µ1, · · · , µn},
with n ∈ N∗. Let us define the matrix T ∈ Rn×n by

for 1 � i, j � n,Ti,j = (THµi|THµj)H . (5.1)

For simplicity and without loss of generality, we assume that the µi ∈ E′ are
such that the symmetric and positive matrix T is invertible. For convenience,
we introduce the following matrix type notations

µ = (µ1, · · · , µn)
T

and T =
(
THµ|THµT

)
H =

〈
THµ,µ

T
〉

=
〈
µ, THµ

T
〉
,

where THµ = (THµ1, · · · , THµn)
T

is a column vector. Hence, for ϕ ∈ H, the
optimal interpolator of ϕ for M can be written under the form

hϕ,M = THµ
TT−1 〈µ, ϕ〉 , (5.2)

with 〈µ, ϕ〉 =
(
〈ϕ, µ1〉E,E′ , · · · , 〈ϕ, µn〉E,E′

)T
. Remark for instance that

with our notations, 〈µ, ϕ〉T =
〈
ϕ,µT

〉
, and for e ∈ E and e′ ∈ E′,

〈e, e′〉E,E′ = 〈e, e′〉 = 〈e′, e〉. So, we will write, for e′ ∈ E′, 〈hϕ,M , e′〉E,E′ =〈
e′, THµT

〉
T−1 〈µ, ϕ〉.

The aim of this section is to prove, by explicit calculations, that the
expression of the minimal norm interpolator given in equation (5.2) is equal
to the one given in equation (4.1) of Theorem 4.1.

5.2. Parameterization

Let us define a trivial parameterization of this problem. Let S = {1, · · · , n}
and consider the measure ν on S which assigns a weight wi > 0 to each
i ∈ S = {1, · · · , n}. The auxiliary space L2(S, ν) can then be identified to
the space Rn endowed with the inner-product (x|y)W = xTWy, where x
and y are two column vectors of Rn and with W the matrix

W = diag (w1, · · · , wn) .

Let us remark that we identify a vector of Rn with the column vector of its
coefficients in the canonical basis of Rn.

We next consider the application γ : S → E′, given by γi = µi for all
i ∈ {1, · · · , n}. The associated application F is trivially a regular embedding
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associated with our problem. It verifies, for all h ∈ H, Fh = 〈µ, h〉 ∈ Rn
(and Fh(i) = 〈h, µi〉E,E′ for all i ∈ {1, · · · , n} = S). If we identify L2(S, ν)
with Rn, then for α ∈ Rn

tFα = THµ
TWα ∈ HM . (5.3)

We finally obtain that Lγ,ν = F tF in given by

F tFα = TWα. (5.4)

In the same way, we have (see Proposition 3.9)

∀h ∈ H, Lγ,ν [h] = tFFh =

∫

S
〈h, γs〉E,E′ THγs dν(s)

=

n∑

i=1

wi 〈h, µi〉E,E′ THµi = THµ
TW 〈µ, h〉 . (5.5)

The symmetric and positive bilinear form (·|·)γ,ν on H, associated with F
via equation (3.18), is given by, for h and g ∈ H,

(h|g)γ,ν =

n∑

i=1

wi 〈h, µi〉E,E′ 〈g, µi〉E,E′ =
〈
h,µT

〉
W 〈µ, g〉 .

5.3. Spectral decomposition

Let λ1 > 0, · · · , λn > 0 be the eigenvalues of TW and let v1, · · · ,vn
their associated eigenvectors, i.e. TW = PΛP−1 with

Λ = diag (λ1, · · · , λn) and P = (v1| · · · |vn) .

Note that {v1, · · · ,vn} forms an orthonormal basis of Rn, (·|·)W, i.e.

PTWP = Idn×n, where Idn×n is the n× n identity matrix. (5.6)

For k ∈ {1, · · · , n}, let

φk =
1

λk
tFvk =

1

λk
THµ

TWvk ∈ HM . (5.7)

Proposition 5.1 Under the assumptions of Section 5, we have for all
ϕ ∈ H,

THµ
TT−1 〈µ, ϕ〉 =

n∑

k=1

φk

∫

S
〈φk, γs〉E,E′ 〈ϕ, γs〉E,E′ dν(s).
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Proof. — We have

THµ
TT−1 〈µ, ϕ〉 = THµ

TWW−1T−1 〈µ, ϕ〉
= THµ

TWPΛ−1P−1 〈µ, ϕ〉 .

Let us study the terms appearing in this last expression. First, from equation
(5.7),

THµ
TWPΛ−1 = (φ1, · · · , φn) .

Next, using equation (5.6), we find

P−1 〈µ, ϕ〉 =
(
PTWP

)−1
PTW 〈µ, ϕ〉 = PTW 〈µ, ϕ〉 .

To conclude, we remark that, for k ∈ {1, · · · , n},
∫

S
〈φk, γs〉E,E′ 〈ϕ, γs〉E,E′ dν(s) =

n∑

i=1

wi 〈ϕ, µi〉E,E′ 〈φk, µi〉E,E′

is the k-th component of the vector PTW 〈µ, ϕ〉. �

6. Application to Gaussian process models

Optimal interpolation in Hilbert subspaces and Gaussian process models
are intrinsically linked. In this section, we recall some of the main proper-
ties concerning the conditioning of Gaussian processes in the framework of
topological vector spaces. We also apply the spectral approach developed in
Sections 3 and 4 to the conditioning problem. The IMSE-optimal character
of the approximation by truncation is finally addressed in Section 6.4.

6.1. Notations an recalls

Let H be a separable Hilbert subspace of E. In all Section 6, we assume
that H is the Cameron-Martin space of a centered Gaussian process Y
defined on a probability space (Ω,F ,P). We denote by H the Gaussian
Hilbert space associated with Y (see [13]). We remind that H is a closed
linear subspace of the Hilbert space L2 (Ω,F ,P) of second order centered
real random variables (r.v.) on (Ω,F ,P).

For the sake of simplicity, we assume that E is a Banach space (see [7, 24]
for more general frameworks). We also consider that Y takes its values in E

with probability 1 (i.e. the triplet
(
j,H,HE

)
is an abstract Wiener space,

where HE
is the completed of H in E and j the continuous inclusion of H

into HE
, see [11]).
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We denote by I : H → H the isometry between H and H, it verifies

E (IhIg) = (h|g)H ,

where E (IhIg) represents the inner-product in L2 (Ω,F ,P) between the
two centered random variables Ih and Ig ∈ H. Let us also add, for e′ ∈ E′,

〈Y, e′〉E,E′
(notation)

= Ye′ = I (THe
′) .

One can consult, among others, [3, 25, 10] for more details about the pre-
vious notions.

For a linear subspace M of E′, PHM denotes the orthogonal projection
of H onto HM . We then introduce the orthogonal projection PHM

of H onto
HM = I (HM ). We have the commutative diagram

H −−−−→
I

H� PHM

� PHM

HM −−−−→
I

HM

(6.1)

THM = PHMTH is the Hilbert kernel of HM , hence, by isometry,

∀e′ ∈ E′, I (THM e
′) = PHM

[Ye′ ]
(notation)

= E (Ye′ |Yf ′ , f ′ ∈M) . (6.2)

For all e′ ∈ E′, the r.v. PHM
[Ye′ ] is called the conditional mean of Ye′

knowing Yf ′ for f ′ ∈ M and TH0
is the associated conditional covariance

kernel. The notion of conditional law of the process Y is addressed in Section
6.3.

6.2. Spectral approach for conditioning

We now consider the general framework of Section 3.

Proposition 6.1. — Let us consider the centered Gaussian process (Yγs)s∈S .
Under the assumptions of Theorem 4.1, the sample paths of (Yγs)s∈S are in

L2(S, ν) with probability 1. In addition,

E
[ ∫

S
(Yγs)

2
dν(s)

]
=

∑

n∈I+
λn

(
= N

)
.

Proof. — For s ∈ S, we remind that Yγs = I (THγs). Let {hj , j ∈ J}
be an orthonormal basis of H. As in equation (2.2), (Yγs)s∈S admits the
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Karhunen-Loève expansion

∀s ∈ S, Yγs =
∑

j∈J
〈hj , γs〉E,E′ I (hj) , (6.3)

where the I (hj) = ζj , j ∈ J, form by isometry an orthonormal basis of H
(such independent N (0, 1) r.v. are sometime called orthogaussian, see [8]).
We then deduce from Condition C-i that the sample paths of (Yγs)s∈S are
measurable (as real-valued functions on S) with probability 1.

One can obviously choose the orthonormal basis {hj , j ∈ J} of H such
that it coincides on HM with its orthonormal basis

{√
λnφnn ∈ I+

}
asso-

ciated with the considered regular embedding F (Proposition 3.8). Then,
from C-iii and C-iv,

∑

j∈J

∫

S
E

[(
Fhj(s)ζj

)2
]
dν(s) =

∑

j∈J
‖Fhj‖2L2

=
∑

n∈I+

∥∥∥
√
λnφ̃n

∥∥∥
2

L2
=

∑

n∈I+
λn < +∞.

Thus, the sum
∑

j∈J ‖Fhjζj‖
2
L2(ν⊗P) is convergent, which, form Tonelli’s

Theorem, implies the convergence in L2(ν ⊗ P) of

(s, ω) �→
∑

j∈J
Fhj(s)ζj(ω), with s ∈ S and ω ∈ Ω

and finally completes the proof. �

Theorem 6.2. — Let Y be a centered Gaussian process with values in
E and covariance kernel TH. Let M be a linear subspace of E′. Under the
assumptions of Theorem 4.1, we have for all e′ ∈ E′,

E (Ye′ |Yf ′ , f ′ ∈M) =
∑

n∈I+
〈φn, e′〉E,E′

∫

S
φ̃n(s)Yγs dν(s). (6.4)

In addition, the centered Gaussian process with covariance kernel THM (that
is the process corresponding to E (Ye′ |Yf ′ , f ′ ∈M), e′ ∈ E′) takes its values

in HM
γ,ν

with probability 1.

Proof. — We have to verify that the right member of equation (6.4) is
well-defined. From Proposition 3.8, we know that for all e′ ∈ E′,

THM e
′ =

∑

n∈I+
λn 〈φn, e′〉E,E′ φn,
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this series being convergent in H. Hence,

I (THM e
′) =

∑

n∈I+
λn 〈φn, e′〉E,E′ I (φn) . (6.5)

For n ∈ I+, we remind that the φn ∈ HM are given by (equation (3.12))

φn =
1

λn

∫

S
φ̃n(s)THγs dν(s).

Now, Proposition 6.1 assures that the expression

I (φn) =
1

λn

∫

S
φ̃n(s)I (THγs) dν(s) =

1

λn

∫

S
φ̃n(s)Yγsdν(s) (6.6)

keeps sense under our working hypotheses. The last point of Theorem 6.2
is consequence of expansion (6.4), Proposition 6.1 and isometry between

F(H)
L2

and HM
γ,ν

. �

6.3. A note on regular conditional probabilities

We now study the conditional laws of the process Y relatively to the
knowledge of the values take by its sample paths on M . Because, in our
study, HM can be infinite dimensional, the construction of a regular condi-
tional probability requires some precautions. We consider a case where such
a conditional probability exists (see for instance [25], this is for instance
always true if HM is finite dimensional). We finally introduce an additional
assumption which assures the existence of a spectral representation for the
mean of the conditional laws and corresponding to a natural extension of
equation (4.1).

Let us consider the following condition

HE
= HM

E ⊕H0
E
, (6.7)

which means that HE
= HM

E
+H0

E
with HM

E ∩H0
E

= {0}.

Condition (6.7) assures us of the existence of the linear continuous pro-

jection P of HE
onto HM

E
parallel to H0

E
(i.e. Ph0 = 0 for all h0 ∈ H0

E
).

We then consider the family of Gaussian measures on HE
with mean

P[Ψ] ∈ HM
E

for Ψ ∈ HE
and covariance kernel TH0 . From [25, Theorem

3.11], such a family defines a regular conditional probability over HE
relative
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to the knowledge of Y on M . In such case, the following notation is often
used

P[Ψ] = E
(
Ye′

∣∣Yf ′ = 〈Ψ, f ′〉E,E′ , f ′ ∈M
)
. (6.8)

Note that if we denote by µY the Gaussian measure on HE
associated

with Y , the preceding regular conditional probability corresponds to the
disintegration of µY relatively to P.

Now, let us also suppose that HM
E

can be continuously injected into
HM

γ,ν
, what we write

HM
E
↪→ HM

γ,ν
. (6.9)

We next consider the extension F̌ of F to HE
defines by F̌h0 = 0 for all

h0 ∈ H0
E

and, on HM
E

, by the continuous extension of the restriction of

F to HM . From Section 3.3 and condition (6.9), F̌ is well-defined from HE

on F(H)
L2

.

Then, as for PHM = F†F, we have P = F†F̌. Remark that this last
expression is well-defined in regards of the definition of F† given in Section
3.3. We finally obtain the spectral representation formula

∀Ψ ∈ HE
,P[Ψ] =

∑

n∈I+
〈φn, e′〉E,E′

∫

S
φ̃n(s) 〈Ψ, γs〉E,E′ dν(s). (6.10)

Remark 6.3. — We have the well known equality, for ϕ ∈ H and e′ ∈ E′,

〈PHM [ϕ] , e′〉E,E′ = E
(
Ye′

∣∣Yf ′ = 〈ϕ, f ′〉E,E′ , f ′ ∈M
)
. (6.11)

6.4. Optimal approximation

The results and considerations of Section 4.2 can also be extended to the
Gaussian processes case. In this section, we discuss of the optimal character
of the approximation by truncation.

Let Y be a centered Gaussian process with values in E and covariance
TH. Under the assumptions of Theorem 6.2, we consider a subset Itrc of I+
composed of the largest eigenvalues of Lγ,ν , in the sense that,

if i ∈ Itrcerr = I+\Itrc and n ∈ Itrc, then λi � λn. (6.12)

Proposition 6.4. — Let Happ
M be any closed linear subspace of HM and

denote by THapp
M

its associated Hilbert kernel. For e′ ∈ E′, we introduce the

two approximations of Ze′ = E
(
Ye′

∣∣Yf ′ = 〈ϕ, f ′〉E,E′ , f ′ ∈M
)
,
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Ztrc
e′ = I

(
THtrc

M
e′

)
and Zapp

e′ = I
(
THapp

M
e′

)
. (6.13)

If Htrc
M and Happ

M have the same finite dimension N ∈ N∗, then under equa-
tion (6.12),

E
( ∥∥Y − Ztrc

∥∥2

γ,ν

)
� E

(
‖Y − Zapp‖2γ,ν

)
. (6.14)

Proof. — From Theorem 4.2 and Proposition 6.1, we have E
(
‖Ztrc‖2γ,ν

)
=

E
(∫
S

(
Ztrc
γs

)2
dν(s)

)
=

∫
S

∥∥∥THtrc
M
γs

∥∥∥
2

H
dν(s) =

∑
n∈Itrc λn

and E
( ∥∥Y − Ztrc

∥∥2

γ,ν

)
= E

(
‖Y ‖2γ,ν

)
− E

( ∥∥Ztrc
∥∥2

γ,ν

)
. (6.15)

Let f1, · · · , fN be an orthonormal basis of Happ
M and consider its decom-

position in the orthonormal basis associated with the considered regular
embedding, that is

∀i ∈ {1, · · · , N} , fi =
∑

k∈I+
αi,k

√
λkφk, with αi,k ∈ R

and where, for i and j ∈ {1, · · · , N}, ∑
k∈I+ αi,kαj,k = δi,j (Kronecker

delta). We hence easily obtain that E
(
‖Zapp‖2γ,ν

)
=

∑N
i=1

∑
k∈I+ α

2
i,kλk.

Next, using for instance convex combinations arguments, we remark that

∑

n∈Itrc
λn �

N∑

i=1

∑

k∈I+
α2
i,kλk. (6.16)

We finally conclude thanks to equation (6.15). �

In the same way as in equation (4.6), let us remark that we have

E
(
‖Y − Zapp‖2γ,ν

)
= E

(
‖Z − Zapp‖2γ,ν

)
. (6.17)

Thus, in regards of ‖·‖γ,ν (i.e. in the sense of equation (6.14)), for e′ ∈
E′, Ztrc

e′ is the best approximation of the conditional mean E
(
Ye′

∣∣Yf ′ =

〈ϕ, f ′〉E,E′ , f ′ ∈ M
)

based on N elements of HM . One can hence speak
about a certain IMSE-optimality (Integrated Mean Square Error) of the
approximation by truncation. This point is for instance illustrated in Section
7.5.
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7. Example of application

7.1. The problem

Let X = R2 and H be the RKHS of real-valued functions on X (see
Section 2.1) associated with the kernel (squared exponential or Gaussian
kernel, see for instance [20]), for x and y ∈ X ,

K(x, y) = e−
‖x−y‖2
σ2 , with σ > 0 and ‖ · ‖ the euclidean norm.

For m ∈ N, let Em ⊂ RX be the subspace of functions of class Cm

endowed with the topology of the uniform convergence on the compact
subsets of X for all the derivatives of order � m (of general order if m =
+∞). From [21, Proposition 25], for all m ∈ N (and also for m = +∞), H is
a Hilbert subspace of Em. In what follows, we will consider H as a Hilbert
subspace of E = E1.

Let x = (x1, x2) ∈ X , we also use polar coordinates, i.e. x = (rx cosαx,
rx sinαx) with rx ∈ R+ and αx ∈ [0, 2π]. For x ∈ X , we define δx ∈ E′ and
ηx ∈ E′ by

∀f ∈ E, 〈f, δx〉E,E′ = f(x) and 〈f, ηx〉E,E′ =
∂f

∂rx
(x),

δx is the Dirac measure centered on x and ηx corresponds to the evaluation
of the radial derivative at x.

Let C ⊂ R2 be the circle of center 0 and radius R > 0. We consider the
linear subspaces of E′

MD = span {δt, t ∈ C} and MN = span {ηt, t ∈ C}

and MR = MD + MN (D and N stand for Dirichlet and Neumann condi-
tions, R for Robin). The aim of this example is to approximate the kernel
K0R(·, ·) of the subspace H0R of functions h ∈ H such that

∀t ∈ C, 〈h, δt〉E,E′ = 0 and 〈h, ηt〉E,E′ = 0.

Nevertheless, let us remark that what follows contains all the necessary
informations to treat the general interpolation problem associated with H,
an element ϕ ∈ H and MR (see [10]).

We present a two steps methodology. The first step (Section 7.2) consists
in considering independently the interpolation problems in H associated
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with MN and MD. Thanks to the study of a third operator (Section 7.3), we
finally combine our results in Section 7.4 and obtain a model in which both
values and radial derivatives are controlled on the circle (Robin condition).
Numerical computations are finally presented in Section 7.5.

7.2. The two independent problems

Let us introduce the linear subspaces of H naturally associated with MD

and MN :

HMD
= H⊥0D = span {K(t, ·), t ∈ C}H and

HMN
= H⊥0N = span

{
∂K

∂rt
(t, ·), t ∈ C

}H
.

We denote by THMD and KMD
(·, ·) the Hilbert kernel and the reproduc-

ing kernel of HMD
respectively. We use similar notations for the kernels

associated with MN .

7.2.1. Parameterization

Let S = [0, 2π] endowed with its natural Lebesgue measure (up to
the multiplicative constant R) and consider the Hilbert space L2([0, 2π])
of squared integrable real-valued functions (with respect to the Lebesgue
measure) on [0, 2π], endowed with the norm

∀f ∈ L2([0, 2π]), ‖f‖2L2 =

∫ 2π

0

f(θ)2Rdθ.

L2([0, 2π]) will play the role of the auxiliary Hilbert space introduced in
Section 3.

We pose sR,θ = (R cos θ,R sin θ) ∈ C and introduce the parameteriza-
tions

γD : [0, 2π]→MD, θ �→ δsR,θ and γN : [0, 2π] →MN , θ �→ ηsR,θ .

One easily verifies that they implicitly define two regular embeddings FD
and FN of respectively HMD

and HMN
into L2([0, 2π]) (see also Remark

7.2) which are given by

FDh(θ) = 〈h, γDθ〉E,E′ and FNh(θ) = 〈h, γNθ〉E,E′ , for all h ∈ H and θ ∈ [0, 2π].

The associated integral operators LD = FD
tFD and LN = FN

tFN are
defined on L2([0, 2π]) and

LD[f ](α) =

∫ 2π

0

K (xR,α, sR,θ) f(θ)Rdθ, (7.1)
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LN [f ](α) =

∫ 2π

0

∂2K

∂rs∂rx
(xR,α, sR,θ) f(θ)Rdθ, (7.2)

where xR,α = (R cosα,R sinα) ∈ C, α ∈ [0, 2π] and f ∈ L2 ([0, 2π]).

Remark 7.1. — Let x = (rx cosαx, rx sinαx) and y = (ry cosαy, ry sinαy) ∈
X ,

K(x, y) = exp

{
− 1

σ2

(
r2x + r2y − 2rxry cos(αx − αy)

)}
,

∂K

∂rx
(x, y) = − 2

σ2

(
rx − ry cos(αx − αy)

)
K(x, y) and

∂2K

∂ry∂rx
(x, y) =

2

σ2
cos(αx − αy)K(x, y)

+
4

σ4

(
rx−ry cos(αx−αy)

)(
ry−rx cos(αx−αy)

)
K(x, y).

7.2.2. Spectral decomposition

Using for instance some arguments of parity, we obtain that the eigen-
values of LD are, for n � 0:

λDn = Re−
2R2

σ2

∫ 2π

0

e
2R2

σ2 cos θ cos(nθ)dθ.

The ones of LN are, for n � 0:

λNn =

∫ 2π

0

[
A cos θ +B(1 + cos2 θ)

]
e−

2R2

σ2 (1−cos θ) cos(nθ)Rdθ,

with A = 2
σ2 − 8R2

σ4 and B = 4R2

σ4 .

The two operators LD and LN admit the same eigenfunctions. λD0 and
λN0 are of multiplicity 1 and associated with

φ̃0 : [0, 2π] −→ R
α �−→ 1√

2πR

(7.3)

For n � 1, λDn and λNn are of multiplicity 2 and associated with, for
α ∈ [0, 2π],

φ̃cn(α) =
1√
πR

cosnα and φ̃sn(α) =
1√
πR

sinnα. (7.4)
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Remark 7.2. — The two spaces FD(H)
L2

and FN (H)
L2

are the same
and correspond to the linear subspace of 2π-periodic functions of L2

loc(R).
As the set of all eigenfunctions of each operator LD and LN coincides with
the classical discrete Fourier basis, LD and LN do not admit other non-null
eigenvalue.

Concerning the operator LD, one can for instance consult [12] where
similar spectral problems are studied (see also Remark 7.5).

We are now able to express the orthonormal bases of HMD
and HMN

,
associated with FD and FN respectively (see Proposition 3.8). For FD, we
introduce the elements φD0 , φcDn and φsDn ∈ HMD

, n � 1, with for instance

∀n � 1,∀x ∈ X , φsDn (x) =
1

λDn

∫ 2π

0

K(sR,θ, x)
sin(nθ)√

πR
Rdθ. (7.5)

For FN , we introduce φN0 , φcNn and φsNn ∈ HMN
, n � 1, with

∀n � 1,∀x ∈ X , φcNn (x) =
1

λNn

∫ 2π

0

∂K

∂rs
(sR,θ, x)

cos(nθ)√
πR

Rdθ. (7.6)

Examples of numerical computations are presented in Section 7.5. We are
now going to study the behavior on the circle C of this two families of
functions.

7.3. An interesting operator

For xR,α ∈ C, let us consider the values
〈
φN0 , δxR,α

〉
E,E′

,
〈
φcNn , δxR,α

〉
E,E′

and
〈
φsNn , δxR,α

〉
E,E′

for n � 1,

〈
φD0 , ηxR,α

〉
E,E′

,
〈
φcDn , ηxR,α

〉
E,E′

and
〈
φsDn , ηxR,α

〉
E,E′

for n � 1.

It appears that those ones are all linked with the integral operator Jν given
by:

∀f ∈ L2 ([0, 2π]) , Jν [f ](α) =

∫ 2π

0

∂K

∂rs
(xR,α, sR,θ) f(θ)Rdθ. (7.7)

Indeed, we have for instance, for n � 1,

〈
φcNn , δxR,α

〉
E,E′

=
1

λNn

∫ 2π

0

∂K

∂rs
(sR,θ, xR,α)

cos(nθ)√
πR

Rdθ,

〈
φcDn , ηxR,α

〉
E,E′

=
1

λDn

∫ 2π

0

∂K

∂rx
(sR,θ, xR,α)

cos(nθ)√
πR

Rdθ
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and
∂K

∂rs
(sR,θ, xR,α) =

∂K

∂rx
(sR,θ, xR,α). The operator Jν is self-adjoint but

not positive. For, n � 0, its eigenvalues are

ρn =

∫ 2π

0

−2R

σ2
(1− cos θ)e−

2R2

σ2 (1−cos θ) cos(nθ)Rdθ.

We remark in particular that ρ0 < 0. The eigenvalue ρ0 is of multiplicity
1 and is associated with the same eigenfunction φ̃0 than λD0 and λN0 . For
n � 1, the ρn are of multiplicity 2 and are also associated with the same
eigenfunctions φ̃cn and φ̃sn than λDn and λNn . The same argument than the
one used in Remark 7.2 assures that Jν does not admit other non-null
eigenvalue.

The spectrum of the operator Jγ,ν has a particular behavior since the
number of its negative eigenvalues depends of the ratio between R and σ2.
The values of ρn, 0 � n � 30, for R = 3 and σ2 = 2 are presented in
Figure 2.

Concerning the orthonormal basis ofHMN
associated with FN , we finally

obtain, for xR,α = (R cosα,R sinα) ∈ C,
〈
φN0 , δxR,α

〉
E,E′

=
ρ0

λN0
φ̃0(α) and for all n � 1,

〈
φcNn , δxR,α

〉
E,E′

=
ρn
λNn

φ̃cn(α) and
〈
φsNn , δxR,α

〉
E,E′

=
ρn
λNn

φ̃sn(α).
(7.8)

As for the one of HMN
associated with FN , we find

〈
φD0 , ηxR,α

〉
E,E′

=
ρ0

λD0
φ̃0(α) and for all n � 1,

〈
φcDn , ηxR,α

〉
E,E′

=
ρn
λDn

φ̃cn(α) and
〈
φsDn , ηxR,α

〉
E,E′

=
ρn
λDn

φ̃sn(α).
(7.9)

7.4. Double Constraint

We combine the results of the two preceding sections in order to obtain a
model that both takes account of the values of the function and its radial
derivative on C. We present an original way to express the kernel K0R(·, ·)
of the subspace H0R of functions h ∈ H such that

∀t ∈ C, 〈h, ηt〉E,E′ = 0 and 〈h, δt〉E,E′ = 0.

We use Section 7.2 in order to describe the kernels TH0N
ofH0N and TH0D

of
H0D ). We now consider the interpolation problem associated with TH0N

and
MD (arbitrary choice, we could equivalently consider the problem associated
with TH0D

and MN , see Remark 7.4).
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Remark 7.3. — This two approaches consist, roughly speaking, in con-
sidering the two decompositions PH0R

= PH0D
PH0N

or PH0R
= PH0N

PH0D
,

where PH0R
, PH0D

and PH0N
are the orthogonal projections of H onto H0R ,

H0D and H0N respectively.

So, let us consider the kernel K0N (·, ·) of H0N , the subspace of functions
h ∈ H such that ∂h

∂rt
(t) = 0 for all t ∈ C. We recall that

K0N (x, y) = K(x, y)−KMN
(x, y) with

KMN
(x, y) = λN0 φ

N
0 (x)φN0 (y) +

∑

n�1

λNn
[
φcNn (x)φcNn (y) + φsNn (x)φsNn (y)

]
.

Thanks to the parameterization γD and the kernel K0N (·, ·), we define a
regular embedding of HMN

∩ H0N into L2([0, 2π]). We finally obtain the
integral operator LR1 defined by, for f ∈ L2([0, 2π]) and α ∈ [0, 2π]:

LR1[f ](α) =

∫ 2π

0

K0N (xR,α, sR,θ) f(θ)Rdθ.

From the study of the operator Jν (Section 7.3), we obtain that the eigen-
values λR1

n , n ∈ N, of LR1 are given by

λR1
n = λDn −

ρ2
n

λNn
. (7.10)

The eigenvalue λR1
0 is associated with the eigenfunction φ̃0 of equation (7.3),

for n � 1, λR1
n is of multiplicity 2 and associated with φ̃cn and φ̃sn (equation

(7.4)).

We finally introduce the elements φR1
0 , φcR1

n and φsR1
n , n � 1, which are

associated with LR1
ν via Proposition 3.8. Straightforward calculations give

φR1
0 =

1

λR1
0

(
λD0 φ

D
0 − ρ0φ

N
0

)
and for n � 1,

φcR1
n =

1

λR1
n

(
λDn φ

cD
n − ρnφ

cN
n

)
and φsR1

n =
1

λR1
n

(
λDn φ

sD
n − ρnφ

sN
n

)
.

(7.11)

Remark 7.4. — Instead of first considering MN and next MD, one can
operate in an inverse way. This leads to the study of the operator

LR2[f ](α) =

∫ 2π

0

∂2K0D

∂rs∂rx
(xR,α, sR,θ) f(θ)Rdθ,
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which is associated with K0D (·, ·) and MN via the parameterization γN .
Using the results of Section 7.3, we find that the eigenvalues λR2

n , n ∈ N, of
LR2 are

λR2
n = λNn −

ρ2
n

λDn
. (7.12)

λR2
0 is of multiplicity 1 and is associated with φ̃0. λ

R2
n for n � 1 are of

multiplicity 2 and associated with φ̃cn and φ̃sn. We finally obtain

φR2
0 =

1

λR2
0

(
λN0 φ

N
0 − ρ0φ

D
0

)
and for n � 1,

φcR2
n =

1

λR2
n

(
λNn φ

cN
n − ρnφ

cD
n

)
and φsR2

n =
1

λR2
n

(
λNn φ

sN
n − ρnφ

sD
n

)
.

(7.13)

Remark 7.5. — If one conserves the same parameterizations γD and γN
and the same auxiliary space L2([0, 2π]), one can in fact obtain similar
results for any stationary covariance kernel with required regularity (in the
sense that it defines a Hilbert subspace of E = E1) and of the type

K(x, y) =

∫

R
e−iξ‖x−y‖dτ(ξ),

with ‖·‖ the euclidean norm of R2 (and i2 = 1) and where τ is a finite sym-
metric positive measure on R (see the Bochner’s Theorem, for instance in
[6]). In particular, from the same arguments of parity than the ones leading
to the spectral decomposition of the operators LD, LN and Jν of Sections
7.2 and 7.3, we deduce that the eigenfunctions of the integral operators as-
sociated with such a kernel K(·, ·) are still the same functions φ̃0, φ̃

c
n and

φ̃sn, for n � 1, of equations (7.3) and (7.4) (discrete Fourier basis) ; only the
eigenvalues change.

7.5. Numerical application

In this last section, we compute some of the involved quantities for R = 3
and σ2 = 2. All computations have been performed with the free software R
[17]. In particular, the implied integrals have been evaluated by quadrature
(rectangle method).

7.5.1. Spectral computations

We first compute the eigenvalues λDn , λNn and ρn of the operators LD,
LN and Jν for 0 � n � 30. Using equations (7.10) and (7.12), we then

– 472 –



Spectral approach for kernel-based interpolation

directly obtain the values of λR1
n and λR2

n . The results are listed in Figure
2 (we do not represent the eigenvalues λR2

n ).
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λNn
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-0
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0.
0

0.
2

ρn

0 5 10 15 20 25 30

0.
0

1.
0

2.
0

λR1
n

eigenvalues eigenvalues

eigenvalues eigenvalues

Figure 2. — Eigenvalues λDn , λNn , ρn and λR1
n for 0 � n � 30, R = 3 and σ2 = 2.

The second step consists in the computation, thanks to expressions (7.5)
and (7.6), of the orthonormal bases of HMD

and HMN
associated with FD

and FN respectively.

From equation (7.11) and (7.13), we then directly obtain the elements
associated with the operators LR1 and LR2. Examples are given in Figure 3.
As expected, φsR2

1 vanishes on the circle C and the radial derivative of φcR1
8

also vanishes on C.

7.5.2. Approximations by truncation

We now consider approximation by truncation of the different involved
kernels. In each case, we conserve the terms which are associated with the
most important eigenvalues. We use the same notations and numberings
that in Sections 7.2 and 7.4. For l ∈ N∗, we introduce the following truncated
kernels (associated with MD and MN ),
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Figure 3. — Graphs of φD0 (top-left), φcN4 (top-right), φsR2
1 (bottom-left)

and φcR1
8 (bottom-right) on [−5, 5]2, R = 3 and σ2 = 2.

Ktrc
0D (x, y) = K(x, y)−Ktrc

MD
(x, y) where

Ktrc
MD

(x, y) = λD0 φ
D
0 (x)φD0 (y)+

l∑

n=1

λDn
[
φcDn (x)φcDn (y) + φsDn (x)φsDn (y)

]
and

Ktrc
0N (x, y) = K(x, y)−Ktrc

MN
(x, y) where

Ktrc
MN

(x, y) = λN0 φ
N
0 (x)φN0 (y) +

l∑

n=1

λNn
[
φcNn (x)φcNn (y) + φsNn (x)φsNn (y)

]
.
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Such a kernelKtrc
MN

(·, ·) is hence the approximation by truncation ofKMN
(·, ·)

based one the Ntrc = 2l+1 largest eigenvalues of the operator LN . Remark
that for each eigenvalue (of multiplicity 2) λNn , 1 � n � l, we have chosen
to consider the both associated eigenvectors φcNn and φsNn .

We finally define the approximated kernel Ktrc
0R1

(·, ·) given by,

∀x and y ∈ X , Ktrc
0R1

(x, y) = Ktrc
0N (x, y)− λR1

0 φR1
0 (x)φR1

0 (y)

−
l∑

n=1

λR1
n

[
φcR1
n (x)φR1c

n (y) + φsR1
n (x)φsR1

n (y)
]
.

We pose l = 15 and compute the kernel Ktrc
0R1

(·, ·). This approximated kernel
is hence based on the Ntrc = 31 largest eigenvalues of the operators LN and
LR1. Figure 4 shows the sample path of a centered Gaussian process with
covariance Ktrc

0R1
(·, ·) and the graph of the function x �→ Ktrc

0R1
(x, x).
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Figure 4. — Sample path of a centered Gaussian process with covariance Ktrc
0R1

(·, ·)
(left) and Graphical representation of x �→ Ktrc

0R1
(x, x) on [−4, 4]2 (right),

R = 3, σ2 = 2 and Ntrc = 31.

The kernel K0R(·, ·) = K0R1
(·, ·) vanishes on C (in particular K0R1

(t, t) =
0 for all t ∈ C). Concerning its approximation Ktrc

0R1
(·, ·), we deduce from

Sections 7.3 and 7.4 that for all t ∈ C, the value of Ktrc
0R1

(t, t) is constant
and

Ktrc
0R1

(t, t) = Ktrc
0D (t, t) = Ktrc

0N (t, t)− 1

2πR

(
λR1

0 + 2

l∑

n=0

λR1
n

)

= 1− 1

2πR

(
λD0 + 2

l∑

n=1

λDn

)
.

– 475 –



B. Gauthier, X. Bay

For l = 15, we obtain Ktrc
0R1

(t, t) ≈ 1.402309e-06 for all t ∈ C. Additional
considerations concerning this approximation are given in Section 7.5).

As for the radial derivative, we also find a constant value, i.e. for all
t ∈ C,

∂2Ktrc
0R1

∂rx∂ry
(x, y)

x=y=t

=
∂2Ktrc

0N

∂rx∂ry
(x, y)

x=y=t

=
2

σ2
− 1

2πR

(
λN0 + 2

l∑

n=1

λNn

)
.

For l = 15, we obtain
∂2Ktrc

0R1

∂rx∂ry
(x, y)

x=y=t
≈ 1.483913e-05.

7.5.3. Comparison with discretization

In this last section, we focus on the interpolation problem associated
with H and MD and compare the approximations obtained by truncation
and discretization.

Hence, we consider a set ofNdis ∈ N∗ points xR,θk = (R cos θk, R sin θk) ∈
C for k ∈ {0, · · · , N − 1} uniformly distributed on C, that is θk = 2πk

Ndis
. We

then introduce the linear subspace of E′

Mdis
D = span

{
δxR,θk , k ∈ {0, · · · , Ndis − 1}

}
.

We approximate the interpolation problem associated with MD by replac-
ing it by Mdis

D (let us signalize that it is, up to a rotation, the optimal
way to discretize this problem in regards of ‖·‖γ,ν). This finally leads to

the orthogonal decomposition H = Hdis
MD

+Hdis
0D and solutions of this new

discretized problem can be computed by the classical approach of Section
5.1. We denote by Kdis

0D (·, ·) the reproducing kernel of the subspace Hdis
0D .

In order to compare the overall quality of the approximations obtained
by truncation and discretization, we consider the terms

ErrdisD =

∫ 2π

0

Kdis
0D (sR,θ, sR,θ)Rdθ and ErrtrcD =

∫ 2π

0

Ktrc
0D (sR,θ, sR,θ)Rdθ.

(7.14)
We remind that this kind of terms naturally arises when one aims at study-
ing, for instance in the discretization case, quantities of the type (see The-
orem 4.2 and Proposition 6.4)

∥∥∥PHM [ϕ]− PHdis
M

[ϕ]
∥∥∥

2

γ,ν
with ϕ ∈ H.
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Because of the optimality of Ktrc
0D (·, ·) in regards of ‖·‖γ,ν (see Section

6.4), for Ndis = Ntrc, we always have ErrtrcD � ErrdisD (note that these two
terms tend to zero as Ndis and Ntrc approach +∞, see also Figure 5). For
instance, for R = 3, σ2 = 2 and Ndis = Ntrc = 31, we obtain

ErrdisD ≈ 4.438046e-05 and ErrtrcD ≈ 2.64329e-05.
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6
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discretization points
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(sR,θ, sR,θ)

θ �→ Ktrc
0D

(sR,θ, sR,θ)
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0

1.
5

2.
0

2.
5

Ndis and Ntrc

ErrdisD in function of Ndis

ErrtrcD in function of Ntrc

Figure 5. — Graphs of θ �→ Ktrc
0D

(
sR,θ, sR,θ

)
and θ �→ Kdis

0D

(
sR,θ, sR,θ

)

(with θ ∈ [0, 2π]) for Ntrc = Ndis = 31 (left) and values of the terms ErrdisD
and ErrtrcD for 10 � Ndis, Ntrc � 24 (right) with R = 3 and σ2 = 2.

Although the gain in considering truncation instead of discretization
could in this case appear numerically negligible, one has to remark that the
behavior on C of this two kinds of approximation is totally different (see
Figure 5). It can hence be said that truncation leads to a global approxi-
mation on C (with respect to ‖·‖γ,ν) whereas discretization leads to a local
approximation (localized at the discretization points).
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