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On a theorem of Rees-Shishikura

Guizhen Cui(1), Wenjuan Peng(2) and Lei Tan(3)

ABSTRACT. — Rees-Shishikura’s theorem plays an important role in the
study of matings of polynomials. It promotes Thurston’s combinatorial
equivalence into a semi-conjugacy. In this work we restate and reprove
Rees-Shishikura’s theorem in a more general form, which can then be
applied to a wider class of postcritically finite branched coverings. We
provide an application of the restated theorem.

RÉSUMÉ. — Le théorème de Rees-Shishikura joue un rôle important dans
l’étude des accouplements de polynômes. Il permet d’obtenir une semi-
conjugaison à partir d’une equivalence combinatoire de Thurston. Dans
ce travail, nous reformulons et redémontrons ce théorème dans un cadre
plus général. Cette nouvelle version du théorème est applicable à une
classe plus large de revêtements ramifiés postcritiquement finis. Nous en
fournissons un exemple à la fin de notre article.

1. Introduction

Consider the mating of two polynomials (refer to [4, 10, 11, 12] for the
definitions of mating). M. Rees and M. Shishikura [10, 11] proved that if the
formal mating of two postcritically finite polynomials is Thurston equivalent
to a rational map, then the topological mating is conjugate to the rational
map. The main step of the proof is to show the existence of a semi-conjugacy
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from the formal mating to the rational map (refer to Theorem 2.1 in [11]
and the theorem below).

Theorem A. — Suppose that the degenerate mating F ′ = (f1⊥⊥ f2)
′ of

polynomials f1 and f2 is Thurston equivalent to a rational map R mapping
from the Riemann sphere Ĉ onto itself. Then there exists a continuous map
h: Ĉ→ Ĉ, satisfying that
(i) the following diagram commutes:

Ĉ F−→ Ĉ
h ↓ ↓ h
Ĉ R−→ Ĉ,

where F = f1⊥⊥ f2 is the formal mating;
(ii) h is a uniform limit of orientation preserving homeomorphisms;

(iii) h is conformal in intKf1 � intKf2 onto Ĉ � JR and h−1(Ĉ � JR) =
intKf1 � intKf2 , where intKfi are the interior of the filled-in Julia sets of
fi for i = 1, 2 and JR is the Julia set of R.

M. Rees ([10]) proved that there exists a semi-conjugacy from a general
postcritically finite branched covering to a rational map if it is Thurston
equivalent to the rational map by a pair of homeomorphisms (φ0, φ1) and
φ0 = φ1 near the critical cycles. In fact, the pull-back sequence {φn} (see
the definition below) of the Thurston equivalence converges uniformly to
the semi-conjugacy.

In the proof of Theorem A, under the property that the degenerate mat-
ing F ′ is holomorphic in a neighborhood of the critical cycles, M. Shishikura
modified the original Thurston equivalence (θ0, θ1) so that θ0 = θ1 near the
critical cycles by using Dehn twist near those points.

In this note, we will show that if the Thurston equivalence (φ0, φ1) sat-
isfies that φ0 is a local conjugacy near the critical cycles, then the pull-
back sequence {φn} of the Thurston equivalence converges uniformly to the
semi-conjugacy. Under the assumption that a postcritically finite branched
covering is Thurston equivalent to a rational map, when the branched cov-
ering is holomorphic in a neighborhood of the critical cycles, then it is easy
to show that there exists a Thurston equivalence (φ0, φ1) such that φ0 is a
local conjugacy near the critical cycles. Note that in this case φ0 needs not
coincide with φ1 near the critical cycles and we do not need Dehn twist as
constructed in [11].
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Statements: Let F be a branched covering of the Riemann sphere Ĉ.
We always assume degF � 2 in this paper. Denote by ΩF the set of critical
points of F . The postcritical set of F is defined by

PF =
⋃

n�0

Fn(ΩF ).

The map F is called postcritically finite if PF is a finite set. Let f be a
rational map. We denote by Ff and Jf the Fatou set and Julia set of f
respectively.

Two postcritically finite branched coverings F and G are called Thurston
equivalent through a pair of orientation preserving homeomorphisms (φ0, φ1) :

Ĉ → Ĉ if φ1 is isotopic to φ0 rel PF and φ0 ◦ F ◦ φ−1
1 = G. The pull-back

sequence {φn}n�1 of the Thurston equivalence means that {φn} is a se-

quence of homeomorphisms of Ĉ such that φn+1 is isotopic to φn rel PF
and φn ◦ F = G ◦ φn+1.

A continuum is a connected compact subset of Ĉ.

Theorem 1.1. — Let F : Ĉ→ Ĉ be a postcritically finite branched cov-
ering. Suppose that F is Thurston equivalent to a rational map f through a
pair of homeomorphisms (φ0, φ1) such that φ0◦F = f ◦φ0 in a neighborhood
of the critical cycles of F . Let {φn} (n � 1) be a sequence of homeomor-

phisms of Ĉ such that φn ◦F = f ◦φn+1 and φn+1 is isotopic to φn rel PF .

Then {φn} converges uniformly to a continuous onto map h : Ĉ → Ĉ as
n→∞. Moreover,
(1) h ◦ F = f ◦ h.
(2) h−1(w) is a single point for w ∈ Ff and a full continuum for w ∈ Jf .
(3) For points x, y ∈ Ĉ with f(x) = y, h−1(x) is a connected compo-
nent of F−1(h−1(y)) and F (h−1(x)) = h−1(y). Moreover, the degree of
the map F : h−1(x)→ h−1(y) is equal to degx f ; precisely speaking, for any
w ∈ h−1(y), ∑

z∈F−1(w)∩h−1(x)

degz F = degx f,

where degx f,degz F are the local degrees of f, F at x, z respectively.

(4) h−1(E) is a continuum if E ⊂ Ĉ is a continuum.

(5) h(F−1(E)) = f−1(h(E)) for any E ⊂ Ĉ.

(6) F−1(Ê) = ̂F−1(E) for any E ⊂ Ĉ, where Ê = h−1(h(E)).

Corollary 1.2. — Let F : Ĉ → Ĉ be a postcritically finite branched
covering which is holomorphic in a neighborhood of the critical cycles. Sup-
pose that F is Thurston equivalent to a rational map f through a pair of
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homeomorphisms (φ0, φ1). Then there exists a semi-conjugacy h from F to
f in the homotopy class of φ0 such that it satisfies the above conditions
(1)-(6).

As in [10, 11], the main idea of the proof is that the rational map f is
expanding under the orbifold metric. The only new observation is that the
homotopic length of the isotopy for any point is bounded if φ0 ◦ F = f ◦ φ0

near critical cycles.

Points (4)-(6) are also new but they are not difficult to prove. They are
applied in our work [3].

2. Homotopic length of the isotopy

In this section we assume that the reader is familiar with the theory of
orbifolds.

Let f be a postcritically finite rational map of Ĉ. Denote by ρ(z)|dz|
the orbifold metric of f ([5]). Then ||f ′|| > 1 on Ĉ\Pf with respect to the

orbifold metric ρ(z)|dz|, and on any compact subset E ⊂ Ĉ\Pf , there is a
constant λ > 1 such that ||f ′|| > λ. Define the homotopic length of a path

α : [0, 1]→ Ĉ\Pf by

h-length(α) = inf{length of α′ with metric ρ},

where the infimum is taken over all the paths α′ from α(0) to α(1) and

homotopic to α in Ĉ\Pf .

Let F : Ĉ→ Ĉ be a postcritically finite branched covering. Suppose that
F is Thurston equivalent to a rational map f via a pair of homeomorphisms
(φ0, φ1), i.e., φ0 ◦F = f ◦φ1, and φ1 is isotopic to φ0 rel PF , that is, there is

a continuous map H0 : Ĉ× [0, 1]→ Ĉ such that H0(·, 0) = φ0, H0(·, 1) = φ1,
H0(·, t) is a homeomorphism for any t ∈ (0, 1) and H0(z, t) = φ0(z) for
z ∈ PF , t ∈ [0, 1].

Lemma 2.1. — If φ0 ◦F = f ◦φ0 in a neighborhood of the critical cycles
of F , then the homotopic length of {H0(z, t), 0 � t � 1} is bounded by a

constant M <∞ for any point z ∈ Ĉ\PF .

Proof. — We only need to show that the homotopic length of γ :=
{H0(z, t), 0 � t � 1} is bounded in a neighborhood of each critical cycle of
f . Let x be a point in a critical cycle of f . Define the winding angle of the
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path γ around the point x by:

wx(γ) =
1

2πi

∫

ζ∈B(γ)

dζ

ζ
,

where B is the Böttcher map and ζ is Böttcher’s coordinate of f at the
point x. It is continuous. On the other hand, since φ0 ◦ F = f ◦ φ0 in a
neighborhood of the critical cycles of F , we have φ1 ◦ φ−1

0 is a rotation in
Böttcher’s coordinates of f at the point x, with angles 2kπ/d, where k is an
integer and d = degx f . Thus wx(γ) ≡ k/d(mod 1). It follows that wx(γ) is
a constant in a neighborhood of x. This implies that the homotopic length
of γ is bounded in a neighborhood of the point x. �

Lemma 2.2. — If φ0 ◦F = f ◦φ0 in a neighborhood of the critical cycles
of F , then the pull-back sequence {φn} converges uniformly to a continuous

onto map h : Ĉ→ Ĉ as n→∞.

Proof. — By lifting the map H0, for each n � 1, we get a continuous
map Hn : Ĉ× [0, 1]→ Ĉ satisfying that Hn(·, t) is a homeomorphism for any
t ∈ [0, 1], Hn(·, 0) = φn, Hn(·, 1) = φn+1, Hn(z, t) = φn(z) for z ∈ PF , t ∈
[0, 1] and Hn(F (z), t) = f(Hn+1(z, t)) for z ∈ Ĉ, t ∈ [0, 1].

Let U be an open set containing critical cycles of F such that φ0 ◦ F =
f ◦φ0 in U , F (U) ⊂ U and every component of U contains exactly one point
in the critical cycles of F .

Claim. — For each n � 1, φn◦φ−1
0 is a rotation in Böttcher coordinates

of the critical cycles of f .

Proof. — Let x be a point in a critical cycle of f . By Böttcher’s Theorem,
there is a Jordan domain Ux ⊂ φ0(U), x ∈ Ux and a conformal map ux :
Ux → Dx = {z ∈ C : |z| < rx < 1} such that f(Ux) is compactly contained
in Uf(x) (denote by f(Ux) ⊂⊂ Uf(x)), ux(x) = 0 and

uf(x) ◦ F ◦ u−1
x (z) = zdx ,

where dx = degx f . In fact ux is the Böttcher’s coordinate of f at the cycle
through the point x.

Fix n � 1. We may assume that fn(Ux) ⊂⊂ Ufn(x) and φnφ
−1
0 (Ux) ⊂⊂

Ux. Since φ0 ◦ F = f ◦ φ0 in a neighborhood of the critical cycles of F and
φ0 ◦ Fn = fn ◦ φn on Ĉ, we have the following commutative diagrams.

Dx
ux←− φn(φ

−1
0 (Ux))

φn←− φ−1
0 (Ux)

φ0−→ Ux
ux−→ Dx

P ↓ fn ↓ Fn ↓ fn ↓ ↓ P
Dfn(x)

ufn(x)←− Ufn(x)
φ0←− φ−1

0 (Ufn(x))
φ0−→ Ufn(x)

ufn(x)−→ Dfn(x),
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where P (z) = zdxdf(x)···dfn(x) . It follows easily that φn ◦ φ−1
0 is a rotation in

Böttcher coordinates of the critical cycles of f . �
By the claim, we may take a compact subset E ⊂ Ĉ\Pf such that

Ĉ\φn(U) ⊂ E for all n � 0. Then there exists a constant λ > 1 such that

||f ′|| > λ on E. Let d(·, ·) denote the spherical metric of Ĉ.

Fix n � 1.

If z ∈ Ĉ\F−n(U ∪ PF ), then the path

{Hn(z, t), 0 � t � 1} ⊂ Ĉ\(φn(F−n(U)) ∪ Pf ) ⊂ Ĉ\(φn(U) ∪ Pf ) ⊂ E.

Thus F (z) ∈ Ĉ\F−(n−1)(U ∪ PF ) and

h-length({Hn(z, t), 0 � t � 1}) � 1

λ
h-length

(
f({Hn(z, t), 0 � t � 1})

)

=
1

λ
h-length({Hn−1(F (z), t), 0 � t � 1}).

Note that by Lemma 2.1, for all z ∈ Ĉ\PF ,

h-length({H0(z, t), 0 � t � 1}) �M.

Hence for z ∈ Ĉ\F−n(U ∪ PF ),

d(φn(z), φn+1(z)) = d(Hn(z, 0), Hn(z, 1))

� h-length({Hn(z, t), 0 � t � 1})

� 1

λn
h-length({H0(F

n(z), t), 0 � t � 1})
� Mλ−n.

If z ∈ F−n(PF ), then it follows from the relation Hn(F (z), t)
= f(Hn+1(z, t)) that d(φn(z), φn+1(z)) = 0.

If z ∈ F−n(U)\F−n(PF ), then

fn({Hn(z, t), 0 � t � 1}) = {H0(F
n(z), t), 0 � t � 1}

and Fn(z) ∈ U\PF . Let p be the least common multiple of the periods of
all critical cycles of F , l be the minimal of p

p′ , where p′ is the period of a
critical cycle of F , and D be the minimal of the product of local degrees of
all critical points in C, where C is a critical cycle of F .

We may assume n � p. If z, F (z), · · · , Fn(z) ∈ U , then there is a crit-
ical cycle of F such that Fm(z) ∈ U0, ∀m � 0, where U0 is the union of
components of U containing that cycle. Let p0 be the period of that cycle,
l0 := p

p0
, D0 be the product of the local degrees of all critical points in that

cycle.
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First we consider the case that p0 = 1, that is U0 contains a critical
fixed point q and D0 = degq F . Since φ0 ◦ F = f ◦ φ0 in a neighborhood
of the critical cycles of F , the point φ0(q) is a critical fixed point of f and
degφ0(q) f = degq F . Let B be the Böttcher map f at the point φ0(q) and
we define wφ0(q)({Hm(α, t), 0 � t � 1}) as in Lemma 2.1 for all 0 � m � n
and α ∈ U0. Fix 0 � m � n − 1. Set γm+1 := {Hm+1(z, t), 0 � t � 1} and
γm := {Hm(F (z), t), 0 � t � 1}. Then

wφ0(q)(γm+1) =
1

2πi

∫

ξ∈B(γm+1)

dξ

ξ

and

wφ0(q)(γm) =
1

2πi

∫

η∈B(γm)

dη

η
,

where η = ξD0 . An easy calculation shows that

wφ0(q)(γm) = D0 · wφ0(q)(γm+1).

This implies that

h-length({Hn(z, t), 0 � t � 1}) � h-length({H0(F
n(z), t), 0 � t � 1})D−n0 .

For the general case, the assumption n � p implies that there is an
integer k � 1 such that kl0p0 � n � (k + 1)l0p0. Then

h-length({Hn(z, t), 0 � t � 1}) � h-length({H0(F
n(z), t), 0 � t � 1})D−(l0k)

0

� MD−(lk),

where M is the constant obtained as in Lemma 2.1. Note that as n → ∞,
k tends to infinity linearly with l, in particular the bound MD−(lk) has a
finite sum over n.

Now we suppose z /∈ U,F (z) /∈ U, · · · , F i−1(z) /∈ U,F i(z) ∈ U, · · · , Fn(z)
∈ U for some i � 1. Then similarly to the previous case, there is a criti-
cal cycle of F such that Fm(z) ∈ U1, ∀m � n, where U1 is the union of
components of U containing that cycle. Let p1 be the period of that cycle,
p = l1p1, D1 be the product of the local degrees of all critical points in that
cycle.

If n− i < p = l1p1, then there is some integer 0 � j � l1 − 1, such that
jp1 � n− i � (j + 1)p1 and

h-length({Hn−i(F
i(z), t), 0 � t � 1}) � h-length({H0(F

n(z), t), 0 � t � 1})D−j1

� M.
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Thus

h-length({Hn(z, t), 0 � t � 1}) � h-length({Hn−i(F
i(z), t), 0 � t � 1})λ−i

� Mλ−i.

Noticing that n − i < p, we have as n → ∞, the bound Mλ−i has a finite
sum over n.

Otherwise, there is some s � 1 such that sp � n− i � (s + 1)p. Then

h-length({Hn−i(F
i(z), t), 0 � t � 1}) �MD

−(l1s)
1 �MD−(ls)

So

h-length({Hn(z, t), 0 � t � 1}) � h-length({Hn−i(F
i(z), t), 0 � t � 1})λ−i

� Mλ−iD−(ls).

As n→∞, either i or s tends to infinity.

Combining the conclusions of the above paragraphs together, we get the
uniform convergence of φn with respect to the spherical metric of Ĉ. The
continuity and surjectivity of h follow directly from the property that it is
a uniform limit of a sequence of homeomorphisms. �

Proof of Corollary 1.2. — By Böttcher’s theorem, we may modify the
Thurston equivalence (φ0, φ1) such that φ0 ◦ F = f ◦ φ0 in a neighborhood
of the critical cycles of F . Now it follows by Theorem 1.1. �

3. Quotient maps

Let h : Ĉ → Ĉ be a continuous onto map. We call it a quotient map if
h−1(y) is a full continuum for any point y ∈ Ĉ, i.e. Ĉ\h−1(y) is a simply
connected domain.

Lemma 3.1. — Let h : Ĉ → Ĉ be a continuous onto map. Then the
following conditions are equivalent.
(a) The map h is a quotient map.

(b) h−1(E) is a continuum if E ⊂ Ĉ is a continuum.

(c) h−1(E) is a full continuum if E ⊂ Ĉ is a full continuum.

(d) There exists a sequence of homeomorphisms hn : Ĉ→ Ĉ such that {hn}
converges uniformly to h.

There is a similar statement in [8], see Lemma 2.3 and Theorem 2.12
in [8]. In the following, we will first prove (a), (b) and (c) are equivalent
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and then prove (d)⇒ (b). For (a)⇒ (d), the reader may refer to [8] for its
proof. In the proof of Theorem 1.1, we will not use (a), (b) or (c) ⇒ (d),
but (d)⇒ (a), (b) and (c).

Proof of Lemma 3.1. — (a)⇒ (b). Let E ⊂ Ĉ be a continuum. If h−1(E)

is not connected, then there are two disjoint open sets U and V in Ĉ such
that h−1(E) ⊂ U ∪ V and both K1 = U ∩ h−1(E) and K2 = V ∩ h−1(E)
are not empty. Note that both K1 and K2 are closed since h−1(E) is closed.
Thus both h(K1) and h(K2) are closed. On the other hand, h(K1) and h(K2)
are disjoint by (a). This contradicts the condition that E is connected.

(b)⇒ (c). We only need to show that h−1(E) is full. Otherwise, Ĉ\h−1(E)

is disconnected. Thus there are two distinct points x, y ∈ Ĉ\h−1(E) such

that they are contained in different domains in Ĉ\h−1(E). Since h(x), h(y) ∈
Ĉ\E and E is full, there exists an arc α ⊂ Ĉ\E which connects h(x) with

h(y). Thus h−1(α) ⊂ Ĉ\h−1(E) is a continuum which contains x with y.
This is a contradiction.

(c)⇒ (a). This is obvious.

(d) ⇒ (b). Suppose that there exists a sequence of homeomorphisms

hn : Ĉ → Ĉ such that {hn} converges uniformly to h. Then h : Ĉ → Ĉ is

a continuous onto map. Thus h−1(E) is closed for any continuum E ⊂ Ĉ.
Now assume that h−1(E) is not connected, i.e., there are two disjoint open

sets U, V ⊂ Ĉ such that h−1(E) ⊂ U ∪ V and both U and V intersect with

h−1(E). Then K := h(Ĉ\(U ∪ V )) is a compact set disjoint from E. Let
W ⊃ E be a connected domain such that W ∩K = ∅. Since hn converges
uniformly to h, there exists some n > 0 such that

d(h, hn) = sup
z∈Ĉ

d(h(z), hn(z)) < min{d(E, ∂W ), d(W,K)},

where d(·, ·) denotes the spherical distance. It follows that hn(Ĉ\(U ∪V ))∩
W = ∅, hence h−1

n (W ) ⊂ U ∪ V . It follows from d(h, hn) < d(E, ∂W )
that hn(h

−1(E)) ⊂ W . Thus both U and V intersect with h−1
n (W ). This

contradicts the fact that h−1
n (W ) is connected. �

Proof of Theorem 1.1. — The sequence {φn} converges uniformly to a
continuous onto map h by Lemma 2.1 and Lemma 2.2. Point (1) follows
easily from the fact that f ◦ φn+1 = φn ◦ F and h is a uniform limit of
φn. Point (4) follows from Lemma 3.1. Now we want to show the remaining
points.
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(2) It follows directly from Lemma 3.1 that for any w ∈ Ĉ, h−1(w) is a
full continuum. Since φ0 ◦ F = f ◦ φ0 near the critical cycles of F , φn ◦ φ−1

0

is a rotation in the Böttcher coordinates of the the critical cycles of f . It
follows that there is a neighbourhood U of critical cycles of f such that
h−1(q) is a single point for any q ∈ U . For any w ∈ Ff , there is an integer
n � 1 such that fn(w) ∈ U . Since h−1 ◦ fn(w) = Fn ◦ h−1(w), h−1(fn(w))
is a single point and h−1(w) is connected, we get that h−1(w) is a single
point.

(3) Clearly h(F (h−1(x))) = f(h(h−1(x))) = f(x) = y. So F (h−1(x)) ⊂
h−1(y). By Point (2), h−1(x) is connected. Let L be the connected com-
ponent of F−1(h−1(y)) containing h−1(x). Then h(L) is connected and
f(h(L)) = h(F (L)) ⊂ h(h−1(y)) = y. So h(L) ⊂ f−1(y). Notice that
x ∈ h(h−1(x) ∩ L) ⊂ h(L), that f−1(y) is a finite set, and that h(L) is
connected. We have therefore h(L) = {x} and L ⊂ h−1(x). Consequently

h−1(x) = L. Notice that F : Ĉ→ Ĉ is a branched covering. It follows easily
from a property of a branched covering that F (h−1(x)) = h−1(y) (see a
proof in [1] §5.4).

Suppose f−1(y) has m preimages denoted by x1 := x, x2, · · · , xm. By the
previous paragraph, we know that each h−1(xi) is a connected component
of F−1(h−1(y)) for 1 � i � m. We claim that they are all the connected
components of F−1(h−1(y)). In fact, let E be a connected component of
F−1(h−1(y)). Since f(h(E)) = h(F (E)) = h(h−1(y)) = y, we have h(E) =
xj for some 1 � j � m. Noticing that E ⊂ h−1(h(E)) = h−1(xj) and
both E and h−1(xj) are connected components of F−1(h−1(y)), we get
E = h−1(xj).

Since degqF = degφ1(q)f for any critical point q of F and h = φn on PF
for all n � 0, we can conclude that for any critical point c of f , h−1(c) con-
tains a critical point of F with local degree degc f . Denote by degF |h−1(xi)

the degree of the map F : h−1(xi)→ h−1(y). It follows that for each 1 � i �
m, degF |h−1(xi) � degxi f . But

∑m
i=1 degF |h−1(xi) =

∑m
i=1 degxi f = d,

where d is the degree of F and f on Ĉ. Thus degF |h−1(xi) = degxi f .

(5) From f ◦h(F−1(E)) = h◦F (F−1(E)) = h(E), we have h(F−1(E)) ⊂
f−1(h(E)). Conversely, for any point w ∈ f−1(h(E)), f(w) ∈ h(E). So there
is a point z0 ∈ E such that f(w) = h(z0). In Point (3), we have shown that
F (h−1(w)) = h−1(f(w)). Noticing that z0 ∈ h−1(f(w)), there is a point z1 ∈
h−1(w) such that F (z1) = z0. So w = h(z1) ∈ h(F−1(z0)) ⊂ h(F−1(E)).
Therefore, f−1(h(E)) ⊂ h(F−1(E)).
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(6) F−1(Ê) = F−1(h−1(h(E))) = h−1(f−1(h(E))). From Point (5), we
obtain

F−1(Ê) = h−1(h(F−1(E))) = ̂F−1(E).

�

4. An application

In [3] a new type of surgery on polynomials, called ’foldings’, is con-
structed. One can compare it with matings as follows: Set

• W = C ∪ {∞ · e2iπθ, θ ∈ R}, W ′ = C′ ∪ {(∞ · e2iπθ)′, θ ∈ R},
• A = [−1, 1]× S1,

• S = W �A �W ′/ ∼,
with ∞ · e2πiθ ∼ (−1, e2πiθ) and (+1, e2πiθ) ∼ (∞ · e−2πiθ)′,

• π = id : W ′ →W .

Let f, g be monic postcritically finite polynomials of degree d. The ma-
ting M and a folding F are defined by :

f, g monic
mating (f, g) : M :

folding (f, fold)
F 2 (ΩF ∩ Kf) (pre)periodic

More precisely M |W = f , M |W ′ = g and M : A→ A is a degree d cov-
ering matching the boundary values. This M is automatically postcritically
finite and its Thurston equivalence class is uniquely determined (if one does
not introduce twist in A). On the other hand, F |W = f , F |W ′ = f ◦ π and
F : A �→ A ∪W ′ is a branched covering matching the boundary values. In
order for F to be postcritically finite, we also require that F 2(ΩF ∩A) to be
contained in the set of preperiodic points of f . The Thurston equivalence
class of F depends on the choices of F on A.

The multicurve consisting of the single Jordan curve γ = ∂W behaves
quite differently under the mating M and the folding F : the set M−1(γ) is
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again a single Jordan curve, and is homotopic to γ rel PM , whereas F−1(γ)
has two connected components, and each of them are homotopic rel PF to γ.

Just as in the mating case, we have shown in [3] cases of foldings that
are Thurston equivalent to a rational map and cases of foldings that are not.

Assume that a folding F is Thurston equivalent to a rational map R.
Then there is a pair of homeomorphisms (h0, h1) making the following dia-
gram commutative:

S
h1−−−−→
≈

Ĉ
F

�
� R

S
≈−−−−→
h0

Ĉ .

We may then apply Rees-Shishikura’s theorem, in the form of Theo-
rem 1.1 and Corollary 1.2, to promote this diagram into a semi-conjugacy
diagram

S
h−−−−→ Ĉ

F

�
� R

S −−−−→
h

Ĉ .

Note that if F were a mating of polynomials, then h would reduce the
annular space between Kf and Kg to a space with empty interior. The
folding case is quite the opposite. We have actually proved, using Theorem
1.1 (see [3] for details) :

Proposition 4.1. — In the above setting, the set h(A) contains a non-
empty annulus A s.t.

• A separates h(W ) and h(W ′),

• A contains two essential annuli A1, A2 satisfying that R : A1 → A
and R : A2 → A are coverings, and ∂A ⊂ ∂(A1 ∪A2).

An interesting consequence is that the folding rational map R has a
polynomial renormalization. Moreover it has wandering continua in its Julia
set (as in [9]). Such a phenomenon does not exist for polynomials ([2, 6, 13]).
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1982/83) Astérisque, p. 105-106, p. 39-63 (1983).

[5] Douady (A.) and Hubbard (J. H.). — Étude dynamique des polynômes com-
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