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Captures, matings and regluings
INNA MAsHANOVA(3) | VLADLEN TIMORIN(!:2)
ABSTRACT. — In parameter slices of quadratic rational functions, we

identify arcs represented by matings of quadratic polynomials. These arcs
are on the boundaries of hyperbolic components.

RESUME. — Dans des tranches de ’espace des parametres de fractions
rationnelles de degré 2, nous identifions des arcs représentés par des ac-
couplements de polyndémes quadratiques. Ces arcs sont contenus dans le
bord des composantes hyperboliques.

1. Introduction

The operation of mating has been introduced by Douady and Hubbard.
Mating can be applied to a pair of polynomials of the same degree, and
gives a continuous self-map (the mating map) of some topological space (the
mating space). In many cases, the mating space is homeomorphic to the 2-
sphere, and the mating map is a branched covering topologically conjugate
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to a rational function. In this paper, we only consider matings of degree 2
polynomials.

Recall that any quadratic polynomial in one complex variable is affinely
conjugate to p.(z) = z%+c for some c. The filled Julia set K, of p. is defined
as the set of all points z € C such that the p.-orbit of z is bounded, and
the Julia set J. as the boundary of K.. The Fatou set of p. is defined as
the complement of J. in the Riemann sphere; its connected components are
called Fatou components. The Mandelbrot set M is the locus of all ¢ such that
K, is connected, equivalently, ¢ € K. Consider two quadratic polynomials
pe. and py such that K. and K. are locally connected, equivalently, J.
and J. are locally connected. In this case, it is well known that there are
Caratheodory loops . : R/Z — J. and v : R/Z — J that semi-conjugate
the map 6 — 26 on R/Z with the maps p. and p. on J. and J., respectively.
Define the mating space X = X as the quotient of K. Ll K. by the
minimal equivalence relation ~=~. . such that z € K, is equivalent to
'€ Ko if z =7.(0) and 2’ = v (—0) for some 0 € R/Z. Since the self-map
of K.UK. acting as p. on K, and as p. on K. takes ~-classes to ~-classes,
it descends to a self-map p. LI pos of the mating space X. This map is called
the topological mating of p, and p. . If a rational function f : CP' — CP! is
topologically conjugate to the topological mating p. LIp./, then this rational
function is called a conformal mating of p. and p..

In this paper, we identify certain arcs in parameter slices of quadratic
rational functions that consist of conformal matings. More precisely, we con-
sider the slices Per(0) consisting of conformal conjugacy classes of degree 2
rational functions f with marked critical points ¢1, co such that f O"“(cl) = .
These slices were first defined and studied by M. Rees [13] and J. Milnor [8].
In his thesis, B. Wittner [19] described an operation that provides topolog-
ical models for many hyperbolic components of Per(0). These are called
capture components. In this paper, we prove that the boundaries of capture
components of Per(0) contain arcs of matings. The main theorems are
Theorem 4.5, 4.7 and 4.8.

Organization of the paper. A significant part of this paper is expository. In
Section 2, we recall the terminology of quadratic invariant laminations [17].
We also use this terminology to give several equivalent definitions of mat-
ings and to describe topological models for captures [13]. In Section 3, we
recall the topological surgery called regluing [18]. Regluing will be used to
redescribe topological models for captures. Finally, in Section 4, we consider
parameter slices Pery(0) of quadratic rational functions. Topological mod-
els for rational functions representing boundary points of some hyperbolic
components in Pery(0) were described in [18] in terms of regluing. Compar-
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ing this description with the description of captures as regluings of matings,
we obtain arcs of matings on the boundaries of capture components.

2. Laminations, matings and captures

In this section, we discuss topological models for quadratic polynomials
and matings of quadratic polynomials. We also define captures.

2.1. Invariant laminations

Topological models for quadratic polynomials can be described in terms
of Thurston’s invariant quadratic laminations in the disk D = {z € C||z| <
1}. We first consider a slightly more general notion.

Let Q be an open simply connected domain in CP!, whose complement
consists of more than one point (hence of infinitely many points). Then 2
is conformally isomorphic to D. We will also assume that the boundary of
Q is locally connected. Then the closure in CP' of any geodesic in Q with
respect to the Poincaré metric on ) consists of the geodesic itself and at
most two limit points of it that belong to 9. The closure of a geodesic in
Q is called a geodesic chord of Q. A geodesic lamination in @ C CP' is a
set of geodesic chords in 2, whose union is closed. Elements of a geodesic
lamination £ are called leaves of L. Let Z and W be prime ends of 2. We
will write (ZW)gq for the geodesic chord of Q connecting the prime ends
Z and W. We allow for Z = W, in which case (ZW)q is defined as the
single point, which is the prime end impression of Z = W, and called a
degenerate leaf of L. For convenience, we will assume that every geodesic
lamination contains all degenerate leaves (ZZ)q. Note that there may be
different prime ends Z # W with the same prime end impression; they still
define a non-degenerate leaf (ZW)gq, which is a closed curve.

Let f : 0 — 0N be any continuous map that extends to the set 2
as a proper orientation-preserving branched covering of degree two. Then
f acts on prime ends of ). We say that a lamination £ in Q is forward
invariant with respect to f if, for every leaf ¢ = (ZW)q € L, the curve
fll] = (f(Z2)f(W))q is also a leaf of L, possibly degenerate. We use the
square brackets in the notation f[¢] to emphasize that this curve is, in
general, different from the image of the curve ¢ under the map f.

We now define the notion of an f-invariant lamination in Q. This is a
forward f-invariant lamination £ that satisfies the following properties: for
every leaf ¢ € £, there is another leaf £ of £ such that f[¢] = f[{], and there
are two leaves 1 and {5 such that f[(1] = f[la] = ¢.
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People usually consider laminations in the unit disk D that are invari-
ant under the map o3 : z — 22. These laminations are called (Thurston)
quadratic invariant laminations. The boundary of the unit disk is the unit
circle S = {z € C||z| = 1}. The unit circle S' is identified with R/Z by
means of the map

0 cR/Z — 0=e* St
If z=a and w = b, then we write ab or zw for the leaf connecting z with
w. In the case 2 = D, we will identify prime ends with points on the unit
circle that are the corresponding prime end impressions.

Let £ be a geodesic lamination in the unit disk, and 2 an arbitrary
simply connected domain in CP!, whose complement contains more than
one point and whose boundary is locally connected. We can transform the
lamination £ into a geodesic lamination in €2 as follows. Let ¢ : D — Q be
a Riemann map. Suppose that we fixed the Riemann map, i.e. we specified
the point ¢(0) and the argument of the derivative ¢’(0). By Caratheodory’s
theory, the map ¢ acts on prime ends, i.e. ¢(z) is a well-defined prime
end in Q for every z € S'. With every leaf £/ = zw € L, we associate the
curve Lo = (¢(2)d(w))q. The set of all such curves is a geodesic lamination
L(Q,¢) in Q. We call this lamination the (¢-)image of the lamination L in
Q. Sometimes, we write simply £() if the choice of the Riemann map is
clear. Clearly, any geodesic lamination in 2 is the image of some geodesic
lamination in the unit disk. Moreover, if f : @ — Q is a continuous map
such that f is holomorphic on €2 and has degree two, and the continuous
extension ¢ : D — ) of a Riemann map ¢ : D — Q semi-conjugates the map
oo on S with the map f|sq, then any f-invariant geodesic lamination in
is the ¢-image of some invariant quadratic lamination.

We now introduce some notions for laminations in the disk. By the
construction just described, they automatically carry over to laminations
in any simply connected domain Q C CP!, whose complement consists of
more than one point, and whose boundary is locally connected. Let £ be
a geodesic lamination in D. Gaps of £ are defined as closures (in CP')
of connected components of D — | J£. The basis of a gap G is defined as
G’ = S' NG. Clearly, a gap is uniquely determined by its basis. Gaps may
be finite or infinite according to whether their bases are finite or infinite. The
lamination L is called clean if, whenever two leaves of £ share an endpoint,
they are on the boundary of a finite gap. If £ is clean, then it defines an
equivalence relation ~ on CP': two different points z and w are equivalent if
they belong to the same leaf or a finite gap of £. One can prove using Moore’s
theorem [6] that the quotient space CP'/ ~ is homeomorphic to the sphere.
Let J. be the image of S' under the quotient projection CP' — C]P’l/ ~. If
L is a quadratic invariant lamination, then the map o9 descends to a self-
map F of J-. Actually, the map F can be extended to the entire sphere
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CP'/ ~ as a branched covering (we keep the same notation F for the
extended map). This branched covering is called a topological polynomial.

Let p.(z) = 2% + ¢ be a polynomial, whose Julia set .J, is locally con-
nected. Then p. is topologically conjugate to a topological polynomial F
corresponding to an invariant lamination £. In this sense, we will say that
the lamination £ models the polynomial p.

Example 2.1. — Consider the quadratic polynomial 22 — 1. Its critical
point 0 is periodic of period 2: 0 — —1 + 0. The lamination £ that models
2% —1 can be constructed as follows. Consider the chord ¢y = %% Note that
oallo] = Lo Set €1 = —{y, i.e. the leaf £; is obtained from £y by the half-turn
around the origin. The chords ¢y and ¢; divide the unit circle into four arcs.
Divide each of these four arcs into four equal parts and connect the 1/4 with
the 3/4 of this subdivision by an arc. In this way, we obtain 6 chords that
divide the unit circle into 12 arcs. Repeat the same operation with each of
these 12 arcs, and so on. All chords that can be obtained by this countable

procedure form a oo-invariant lamination £ that models 2% — 1.

2.2. Critical leaf laminations

Consider a point ¥ in the unit circle. It defines a diameter ¢y of the
unit circle, namely, the geodesic chord connecting the two gs-preimages g

and % of 9. We can now define an invariant quadratic lamination £y as
follows. A pullback of £y is defined as any geodesic chord zw such that, for
some integer m > 0, we have 05" (z)o5™(w) = £y, and for all i < m, the
geodesic chord 05%(2)05t(w) does not cross the leaf £y in D (although it may
have an endpoint in common with £y). Consider the set of all pullbacks of
£y, and also all geodesic chords obtained as limits of pullbacks with respect
to the Hausdorff metric. We obtain a quadratic invariant lamination £y, not
necessarily clean. The lamination Ly is called the critical leaf lamination.

There are two cases, in which the lamination Ly is unclean.

Case 1: one endpoint of ¢y is oo-periodic. In this case, there is an infinite
concatenation of leaves £y, 1, {5, ... of Ly such that ¢; 1 shares an endpoint
with ¢; for every ¢ =0, 1, 2, .... There is also a periodic leaf such that one
of its endpoints is an endpoint of £y, and the other endpoint is the limit
of the leaves ¢; as i — o0o. The infinite concatenation of leaves ¢; is called
a caterpillar. To make the unclean lamination Ly into a clean lamination,
we can apply the cleaning procedure, i.e. remove the caterpillar and all its
pullbacks. What remains is a clean lamination £ called the cleaning of Ly.
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Case 2: no endpoint of ¢, is periodic; however, there are two finite gaps
of Ly such that ¢y is their common edge. In this case, the cleaning of the
lamination Ly is the removal of the critical leaf ¢y and all its pullbacks. Thus
all leaves that survive this cleaning procedure are limits of pullbacks of £y;
they form a clean lamination £§. The lamination £§ has a finite critical gap,
i.e. a finite gap containing a pair of opposite (different by a half-turn) points
on the boundary. It is proved in [17] that this gap is necessarily preperiodic.

Cleanings L of laminations Ly, whose critical leaves have no periodic
endpoints, have the following meaning. Consider a polynomial p. such that
c is in the Julia set J., and the Julia set is locally connected. Then p. is
modeled by the lamination £, where the angle ¥ is chosen so that ~.(¢) =
¢ (there may be several angles satisfying this equality, they give rise to
the same cleaning £§). The cleanings £§ of critical leaf laminations Ly,
whose critical leaves have a periodic endpoint, model polynomials, whose
parameters are in the interior of the Mandelbrot set.

2.3. Matings

An equivalent definition of a topological mating is the following. Let
D¢, and p., be quadratic polynomials with connected and locally connected
Julia sets. Then p., is modeled by some quadratic invariant lamination L1,
and p., is modeled by some quadratic invariant lamination L2. We can draw
the leaves of £1 in the unit disk, and the leaves of Lo in the complement
of D in CP' (which is also a disk), i.e. we consider laminations £; and
L' = L5(CP' — D). The lamination £5(CP' — D) is formed using the map
z = 1/z as the Riemann map for CP' — D. Thus the leaves of £, are
images of the leaves of Ly under the map z +— 1/z. We write £~! instead of
Lopr_p for the image of the leaf £ € Lo. Let ~; be the equivalence relation

associated with £;, and ~9 the equivalence relation associated with £ ! (i.e.
two different points z and w are equivalent with respect to ~o if they lie in
the same leaf or finite gap of L5 1). Finally, let ~ be the minimal equivalence
relation on CP' containing both ~; and ~5. The mating space Xey,co Of Dy
and p,, identifies with the space CP! / ~. Clearly, the image of S* in X, .,
is a quotient of J.,, and, simultaneously, a quotient of J,,. The map oq
descends to a continuous self-map of the quotient space S'/ ~C X, .,.
This map coincides with the restriction of the mating map to S'/ ~. The
set St/ ~, which can also be obtained by pasting the Julia sets J., and
Je, together as described in the introduction is called the Julia set of the
mating. If the mating is topologically conjugate to a rational function, then
the conjugacy takes the Julia set of the mating to the Julia set of this
rational function. Note that this construction explains the minus sign in the
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definition of matings: the image of a point # on the unit circle under the

map z ++ 1/z is the point —6.

The two definitions of matings can be combined into the following non-
symmetric construction. Consider the filled Julia set K., of the first polyno-
mial p.,, and the quadratic invariant lamination Lo that models the second
polynomial p.,. By the Bottcher theorem, there exists a unique Riemann
map ¢, : D — CP' — K., that conjugates the map z ~— 2z? with the
map p., restricted to the basin of infinity. Clearly, ¢., must map 0 to oo.
We can now take the image of the lamination L in the basin of infinity
Qe, = CP! — K., . Taking the quotient of the sphere by the equivalence
relation generated by the lamination £5(f2.,), we also obtain a topological
model for the mating p., Up.,. We will use this non-symmetric construction
below, when discussing topological models for captures.

The non-symmetric construction of matings can be generalized to the
case, where Lo does not necessarily model a quadratic polynomial. Thus
we can talk about a mating of a polynomial and an invariant lamination.
Similarly, we can talk about a mating of two invariant laminations.

2.4. Internal and external angles

Let p.(2) = 2% + ¢ be a polynomial such that the critical point 0 of p. is
periodic of minimal period k. Let A be the Fatou component of p, containing
0. The map p2* takes A to itself. By the Bottcher theorem, there exists a
conformal isomorphism 1 : D — A that conjugates the map z — 22 with the
restriction of p¥ to A. It is well-known that the Julia set of p., as well as the
boundary of any Fatou component of p., are locally connected. Therefore,
the map ¢ admits a continuous extension ¢ : D — A. A point of A of
internal angle s is defined as (). Since A is homeomorphic to the circle,
the map v must be a homeomorphism (as follows e.g. from Caratheodory’s
theory), and then internal angles are in one-to-one correspondence with
points of 0A.

If B is any other bounded Fatou component of p., then there is a minimal
integer m such that p2"™(B) = A. The map p"™ is then a homeomorphism
between the closure of B and the closure of A. Using this homeomorphism,
we define internal angles for the boundary points of B. Thus any point on
the boundary of any bounded Fatou component of p. has a well-defined

internal angle with respect to this bounded Fatou component.

On the other hand, any point z of J. has the form ~.(6) for some angle
6 € R/Z. This angle is called an external angle of z. The same point can
have several different external angles. If the point z is on the boundary of
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some bounded Fatou component of p., then there are two ways of identifying
the point z: 1) we can just specify the external angle of z, and 2) we can
specify the Fatou component, whose boundary contains the point z and the
internal angle of z with respect to this component.

2.5. Captures

Capture is an operation making polynomials into (models of) rational
functions. It was first introduced in the thesis of B. Wittner [19] in 1988.
Similar to matings, captures can be defined in terms of topological mod-
els. However, an easier definition (due to M. Rees [13]) uses combinatorial
equivalence classes. Combinatorial equivalence is a certain equivalence rela-
tion on the set of orientation preserving topological branched self-coverings
of the sphere that are critically finite, i.e. every critical point is eventually
mapped to a periodic cycle (such coverings are called Thurston maps). The
post-critical set Py of a Thurston map f is defined as the minimal forward
invariant set containing all critical values. Two Thurston maps f and g are
called combinatorially equivalent (or Thurston equivalent) if f is homotopic,
relative to the set Py, to a Thurston map hogo h~! topologically conjugate
to g (i.e. h is an orientation preserving self-homeomorphism of the sphere,
and the homotopy connecting f to h o go h™! consists of Thurston maps
with the same post-critical set Py).

Thurston’s rigidity theorem claims that, with few exceptions that can be
explicitly described, any combinatorial equivalence class of Thurston maps
contains at most one rational function. In particular, this is true for hyper-
bolic Thurston maps, i.e. Thurston maps such that every critical point is
eventually mapped to a cycle containing a critical point. Thus a combinato-
rial equivalence class of hyperbolic Thurston maps either contains exactly
one rational function, or contains no rational functions at all. Thurston’s
characterization theorem [2] provides a topological criterion distinguishing
these two cases.

Consider a critically finite polynomial p.(z) = 22 + ¢ such that 0 is
a periodic point of p. of some minimal period k. Let v be some strictly
preperiodic point of p. that is eventually mapped to 0. Then v lies in some
interior component V of K.. Let O(v) denote the forward orbit of v. By
our assumption, 0 € O(v) but O(v) is different from the orbit of 0. Let us
choose a point b on the boundary of V. The operation of capture is almost
determined by the choice of the two points v and b. Let 3 : [0,1] — CP*
be a simple path with the following properties: 8(0) = oo, B8(1/2) = b,
B(1) = v, and the intersection 5[0,1] N J. consists of only one point b. A
path with these properties is called a capture path. What is really enough
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to know to define a capture is the pair of points v, b plus the homotopy
class of the path 5 :[0,1/2] — . U {b} with fixed endpoints. Note that
this homotopy class is determined by the choice of an external angle of b.
This angle will also be called the external angle of the capture path 8. Define
a path homeomorphism og as a self-homeomorphism of the sphere that is
equal to the identity outside a small neighborhood of §[0,1] (i.e. outside a
“narrow tube” around J[0,1]) and such that gg(c0) = v.

Note that og o p. is a topological branched covering, whose homotopy
class relative to O(v) is well defined (provided that the neighborhood of
£[0,1], in which op is different from the identity, is small enough so that
it does not intersect O(v))!. Note also that this covering is critically finite,
with post-critical set O(v) (the critical point oo is mapped to v and then
is eventually mapped to 0). Thus the combinatorial class of o o p. is well
defined. The map ogop, (or rather its combinatorial class) is called a formal
capture of p.. An explicit description of all paths 3, for which the formal
capture is Thurston equivalent to a rational function is known by a result of
Mary Rees and Tan Lei. We will state this result later. A rational function
that is combinatorially equivalent to the formal capture is called a conformal
capture.

2.6. Capture paths define matings

We now start describing topological models for captures. These models,
due to M. Rees [13], reveal a close connection between captures and matings.
Consider a quadratic polynomial p. such that pS*(0) = 0, a capture path
B and points v = (1) and b = 5(1/2). Let ¥ be the external angle of the
capture path .

We now form the critical leaf lamination Ly. In our case, the angle
cannot be periodic:

LEMMA 2.2. — If 9 € R/Z is a periodic angle (with respect to the angle
doubling map), then the point v.(¢) cannot belong to the boundary of a
strictly preperiodic Fatou component of pe.

Proof. — The polynomial p. is modeled by some quadratic invariant
lamination £ in . If the point ~.(¢) belongs to the boundary of some strictly
preperiodic component of p., then the point ¥ belongs to the boundary of
some strictly preperiodic gap G of L. Let m be the period length of .
A certain iterate s of the map o9™ takes G to a periodic gap s(G) (this

(1) Two branched coverings fo and f1 are homotopic relative to a set O if there is a
homotopy ¢¢, ¢t € [0,1] consisting of homeomorphisms such that ¢; = id on O for all ¢,

and ¢g o fo = f1 0 ¢1
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means that the basis G’ of the gap G is mapped under s to the basis of
some periodic gap, which is denoted by s(G)). On the other hand, we have
s(¥) = 9. Since ¥ belongs to the boundaries of two different gaps G' and
5(G), there must be a leaf of £ having ¥ as an endpoint. Let g be this leaf
(if it is not a part of a finite gap) or a finite gap containing this leaf. Edges
of the gap (or leaf) g are defined as leaves on the boundary of g. Vertices of
g are defined as points of gNS*. Then ¥ is one of the vertices of g. Consider
co-oriented edges of g, i.e. edges of g equipped with a choice of an outer side
of g, a side on which there are no vertices of g apart from the endpoints
of the given edge. If g is not a leaf, then co-oriented edges are the same as
edges: for every edge, there is only one outer side. If g is a leaf, then g has
two different co-oriented edges, one for each side of g.

Every gap of £ adjacent to g defines a co-oriented edge of g. Let {g
be the co-oriented edge of g defined by the gap G. Then ¢ is mapped to
Ls(@) but £yq) never maps back to £g under the iterates of s. It follows
that g is eventually mapped under o2 to a finite critical gap of £. However,
a finite critical gap is always strictly preperiodic, as follows from [17]. A
contradiction. [

Since ¥ is not periodic, the endpoints of the critical geodesic chord ¢y =
g% are not periodic either. Therefore, Ly is either a clean lamination with
the critical leaf £y, or an unclean lamination, whose cleaning has a finite
gap containing £y. Consider the lamination L£y(2.). The lamination Ly (£.)
defines an equivalence relation =% 5 on CP'. This is the minimal equivalence
relation such that every leaf and every finite gap of Ly(€2.) belongs to some
equivalence class. The quotient space of CP' by the equivalence relation Re.g
(together with a natural map defined on this space) is the mating p., U Ly
of the polynomial p., and the lamination Ly.

Recall from [17] that £y has a unique finite invariant gap or non-degenerate
leaf. We will call this gap or leaf the central gap of Ly. We can now state
the result of M. Rees and Tan Lei [16]:

THEOREM 2.3. — The Thurston map og o p. is combinatorially equiva-
lent to a rational function if and only if the image of the central gap of Ly
in Ly(2) does not separate the sphere.

We will need the following lemma:

LEMMA 2.4. — Suppose that the image of the central gap of Ly in

Ly(Q) does not separate the sphere. Then no periodic leaf of Ly(Q.) is
a closed curve.
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The statement of the lemma follows from topological models for captures
described in [13], see Subsection 3.1. However, we give a more direct proof
here.

Proof. — We first recall a general statement about orbit portraits. An
orbit portrait can be defined as a oo-periodic cycle of geodesic chords of D
that have no intersection points in . Every orbit portrait O defines a wake
in the parameter plane of complex polynomials. The wake corresponding to
an orbit portrait O consists of all parameter values ¢ such that, for every
ab € O, the external rays of angles a and b in the dynamical plane of the
polynomial p. land at the same point. It is proved in [9] that every wake is
bounded by two external parameter rays that land at the same point (this
point is called the root point of the wake). We say that two orbit portraits
co-exist if they either coincide or have no intersection points in . Note
that every finite gap or leaf, whose vertices are permuted by o9 preserving
their cyclic order, defines an orbit portrait. Orbit portraits obtained in this
way are called principal orbit portraits. Every orbit portrait co-exists with
exactly one principal orbit portrait. This classical statement can be easily
proved either by methods of [9] or using the minor leaf theory of [17]. In
terms of the parameter plane of complex polynomials, this statement means
that every wake lies in a principal wake, whose root point belongs to the
main cardioid of the Mandelbrot set.

Suppose now that some periodic leaf £ of Ly(€2.) is a closed curve. The
corresponding periodic leaf ¢ of Ly defines an orbit portrait O. Since g,
is a closed curve, the geodesic chord £* that is obtained from ¢ by complex
conjugation must belong to the lamination £ that models the polynomial p..
Therefore, the lamination £ contains the conjugate orbit portrait O*. Let
G be the central gap of Ly. It defines a principal orbit portrait, for which
we will use the same letter G. Obviously, G co-exists with O. It follows that
the complex conjugate principal orbit portrait G* co-exists with O*. Since
there is only one principal orbit portrait co-existing with O*, the central
gap of £ must coincide with G*. It follows that the image of the central gap
G of Ly in Q. disconnects the sphere. O

We will now assume that the Thurston map og o p. is combinatorially
equivalent to a rational function. In the next section, we describe a topo-
logical model for this conformal capture due to M. Rees. We will need the
following property of the mating p. LI Ly:

PROPOSITION 2.5. — Let m be the canonical projection from the filled
Julia set K. to the mating space of p. U Ly. If A is the Fatou component
of pe containing the critical point 0, then the restriction of m to the closed
curve OA is a homeomorphism.
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It follows that the Fatou component 7(A) of the mating p. LI Ly has a
Jordan curve boundary. This statement can also be deduced from a theorem
of K. Pilgrim [11].

Proof. — Suppose that the restriction of 7 to A is not one-to-one.

Step 1: the critical gap. Let G be the critical gap of the lamination £
that models p., i.e. the gap of £ containing the origin. Then G is periodic of
period k and symmetric with respect to the origin. Note that ~.(G') = 9A.
There is an edge M of G such that oS¥[M] = M. Moreover, the hole of G
behind M, i.e. the component of S' — G bounded by the endpoints of M and
disjoint from G, is the longest among all holes of G (the opposite leaf —M
is also on the boundary of Gj its hole has the same length; all other holes
have strictly smaller length). These facts are among the basic properties of
minor leaf laminations; they are discussed in [17]. The leaf M is called the
magor leaf of G (and of L), or simply the major.

Step 2: a new invariant lamination. Set G* to be the set obtained from
G by complex conjugation (if we want to place both G and Ly to the same
disk, then we must take complex conjugation of something — either of G
or of Ly). Let M* denote the geodesic chord obtained from the major M
of G by complex conjugation. Our assumption that the restriction of 7 to
0A is not one-to-one translates as follows: there is a leaf or a finite gap
of Ly such that two different points of 0G* are among its vertices. There
is a natural monotone map £ : S' — S! that collapses the closures of all
holes of G* and that semi-conjugates the map o$¥ : 0G* — 9G* (i.e. the
map oS* restricted to the basis of G* and extended over all edges of G*
in a monotone continuous way) with the map oo : St — S!. For every leaf
0 = ab, we set £(£) = £(a)&(b), thus the &-images of leaves are well defined.
Consider the set of £-images of all leaves of Ly. Denote this set by L. It is
not hard to verify that the collection of leaves thus obtained is a quadratic
invariant lamination. It follows from our assumption that the lamination
L is non-trivial, i.e. it contains non-degenerate leaves.

Step 3: the critical leaf. No leaf of L4 can intersect the £-image of the

critical geodesic chord ¢y = g% in D. Note that the geodesic chord £(¢p)
is also a critical chord (i.e. a diameter of the unit circle), whose endpoints
are eventually mapped to the fixed point 0, which is the &-image of M*.
It follows that L is the critical leaf lamination generated by the critical
leaf £(£p). Indeed, the chord £(£y) must eventually map to a geodesic chord

containing 0. However, if an invariant lamination contains any leaf having 0

as an endpoint, then it must contain the leaf @.2 We now need to consider

(2) Among all leaves Oa choose the 01168§%F ‘which @ is the closest to 0. Then the leaf
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two cases: either the leaf £(¢p) coincides with @ or no endpoint of this leaf
is periodic under the angle doubling map.

Case 1: the leaf £(£y) coincides with @ In this case, the critical leaf

lamination generated by 0% is not clean, and all leaves of this lamination
are pullbacks of the critical leaf. It follows that every leaf of L connects
two points that both are eventually mapped to 0, but not simultaneously.
In particular, there is a leaf ¢ of Ly, whose -image coincides with O%.
An endpoint of ¢ that projects to 0 under £ must lie in the closure of the
complementary arc to G* bounded by M*. At the same time, this endpoint
belongs to G* by our assumption. Therefore, it coincides with an endpoint
of M*. Hence the leaf ¢ shares endpoints with M* and with —M™* (the
centrally symmetric to M* leaf with respect to the origin). Thus there is
a quadrilateral such that two edges of it are M™* and —M™*, and the other
two edges ¢ and —/ are leaves of Ly. Both ¢ and —¢ map to 03(¢), and both
M* and —M™* map to o2(M*). Hence o2(¢) = o2(M*). The image of £ in
L(.) is a closed curve, since both endpoints of M map to the same point
under 7.. Moreover, this closed curve is a periodic leaf of Ly(€.), since the
endpoints of M are periodic. This contradicts Lemma 2.4.

Case 2: no endpoint of £({y) is periodic under the angle doubling map. In
this case, the lamination Lq is clean or becomes clean after removal of the
critical leaf and all its pullbacks. It has no infinite gaps, i.e. the entire disk
D is the union of leaves and finite gaps of Lg. It follows that the quotient
of S! by the equivalence relation generated by Lg is a dendrite (i.e. is
locally connected and homeomorphic to the complement of an open dense
topological disk in CP'). Tt follows that w(9A) must also be a dendrite.
This is a contradiction, because the complement to 7(A) contains some
other Fatou components of the mating p. U Ly. |

3. Regluing and topological captures

In this section, we recall the basic properties of regluing, a topological
surgery on rational functions introduced in [18]. We will also relate regluing
to topological models for captures.

3.1. Topological models for captures

We first describe topological models for captures given in [13]. Let p.
be a quadratic polynomial such that pS¥(0) = 0, and 3 a capture path for
p. of external angle ¢. A topological model for the conformal capture of p,

0(2a) will intersect the leaf %(a + %) unless a = 1/2.
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corresponding to the capture path g is perhaps easier to describe in terms
of regluing of the mating p. U L£y. However, we need to know in advance
that the corresponding mating space is homeomorphic to the sphere. We
will prove this statement later using the topological models from [13].

Let £ be the quadratic invariant lamination that models p., and G the
infinite gap of £ that corresponds to the Fatou component of p. containing
the point 5(1). The map o9 : S — S! extends to a Thurston map s. such
that s.(¢) = a3[f] for every leaf ¢ € L. Moreover, we can set s.(z) = 22
outside the unit disk, and arrange that 0 be a critical point of s, such that
5°k(0) = 0. The map s. is combinatorially equivalent to p.. Indeed, the
process of collapsing leaves and finite gaps of £ can be performed continu-
ously, so that there is a homotopy between s, and p. consisting of Thurston
maps. Moreover, the size of the postcritical set does not change during this
homotopy.

We define the point w € G as the center of G, i.e. the unique point in
G that is eventually mapped to 0 under s.. Let v be a simple path that
intersects the unit circle exactly once at the point ¥ = v(1/2) and such
that v(0) = oo, ¥(1) = w. The Thurston maps 0., 0 s. and og o p, are also
combinatorially equivalent. We can assume that the path homeomorphism
0, maps some narrow tube 7" around the curve [0, 1/2] inside the gap G.
Consider Ty = p_}(T). This is a strip (a “tunnel”) connecting two gaps of
L outside the unit disk. Note that the image of 77 under the map o, o s,
is in the unit disk, hence is disjoint from T7. Taking pullbacks of 77 under
the iterates of o, o s., we obtain several disjoint tunnels in CP' —D. It is
easy to see that the tunnels are arranged in the same way as the pullbacks
of the critical leaves in the lamination E;l, i.e. the tunnels can be realized
as slightly fattened leaves (we take only finitely many leaves at a time and
use that the tunnels are narrow enough).

We can now formalize the picture with the tunnels. The mating p.LILy is
modeled by the union ﬁuﬁgl in the sense that, to obtain the mating space,
we collapse all leaves and finite gaps in this union. We now modify the “two-
sided lamination” £U ﬁ;l in the following way. The critical leaf £ Lof Ly !
gets “fattened”, i.e. it is transformed into a quadrilateral, whose sides are
two geodesic chords of CP' —D and two circle arcs (this quadrilateral serves

to model the tunnel Ty). To this end, we need to blow up the endpoints

—g and —% of £5* to circle arcs. We do the same operation with all

the pullbacks of ¢y. As a result, we obtain a geodesic lamination L'(;i) in

the complement of the unit disk. The gaps of E(oi) are ideal quadrilaterals

(whose two sides are geodesic chords and two other sides are circle arcs) or
finite geodesic polygons. Every leaf of £ ! that is not a pullback of £, gives
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rise to a leaf of L(_Oi). It follows that every finite gap of Ly ! gives rise to a
-1
(00)

finite gap of £

The process of blowing up certain points of the unit circle into arcs
can be formalized in the following way. There exists a two-fold orientation-
preserving covering s : S' — S! and a monotone continuous projection
£:S! = S! with the following properties:

e the points @ that have non-trivial fibers £~ (@) are exactly those with
o9™(a) = ¥ for some m > 0;

e the projection £ semi-conjugates s with o, i.e. £0s=090¢&.

Let K be the Cantor set obtained as the closure of the complement in
St of all non-trivial fibers of £. Then K is invariant under s.

With every leaf ab of Ly, we associate one or two geodesic chords of CP! —
D. If the fibers of ¢ over a and b are singletons {a’} and {b'}, respectively,
then we associate the chord a’b’ ~' with ab. Otherwise, we associate two
disjoint chords /b’ ~* and a”b” ' with ab, where @, a”’ are the endpoints of
¢ Ya), and b”, b’ are the endpoints of £~1(b). We can now define a geodesic
lamination E(oi) in CP' — D as the set of all geodesic chords associated with

leaves of Ly in the way just described. The lamination E(Oi) is s-invariant
in the sense of Subsection 2.1.

We can also modify the lamination £ so that to make it into an s-
invariant lamination £(g). The lamination L) is uniquely defined by the
following properties:

e for every leaf ab of L), the geodesic chord £(a)€(b) is a leaf of £;

e let G', G? be two gaps of £, whose bases map to G’ under oy; the
geodesic convex hull of £7H(G'NS'), i = 1,2, is a gap of L q).

In other words, as we blow up a point of the unit circle into an arc, this arc
is inserted to the boundary of an infinite gap of L.

Consider the union of L) and L. It defines an equivalence relation
~ on CP': namely, the minimal equivalence relation containing the equiva-
lence relation generated by L) and the equivalence relation generated by
L (s0)- The map s descends to a self-map g of the subset K/ ~C CP'/ ~.
There is a continuous extension of g to all components of the complement of
K/ ~in CP! / & such that g is a Thurston map. Components of the comple-
ment of K/ = in CP'/ ~ will be referred to as Fatou components of g. We
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can arrange that every Fatou component be mapped to a periodic Fatou
component, and that the periodic Fatou components be super-attracting
domains.

THEOREM 3.1. — The map g defined above is topologically conjugate to
the conformal capture of p. corresponding to the capture path . In partic-
ular, the topological space (CIPI/ ~ 1s homeomorphic to the sphere.

The proof of this theorem is organized as follows. We can extend the
map s to a Thurston map such that s(¢) = o3[f] for every ¢ € Ly and
s(t=1) = oy[¢71] for every ! € E(Oi). Then it can be shown that s is
combinatorially equivalent to o, 0s., hence also to ogop.. A rough geometric
reason for that is the picture with the tunnels discussed above. Next, we
use that a Thurston map combinatorially equivalent to a hyperbolic rational
function is semi-conjugate to this function. This general theorem proved in
[13] is in fact a version of Thurston’s rigidity principle. Thus there is a
semi-conjugacy between s and a conformal capture. Finally, the fibers of
the semi-conjugacy can be studied, and it can be proved that the fibers are
precisely leaves and finite gaps of the two-sided lamination £y U ﬁ(oi).

Theorem 3.1 has the following immediate corollary.

COROLLARY 3.2. — The mating space of p. U Ly is homeomorphic to
the sphere.

Proof. — The mating space is obtained from the space CP* / =~ by col-
lapsing the images of all ideal quadrilaterals. Hence the result follows from
the theorem of Moore [6] that characterizes topological quotients of the
sphere that are homeomorphic to the sphere. O

3.2. Regluing

Consider a countable set Z of disjoint simple curves in the sphere S2.
Recall that Z is said to be a null-set if, for every € > 0, there exist only
finitely many curves from Z, whose diameter is bigger than . To measure
diameter, we can use any metric compatible with the topology of the sphere.
It is easy to see that the notion of a null-set does not depend on the choice of
a metric. In fact, the notion of a null-set can be stated in purely topological
terms. Namely, Z is a null-set if, for every open covering U of S?, there
exist only finitely many curves from Z that are not entirely covered by an
element of U.

Regluing data on Z are the choice of an equivalence relation on each
curve Z € Z such that there exists a homeomorphism h : Z — [—1,1]
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that transforms this equivalence relation into the equivalence relation on
[—1,1], whose classes are of the form {+z}, = € [0,1]. To define regluing,
we need a null-set of disjoint simple curves Z and a choice of regluing data
on them. We first cut along the curves in Z, and then reglue these curves
in a different way. To cut along finitely many curves Zi, ..., Z, means to
consider the Caratheodory compactification of the set U,, = S% — U?:l Z;,
i.e. the union of the set U,, and the set of all prime ends of U,, equipped
with a suitable topology. This is a formalization of an intuitively obvious
process: as we cut a surface with boundary along a curve disjoint from the
boundary, we obtain a new piece of the boundary, which is a simple closed
curve. Thus cutting along finitely many disjoint simple curves in the sphere
leads to a compact surface with boundary. In fact the definition works even
in the case, where the curves are not disjoint.

We need to be careful when defining a sphere with countably many cuts.
Suppose that Z consists of curves Z1, ..., Z,, .... Let Y,, be the result of
cutting along the curves 71, ..., Z,, i.e. the Caratheodory compactification
of U, = S2 —U?Zl Z;. The natural inclusion ¢,, : U,4+1 — U, gives rise to the
continuous map tn. : Yni+1 — Y, (which is not an inclusion). Let ¥ be the
inverse limit of the topological spaces Y,, and the continuous maps ¢,,«. The
space Y is called the sphere with cuts (made along the set Z of curves). We
will sometimes use the notation S2 & Z for Y. In fact, we never used in the
definition of Y that curves are disjoint and that they form a null-sequence.
Thus Y is well defined even without these assumptions. We will need these
assumptions to glue the cuts. We will also need the regluing data.

Every curve Z € Z gives rise to a simple closed curve Z© obtained
by cutting along Z. Recall that the regluing data contains an equivalence
relation on Z such that there is a homeomorphism between Z and [—1,1]
mapping every equivalence class onto {£z} for some x € [—1,1]. There
are two marked points in Z© that project to the endpoints of Z. We can
now define an equivalence relation on Z© as follows: two points of Z© are
equivalent if their projections in Z are equivalent, and they are not separated
by the marked points of Z©. Thus the sphere with cuts Y comes equipped
with equivalence relations on all the cuts. These equivalence relations extend
trivially to an equivalence relation on the entire space Y. The quotient Y*
of Y by this equivalence relation is called the regluing of the sphere S
along the null-set of disjoint curves Z, equipped with regluing data. We will
sometimes use the notation S?#Z for this regluing.

It can be shown using Moore’s characterization [5] of a topological sphere
that the topological space Y* is homeomorphic to the sphere (see [18]). Thus
we reglued a topological sphere and obtained another topological sphere.
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This operation becomes useful, however, when we have a geometric struc-
ture on the sphere. Then the regluing may produce a different geometric
structure.

A continuous map f : S? — S? acting on the sphere can be thought
of as a geometric structure. Geometrically, we can think that the sphere is
equipped with arrows connecting every point z € S? with the point f(z).
We now assume that f is an orientation preserving topological branched
covering, and see what happens with arrows when we reglue. Cutting along
a curve creates problems as we cut through the tips of some arrows. These
arrows get doubled, and we obtain two different arrows originating at the
same point. To rectify this issue, we also need to cut along the pullbacks
of the curve, i.e. along components of its full preimage under the map f.
Hence, if we cut along a curve, we also need to cut along all pullbacks.

Suppose that f : S2 — S? is a topological branched covering, and ay :
[0,1] — S? a simple path such that a(0) is a critical value of multiplicity
one, and there are no other critical values in a0, 1]. Then there is a simple
path a; : [-1,1] — 52 such that foay(t) = ag(t?). The point a (0) must be
a critical point of f. The path «; defines the curve Z; = a1[—1, 1] together
with an equivalence relation on Z; identifying aq(t) with aq(—t) (in other
words, two points in Z; are equivalent if they are mapped to the same point
under f). Let Z be the set of all pullbacks of Z;. We will write Z = [ayg].

Suppose that every element Z € Z is mapped to Z; one-to-one under a
suitable iterate of f. Suppose also that Z is a null-set consisting of disjoint
curves. Under these assumptions, the space Y* defined above makes sense,
and there is a natural map F' : Y* — Y™ called the regluing of f. We started
with a topological dynamical system on the sphere, performed a regluing,
and obtained another topological dynamical system on the sphere. We say
that the dynamical system F : Y* — Y* is obtained from f : S? — S2 by
regluing the pullbacks of the path ag. As we frequently think of the map
f: 5% — 82 as a geometric structure on the sphere, we write (S2, f) to
indicate that S? is equipped with this structure, and we sometimes write
(S%, f)#Z or (S?, f)#[ao] for (Y*, F), the space Y* equipped with the
map F.

3.3. Captures vs. regluing

Let p. be a quadratic polynomial such that p2*(0) = 0, and 3 a capture
path for p. of external angle ¥. We assume that the Thurston map ogop, is
combinatorially equivalent to a rational function H, equivalently, the cen-
tral gap of Ly(2.) does not disconnect the sphere. We know by Corollary
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3.2 that the mating space of p. LI Ly is homeomorphic to the sphere. Recall
that the Julia set of the mating p. U Ly is defined as the projection of J,
under the quotient map 7 collapsing all leaves and finite gaps of Ly(£.).
The complement of the Julia set is called the Fatou set. Connected compo-
nents of the Fatou set are called Fatou components. We will now describe a
topological model for the rational function H in terms of the mating p.U Ly
and regluing.

Let V be the interior component of K. containing the point v = 8(1).
The restriction of 7 to V' is a homeomorphism. Moreover, m(V) is a Fatou
component of the mating p. Ll £y containing the critical value 7(b) on its
boundary, where b = 3(1/2) as above. Let g : [0,1] — m(V') be any simple
path such that ag(0) = 7(b) (the critical value of the mating), ao(1) = m(v)
(the center of the Fatou component 7(V)), and a(0,1) C (V). E.g. we
can define ag as a suitably reparameterized restriction of 7o 8 to [1/2,1].
Consider the corresponding topological dynamical system F : Y* — Y*
obtained by regluing the pullbacks of a (up to topological conjugacy, it does
not depend on the choice of «g, provided that «g satisfies the requirements
listed above).

THEOREM 3.3. — The conformal capture H is topologically conjugate to
the regluing F of the mating p. U Ly.

The proof is straightforward and can be easily performed by a detailed
comparison of the two topological models. We only give a sketch here.

Sketch of a proof. — First we replace the capture H with its topological
model g described in Subsection 3.1. Note that there is a semi-conjugacy
between the dynamics of g on the set K/ ~ and the dynamics of the mating
pe U Ly on its Julia set. Let h denote this semi-conjugacy. The fiber h=1(x)
of h over any point x in the Julia set of the mating is either a singleton or
a pair of points. Namely, h~!(z) is a pair of points precisely if x is mapped
to the critical value 7(b) of the mating under some strictly positive iterate
of the mating map. Thus the topological model for g : K/ =~— K/ =~ is
easy to describe in terms of the action of the mating map on its Julia set by
doubling certain points. Note that the regluing does exactly the same thing
with the dynamics on the Julia set. Thus g : K/ ~— K/ = is topologically
conjugate to the restriction of the regluing to the image of the Julia set
under the regluing. It remains to extend the topological conjugacy over all
components of CP'/ ~ —K/ =, which is straightforward. d

Thus the map F' obtained from p. U Ly by regluing is a topological
model for the capture. Note that many different paths give rise to the same
capture. Hence we obtain many topological models for the same capture. It

- 895 —



Inna Mashanova, Vladlen Timorin

is not at all obvious that these models are topologically conjugate unless we
use that they are all conjugate to the capture. We would be interested to
know a direct proof of the topological conjugacy between the models.

3.4. Reversed regluing

The operation of regluing is reversible. Consider a null-set Z of simple
disjoint curves in S?, equipped with regluing data. Regluing of this set yields
a topological space Y* = S?# Z homeomorphic to the sphere. Actually, it
yields more than that. We also obtain a null-set Z# of simple disjoint curves
in the space Y* equipped with regluing data. Namely, we define Z# as the
set of images of all cuts under the natural projection from Y to Y*. Thus
the curves in Z# are in one-to-one correspondence with the curves in Z.
Given any Z € Z, we first cut it to obtain a simple closed curve Z© and then
glue it back in a different way to obtain the corresponding curve Z# € Z#,
There are natural projections from Z° to Z and to Z#. We can now define
an equivalence relation on Z# in terms of these projections. Namely, two
points of Z# are equivalent if they are projections of points, whose images
in Z coincide. These equivalence relations define regluing data on the set of
curves Z%. In particular, we can consider the regluing (S?#2Z)# Z#. This
topological space is canonically homeomorphic to S2.

Suppose now that the sphere S? is equipped with a topological branched
covering f : S? — S% and Z = [a], where a simple path aq is as in
Subsection 3.2. Then, after regluing, we have Z# = [a#], where the path a#
is obtained as the image of the path g in the space S?#Z (the multivalued
correspondence between points of $2 and points of S?#Z is in fact single
valued on [0, 1] since this set is disjoint from all the cuts). We have

(S2,f) = (% f)#leo))#[af].

This means that, to recover (S2, f) from the regluing (S?, f)#Z, we only
need to reglue the set of curves [of].

4. Captures and matings in parameter slices

We now consider some natural complex one-dimensional parameter spaces
of rational functions, and discuss parameter values that correspond to cap-
tures and matings. Recall now that any rational function f : CP' — CP!
of degree at least two defines the splitting of the Riemann sphere into the
Fatou set and the Julia set. However, these sets are not defined in the same
way as for polynomials, because infinity is no better than any other point
of the sphere, when a non-polynomial rational function acts. By definition,
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the Fatou set of f consists of all points, at which the map f is Lyapunov
stable, equivalently, the sequence f°" is equicontinuous. The Julia set is by
definition the complement to the Fatou set.

4.1. The slices Pery(0)

Consider the space Rats of conformal conjugacy classes of all quadratic
rational functions with marked critical points. This space is complex two-
dimensional: a quadratic rational function is determined by five coefficients,
and the group Aut((CIP’l) of conformal automorphisms of the Riemann sphere
has complex dimension three. Thus the dimension of the space Rat, equals
the number of critical points a quadratic rational function has, and this is
not a mere coincidence. It is a general observation in holomorphic dynamics
that the behavior of critical orbits is to a large extent responsible for the dy-
namical behavior of the whole map. There are a number of theorems to this
effect saying roughly that if all critical orbits behave nicely, then the func-
tion itself is nice from the dynamical viewpoint. For example, if all critical
orbits are attracted by attracting cycles, then the function is hyperbolic, i.e.
1) there exists a neighborhood of the Julia set and a Riemannian metric on
this neighborhood such that the restriction of the function to the Julia set is
strictly expanding with respect to this metric, 2) there exists a Riemannian
metric on the Fatou set, in which the function is strictly contracting.

To simplify the model (and to make nice pictures) people consider com-
plex one-dimensional slices of Rats. To define the slices, one fixes a particular
nice behavior of one critical point, so there remains only one “free” critical
point. E.g. one can impose that one critical point is periodic of period k. We
let Pery(0) denote the corresponding slice, following J. Milnor [8] (0 in the
notation stands for the multiplier of a k-periodic point: having a periodic
point of multiplier 0 is the same as having a periodic critical point). More
precisely, the space Per(0) is defined as the set of all conformal conjugacy
classes of rational functions f with marked critical points ¢, co such that
f°%(c1) = ¢1, and k is minimal with this property. Clearly, each Per(0) is
an algebraic curve in the algebraic surface Rats. For k =1, 2, 3 and 4, the
genus of this curve is equal to zero, i.e. there is a rational parameterization.

If £ = 1, then one critical point must be fixed. By a conformal coordinate
change, we can map this point to infinity. A rational function, for which the
infinity is a fixed critical point, is necessarily a quadratic polynomial. By
an affine change of variables, the coefficient with z can be killed, so that
every quadratic polynomial reduces to the form 22 + ¢. Thus Per;(0) can
be identified with the standard quadratic family {22 + c}.
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Consider the case k = 2. Any conjugacy class from Pers(0) that does
not contain the map z + 1/z? has a unique representative of the form
2+ a/(2%+2z). Thus Pery(0) can be identified with the a-plane punctured
at 0, to which we need to add a single point at infinity corresponding to the
class of the map 1/22. Rational parameterizations for Perz(0) and Pery(0)
are also easy to obtain.

4.2. Hyperbolic components

The set of elements in Pery(0) representing hyperbolic functions is open.
Connected components of this set are called hyperbolic components. J. Mil-
nor [8] gave a classification of hyperbolic components in Pery(0) into four
types: A, B, C and D. Hyperbolic elements in Per(0) of type A are classes
of rational functions such that both critical points c; and ¢; are in the same
super-attracting domain (i.e. ¢z lies in the Fatou component containing cy).
It can be proved that there are no type A components for k > 1, and the
space Per1(0) has just one type A component that is identified with the
complement of the Mandelbrot set. Hyperbolic elements in Per(0) of type
B are classes of rational functions such that the free critical point co lies
in a periodic Fatou component, whose cycle contains ¢; but which itself
does not contain ¢;. Every slice Pery(0) contains a finite number of type B
hyperbolic components (this number is nonzero unless k& = 1). Hyperbolic
elements of Per(0) of type C are classes of rational functions such that the
free critical point co lies in a strictly preperiodic Fatou component that is
eventually mapped to the component containing ¢;. For all k£ > 1, the slices
Pery(0) contain infinitely many hyperbolic type C components. Finally, hy-
perbolic elements of Per(0) of type D are classes of rational functions such
that ¢; and co lie in disjoint periodic cycles of Fatou components. All slices
Per(0) contain infinitely many hyperbolic type D components.

It follows from [4] that every hyperbolic component in Per(0) of type
B, C or D has a unique center, i.e. a critically finite conjugacy class. A
conformal mating of two hyperbolic critically finite quadratic polynomials
represents the center of some type D hyperbolic component in Per(0).
Similarly, a conformal capture of a hyperbolic critically finite quadratic
polynomial represents the center of some type C hyperbolic component.
However, the converse is not true in general. It is true for Pers(0) but,
in the slice P@T‘g(O), there are type D components, whose centers are not
matings, and there are type C components, whose centers are not captures.
Examples are given in [8, Appendix F by J. Milnor and Tan Lei], [14],
respectively. We say that a hyperbolic component of type C is a capture
component if its center is a conformal capture.
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4.3. Regluing and type C boundaries

In [18], topological models were given for classes in Per(0) that lie on
the boundaries of type C hyperbolic components. These models were defined
in terms of regluing. We now cite the result:

THEOREM 4.1. — Suppose that the class of a rational function f belongs
to the boundary of a type C hyperbolic component H in Perg(0) but does
not belong to the boundary of a type B component. Then f is topologically
conjugate to a map obtained from the center of H by regluing.

We now make this statement more precise. Suppose that a rational func-
tion f represents a point in the parameter slice Pery(0) lying on the bound-
ary of ‘H but not lying on the boundary of a type B hyperbolic component.
Then it can be shown ([18, Subsection 3.3], which imitates an argument
from [1]) that the critical point ¢y of f belongs to the boundary of some
Fatou component W that is eventually mapped to a Fatou component con-
taining ¢;. The critical value f(cz) belongs to the boundary of f(W). There
are two components of f~1(f(W)), say, W and W. The boundary of each
of the two components contains the critical point cy. It may also happen
that there are more than two Fatou components, whose boundary contains
cy. Equivalently, there may be more than one Fatou component, whose
boundary contains f(cz). However, the choice of the component f(W) is
determined by the choice of a hyperbolic component #, as is explained in
[18, Subsection 3.3].

Let m be the minimal positive integer such that f° (W) > ¢;. The Fatou
component W has a unique center, i.e. a point zy, such that f°(zy) = ¢;.
We now consider a simple path ag : [0,1] — f(W) such that ao(0) =
fle2), ao(l) = f(zw), and ap(0,1) C f(W). Such a path exists because
the boundary of f(W) is locally connected (see [1, 18]). There is a unique
simple path oy : [~1,1] — CP* such that foa;(t) = ao(t?) for all t € [-1,1].
Then a4 (0) must coincide with the critical point cz. We can now reglue the
path a; and all its pullbacks according to the construction given above.
Let H be a hyperbolic critically finite rational function representing the
center of #. Then (CP', H) is topologically conjugate to (CP', f)#[a).
Since regluing is reversible, we can also obtain the topological dynamical
system (CP', f) as a regluing ((C]P’l,H)#[a#]. Here the simple path a# :
[0,1] — CP' connects the non-periodic critical value of H to a boundary
point of the Fatou component containing it. This statement is a more precise
form of Theorem 4.1 cited above.
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4.4. Angles on the boundaries of capture components

Let H be a capture component, i.e. a type C hyperbolic component in
Peri(0), whose center is a capture. Every point of 0H that is not on the
boundary of a type B component is determined by its angle. Let f be a
rational function representing this point of the parameter slice. Then the
critical value f(cg) of f belongs to the boundary of a Fatou component
f(W) that is eventually mapped to the Fatou component containing c;.
Moreover, as was mentioned above, the choice of the Fatou component f (W)
is determined by the choice of the type C component H, whose boundary
contains the class of f.

Angles of points on the boundary of f(W) are defined similarly to in-
ternal angles in polynomial case. By the Bottcher theorem, there exists a
bi-holomorphic map ¢ : D — f°™(W) that conjugates the map z +— 22
with the restriction of the map f°F to f°(W). Here m is the minimal
integer such that f°™(W) > ¢;. Since the boundary of f° (W) is locally
connected, there is a continuous extension ¢ : D — fom(W). The point
of angle » € R/Z on the boundary of f°™(W) is by definition the point
(7). The point of angle s € R/Z on the boundary of f(W) is by def-
inition the point z € df(W) such that f°~1(z) is the point of angle s
on the boundary of f°™(W). Since the boundary of f(W) maps one-to-one
onto the boundary of f°™(W) under f°™~!, the point of angle » on the
boundary of f(W) is well defined.

Recall that a set Ay C CP' depending on a parameter \ (taking values
in a Riemann surface A) moves holomorphically with X if there is a subset
A C CP' and a map (a,\) — tr(a) (a holomorphic motion) from A x A to
CP* that is holomorphic with respect to A for every fixed a € A, injective
with respect to a for every fixed A € A, and such that ¢t)(A4) = A, for every
A € A. A theorem, sometimes called the A\-lemma, of Mafie, Sud and Sullivan
[7] claims that if Ay moves holomorphically with A, and ¢y, is a quasi-
symmetric embedding for some Ap € A, then all ¢y are quasi-symmetric
embeddings; moreover, the closure Ay also moves holomorphically with A.

Let A € Perg(0) be a parameter value, and f) a rational function repre-
senting A. Suppose that f = f\,. At least for the values of A that are close
to Ag, we can choose representatives so that f) depends holomorphically
on A. There is a holomorphic motion that includes the sets Vy = fy(W)
such that V), = f(W), and V), is a Fatou component of f (see the proof
of Proposition 4.2 that follows for more detail on this holomorphic motion).
By the A-lemma, the boundaries V) also move holomorphically. We can
continue this holomorphic motion all the way up to the center A of the hy-
perbolic component H. As follows from the topological model for captures,
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the boundary of fy,(Wy,) is homeomorphic to the boundary of a periodic
Fatou component in the mating p.LILy. On the other hand, by the holomor-
phic motion argument, the boundary of fy,(W),) is homeomorphic to the
boundary of f(W). Therefore, by Proposition 2.5, the boundary of f(W)
is a Jordan curve. It follows that different angles cannot correspond to the
same point on the boundary of f(W), i.e. every point on the boundary of
f(W) has a well-defined angle.

We can now define the angle of the point in OH represented by f as the
angle of the critical value f(co) in 9f(W) (in the sense just described). If
BB denotes the union of all type B components, then the angle is a function
on OH — B with values in R/Z.

PROPOSITION 4.2. — The angle is an injective continuous function on
oM — B.

We need the following simple lemma (cf. also [1]):

LEMMA 4.3. — Let z\ € CP! be a point, and Ry C CP* be a set. Suppose
that both z) and Ry are moving holomorphically with A € A. If zy, € Ry,
for some Ay € A, then we either have z\ € Ry for values of A arbitrarily
close to Ao, or zx € Ry — R for all X sufficiently close to Ag.

Proof. — Let ¢ : R x A — CP! be the holomorphic motion of Ry so
that Ry = tz(R) for all A\ € A. We assume that R ¢ CP' and 1y, is a
homeomorphic embedding. By the A-lemma, ¢ extends to a holomorphic
motion 7 : B x A — CP'. Consider the holomorphic functions z) and wy =
Zx(ro) of A, where rg € R is the point such that 7y, (rg) = 2,. By definition,
the holomorphic function z) —wy of A vanishes at A = A\g. As A goes around
the circle [A — Ag| = &, the point z) — w) makes at least one loop around
0, unless z) = w) identically for A in some neighborhood of A\g. Therefore,
for r € R very close to rg, the point z) — ¢, (r) also makes at least one loop
around 0. We conclude that the function z) — ¢x(r) vanishes for some A in
the disk |A — Ao| < e. O

Proof of Proposition 4.2.— Let A € Pery(0) be a class of rational func-
tions, and f) a rational function representing A. We can choose represen-
tatives f, at least locally, so that that they depend holomorphically on A.
We let Ay denote the immediate basin of the periodic critical point ¢} of
f, i.e. the Fatou component of f containing c;. We know that A, moves
holomorphically with A. More precisely, the bi-holomorphic isomorphism
¥y : D — A, conjugating the map z — 22 with the restriction of f)\Ok to Ay
is a holomorphic motion.
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Define the ray of angle 6 in Ay as the set of all points Ry(¢,0) =
Ya(e~t+29)  where ¢ runs through (0,00) (this ray will sometimes be de-
noted by Ry (0)). If fy is hyperbolic, then every ray lands, i.e. there exists
a limit of Ry (¢,0) as t — 0. By the A-lemma, the closure Ry(6) of every ray
moves holomorphically with A\ € A = Perj(0) — B. We denote the corre-
sponding holomorphic motion by 1. It follows that the ray Ry (0) always
lands at the point 1, (6).

Suppose that, for every A € H, the non-periodic critical point ¢ belongs
to some Fatou component W) such that f{™(Wy) = A,, and m is the
smallest positive integer with this property (clearly, the number m does not
depend on the choice of A in H). Consider the map A — ¥ ' (f2™(c3)).
This is a holomorphic map from H to D. It is proved in [12] that this map
is actually a bi-holomorphic isomorphism between H and . Let ¥4 denote
the inverse of this map.

Define the parameter ray Rq4(0) in H as the set of all points of the
form Ry (t,0) = Uy (e t+279) where ¢t € (0,00). We will now prove that
every point Ao € OH — B is the landing point of exactly one parameter ray.
Indeed, the non-periodic critical point cg‘o of fy, has a well-defined angle
0, i.e. f;’g”(cg‘o) € R),(0). Both the point f3™(c3) and the set Ry (f) move
holomorphically with A. By Lemma 4.3, the point \g is an accumulation
point of the parameter ray Ry (), i.e. a partial limit of R (¢,0) as t — 0.
A point A\ in OH — B of angle 6 is a zero of the holomorphic function

A R (ey) — 1y (27,

Since this function is not constant, its zeros must be isolated. Therefore,
there are no other points of angle 6 in a neighborhood of Ay in A. On the
other hand, by [18, Proposition 5], all accumulation points of the parame-
ter ray Ry;(0) must have angle 0. Since the set of accumulation points is
connected, the ray Ry (f) must land at \g. Since any parameter ray can
only land at one point, we obtain that the angle is an injective function on
OH — B. The continuity of this function follows from the fact that a zero of
a holomorphic function depending continuously on parameters moves con-
tinuously with respect to parameters. ([

COROLLARY 4.4. — Suppose that H is a capture hyperbolic component,
whose closure is disjoint from B. Then the angles establish a homeomor-
phism between OH and R/Z.
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4.5. Identification of matings

As above, let 1 be a capture hyperbolic component in Pery(0) with
center A1 (we will write H = f, for the corresponding capture), and f = fj,
a map representing a point A\g on the boundary of H. Suppose that this point
is not on the boundary of a type B component, and suppose also that this
point has angle > in JH. We know that the dynamical system ((CIP’l, f)is
obtained from the dynamical system (CP', H) by regluing the system [ao#}
of curves, where the simple path a# connects the non-periodic critical value
H(cy') of H lying in some Fatou component H(Wy,) with the boundary
point of this Fatou component of angle .

On the other hand, (CP*, H) is obtained by regluing from the topological
mating p. U Ly for various values of . The capture path determines both
an external angle ¥ and and the internal angle s of the point b = 3(1/2).
We will say that 8 is a capture path of internal angle ». Note however,
that, in contrast to external angle, knowing the internal angle and the Fatou
component of p, containing the point v = (1) may not uniquely determine a
capture path. Suppose that the angle s is equal to the angle of the point \g €
OHM. Then the path that was used to reglue the mating into (CP', H) was
a suitably reparameterized restriction g : [1/2,1] — K. The corresponding
path in ((C]P’l, H) that appears after the regluing is a simple path connecting
the critical value H(cy") with the point on the boundary of H(Wy,) with
angle s¢. Therefore, the reverse regluing of (CP*, H) into the mating p. L Ly
is the same as the regluing of (CP', H) into (CP', f)! It follows that the
results should also be the same, up to topological conjugacy. We have thus
proved the following

THEOREM 4.5. — Let p. be a quadratic polynomial such that the critical
point 0 of p. is periodic of minimal period k, and 8 : [0,1] — CP! a capture
path for p. of external angle ¥ and internal angle ». Suppose that ogop. is
combinatorially equivalent to a rational function H. If H is the hyperbolic
component in Pery(0), whose center is represented by H, and a rational
function f represents a boundary point of H of angle s not lying on the
boundary of a type B hyperbolic component, then f is topologically conjugate
to the mating p. U Ly.

We can make this theorem more precise.

PROPOSITION 4.6. — The lamination L models some quadratic polyno-
mial.

Proof. — The statement will follow if we prove that, in the parameter
plane of complex polynomials, the external ray of angle ¢} lands at a unique
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point of the Mandelbrot set, and the quadratic polynomial corresponding to
this point has locally connected Julia set. By the theorem of Yoccoz on local
connectivity (see e.g. [10]), actually, by a simple version of it, this is true
if the critical leaf or gap g of £§ is non-recurrent, i.e. no iterated o»-image
of ¢’ intersects a small neighborhood of g’. Recall from Subsection 2.1 that
the basis of a gap g is defined as ¢’ = g NS

If £ has a critical gap rather than a critical leaf, then this critical gap
must be preperiodic, hence it is not recurrent. We now assume that £ has a
critical leaf ¢y, hence L = Ly. Let £ be the quadratic invariant lamination
that models the polynomial p.. We will write G' and G? for the strictly
preperiodic gaps of £ that contain the endpoints of £j. The bases of the
gaps G! and G2 map to the basis of a strictly preperiodic gap G of L. If £}
is recurrent, then the gap G contains a recurrent point or a recurrent edge.
Since the forward orbit of G contains only finitely many gaps and since two
intersecting gaps have always an edge in common, there are no recurrent
points in G that are not in edges of G. Every edge of GG is eventually periodic.
However, it follows from Lemma 2.2 that all edges are strictly preperiodic,
hence non-recurrent. O

It follows that the conclusion of Theorem 4.5 can be made stronger:
the rational function f is topologically conjugate to the mating of p. with
some quadratic polynomial! The next question is: given a capture hyperbolic
component H in Perg(0), how many of the boundary points of H correspond
to matings? We will see that, in some cases, all boundary maps correspond
to matings, and in some cases, there is a simple arc on the boundary of H
consisting of matings.

4.6. End-captures and cut-captures

We now discuss how much a capture depends on the choice of a capture
path. Let p. be a quadratic polynomial such that 0 is periodic of minimal
period k, and 3 : [0,1] — CP' a capture path for p.. Note that the combi-
natorial class of the Thurston map o3 o p. depends only on the homotopy
class of the path g relative to the forward orbit of the point v = 5(1) (this
forward orbit is a finite set by definition of a capture path). Let V be the
Fatou component of p. containing the point v. Define limbs of V' as the
closures of the components of the complement of V in the filled Julia set
K,.. As was noted in [14], the iterated forward images of v under p. are
contained in only one or two limbs of V. In the first case, we say that 3 is
an end-capture path. In the second case, we say that 3 is a cut-capture path.
A rational function (if any) combinatorially equivalent to og o p. is called
an end-capture or a cut-capture according to whether 5 is an end-capture
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path or a cut-capture path. Let us first consider a hyperbolic component in
Pery,(0) corresponding to an end-capture.

THEOREM 4.7. — Let H be a hyperbolic component in Pery(0), whose
center is represented by an end-capture H of p.. Then representatives of all
points in OH — B are matings of p. with certain quadratic polynomials.

Proof. — Let A\g be a point in OH — B of angle s, and f a rational
function representing \g. Suppose that H is the capture of p. corresponding
to some capture path fy. Consider any capture path 8 for p. such that
B(1) = Bo(1), and the point b = $(1/2) has internal angle s with respect to
the Fatou component of p. containing the point Sy(1). Since H is an end-
capture, it is also the capture of p. corresponding to the capture path .
Theorem 4.5 and Proposition 4.6 now imply that f is topologically conjugate
to the mating of p. with some quadratic polynomial. O

We now consider cut-capture paths for p.. Let V be a strictly preperiodic
Fatou component of p.. Suppose that the forward orbit of V is contained
in two limbs of V. In this case, there are two homotopy classes of capture
paths terminating in V. One class Cy contains capture paths, whose internal
angles are in (0,1/2), and the other class C; contains capture paths, whose
internal angles are in (1/2,1). Capture paths with internal angles 0 and 1/2
can belong to either class. There are, in general, two conformal captures Hy
and H; of p., up to conformal conjugacy. For every capture path in Cy, the
corresponding capture is Hy, and for every capture path in C;, the corre-
sponding capture is H;. Let Ho and H; denote the hyperbolic components
of Pery(0), whose centers are represented by Hy and Hy, respectively. Since
Hj corresponds to capture paths with internal angles from 0 to 1/2, we call
Ho a [0,1/2]-capture component associated with p.. Similarly, we call H; a
[1/2,1]-capture component.

THEOREM 4.8. — Let Hg be a [0,1/2]-capture hyperbolic component in
Pery,(0) associated with p.. Then any point of OHo — B, whose angle belongs
to [0,1/2], is represented by a mating of p. with some quadratic polynomial.
Similarly, let Hy be a [1/2,1]-capture hyperbolic component in Per(0) as-
sociated with p.. Then any point of OH, — B, whose angle belongs to [1/2,1],

is represented by a mating of p. with some quadratic polynomial.

This theorem leads to the following question: is it true that every [0,1/2]-
capture component is simultaneously a [1/2,1]-capture component? If this is
true, then, for every hyperbolic component H in Pery(0), all points of 0H —B
are represented by matings. Conjecturally, all points of OH are represented
by matings, including those in B.
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