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An algebraic formulation of Thurston’s
characterization of rational functions

Kevin M. Pilgrim(1)

ABSTRACT. — Following Douady-Hubbard and Bartholdi-Nekrashevych,
we give an algebraic formulation of Thurston’s characterization of ratio-
nal functions. The techniques developed are applied to the analysis of
the dynamics on the set of free homotopy classes of simple closed curves
induced by a rational function. The resulting finiteness results yield new
information on the global dynamics of the pullback map on Teichmüller
space used in the proof of the characterization theorem.

RÉSUMÉ. — À la suite de Douady-Hubbard et de Bartholdi-Nekrashevych,
nous donnons une formulation algébrique des fractions rationnelles. Les
techniques développées sont appliquées à l’étude de la dynamique sur
l’ensemble des classes d’homotopie de courbes simples qui est induite par
une fraction rationnelle. Le théorème de finitude qui en résulte donne de
nouvelles informations à propos de la dynamique globale sur l’espace de
Teichmüller de l’application introduite dans le théorème de caractérisation
de Thurston.
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1. Introduction

Thurston maps f : S2 → S2 are topological objects, regarded up to
homotopy, which arise in the classification and characterization of certain
holomorphic dynamical systems on the Riemann sphere [5]. They are two-
real-dimensional generalizations of the kneading data associated to interval
maps, introduced by Milnor and Thurston [12].

In this work, we show that newly introduced algebraic invariants can
be used to reformulate Thurston’s original characterization theorem (The-
orem 1.1 below), and that this connection can be applied to study a pre-
viously mysterious problem, namely, the fate of (free homotopy classes of)
curves under iterated pullback. When combined with a recent observation
of Selinger [17], this yields detailed results about the global dynamics of
Thurston’s pullback self-map on Teichmüller space. This pullback map plays
a key role in the proof of Theorem 1.1. Like its cousin the skinning map—
another self-map of Teichmüller space, employed in the hyperbolization of
3-manifolds—it has been the subject of recent detailed investigations; cf.
[1], [9], and recent work of D. Dumas.

We briefly review some fundamental concepts from [5].

Thurston maps. Let S2 denote the two-sphere equipped with an ori-
entation, let f : S2 → S2 be an orientation-preserving branched covering
map of degree d � 2, and let Pf = ∪n>0f

◦n(Ωf ) where Ωf is the set of
branch points of f . We say f is a Thurston map if Pf is finite; we assume
this throughout this work. Two Thurston maps f, g are equivalent if there
are homeomorphisms h, h̃ : (S2, Pf ) → (S2, Pg) such that h is isotopic to

h̃ relative to Pf and h ◦ f = g ◦ h̃. The orbifold Of associated to f is the
topological orbifold whose underlying space S2 and whose weight ν(x) at x
is given by ν(x) = lcm{deg(fk, x̃) : fk(x̃) = x}; here deg(, ) denotes local
degree. The orbifold Of is said to be hyperbolic if the Euler characteristic
χ(Of ) = 2−∑

x∈Pf (1− 1/ν(x)) is negative.
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In [5, Appendix, Example 1], Douady and Hubbard posed the following
problem. Consider f(z) = z2 + i; then Pf = {∞, i, i − 1,−i}. Let D be

a Dehn twist about a simple closed curve in Ĉ − Pf . Then the branched
covering obtained by postcomposing f with D is either equivalent to z2 + i,
to z2 − i, or else is not equivalent to a quadratic polynomial; the problem
is to characterize the outcome as a function of D, regarded as an element
of the pure mapping class group of homeomorphisms of the sphere fixing
Pf pointwise. The analogous problem for the so-called “rabbit” polynomial
became known as the Twisted Rabbit Problem.

For some years, these problems remained unsolved and were a humbling
reminder of the lack of a suitable arsenal of invariants. The situation changed
with the publication of [2], in which the newly developed theory of selfsimilar
groups was brought to bear to give complete solutions to these problems.
In addition, in the presence of suitable expansion, Thurston maps admit
cellular Markov partitions [3]. The result is that the combinatorial theory
of Thurston maps is now immensely richer; see e.g. [14], [8].

The concept of a virtual endomorphism plays a key role in the solution
to the Twisted Rabbit Problem.

Virtual endomorphism. If G is a group and H < G is a subgroup of
finite index, a homomorphism φ : H → G is called a virtual endomorphism
of G; this is sometimes written φ : G−−> G and we write dom(φ) = H.

Throughout, we deal with finitely generated groups. Let |g| denote the
word length of g with respect to a symmetric generating set S of G. The
contraction coefficient of φ

ρ(φ) = lim sup
n→∞

(
lim sup

g∈dom(φ◦n),|g|→∞

|φ◦n(g)|
|g|

)1/n

is independent of the generating set. One says φ is contracting on G if
ρ(φ) < 1.

Suppose now that φ : G−−> G is a virtual endomorphism. A subgroup
L < G is quasi-invariant if φ|L : L−−> L is again a virtual endomorphism,
that is, φ(L ∩ dom(φ)) ⊂ L; note that always [L : L ∩ dom(φ)] <∞.

Curves. For P ⊂ S2 a finite set with at least three points, denote by
C(S2, P ) the set of free homotopy classes of essential, unoriented, simple,
closed, nonperipheral (that is, not homotopic into arbitrarily small neigh-
borhoods of elements of P ) curves in S2 − P ; we use the term curve for an
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element of C(S2, P ). When P is understood we write simply C. A multicurve
Γ is a nonempty set of distinct elements of C(S2, P ) represented by pair-
wise nonintersecting curves. The set of nonempty multicurves is denoted
MC(S2, P ) or simply by MC.

Now suppose f is a Thurston map, and let C = C(S2, Pf ). Let o denote
the union of the homotopy classes in S2 − Pf of curves which are either
inessential or peripheral; we call such curves trivial. The pullback relation
f←− on C ∪ {o} is defined by setting o

f←− o and

γ1
f←− γ2

if and only if γ2 is homotopic in S2 − Pf to a component of the preimage

of γ1 under f . Thus γ
f←− o if and only if some preimage of γ is inessential

or peripheral in S2 − Pf . The pullback relation induces a pullback function
f−1 : MC ∪ {o} → MC ∪ {o}, where o stands for the empty multicurve,

by sending o �→ o and Γ �→ f−1(Γ) := {γ̃ : ∃γ ∈ Γ, γ
f←− γ̃}; here we

set f−1(Γ) = o if the set of such γ̃ is empty. A multicurve is invariant if
f−1(Γ) ⊂ Γ∪{o}; it is completely invariant if f−1(Γ)∪{o} = Γ∪{o}. We say
that the pullback function has a finite global attractor if there exists a finite
subset N ⊂ MC ∪ {o} such that f−1(N ) ⊂ N and for all Γ ∈ MC, there
exists a nonnegative integer N such that (f−1)◦n(Γ) ∈ N for all n � N ; the
smallest such subset, if it exists, consists of periodic cycles and is called the
finite global attractor of the function f−1. We extend this concept to the
pullback relation in the obvious way.

Denote by Z[C(S2, P )] and R[C(S2, P )] the free Z- and R-modules gen-
erated by C(S2, P ), so that an element w of e.g. Z[C(S2, P )] is given by a
formal finite linear combination w =

∑
i aiγi, ai ∈ Z. The free submodules

generated by a multicurve Γ will be denoted ZΓ and RΓ.

The Thurston linear transformation

Lf : R[C] → R[C]

is defined on basis vectors by

Lf (γ) =
∑

γ
f←−γi

diγi

where

di =
∑

f−1(γ)⊃δ	γi

1

deg(f : δ → γ)
;

the sum ranges over preimages δ of γ homotopic to γi.
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Thurston’s Characterization Theorem [5, Theorem 1] asserts

Theorem 1.1 (Thurston’s characterization). — If Of is hyperbolic, then
f is equivalent to a rational map R if and only if for every invariant multi-
curve Γ, the spectrum of Lf,Γ: = Lf |RΓ lies strictly inside the unit disk; in
this case, R is unique, up to conjugation by Möbius transformations.

Though a relation, not a function, it is natural to ask the usual dynam-

ical questions regarding iteration of the pullback relation
f←−: can curves

be periodic? how many cycles can exist? can curves wander? It is easy to
construct Thurston maps f with invariant subsurfaces Σ ⊂ S2 on which the
map f acts like an arbitrary element of the mapping class group of Σ; such

maps are necessarily obstructed. Hence questions about iteration of
f←− are

most naturally posed in the setting when f is a rational Thurston map. Here,

tension arises. On the one hand, if γ
f←− γ̃ and deg(f : γ̃ → γ) > 1, then the

unique hyperbolic geodesic in Ĉ\Pf homotopic to γ lifts under f to a longer

hyperbolic geodesic in Ĉ\f−1(Pf ) and so γ̃ might be more complicated than

γ. On the other hand, the inclusion Ĉ \ f−1(Pf ) ↪→ Ĉ \ Pf contracts hy-
perbolic metrics. Hence a priori, it is unclear which phenomenon—length
increase or decrease—has the dominant effect.

We now connect the pullback relation on curves with a certain virtual
endomorphism.

Mapping class groups. For P ⊂ S2 the pure mapping class group
Mod(S2, P ) is the group of homotopy classes of orientation-preserving home-
omorphisms h : S2 → S2 which fix P pointwise. A left Dehn twist is a
homeomorphism which is the identity outside a closed regular neigborhood
A of some curve γ and which on A = {(r, θ) : 1 � r � 2, 0 � θ � 1 mod 1}
is given by (r, θ) �→ (r, θ + (r − 1)); thus the image of any radial segment
bends to the left as the segment is traversed in either direction. The cor-
responding mapping class depends only on the free homotopy class of γ.
A right Dehn twist is defined similarly. There is a distinguished subset
Tw(S2, P ) ⊂ Mod(S2, P ) consisting of multitwists, that is, mapping class
elements represented by products of powers of Dehn twists about the ele-
ments of a multicurve Γ. The set Tw(S2, P ) is invariant under conjugation,
but not under arbitrary group automorphisms; if one restricts to the class of
automorphisms preserving a peripheral structure around points in P , then
the set of multitwists becomes characteristic. There is a natural bijection

γ ↔ Tγ

between homotopy classes of unoriented simple nonperipheral curves and left
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Dehn twists. More generally, if Γ = {γi} is a multicurve and w =
∑

i aiγi ∈
ZΓ then the correspondence

Mw =
∏

i

T ai
γi �→

∑

i

aiγi = w (1.1)

defines an injection of sets

Tw(S2, P ) ↪→ Z[C(S2, P )] ⊂ R[C(S2, P )].

If Γ is a multicurve, we denote by Tw(Γ) the subgroup of G generated by
Dehn twists about the elements of Γ; it is free abelian, of rank #Γ.

Suppose now f is a Thurston map, and put G = Mod(S2, Pf ). Ele-
mentary covering space theory implies that there is a finite-index subgroup
H < G consisting of mapping classes representable by homeomorphisms
that lift under f to homeomorphisms which again represent elements of G,
i.e. which fix the set Pf pointwise. We obtain a virtual endomorphism

φf : G−−> G

such that for representative homeomorphisms,

h ◦ f = f ◦ φf (h).

Results. The following result connects topology and algebra:

Theorem 1.2. — If Mw ∈ dom(φf ), then

φf (Mw) = MLf (w)

where Lf is the Thurston linear transformation. In particular, Γ is an in-
variant multicurve if and only if Tw(Γ) is a φf -quasi-invariant subgroup.
In this case, under the correspondence (1.1),

Lf,Γ = (φf |ZΓ)⊗ R.

Applications I: algebraic characterization

As an application, we give an algebraic version of Thurston’s Character-
ization Theorem:

Theorem 1.3. — A Thurston map f with hyperbolic orbifold and with
#Pf � 4 is equivalent to a rational map if and only if for every φf -quasi-
invariant abelian subgroup H < Tw(S2, Pf ), the induced virtual endomor-
phism φf |H : H −−> H has contraction coefficient < 1.
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Remarks.

1. If #Pf < 3 then f is equivalent to z �→ zk for some k with |k| � 2; if
#Pf < 4 then f is always equivalent to a rational map. We exclude
these cases throughout this work to keep the statements clean.

2. For fixed degree deg(f) and cardinality #Pf , there are only finitely
many possibilities for the matrices of Lf,Γ. Hence there exists a
constant C = C(deg(f),#Pf ) < 1 such that if f is rational, then
ρ(φf |H : H −−> H) < C for all quasi-invariant abelian twist sub-
groups.

3. If f is rational, the contraction on quasi-invariant abelian twist sub-
groups cannot, in general, be extended to contraction on all of G; see
§9 below.

Applications II: pullback relation on simple closed curves.

Fix a Thurston map f and let T be the Teichmüller space modelled on
(S2, Pf ) as in [5]. Associated to f is Thurston’s pullback map σf : T → T .
Since T is homeomorphic to an open ball and σf is distance nonincreasing
with respect to the Teichmüller metric, the dynamics of σf : T → T is unin-
teresting. However, Selinger [17] showed that the pullback map σf extends
to the Weil-Petersson completion T . The following facts are known; see
[19]. The completion T coincides with the so-called augmented Teichmüller
space. This is a noncompact stratified space whose strata TΓ are in bijective
correspondence with multicurves. Each stratum TΓ is homeomorphic to the
product of the Teichmüller spaces of the components of the noded surfaces
obtained by collapsing exactly those elements of Γ to points. By a theorem
of Brock and Margalit [4], T is quasi-isometric to the pants complex. The
definitions immediately imply that

σf : TΓ → Tf−1(Γ)

and so the orbit of a stratum under σf is encoded by the pullback function
f−1 : MC ∪ {o} → MC ∪ {o}. In particular, proper strata invariant under
f−1 are in bijective correspondence with completely invariant multicurves.
Thus, the extension of σf to T can have interesting dynamics.

Theorem 1.4. — If φf is contracting, then the pullback function on
multicurves has a finite global attractor.

It follows that the pullback relation on curves has a finite global at-
tractor as well. Note that the converse need not hold; see §9. One can also
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give analytic conditions on σf which imply that the pullback function on
multicurves has a finite global attractor; this is the subject of ongoing work.

Using results of Koch and Nekrashevych, we deduce (Corollary 7.2) that
for critically periodic quadratic polynomials, the pullback function on mul-
ticurves has a finite global attractor.

For general rational maps, we have the following weaker statement,
whose proof uses the combination and decomposition theory developed in
[16]:

Theorem 1.5. — Suppose f is a rational map with hyperbolic orbifold.
Then there are only finitely many completely invariant multicurves.

The proof of Theorem 1.4 suggests a general method to calculate the
finite global attractor of the pullback function on multicurves. We apply
this analysis to each of the three quadratic polynomial examples z �→ z2 + c
with three finite postcritical points studied in [2]. Among experts in com-
plex dynamics, they are referred to by a rational number mod 1 known as
an external angle: f1/7, also known as the “rabbit” polynomial; f1/6, the
“dendrite” polynomial given by the formula f1/6(z) = z2 + i; and f1/4.

For the rabbit polynomial f1/7, the virtual endomorphism φf is con-
tracting. We exploit this to prove

Theorem 1.6. — Let f = f1/7. Under backward iteration, every curve
becomes either trivial, or falls into the unique three-cycle.

In contrast, for the dendrite polynomial f1/4, the virtual endomorphism
φf is not contracting. Nevertheless, modified methods yield:

Theorem 1.7. — Let f = f1/6 be the dendrite polynomial. Under back-
ward iteration, every curve becomes trivial.

For the polynomial f1/4, the virtual endomorphism φf is again contract-
ing. R. Lodge, using similar methods as in the proof of Theorem 1.6, shows:

Theorem 1.8. — Let f = f1/4. Under backward iteration, every curve
becomes trivial.

Organization. In §2 we discuss in detail mapping class groups, the cor-
respondence Mw ↔ w, and state Thurston’s classification for pure mapping
classes on the sphere. We factor the virtual endomorphism φf , defined in §5,
as a composition of lifting and filling in punctures, discussed respectively
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in §§3 and 4. The proofs of Theorems 1.2 and 1.3 are given in §§5 and 6,
respectively. In §7 we prove Theorems 1.4 and 1.5 while §§8, 9, 10 give the
analysis of the maps f1/7, f1/6, and f1/4, respectively.

Conventions. To avoid uninteresting and special cases, we assume
throughout that Of is hyperbolic and that #P � 4 unless otherwise stated.
We follow the notational conventions as in [2]. In particular, given transfor-
mations S, T , the notation ST indicates that S is performed first, then T ,
i.e. their action is a right action. In long expressions we often distinguish
between factors in such products by the symbol ·, so that S·T = ST . The no-
tation S ◦T indicates that T is performed first, then S. If g1, g2 are elements
of a group, conjugation is given as a right action, so that gg2

1 = g−1
2 g1g2.

If (g1, . . . , gd)α and (h1, . . . , hd)β are two elements of a wreath product
Gd � Sd, their product is given by

(g1h1α , . . . , gdhdα)α ◦ β
where iα is the image of i under the permutation α.

Acknowledgements. — I thank Volodymyr Nekrashevych and Lau-
rent Bartholdi for useful conversations.

2. Mapping class groups

We begin with generalities. Throughout this section, P ⊂ S2 is a finite
set with at least four points.

Elements of Mod(S2, P ) are special.

Lemma 2.1. — Suppose g ∈ Mod(S2, P ) permutes the elements of a
multicurve Γ up to isotopy. Then g fixes the elements of Γ up to isotopy.
If in addition the elements of Γ are oriented, g preserves the orientation of
each element.

Proof. — If Γ has only one element γ then since g|P = idP , g preserves
each of the complementary components of γ up to isotopy and so preserves
an orientation on γ. We now induct on #Γ. There exists γ ∈ Γ which
does not separate any pair of elements of Γ. Thus there exists a Jordan
domain D ⊂ S2 − Γ bounded by an element γ of Γ such that D ∩ P �= ∅.
Since g|P = idP we must have g(D) = D up to isotopy fixing P and so in
particular g(γ) is isotopic to γ and g|γ preserves an orientation on γ. Thus
g(Γ′) = Γ′ where Γ′ = Γ− {γ}. By induction, the proof is complete. �

Thurston’s classification. Thurston’s classification of mapping classes
[18, Theorem 4] is correspondingly simpler.
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Theorem 2.2 (Thurston classification). — A nontrivial element g ∈
Mod(S2, P ) is either

1. aperiodic reducible: of infinite order and permutes (hence fixes) the
elements of a nonempty multicurve Γ, preserving orientation, or

2. pseudo-Anosov.

The finite order case cannot occur, since by a classical result of Nielsen
[15], any periodic mapping class is represented by a Möbius transformation,
and we are assuming that such classes fix each of the � 3 elements of the
set P of marked points.

Support. Given a homeomorphism h : (S2, P ) → (S2, P ), its support
supp(h) is the closure of complement of the set of fixed points of h. The
support of a weighted multicurve w =

∑
i wiγi is Γw = ∪wi �=0γi.

Twists. Let γ represent an essential simple closed curve and let A be a
closed regular neighborhood of γ in S2 − P . Then there is an orientation-
preserving homeomorphism φ : {1 � |z| � 2} → A. A positive1, or left,
Dehn twist Tγ about γ is an element of Mod(S2, P ) represented by a home-

omorphism h whose support lies in A and which on A is given by φ◦ ĥ◦φ−1,
where ĥ(re2πiθ) = re2πi(θ+(r−1)). Thus, if α is the image under φ of the seg-
ment joining 1 and 2, then h(α) bends to the left as it is traversed in either
direction and winds once around the annulus A. The class of Tγ depends
only on the isotopy class of γ.

Lemma 2.3. — Suppose g = hp where h is a left Dehn twist and p ∈
Z. Then p may be computed as follows. Represent h by a homeomorphism
supported on an annulus A. Let α : ([0, 1], {0, 1}) → (A, ∂A) be a path
joining a point a in one boundary component γ of A to a point in the other
boundary component. Give γ the orientation induced from A; then [γ] �→ 1
identifies π1(A, a) with Z. Then p = [α∗g(α)] where ∗ denotes concatenation
of paths, α denotes the path α traversed in the opposite direction, and α is
traversed first.

Multitwists. A multitwist is an element of Mod(S2, P ) which is a prod-
uct of powers of Dehn twists about the elements of a multicurve. We de-
note by Tw(S2, P ) the subset of Mod(S2, P ) given by multitwists, and by

(1) There do not seem to be standard conventions about what constitutes a positive
twist; in other circumstances, it may be more natural to adopt the opposite convention.
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Tw+(S2, P ) the subset of twists in which the powers are all strictly positive.
The implied representation as a product is unique:

Lemma 2.4. — Suppose {α1, . . . , αm} and {β1, . . . , βn} are multicurves.
Set ai = Tαi , bj = Tβj , and suppose p1, . . . , pm, q1, . . . , qn ∈ Z \ {0}. If

g = ap1

1 . . . apmm = bq11 . . . bqnn

then m = n and, after re-indexing if needed, ai = bi and pi = qi, i =
1, . . . , n.

Proof. — By assumption, g(αi) = αi and g(βj) = βj up to isotopy for
all i, j. Let ι denote the geometric intersection number of a pair of simple
closed curves, i.e. the infimum of the number of intersection points as the
representatives for the classes vary. If ι(αi, βj) �= 0 for some i, j then by [7,
Prop. 2.2] we have

ι(gl(αi), β) →∞
as l → ∞, which is impossible since gl(αi) = αi for each l. Hence the αi’s
and the βj ’s are pairwise disjoint up to homotopy. Let

Γ = {γ1, . . . , γl} = {α1, . . . , αm} ∪ {β1, . . . , βn} ⊂ C.

The group Tw(Γ) is a free abelian group, generated by the twists about
γ1, . . . , γl. The two expressions for g are two words in these commuting
twists and so must coincide. �

Thus if g ∈ Mod(S2, P ) is a multitwist, its support, defined as the multic-
urve (up to isotopy) about which the nontrivial twists occur, is well-defined.
More generally, the support of a set or group of multitwists is defined as the
union of the supports of its elements.

The subsets Tw(S2, P ) and Tw+(S2, P ) are invariant under the action
of Mod(S2, P ) on itself by conjugation.

Action on multicurves. Since Mod(S2, P ) acts on C(S2, P ), there is
a representation

Mod(S2, P ) → GL(R[C(S2, P )])

given in the obvious way by

g.w = g.

(∑

i

wiγi

)
=

∑

i

wig(γi)

i.e. by permuting basis elements. Note that if g ∈ Mod(S2, P ) then

g ◦Mw ◦ g−1 = Mg.w.
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The group Mod(S2, P ) also acts on the set of multicurves; there are finitely
many orbits.

3. Branched coverings

Throughout this section, fix a degree d � 2 and finite subsets P̃ , P ⊂ S2

where #P � 4. We denote by F = F(P̃ , P, d) the set of homotopy classes of

branched coverings f : (S2, P̃ ) → (S2, P ) of degree d such that P̃ = f−1(P )

and f : S2 \ P̃ → S2 \ P is unramified.

Lifts of simple essential curves. If γ is an essential nonperipheral
simple closed curve in S2−P , and if {γ̃k} denote the components of f−1(γ),

then each γk is again essential and nonperipheral in S2 − P̃ , and no two
distinct elements γ̃i, γ̃j are homotopic in S2 − P̃ ; see [16, Lemma 1.11].

The following lemma is an essential technical ingredient of our analysis.
It will imply that multitwists lift under branched coverings to multitwists.

Lemma 3.1. — Suppose f represents an element of F and {γ1, . . . , γn}
represents a (possibly empty) multicurve Γ. Suppose A1, . . . , An are pairwise
disjoint open regular neighborhoods of γ1, . . . , γn in S2\P . Suppose g : S2 →
S2 and supp(g) ⊂ A1 ∪ . . . ∪An.

If g ◦ f = f ◦ g̃ and g̃|P̃ = id
P̃

then supp(g̃) ⊂ f−1(A1 ∪ . . . ∪An).

Proof. — Let Γ̃ = f−1(Γ); thus Γ̃ represents a multicurve in S2 \ P̃ . By
construction g(Γ) = Γ up to isotopy. By Lemma 2.1 up to isotopy g fixes
each γi ∈ Γ and preserves its orientation. The same reasoning applied to
g̃ implies that up to isotopy g̃ fixes and preserves the orientation of each
element of Γ̃. Now let U be a component of S2 \ (A1∪ . . .∪An∪P ) and Ũ a
component of f−1(U). The boundary ∂U consists of punctures and curves
isotopic to elements of Γ. Since Γ is a multicurve and #P � 4, it follows that
∂U and hence ∂Ũ each have has at least three components. The lift g̃ sends
each boundary component of Ũ to itself. The Lefschetz fixed-point formula
then implies that g̃ has a fixed-point in Ũ . The restriction f : Ũ → U
is an unramified covering and by assumption g|U = idU , so the equation
g ◦ f = f ◦ g̃ implies that the restriction g̃|

Ũ
is a covering automorphism of

f : Ũ → U . Since g̃|
Ũ

has a fixed-point in Ũ , it must be the identity there.
�

The groups Mod(S2, P ) and Mod(S2, P̃ ) act on F on the left and right,
respectively, by

g.f.g̃ = g ◦ f ◦ g̃.
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Since it is easily verified that these actions are well-defined, we use the nota-
tion ◦ to denote these actions. Lemma 3.1 applied to the empty multicurve
implies that the right action of Mod(S2, P̃ ) on F is free.

Let f ∈ F and g ∈ Mod(S2, P ). If g ◦f = f ◦ g̃ for some g̃ ∈ Mod(S2, P̃ )
then by freeness of the right action, the element g̃ is unique; we denote it
f∗(g). The set

dom(f∗) = {g|∃g̃ with g ◦ f = f ◦ g̃}

is a subgroup of finite index in Mod(S2, P ), and f∗ : dom(f∗) → Mod(S2, P̃ )
is a homomorphism.

The previous lemma implies

Lemma 3.2. —

1. The homomorphism f∗ has the property that

f∗ : dom(f∗) ∩ Tw(S2, P ) → Tw(S2, P̃ )

and
f∗ : dom(f∗) ∩ Tw+(S2, P ) → Tw+(S2, P̃ ).

In particular, f∗ preserves the property of being aperiodic reducible.

2. If Γ = {γj} is a multicurve inMC(S2, P ), and w =
∑

j wjγj, wj ∈ Z,

then the multitwist Mw ∈ dom(f∗) ⇐⇒ T
wj
γj ∈ dom(f∗) for each j.

We now refine this observation. Define a linear transformation

f† : R[C(S2, P )]→ R[C(S2, P̃ )]

by

f†(γ) =
∑

k

1

dk
γ̃k

where {γ̃k} is the set of components of f−1(γ) and dk = deg(f : γ̃k → γ) is
the (positive) degree. Then f†, as a linear transformation, depends only on
the homotopy class of f .

Lemma 3.3. — Suppose g = hp where h is a left Dehn twist about γ.

1. If f†(γ) =
∑

k
1
dk

γ̃k and dk|p for each k, then g ∈ dom(f∗) and

f∗(g) =
∏

k ã
p/dk
k where ãk is the left Dehn twist about γ̃k.
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2. Conversely, if g ∈ dom(f∗) and f∗(g) =
∏

k ãqkk where ãk is the left
Dehn twist about γ̃k, then f†(γ) =

∑
k

1
dk

γ̃k and p = qkdk for each k.

Proof. — Represent h by an element supported on an annulus A and let
{Ãk} denote the components of f−1(A).

1. Note that dk = deg(f : Ãk → A). By Lemma 3.1, the conclusion g ∈
dom(f∗) will follow from the existence of an extension of the identity map

on S2 −∪kÃk to a lift g̃ of g. For this to hold, in turn it is enough to check
that hp|A lifts under f |

Ãk
: Ãk → A to a map g̃k : Ãk → Ãk which is

the identity on ∂Ãk. The hypothesis that dk|p, Lemma 2.3, and standard
covering space arguments yield the conclusion.

2. If g lifts under f to a map g̃ representing an element of Mod(S2, P̃ ) then

Lemma 3.1 implies that the support of g̃ is contained in ∪kÃk. Focusing on
a single component f |

Ãk
: Ãk → A, Lemma 2.3 again implies that p = qkdk

where dk = deg(f |
Ãk

). �

The conclusion of Lemma 3.3 may be phrased alternatively as follows.

Corollary 3.4. — If γ ∈ C(S2, P ) and p ∈ Z then

T p
γ ∈ dom(f∗) ⇐⇒ f†(pγ) ∈ Z[C(S2, P̃ )].

If T p
γ ∈ dom(f∗), then

f∗(T p
γ ) =

∏

k

T qk
γ̃k
⇐⇒ f†(pγ) =

∑

k

qkγ̃k.

4. Forgetful maps

In this section, we assume the setup of the previous section. Now, how-
ever, we make the additional assumption that P̃ ⊃ P .

The forgetful map π : (S2, P̃ ) → (S2, P ) induces a surjective homomor-
phism

π∗ : Mod(S2, P̃ ) → Mod(S2, P ).

It also induces a surjection

π : C(S2, P̃ ) → C(S2, P ) ∪ {o};
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those γ̃ ∈ C(S2, P̃ ) which are inessential or peripheral in S2−P are sent to
o. This in turn induces a surjective linear map

π† : R[C(S2, P̃ )]→ R[C(S2, P )]

defined on basis elements by π†(γ̃) = π(γ̃) if π(γ̃) �= o and π†(γ̃) = 0
otherwise.

Lemma 4.1. — The forgetful homomorphism π∗ sends multitwists to mul-
titwists. In particular,

π∗(Tγ̃) = Tπ(γ̃).

Consequently

π∗ : Tw(S2, P̃ ) → Tw(S2, P )

and

π∗ : Tw+(S2, P̃ ) → Tw+(S2, P ) ∪ {id}.

These restrictions are surjective.

Corollary 4.2. — Suppose Γ̃ = {γ̃k} is a multicurve in (S2, P̃ ) and
{lk} are positive integers. Let Γ = {γi} be the multicurve comprised of the

nontrivial images of elements of Γ̃ under π.

Then

π†

(∑

k

lkγ̃k

)
=

∑

i


 ∑

π(γ̃k)=γi

lk


 γi

if and only if

π∗

(∏

k

T lk
γ̃k

)
=

∏

i

Tmi
γi .

where mi =
∑

π(γ̃k)=γi

lk.

Proof. — If π†(γ̃k) = γi then π∗(Tγ̃) = γi by Lemma 4.1. Necessity
follows since π∗ is a homomorphism and π† is linear.

To prove sufficiency, suppose that

π†

(∑

k

lkγ̃k

)
=

∑

j

bjβj
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where the βj are distinct. By the definition of π†, since the γ̃k’s are disjoint,
the βj ’s are disjoint. Since we have already proved necessity, we have then

π∗

(∏

k

T lk
γ̃k

)
=

∏

i

Tmi
γi =

∏

j

T
bj
βj

.

By the uniqueness Lemma 2.4, we have after permuting indices that βj = γi
and bj = mi. The result follows since the βj are distinct, hence linearly
independent, and π† is linear. �

5. The virtual endomorphism

In this section, we assume f : S2 → S2 is a Thurston map; we set P = Pf

and P̃ = f−1(P ). As usual we assume #P � 4. Here, we define precisely
the virtual endomorphism φf : Mod(S2, P ) → Mod(S2, P ), show that it
depends only on the homotopy class of f relative to P , and prove Theorem
1.2.

The following lemma uses the fact that f(P ) ⊂ P and so is a fact about
dynamics.

Lemma 5.1. — Suppose f, g Thurston maps with common postcritical
set P , and suppose f and g are homotopic through Thurston maps agreeing
on P . Then there exists a unique homeomorphism h̃ : S2 → S2 with the
following properties:

1. f = g ◦ h̃, and

2. h̃ is isotopic to the identity through homeomorphisms fixing P .

Proof. — Uniqueness. If k̃ is another such homeomorphism then k̃−1◦h
restricted to S2 \ P̃ is an automorphism of the covering space f : S2 \ P̃ →
S2 \ P which fixes at least three punctures; the argument given in Lemma
3.1 shows that it must be the identity.

Existence. Let I = [0, 1] denote the unit interval. Let F0 = f and
F1 = g be joined by a homotopy F : I × S2 → S2 such that Ft|P = idP

for all t. Let M = I × (S2 − P ) and M̃ = {(t, x) : x �∈ F−1
t (P )}. Then

the map M̃ →M given by (t, x) �→ (t, Ft(x)) is a covering. Fix a basepoint
b ∈ S2 − P and b̃ ∈ F−1

0 (b). The path t �→ (t, b) may be lifted to a path
t �→ (t, b̃t) where b̃t ∈ F−1

t (b). The images of the fundamental groups

(Ft)∗ : π1(S
2 − F−1

t (P ), b̃t) → π1(S
2, b)
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are constant and so the identity map S2 − P → S2 − P lifts under F0 = f
and Ft to a map h̃t such that f = Ft ◦ h̃t. The resulting family of maps h̃t

is continuous in t. By construction h̃t|P = idP . Taking h̃ = h̃1 we see that
f = g ◦ h̃ with h̃ isotopic to the identity relative to P . �

Associated virtual endomorphism. Now suppose f : (S2, P̃f ) →
(S2, P ) and g : (S2, P̃g) → (S2, P ) are two Thurston maps with common
postcritical set P which are homotopic through Thurston maps agreeing on
P . Let h̃ : (S2, P̃f ) → (S2, P̃g) be the canonical homeomorphism given by
Lemma 5.1 and let f∗, g∗ denote the virtual homomorphisms of §3. If T
represents an element of dom(f∗) which lifts under f to a map T̃ fixing P̃f

then h̃◦ T̃ ◦ h̃−1 is a lift of T under g which fixes P̃g. Let h̃∗ : Mod(S2, P̃f ) →
Mod(S2, P̃g) denote the isomorphism induced by h̃. Then h̃∗◦f∗ = g∗. From

§4, let πf , πg denote the forgetful maps from (S2, P̃f ), (S2, P̃g) to (S2, P ),

respectively. Then πg
∗ ◦ h̃∗ = πf

∗ . In summary, the compositions satisfy

πf
∗ ◦ f∗ = πg

∗ ◦ g∗.

Definition. — Given a Thurston map f , the associated virtual endo-
morphism of Mod(S2, P ) is given by the composition φf = πf

∗ ◦ f∗; it de-
pends only on the homotopy class of f relative to P .

Lemmas 4.1 and 3.2 imply immediately that

φf : dom(φf ) ∩ Tw(S2, P ) → Tw(S2, P )

and

φf : dom(φf ) ∩ Tw+(S2, P ) → Tw+(S2, P ) ∪ {id}.

Also, the Thurston linear transformation

Lf : R[C(S2, P )]→ R[C(S2, P )]

factors as the composition

Lf = π† ◦ f†.

Proof of Theorem 1.2. — Suppose Γ = {γ1, . . . , γn} is a multicurve in
MC(S2, P ) and w =

∑
j wjγj , wj ∈ Z, is a weighted multicurve. By Lemma

3.2, Mw ∈ dom(φf ) ⇐⇒ T
wj
j ∈ dom(φf ) for each j. Fix j and set γ = γj

and p = wj .
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By the definitions, Corollary 4.2, and Corollary 3.4, we have

T p
γ ∈ dom(φf ) ⇐⇒ Lf (pγ) ∈ Z[C(S2, P )]

and in this case,

φf (T p
γ ) =

∏

i

T li
γi ⇐⇒ Lf (pγ) =

∑

i

liγi.

Since φf is a homomorphism and Lf is linear, it follows that

Mw ∈ dom(φf ) ⇒ φf (Mw) = MLf (w).

Now suppose Γ is an invariant multicurve, and consider Lf,Γ : RΓ → RΓ.
The definition of Lf implies that there exists a positive integer L such that
Lf,Γ(Lγ) ∈ ZΓ for all γ ∈ Γ. Let H = 〈Tγ : γ ∈ Γ〉 < Tw(S2, Pf ) and
identify H with Zn by means of the generators so that Lf,Γ = (φf |H)⊗R.
Since

(LZ)n < dom(φf |H) < Zn,

it follows that the restriction φf : H−−> H is a virtual endomorphism, and
so H is φf -quasi-invariant.

The sufficiency follows from similar arguments. �

Remark. — The virtual endomorphism defined above is the restriction of
another, perhaps more natural virtual endomorphism. Namely, one may con-
sider the subgroup H ′f < Mod(S2, Pf ) consisting of those mapping classes

represented by homeomorphisms h′ for which (i) there exists a lift h̃′ of h
under f , and (ii) h̃′ fixes the points of Pf . That the correspondence h �→ h′

descends to a well-defined homomorphism H ′ → Mod(S2, Pf ), and that it
sends twists to twists, is not immediately obvious; the issue is possibility of
covering automorphisms. In many low-complexity cases, such as quadratic
polynomials, the two definitions coincide.

6. Algebraic Thurston’s characterization

In this section, we prove Theorem 1.3. We exploit the fact that the linear
map Lf is nonnegative.

Lemma 6.1. — Let N � 1, let φ : ZN → ZN be a virtual endomorphism,
and let A = φ ⊗ R be the associated R-linear map. Suppose A is nonnega-
tive. Then the contraction coefficient ρ(φ) is equal to the Perron-Frobenius
leading eigenvalue λ(A).
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Proof. — For v = (v1, v2, . . . , vN ) ∈ RN denote by |v| = ∑
i |vi| the L1-

norm on v, and for a real nonnegative N -by-N matrix A let ||A|| denote the
corresponding operator norm.

By the Perron-Frobenius theorem and the spectral radius formula [6,
Thm. 14.16], respectively,

λ(A) = rσ(A) = lim
n→∞

||An||1/n = lim sup
n→∞

||An||1/n

where rσ(A) is the spectral radius of A. By the definition of the operator
norm, this in turn equals

lim sup
n→∞

(
lim sup
0 �=v∈RN

|An(v)|
|v|

)1/n

which upon approximating by rationals equals

lim sup
n→∞

(
lim sup
0 �=v∈QN

|An(v)|
|v|

)1/n

which in turn, upon clearing denominators, equals

lim sup
n→∞

(
lim sup
0 �=v∈ZN

|An(v)|
|v|

)1/n

.

Since dom(φ◦n) has finite index, there is some integer Ln > 0 such that
Lnv ∈ dom(φ◦n) for all v ∈ ZN . By scaling by Ln, the above quantity
becomes

lim sup
n→∞

(
lim sup

v∈dom(φ◦n),|v|→∞

|φ◦n(v)|
|v|

)1/n

= ρ(φ)

as required. �

Proof of Theorem 1.3. — By Theorem 1.1, f is equivalent to a rational
map if and only if every f -invariant multicurve Γ satisfies λ(Lf,Γ) < 1. So
suppose Γ is an invariant multicurve. By Theorem 1.2, H = Tw(Γ) =
〈Tγ : γ ∈ Γ〉 is a φf -quasi-invariant subgroup, and Lf,Γ = (φf |H) ⊗ R.
But Lemma 6.1 implies λ(Lf,Γ) = ρ(φf |H), so λ(Lf,Γ) < 1 if and only
if ρ(φf |H) < 1. �
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7. Pullback function on multicurves

In this section, we prove Theorems 1.4 and 1.5.

Suppose f is a Thurston map with postcritical set P and denote G =
Mod(S2, P ). Let φf : G −−> G be the virtual endomorphism on G de-
termined by f , set H = dom(φf ), and let {gi}i∈I be a choice of coset
transversal to H in G.

Given a multicurve Γ, the group Tw(Γ) is a free abelian group; for N � 1
an integer we denote by N ·Tw(Γ) = {gN : g ∈ Tw(Γ)}. For each Γ ∈MC,
there is a smallest positive integer N = N(Γ) � 1 such that N ·Tw(Γ) < H.

Recall that there is a left action of G on MC ∪ {o} by g.Γ = g(Γ) and
g.o = o. There are finitely many G-orbits, and since H has finite index
in G, there are finitely many H-orbits as well. Let {Γj}j∈J be an orbit
transversal to the action of H on MC ∪ {o}. Note that since H consists of
classes representable by homeomorphisms that lift under f , we have N(Γ) =
N(h.Γ) for all h ∈ H.

Theorem 1.2 implies that

f−1(Γ) = Γ̃ ⇐⇒ supp [ φf (N(Γ) · Tw(Γ)) ] = Γ̃.

For (i, j) ∈ I×J let Γ(i,j) = gi.Γj and let N(i,j) = N(Γ(i,j)). Given (i, j)
there are a unique ν(i, j) ∈ J and an h(i,j) ∈ H for which f−1(Γ(i,j)) =
h(i,j).Γν(i,j). Combining this observation with the previous paragraphs, we
have

supp
[
φf

(
N(Γ(i,j)) · Tw(Γ(i,j))

)]
= supp

[
Tw(Γν(i,j))

h(i,j)
]
.

Since J is also a transversal to the action of G on MC ∪ {o}, there is a
surjective map

π : J ×G→MC ∪ {o}
defined by

π(Γj , g) = g.Γj .

Define a function
f : J ×G→ J ×G

as follows: given (j, g), there are unique i ∈ I and h ∈ H with g = gi ·h. We
set

f(j, g) = (ν(i, j), h(i,j) · φf (h))

where h(i,j) ∈ H and ν(i, j) ∈ J are defined as above.
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Theorem 7.1. — We have

J ×G
f−→ J ×G

π ↓ ↓ π

MC ∪ {o} f−1

−→ MC ∪ {o}
.

That is, Γ
f←− Γ̃ if and only if for any (j, g) with π(j, g) = Γ, the multicurve

Γ̃ is given by g′(Γj′), where f(j, g) = (j′, g′).

Proof. — Suppose Γ = π(j, g). Let gi, h be the unique elements sat-
isfying g = gi · h. Recalling our notational convention, this means that
when represented by homeomorphisms, g = h ◦ gi, so Γ = h(gi(Γj)). Thus

Tw(Γ) = Tw(Γ(i,j))
h. Then f−1(Γ) = Γ̃ if and only if

Γ̃ = supp [φf ( N(Γ) · Tw(Γ) )]

⇐⇒ Γ̃ = supp
[
φf

(
N(Γ(i,j)) · Tw(Γ(i,j))

h
)]

⇐⇒ Γ̃ = supp
[
Tw(Γν(i,j))

h(i,j)·φf (h)))
]

⇐⇒ Γ̃ = π
(
ν(i, j), h(i,j) · φf (h)

)

⇐⇒ Γ̃ = π(f(j, g)).

�

Thus any orbit of a multicurve Γ0 ∈ π(j0, g0) under iteration of the
pullback relation lies in the image under π of the orbit of (j0, g0) under
iteration of the function f .

Remark. — One could write f : J ×G→ G× J and regard f as defining
an automaton. It seems difficult to apply the connections between automata
and selfsimilar group actions as developed in [13] to f , however, since the
corresponding transformations of J are not in general invertible.

Proof of Theorem 1.4. — In the course of the proof, we will make free
use of facts from the theory of selfsimilar groups; see [13].

Proof. — Set D = [G : H]. Let Φ : G → GD � SD be any associated
wreath recursion defined by [13, §2.5.5, Equation (2.5)]. The image of an
element under Φ is denoted

Φ(g) = 〈g|1, . . . , g|d〉τ(g).
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By construction, φ(h) = h|1 for all h ∈ H. Repeated application of the
homomorphism Φ defines a selfsimilar action of the group G on the set of
all finite words v in the alphabet {1, . . . , D}. We denote by |v| the word
length of such a word.

The elements g|i, i = 1, . . . , D are called restrictions, and repeated ap-
plication of the wreath recursion gives, to any word v ∈ {1, . . . , D}n, a cor-
responding element g|v. The assigment (g, v) �→ g|v satisfies g|vw = (g|v)|w
and (g1g2)|v = (g1|g2(v))g2|v. By op. cit., Lemma 2.11.12, since φ is contract-
ing, so is Φ. Fix a generating set for G and let || · || denote the associated
word length function on G. Contraction of Φ is equivalent to the following.
There exist natural numbers n0, C0 such that for all g ∈ G and all v with
|v| � n0, the restrictions satisfy ||g|v|| � 1

2 ||g||+ C0.

Suppose (j0, g0) ∈ J×G is arbitrary, and suppose (jn, gn), n = 0, 1, 2, . . .
is its orbit under f . Then for each n ∈ N, there exist in ∈ I, hn ∈ H , and
kn ∈ {h(i,j) : (i, j) ∈ I × J} such that

gn = gin · hn and gn+1 = kn+1 · φf (hn)

i.e.

hn+1 = g−1
in+1

· kn+1 · φf (hn).

Letting P = {g−1
i′ · h(i,j) : i, i′ ∈ I, j ∈ J} and setting pn = g−1

in+1
· kn+1, we

see that the sequence {hn} satisfies

hn+1 = pn · φf (hn), n = 0, 1, 2, . . . ,

where each pn belongs to the finite set P . Set P0 = P and for n � 1 set

Pn = {p|v : p ∈ P, |v| = n}.

An easy induction argument and the above properties of restrictions imply
that for each n ∈ N,

hn ∈ P0 · P1 · . . . Pn · h0|11 . . . 1︸ ︷︷ ︸
n

.

Thus if n0, C0 are as above, upon setting

Bn0
= max{||g|| : g ∈ P0 · P1 · . . . · Pn0

}

we see that

||hn0 || � B0 +
1

2
||h0||+ C0.
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Letting C1 = max{||gi|| : i ∈ I} we conclude that

||gn0 || � C1 + B0 +
1

2
||h0||+ C0 =

1

2
||g0||+ C2.

Iterating this bound, it follows that

||gn|| � 2C2 + 1

for all n sufficiently large. Since {g : ||g|| � 2C2 + 1} is finite, the proof is
complete. �

Corollary 7.2. — Suppose f(z) = z2 + c and the origin is periodic.
Then the pullback function on multicurves (and, hence, the pullback relation
on curves) has a finite global attractor.

Proof. — Let M = M(P1, Pf ) now be the moduli space of injections
Pf ↪→ P1 modulo conformal automorphisms of P1, so that ι ∼ ι′ if there
exists A ∈ Aut(P1) such that ι′ = A ◦ ι. Then M is naturally a hyperplane
complement in CP#Pf−3 with a distinguished basepoint � corresponding to
the identity map of Pf . The mapping class group G is then naturally iden-
tified with the fundamental group π1(M,�). The topology of M is carried
by a compact subset K, i.e. by the complement of a tubular neighborhood
of the omitted hyperplanes.

Under the hypothesis of the corollary, the following facts are known;
see [10]. There is an associated slightly smaller hyperplane complement
M′ ⊂ M and a holomorphic map ωf : M′ → M fixing � (the map ωf

actually extends to a holomorphic endomorphism of CP#Pf−3, though we
do not need this fact). By [1, Prop. 3.2], ωf is a covering map. The virtual
endomorphism φf on the mapping class group G coincides with the virtual
endomorphism on π1(M,�) induced by the covering ωf [2, §5]. The mod-
uli space M is Carathéodory hyperbolic, and so one can choose arbitrarily
large compact sets K ⊂ M for which K ↪→ M is surjective on π1 and so
that ω−1

f (K) ⊂ K. It follows that path-lifting of loops under ωf uniformly
contracts the lengths of loops in K, and hence by [13, Thm. 5.5.3] that φf

is contracting. The conclusion then follows by Theorem 1.4. �

Remark. — In certain cases when the dynamical map f has higher com-
plexity, one has not a holomorphic map ωf :M′ →M on moduli space, but
a holomorphic correspondence, i.e. a pair of functions Y : M′ → M and
X : M′ →M where Y is a finite covering and X is holomorphic. One can
choose this correspondence so that the virtual endomorphism X∗ ◦ Y −1

∗ on
the fundamental group of moduli space again coincides with φf . One can
give analytic conditions on this correspondence, similar in spirit to those
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given in Corollary 7.2, which again imply that the pullback relation on
curves has a finite global attractor. However, Lodge [11] has found exam-
ples of rational maps for which the pullback relation on curves has a finite
global attractor, but for which the source of this finiteness is not a conse-
quence of known general algebraic or analytic properties.

We now turn to the proof of Theorem 1.5. First, note that the hypotheses
are clearly necessary, albeit for stupid reasons: Lemma 8.1 below shows
that for the rabbit polynomial, there are infinitely many distinct curves γ
which pull back to the trivial curve; thus for each, the multicurve Γ := {γ}
is by definition invariant, but not completely invariant. And any integral
Lattès example (see [5]) has the property that every multicurve is completely
invariant; such maps have Euclidean orbifold.

The spirit of the proof is the Change of Coordinates Principle [7, §1.3].
Suppose instead we want to prove that on a closed surface of genus g, up to
homeomorphism there are only finitely many multicurves. Cut the surface
along a multicurve; one obtains finitely many pieces. By the classification
of surfaces, there are only finitely many possibilities for the pieces. There
are only finitely many ways to glue the pieces together. Thus, given two
multicurves Γ1,Γ2 which yield the same pieces and gluing data, decomposing
along one and then regluing using the data given by the other yields a
homeomorphism sending Γ1 → Γ2.

Proof. — (Theorem 1.5). Identify S2 with Ĉ. Suppose f is a rational
map with hyperbolic orbifold; set Q = f−1(Pf ). Consider the pullback
relation on homotopy classes of essential, unoriented, simple closed curves
in S2 − Q; it suffices to prove that a map combinatorially equivalent to
f has the property that there are only finitely many completely invariant
multicurves under this new relation.

Suppose Γ is such a multicurve. We decompose f along Γ as in [16].
Thicken the elements of Γ to a family of annuli A0. Let S0 be the collec-
tion of spheres obtained by cutting along elements of A0 and then adding
disks (each with a distinguished marked point in its interior) along each
boundary component. Let A1 be the collection of annuli which are preim-
ages of annuli in A0 and which, up to homotopy, are essential subannuli of
A0; by adjusting f if needed within its combinatorial class, we may assume
A1 ⊂ A0 and ∂A1 ⊃ ∂A0. Let S1 be the collection of spheres obtained by
cutting along elements of A1 and then adding disks (each with a distin-
guished marked point in its interior) along each boundary component. One
records the following combination data:
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• the mapping tree T, recording the deployment of the elements of A0

in the marked sphere (S2, Q); it is equipped with a self-map;

• FS : S1 → S0, an induced map of a disjoint collection of spheres;

• FA : A1 → A0, an induced map of a disjoint collection of annuli;

• set-theoretic gluing data τ needed to reconstruct the dynamics of f
on Q from that of FS on the set Q ∩ (S2 \ A0) ∪ Z where Z is the
collection of distinguished added points, one for each disk;

• topological gluing data describing how to recover the original sphere
from S1 and A1 and S0 and A0.

The Decomposition Theorem [16, Thm. 5.1] asserts that up to combi-
natorial equivalence, f can be reconstructed from the above combination
data.

There are notions of combinatorial equivalence for families of sphere and
for annulus maps FS ,FA.

If f is rational, the family FS is realized by a family of rational maps.
Their degrees and the size of their postcritical set are bounded in terms
of d and q. By [16, Cor. 3.7] as Γ varies, up to combinatorial equivalence
there are only finitely many such families obtained from f by decomposition
(the possibility of FS containing a cycle corresponding to a flexible Lattès
example is not yet excluded; see below).

If f is rational with hyperbolic orbifold, the Thurston linear transforma-
tion fΓ does not have 1 as an eigenvalue. By [16, Lemma 8.5], this implies
that as Γ varies, up to combinatorial equivalence, there are only finitely
many such families of annulus maps FA.

Suppose now f has degree d and #Q = q. The number of mapping
trees T is bounded by a constant involving only d and q. The number of
set-theoretic gluing maps τ is similarly bounded.

The preceding three paragraphs show that if f is rational, then upon
decomposing along invariant multicurves, up to combinatorial equivalence,
the data needed to define f as a combination range over finite sets.

Suppose now Γ1,Γ2 are two invariant multicurves such that decomposing
along Γ1 and Γ2 yield isomorphic mapping trees, set-theoretic and topolog-
ical gluing data, and combinatorially equivalent sphere and annulus maps.
By the uniqueness of combinations theorem [16, Thm. 4.5], a pair hS , hA of
combinatorial equivalences between sphere and annulus maps, respectively,
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yields, upon combining, a combinatorial equivalence between the new, glued
maps, and hence a combinatorial equivalence h from f to itself which rep-
resents an element of the pure mapping class group Mod(S2, Q) and which
sends Γ1 to Γ2.

We now argue that h is trivial and hence that Γ1 = Γ2. By the natu-
rality of Thurston’s pullback map used in the proof of the characterization
theorem [5, Prop. 2.1], the equivalence h conjugates the pullback map σf

on Teichmüller space modelled on (S2, Q) to itself. Since f is rational with
hyperbolic orbifold, σf has a unique fixed-point τ which is therefore fixed
by h, i.e. in the classification of mapping classes, h is elliptic. By Theorem
2.2, h = id. �

8. Analysis of the Rabbit

In this and the next two sections, we use the spirit of the proof of The-
orem 1.4 to analyze the pullback relation for quadratic polynomials with
three finite postcritical points. In two cases, the virtual endomorphism is
contracting. In the case of the dendrite f(z) = z2 + i, however, the virtual
endomorphism φf is not contracting on the correponding mapping class
group G. Nevertheless, the conclusion of Theorem 1.4 still holds.

Remark. A polynomial of the form f(z) = zd+c for which #(Pf \{∞}) = 3
has no invariant (multi) curves. Such a curve would bound a disk D which is
totally invariant up to isotopy relative to Pf . This in turn would imply that
Pf \ {∞} would contain two points—one inside D, one outside—in distinct
grand orbits. This is impossible since f has a single finite critical point.

To keep the present notation close to that of [2], we use ψ, not φf , to
denote virtual endomorphisms on the mapping class group. The situation
simplifies: since #Pf = 4 in each case, we have C =MC, so that the pullback
relation and pullback function coincide.

In this section, we prove Theorem 1.6. Let f(z) = z2 + c where c is the
unique complex parameter for which the origin is periodic of period 3 and
Im(c) > 0. Let C = C(Ĉ, Pf ) and G = Mod(Ĉ, Pf ).

Let x and y denote respectively the right Dehn twists about the curves
labelled S and T in Figure 2 of [2]. For convenience, set z = x−1y−1; re-
calling the notational conventions, this means a left Dehn twist about S is
performed first, followed by a left Dehn twist about T . Then z is a right
Dehn twist about a curve separating {c, 0} from {c2 + c,∞}.
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Any nontrivial element of Tw(Ĉ, Pf ) is then uniquely expressible in one
of the three forms

(xn)w, (yn)w, (zn)w

since the core curve of any twist can be mapped via a mapping class element
w to the core curve of either x, y, or z.

The induced virtual endomorphism ψ := φf on G is calculated in [2]; cf.
also [13, §6.6]. It is given by

ψ(x) = y, ψ(y2) = x−1y−1 = z, ψ(xy) = 1;

recall xy = y−1xy, so conjugation acts as a right action. Let H = dom(ψ) =
〈x, y2, xy〉. Note that

x4 �→ y4 �→ z2 �→ x

and thus by Theorem 1.2 under backwards iteration the core curves of x, y, z
form a three-cycle.

For convenience, set u = yxy−1.

Lemma 8.1. — We have

ψ((xn)w) =





(yn)ψ(w), w ∈ H

1, w �∈ H

ψ((y2n)w) =





(zn)ψ(w), w ∈ H

(zn)ψ(y−1w), w �∈ H

ψ((z2n)w) =





(xn)ψ(w), w ∈ H

uψ(y−1w), w �∈ H

ψ((un)w) =





1, w ∈ H

(yn)ψ(y−1w), w �∈ H
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Proof. — If w �∈ H then w = yw′ where w′ ∈ H, and

ψ((y2)w) = ψ(w′−1y−1y2yw′) = ψ(w′−1y2w′) = zψ(w′) = zψ(y−1w)

ψ((x2)w) = ψ(w′−1(y−1xy)2w′) = ψ(w′)−1 · 1 · ψ(w′) = 1

ψ((z2)w) = ψ(w′−1y−1z2yw′) = ψ(w′−1y−1 · x−1y−1x−1y−1 · yw′) =

ψ(w′−1 · y−1x−1y · y−2 · x−1 · w′) =

ψ(w′)−1 · 1 · yx · y−1 · ψ(w′) = uψ(y−1w),

ψ(uw) = ψ(w′−1y−1 · yxy−1 · yw′) = ψ(w′)−1 · ψ(x) · ψ(w′) = yψ(y−1w).

If w ∈ H then the desired identities follow directly from the definitions.
�

Define ψ̂ : G → G by setting ψ̂(g) = ψ(g) for g ∈ H and by ψ̂(g) =
ψ(y−1g) otherwise.

Let Σ = {x, y, z, u, 1} ⊂ G and let π : Σ×G→ C ∪ {o} be given by

π(c, w) = the class of the core curve of the twist cw, c ∈ Σ, w ∈ G

where by convention π(1, g) = o for all g.

Define

E : Σ×Mod(S2, Pf ) → Σ

by setting E(c, w) to be the value given by the following table:

x y z u 1

w ∈ H y z x 1 1

w �∈ H 1 z u y 1.

Lemma 8.1 and Theorem 1.2 imply that the function f : Σ×Mod(S2, Pf ) →
Σ × Mod(S2, Pf ) given by f(c, w) = (E(c, w), ψ̂(w)) covers the pullback
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relation in the sense that the diagram

Σ×G
f−→ Σ×G

π ↓ ↓ π

C ∪ {o} f←− C ∪ {o}

commutes. Hence, we can lift iteration of the pullback relation on curves to
iteration of f . Theorem 1.6 follows immediately from the above observations,
Theorem 1.2, and the following Lemma, whose proof occupies the remainder
of this section.

Lemma 8.2. — For any w ∈ G, there exists n ∈ N with ψ̂◦n(w) = 1.

Proof. — Identify the symmetric group on two symbols with the cyclic
group of order two, Z2; the unique nontrivial element will be denoted σ. 2

We begin by recalling the wreath recursion for the rabbit:

Φ : G→ (G×G)� Z2

given by

Φ(x) = 〈y, 1〉, Φ(y) = 〈1, x−1y−1〉σ;

see [2].

The map ψ̂ is related to the recursion Φ in the following way:

ψ̂(g) =





g|0 , g ∈ H

yx · (g|1) , g �∈ H.

(8.2)

To see this, suppose first that h ∈ H. Both g �→ g|0 and g �→ ψ̂(g) are
homomorphisms on H, so to show equality it is enough to show that they
agree on the generators. This is easily verified using the definitions. If g �∈ H,

(2) The symbol “1”, when within angle brackets, refers to the identity element of G.
When zero and one are used as a subscript on a vertical bar, they denote, respectively,
the first and second G-coordinate in the wreath product.
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then using the first case in (8.2) we have

ψ̂(g) = ψ(y−1g)

= (y−1 · g)|0

= [〈yx, 1〉σ · 〈g|0, g|1〉σ]|0

= yx · (g|1).

More generally, we have

Claim. — For all g ∈ G and n ∈ N,

ψ̂◦n(g) ∈ {g|v, yx · (g|v), y · (g|v) : v ∈ {0, 1}n} .

Proof. — We prove this by induction on n, the base case being handled
by (8.2). Given n � 2 and g ∈ G, write

ψ̂◦n(g) = ψ̂(ψ̂◦(n−1)(g)︸ ︷︷ ︸
a

) = ψ̂(a).

By the inductive hypothesis, there exists v ∈ {0, 1}n−1 with

a ∈ {g|v, y · (g|v), yx · (g|v)}.

The proof breaks then into 3 × 2 cases, depending on the form of a as an
element of the above set, and whether or not g|v belongs to H. The compu-
tations are tedious but straightforward; here is a representative calculation.
Suppose a = yx · (g|v) and g|v = k �∈ H. Write Φ(k) = 〈k0, k1〉σ. Then

yx · k ∈ H and so ψ̂(a) = ψ(yx · k) is given by

ψ(yx · k) =
[
〈1, x−1y−1〉σ · 〈y, 1〉 · 〈k0, k1〉σ

]
|0

=
[
〈1, x−1y−1〉〈1, y〉〈k1, k0〉

]
|0

= k1 = k|1 = (g|v)|1

= g|v1.

�
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In [2] it is shown that the recursion for the rabbit is contracting in the
following sense: there is a finite set N ⊂ G such that given any g ∈ G, there
is an integer N such that for any n � N , and any v ∈ {0, 1}n, we have
g|v ∈ N . They compute the set N ; it is given by

N = {1, x, y, yx, x−1, y−1, x−1y−1}.

This and the preceding Claim imply that under iteration of ψ̂, any w ∈ G
eventually lands in an element of the set

N , y · N , yx · N .

The dynamics of ψ̂ on this union is easily calculated by hand:

yxyx �→ x−1 �→ y−1 �→ yx �→ y �→ 1

yx2 �→ y2 �→ x−1y−1 �→ yx

yxy−1 �→ 1 ← yx−1y−1

y2x �→ x−1, yx−1 �→ y−1, yxy �→ x−1y−1.

�

Remarks. — The argument given above is a direct imitation of the tech-
niques in [2], elaborating on their Proposition 4.2. The relationship between

the wreath recursion of the rabbit and our map ψ̂ seems substantially dif-
ferent than that between the wreath recursion of the rabbit and their map
ψ̂: the map f formally defines an automaton over the alphabet Σ with states
G. For a given g ∈ G, however, the corresponding map Σ→ Σ need not be
invertible.

9. Analysis of z2 + i

In this section, we prove Theorem 1.7. Let f(z) = z2 + i and let now

C = C(Ĉ, Pf ). Our analysis proceeds differently: the virtual endomorphism ψ

and corresponding recursion is no longer contracting on G = Mod(Ĉ, Pf ).
The analysis exploits the fact that the analysis of the action of iteration
of ψ on conjugacy classes can be reduced to the single case of iteration

of bw �→ bψ̂(w) where ψ̂ is similarly defined. To conclude the argument,
however, we exploit cancellations caused by identities such as bb = b.
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The domain of the virtual endomorphism ψ := φf in this case is H =
〈a2, b, ba〉, and the action on the generators is given by

ψ(a2) = 1, ψ(b) = b−1a−1, ψ(ba) = b.

Let us set c = b−1a−1, so that the loop representing c contains a peripheral
disk bounding infinity to its left-hand side.

Lemma 9.1. — We have

ψ((a2n)w) = 1

ψ((c2n)w) =





(an)b
−1ψ(w), w ∈ H

(an)b
−1ψ(a−1w), w �∈ H

ψ((bn)w) =





(cn)ψ(w), w ∈ H

(bn)ψ(a−1w), w �∈ H

The proof is entirely analgous to that of Lemma 8.1.

Lemma 9.1 implies that ψ◦2(uw) is trivial whenever u ∈ {a, c}, and so
ψ◦3(bw) is trivial if w ∈ dom(ψ). The long-term behavior of iterates of ψ on
elements of the form bw is therefore again dictated by iteration of the map
w �→ ψ̂(w), where ψ̂(w) = ψ(w), w ∈ H and ψ̂(w) = ψ(a−1w), w �∈ H.

Let |w| denote the word length of w with respect to the generating set
{a±1, b±1, c±1}.

Lemma 9.2. — The map ψ̂ satisfies the following recursion relations:

ψ̂(aw) =





1 · ψ̂(w), w ∈ H

1 · ψ̂(w), w �∈ H.

(9.1)

ψ̂(a−1w) =





1 · ψ̂(w), w ∈ H

1 · ψ̂(w), w �∈ H.

(9.2)
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ψ̂(b±1w) =





c±1 · ψ̂(w), w ∈ H

b±1 · ψ̂(w), w �∈ H.

(9.3)

ψ̂(cw) =





b−1 · ψ̂(w), w ∈ H

c−1 · ψ̂(w), w �∈ H.

(9.4)

ψ̂(c−1w) =





c · ψ̂(w), w ∈ H

b · ψ̂(w), w �∈ H.

(9.5)

In particular, |ψ̂(w)| � |w| for all w.

The computations are straightforward.

Lemma 9.3 If w �∈ H and ψ̂(w) �∈ H, then there exists v such that
ψ◦2(bw) = bv and |v| < |w|.

Proof. — Let w = s1s2 . . . sl be a minimal length representation of w as
a word in the generators {a±1, b±1, c±1}. If s1 = b±1 then set w′ = s2s3 . . . sl
and observe

ψ(bw) = ψ(bb
±1w′) = ψ(bw

′
) = bψ̂(w′)

and so
ψ◦2(bw) = bv, v = ψ̂◦2(w′).

By the previous Lemma 8.2,

|v| = |ψ̂◦2(w′)| = |w′| � l − 1 < |w|.

If s1 = a±1 or s1 = c then a similar calculation shows the desired
inequality.

If s1 = c−1 we argue as follows. Set w = c−1w′ where w′ is as above.
Then

ψ(bw) = ψ(babw
′
) = bψ(bw′) = bcψ(w′) = ba

−1ψ(w′) = ba
−1ψ̂(w′)

and so

ψ◦2(bw) = ψ(ba
−1ψ̂(w′)) = bψ̂

◦2(w′) = bv, v = ψ̂◦2(w′).

Again |v| = |ψ̂◦2(w′)| � |w′| = l − 1 < |w|, as required. �
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Now let γ ∈ C be an arbitrary curve. Then the Dehn twist about γ
is given by uw where u ∈ {a, b, c}. By Lemma 9.1, if u ∈ {a, c} then
ψ◦2((u4)w)) = 1, hence all preimages of γ under f◦2 are trivial. So we
now assume u = b. Let k = 2|w|. By induction and Lemmas 9.1 and 9.3,
ψ◦i((b4)w) is either trivial already, a conjugate of a or of c (in which case
it becomes trivial upon applying ψ◦2), or is equal to b4 (in which case it
becomes trivial upon applying ψ◦3). �

10. Preperiod 1, period 2

In this section, we prove Theorem 1.8. The computations were carried
out by R. Lodge.

There is a unique complex number c ≈ −0.2282 . . . + 1.1151 . . . i with
Im(c) > 0 for which, under iteration of f1/4(z) = f(z) := z2 + c, the origin
after one iteration lands in a two-cycle; it is the landing point of the angle
1/4 external ray of the Mandelbrot set.

Let a and b denote respectively the right Dehn twists about the curves
labelled “a” and “b” in Figure 18 of [2]. The domain H of the virtual endo-

morphism ψ := φf is given by H = 〈a2, b, aba−1 = ba
−1〉, and the action on

the generators is given by

ψ(a2) = b, ψ(b) = b−1a−1, ψ(aba−1) = a.

Define ψ̂ : G→ G by

ψ̂(w) =





ψ(w), w ∈ H

ψ(a−1w), w ∈ aH.

It is convenient to set c = b−1a−1, d = b−1ab, e = aba−1, f = b−1a−1bab. As
before, the pullback relation on curves lifts to a function f : Σ×G→ Σ×G.
If g ∈ Σ := {1, a, b, c, d, e, f} the smallest positive integer k for which gk ∈ H
is given by k = 1, 2, 1, 2, 2, 1, 1, respectively, as can be seen by counting (with
sign) the powers of the generator a appearing in an expression for g. The
corresponding table summarizing the values of the corresponding function
E in this case is given by

a b c d e f

w ∈ H b c 1 e a a

w �∈ H b d 1 f c d.
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By computations entirely analogous to those in §8, we find that for all g ∈ G,

ψ̂(g) =





g|0, w ∈ H

b−1(g|1), w ∈ aH

where Φ(g) = 〈g|0, g|1〉σ is the wreath recursion given on generators by

Φ(a) = 〈1, b〉σ, Φ(b) = 〈b−1a−1, a〉.

By induction, one finds that for all g ∈ G and n ∈ N that

ψ̂◦n(g) ∈
{
gv, b

−1(g|v), ab(g|v), b−1a−1(g|v), a(g|v) : v ∈ {0, 1}n
}

;

the proof is a tedious but straightforward computation involving ten cases
depending the coset containing g and the form of ψ̂◦(n−1)(g). From [2], the
nucleus of the wreath recursion is given by

N =
{
1, a±1, b±1, (ab)±1, (a−1b)±}

}

and so under iteration of ψ̂ every element eventually lands in the union of
one of the five sets

N , b−1N , abN , b−1a−1N , aN .

Another straightforward computation shows that if n � 6 then every ele-
ment g lying in one of these five sets satisfies ψ̂◦n(g) ∈ {1, b−1a−1}.

It follows that under iterated pullback, every curve orbit is covered by
an orbit of f that lands in the set Σ ∪ Σb−1a−1

. Another straightforward
computation shows that upon pulling back five times, such a curve becomes
trivial. �
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– 1068 –


