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Adiabatic approximation for a two-level atom
in a light beam

AMANDINE AFTALION(") | FrRANCIS NIER(?)

ABSTRACT. — Following the recent experimental realization of synthetic
gauge potentials, Jean Dalibard addressed the question whether the adi-
abatic ansatz could be mathematically justified for a model of an atom
in 2 internal states, shone by a quasi resonant laser beam. In this paper,
we derive rigorously the asymptotic model guessed by the physicists, and
show that this asymptotic analysis contains the information about the
presence of vortices. Surprisingly, the main difficulties do not come from
the nonlinear part but from the linear Hamiltonian. More precisely, the
analysis of the nonlinear minimization problem, and its asymptotic re-
duction to simpler ones, relies on an accurate partition of low and high
frequencies (or momenta). This requires to reconsider carefully previous
mathematical works about the adiabatic limit. Although the estimates
are not sharp, this asymptotic analysis provides a good insight about the
validity of the asymptotic picture, with respect to the size of the many
parameters initially put in the complete model.

RESUME. — Suite a la réalisation expérimentale de champs de jauge
artificiels, Jean Dalibard a soulevé la question de l’approximation adia-
batique pour un modele d’atome a deux niveaux, éclairé par un faisceau
laser résonnant. Dans cet article, nous dérivons rigoureusement le modele
asymptotique deviné par les physiciens et montrons que cette analyse
contient I'information sur la présence de vortex. Les difficultés, et c’est
une surprise, ne viennent pas du terme non linéaire. Plus précisément,
l’analyse du probleme non linéaire, et la réduction asymptotique a un
modele plus simple, reposent sur une séparation précise des grandes et
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basses fréquences (ou grands et bas moments). Cela nécessite de recon-
sidérer avec soin les résultats mathématiques existants sur la limite adia-
batique. Bien que les estimations ne soient pas optimales, elles fournissent
une bonne intuition sur la validité du modele asymptotique, par rapport
aux tailles des différents parametres initialement mis dans le modele.

1. Introduction

A lot of interest, both in the mathematical and physical community, has
been devoted in the past 10 years to the study of the rotation of a Bose
Einstein condensate: experiments [28, 29|, theoretical works (see [16, 18]
for reviews), mathematical contributions [1, 26]. In the first experimental
production of such rotating Bose Einstein condensates, a rotating laser beam
was superimposed on the magnetic trap holding the atoms in order to spin
up the condensate by creating a harmonic anisotropic rotating potential
[28, 29]. Recently, a new experimental device has emerged which consists
in realizing artificial or synthetic gauge magnetic forces and leads to the
formation of vortex lattices at rest in the lab frame [19]. A colloquium [17]
has analyzed in detail the artificial gauge fields and their manifestations. In
order to understand the main ingredients of the physics of geometrical gauge
fields, [17] (see also [20]) study the case of a single quantum particle state
with a 2 levels internal structure. More complex systems with more than
2 internal levels are also discussed in [17] but we stick here to the simpler
case of 2 levels, which contains all the mathematical difficulties. A key issue
is to determine whether one internal state can be followed adiabatically. A
question raised by Jean Dalibard is to analyze in particular whether vortex
formation may break down the adiabatic process. In [17], some conditions
are provided, that we want to analyze from a mathematical point of view.

We are interested in the minimization of the energy
2 2, G
£(0) = [ IVOF + Vil )lof + 5 lol" dady

cos(fy, (x)) ek W) sin(f,, (x))
+ /Rz Qn,ém (33) <¢7 (e—iapk(y) Sin(@gm (x)) ) ) ¢>(C27 dmdy

—cos(fy, (x)

where o= ((7U)) € C2 and o) = [61(c, ) + [ ). We

prescribe that the L? norm of ¢ is 1. Here ¢; and ¢, are the internal
degrees of freedom of a particle: ground and excited state of the atom. It
is assumed that the atom is shone by a quasi resonant laser beam. The
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functions Q. ¢, (x), ¢x(y) and 6, () are given as in [17] by

s, (@) = K() with Qx) = V1422,

O, (7) = Q(%) with cos(é(z)) = %—1—1 . sin(0(z)) = m%—“ ,

e (y) = p(ky) with p(y) =y,

where ¢ is the phase of the propagating laser beam while 0 is the mixing
angle. We define

_ cos(B(z)) e ?W sin(f(z))
M@,y)—mx)<6_w(y)sm(g(x)) el ) (L)

The matrix M models the coupling between the atom and the laser. The
2 x 2 matrix M(ﬁ, Vl:ky) can be diagonalized in the bases (¢4,1_)

respectively associated with the eigenvalues +Q(x),

o= (550 ) o= (57, (12)

with € = cos (30(5#5)), S = sin (30(5#7)) and ¢ = Viky. When
the particle follows adiabatically the eigenstate ¥ _, this corresponds to set
formally in &E;(¢), ¢ = u(z,y)—, where u(z,y) € C. Then u minimizes
a Gross-Pitaevskii type energy functional with a modified trapping poten-
tial called the geometrical gauge potential. The scalar potential Vi (x,y) =
Vi (x,y)Ide: will be adjusted in order to produce a harmonic potential after
the addition of the geometrical gauge potential from the adiabatic theory.
We want to justify the adiabatic approximation for states close to ¥_ and
analyze the error term between the initial and effective Hamiltonians.

After a rescaling, the parameters occurring in the experiments have the
following orders of magnitude

k~10 | G~600 , £.~25 , k~50,

but other values can be discussed. Conditions on the strength and spatial
extent of the artificial potential have to be prescribed in order to induce
large circulation. Two cases, ¢,k > 1 and /,.k < 1, can be distinguished
and the problem has to be rewritten in two different ways in order to apply
semiclassical techniques. In fact, we will focus on the case ¢,k > 1, corre-
sponding to the previous numerical values. The complete analysis is carried
out in the asymptotic regime £,k — 400 but some partial results are also
valid for ¢,k <1or £,k — 0.

— 45 —



Amandine Aftalion, Francis Nier

A change of scale ¢(z,y) = /7~ 1/1 \ / ) A / y yields a new expression

for the energy:

[ o v oy 4 vy e \f Il

cos(f (m e e (VFEsy) sm(&( ))
RO Mﬁ)w]’( —ip(VEly) ¢ (Q(\/lfT)) —cos(f ( ) Vs

Gk, g
—|—2£H|¢| dzdy .

According to the two cases £,k > 1 or £,k < 1, we define a small parameter
¢ that allows to rescale the energy. In fact, we define rather the parameter
£2%2% where § will be fixed in the end of the analysis to the value 5/4. The
exponent § > 0 is a technical trick which provides the right quantitative
estimates for the adiabatic approximation with a quadratic kinetic energy
term . Our main result, concerned with the nonlinear problem, is stated with
the value § = % . But, along all the preliminary analysis, it is convenient to
consider more generally § € (0,Jg] with a uniform control w.r.t 6 when d
is fixed.

The small parameter € > 0 is thus introduced according to the two cases:

if £,k > 1, then

s =

ST kl. ke, '

(This leads in our example to 2729 = 2.5 1073.)

2
g2+20 — L ,6>0 G, = Gk _ 352“5' (1.3)
K

if {,k <1, then

1 k
52+25 = % B 1) >0 ; Gg = ’?7 = Gkg,{€2+26. (14)
We define (1 it
=-,1) ifkl,>1
_ _ ke, kZ 1,

T= () = { (1, kb)) if kb < 1. (15)

In both cases, this leads to
KT1E(9) = E-(¥) (1.6)

where

£u(6) = (b, Huiwt) + “5 [ [ul* dady, (17)
Ger = Grprye®t?® (1.8)
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HLin = _5267—mTy52A + ‘/6’.,-({,137 y) + M( :ix7 :_yy) ) (19)
\/ Yy V T
1 Zn gn
Ver(z,y) Kk Vil g ?y) (to be fixed) . (1.10)

The quadratic energy (linear Hamiltonian) is

and

Eaac@) = [ EITnIVIR V)l
w2 [Ty doty 1)
y T
= (0 Hiod), (1.12)

At least when 7, = 7y = 1 and § = 0, this problem looks like the stan-
dard problem of spatial adiabatic approximation studied in [40], [30], [31]
[36], although it requires some adaptations because the symbols are neither
bounded nor elliptic.

We shall consider the asymptotic analysis as ¢ — 0 with uniform control
with respect to the parameters G, kf,, which allow to fix the range of validity
of the reduced models. Then we shall consider the asymptotic behaviour of
the reduced model and the whole system as ¢,k is large. Specifying the right
assumptions on V; -(x,y) or Vj, possibly in a scale depending on (¢, k), is
also an issue.

1.1. Main result for the Gross-Pitaevskii energy

We shall choose the potential V; - in (1.10) such that after the addition
of the adiabatic potential in the lower energy band, the effective potential
is almost harmonic. Namely, we assume

£2+26 S ores -2 1
‘/a T\ =5 xdy T 1 [ - 5
+(z,y) z V(\/Tay /T2y)+V 1+ Tp02—¢ (05 ra?)? + 17 a2
(1.13)

with the potential v chosen such that

v(,y) = (@ + y*)x0 (2® + %) + 2R(0v, G (1 — xu(2® + 4%))  (1.14)
Xv € C(())o([()vQR(EVuG)Z) ) 0 < Xv < ]-7 Xv = 1 on [0,R(£V,G)2]

Here ¢y > 0 parametrizes the shape of the quadratic potential around the
origin and the radius R(¢y, G) will be chosen larger than Cy(¢y, G) , where
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Co(ly, G) is alarge constant adjusted in Subsection 5.2. With these assump-
tions on the potential V, ;, if one chooses ¥ = u(z,y)¥—, where 9_ is the
eigenfunction corresponding to —$(z+/7,/7,) of the matrix M (z+\/7/7y,
Y/ Ty/Tz), then the linear part Hr;, in & is formally replaced by the scalar
e2t20- H  where

2
T . T 1
H =-92 <ay z2m> +€2Vva( T2l V) (

In the limit 7, — 0, a natural (e, 7)-independent scalar reduced model
emerges:

1.15)

; 2 2
1.y  TTFY

) = (u, |02~ (0, 5%+ ¥ [+ [t wepec

Because & is large, or € is small, it is natural to expect that the ground state
of & is close, up to a unitary transform, to a vector u(z,y)w—. This is the
aim of the adiabatic theory and leads to a scalar problem. In order to get
good bounds on the energy, we need to study the limit 7, small at the same
time.

In all our work ¢y > 0 and G > 0 are assumed to be fixed, while the
asymptotic behaviour is studied as ¢ — 0 and 7, — 0.

The quadratic part of the above energy is associated with the Hamilto-
nian
i 22 + 92

Hy, = =02 — (9, — 5)24' .

(0 < by < +o0), (1.16)

with the domain

Ho = { u € L*(R?), Z ||q“D§u||L2 <400 g, q=(r,y) € R?, (1.17)
le|+181<2

endowed with the norm [[f|l3, = 304 p1<2 [l¢*DJull72 and the corre-
sponding distance dy, . It is not difficult (see Section 4.2) to check that
the minimization of g (y) under the constraint ||¢||r2 = 1, admits solu-
tions and that the set, Argmin £y, of ground states for £y is a bounded set

of Hg.

DEFINITION 1.1. — For a functional £ defined on a Hilbert space H
(with 400 as a possible value), we set

Emin = inf E(u) and Argmin & = {u € H, E(u) = Emin and ||u]L2 = 1} .

lull L2=1
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THEOREM 1.2. — Take § = % and assume

2

€ < Tz - (1.18)

Let x = (x1, Xx2) be a pair of cut-off functions such that x3+x3 =1 on R?,
x1 € CS°(R?) and x1 = 1 in a neighborhood of 0.

For any pair of parameters (0y,G), there exist vy = vy, ¢ € (0,3],
7 =17Uy,G) >0, C=C{y,G), C, =C(ly,G,x) >0, and o unitary
operator U= U(s, 7,0y, G) which guarantee the following properties:

e The energy &E. introduced in (1.7) admits ground states,
Argmin &, # 0, as soon as T, < 79, with

£5/2

& min — €270 min| < C”/P7, < + 6) = O(%%72/3).

x

it
e \/T_:L'a+ >
’

e For any v € Argmin &, written in the form ¢ = U ( i
e 2VTzq_

the vector a = (Z+> satisfies

C
lasllz < C™22% , lallue < — > lafs + 75/ alls < C,
x
1 1
Ix2(7 a2 < Cyra
2vg

dr, (Xl(Té')a—’Argmin En) < Cy1®

lag ||z < C¥47 710 = O(7/?),
1 ¥
dre (x1(72 .)a—, Argmin ) < C\7° .

Remark 1.3. — The proof is made in two steps: 1) the limit € — 0 cor-
responds to the adiabatic limit for the linear problem and allows to replace
the linear part Hy;p, of &, by the scalar e2+207, H_ given by (1.15); 2) the
limit 7, — 0 allows to reduce the asymptotic minimization problem to a
simpler one where the linear Hamiltonian is exactly Hy, given by (1.16).

One main point in the proof is to have precise energy estimates for
the limiting problem. In our case, we obtain them in the limit 7, — 0,
because explicit calculations are more easily accessible when the magnetic
field is constant, that is in the case of g pipn. In theory, if one had precise
energy estimates for a general 7, for the intermediate adiabatic model with
the linear part H _, complete results could be performed for general values
of 7.
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Remark 1.4. — The exponent vy = vy, ¢ is a Lojasiewicz-Simon expo-
nent (see Remark 4.3 for an explanation and e.g. [27, 6] for the definition
of Lojasiewicz exponents and [38] for its extension to PDE problems). It is
% when the Lagrange multiplier associated with © € Argmin £y is a simple

eigenvalue of Hy, 4+ G|i|?. There are reasons to think that it is the case for
generic values (by,G) € (0,+00) x [0,400), namely outside a subanalytic
subset of dimension smaller than 1 (and possibly 0). Nevertheless for G = 0,
there is a discrete set of values of ¢y for which Hy,, has multiple eigenvalues.

Consequences and applications: One issue is whether the presence
of vortices (zeroes of the wave function with circulation around them) might
break the adiabatic approach. The answer contained in our theorem is that
vortices of ¢ in the original problem and vortices of the ground state of
the Gross-Pitaevskii energy £p are close and that the minimization of £x
provides all the information on the defects of 1. Indeed, the smallness of
a4 in L™ indicates that the vortices of ¥ and a_ are close, and the last
estimate of the theorem provides that the vortices of a_ are close to that of
the Gross-Pitaevskii problem.

Numerically, in [20], the authors observe vortices in a system with artifi-
cial gauge as presented in [17] and modeled with the energy &.. They check
that the vortex pattern is close to that of the Gross-Pitaevskii energy. If
one wants to use our results, one may process in the following way: once G
is fixed, choose ¢y such that the minimizers of £y have vortices (detailed
conditions will be given in section 4.2). Then take 7,, > 0 and € > 0 small

enough so that the L* norm of a4 and the L*° distance from X(Tz% Ja—
to a ground state of £y are small. In the above result, the constants are
not explicitly controlled. So it is not explicit for given numerical values
of the parameters {y, G, 7., or equivalently ¢y, G, k, k, .. . Nevertheless it
provides a framework for numerical simulations, where the observation of
vortices can be confirmed by decreasing € and 7, . The parameters of the
experiments are just at the border where our constants may become too
large to provide a reasonable approximation.

The definitions (1.3) of € and (1.5) of 7, (with § = £) transform the

condition (1.18) into
K2\ %/° 1\?
() <o)

A given precision of order 7% with 7, = ﬁ% is more easily achieved by taking
k small and ¢, = T—lk large (for example k£ = 0.1, £,, = 500 x 25 is better
than the values k = 50, £, = 25 given in the introduction). Note also that
the external potential V; ;, defined in (1.13) must be adjusted up to the

2
order 2120 — % )
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Remark 1.5. — The parameter 6 > 0 is an important technical tool.
It can be chosen arbitrarily large in the analysis of the linear problem in
order to get the best possible power laws for the adiabatic limit as & —
0. Nevertheless, the constants deteriorate as d get large. Thus, along this
article, the estimates will be given for 6 € (0,d¢] with a uniform control
w.r.t § when Jg is fixed. At the end of the proof, while gathering all the
information on the nonlinear minimization problems, we get a condition

26
(T— + 5) =0(}/?).

Since for our numerical applications, ¢ is not so small, we want to take
the largest possible 6 and it is fixed to the value § = g. For a general
mathematical result, we could have taken any ¢ in (0,5/4), provided ¢ is
small enough.

1.2. Gist of the analysis

Following the general idea of the founding articles [9, 11] of Born, Fock
and Oppenheimer, it is well known in the physics literature that a Hamil-
tonian system

0+ unla) (40 ) wlar

is unitarily equivalent to a diagonal Hamiltonian plus a remainder term:

e K(Dq —OA(q))2 D, +0A(q))2) + X(q)|2:| + R(e),

where (Dg, F A;(q)) are the covariant derivatives (FA(g) is the adiabatic
connection) associated with the fiber bundles ug(q) (%) and uo(q) ((?j)’
and | X (¢)|? is the Born-Huang potential.

Since [25] and until recently ([33, 30, 36, 37]), this problem has been
widely studied by mathematicians, and the remainder term is formally:

R(e) =) €°Cij(a)(eDy,)(eDy,) + O(e?).

It is smaller than €2 for bounded frequencies (or momenta) but it has the
same size as the main term for a typical frequency of order % . For a nonlinear
problem or without any information about the frequency localization of the
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quantum states, it is important to estimate the error terms in the low and
high frequency regimes.

Introducing 6 > 0 allows to obtain at the formal level

o [(P o, e ) + ] +

Y ¥Ci(q)(eDy,)(eDy,) + O(£T4),
i

where the remainder term is now O(g27%9) at the typical frequency 1

and thus O(¢2%) times the size of the main term. Such an error estimate
can be made in the L2-sense when applied to some wave function o ly-
ing in {|p| < r}, with p quantized into €Dy, or more precisely fulfilling
¥ = x(eDy)y for some x € C§°({|p| < 2r}) with

IR(e)¢ ]| < Ox (274 + One™) el < (Cy 5™ ]l -

where Cy essentially depends on the estimates of N-derivatives of wug(q),
E.(q). For a fixed §, we choose N > 2 + 45. While sticking to the linear
adiabatic problem one could think of optimizing the exponent §, w.r.t :
under analyticity assumptions or more generally assumptions which lead
to an explicit control of Cy in terms of N, one could think of optimizing
first Cye" w.r.t to N according to the methods of [33, 40, 30]. As an
example with Cy < N/, this would lead to Cnye® < Ce™* after choosing
N = N(e) = [1], with some C < 1. Then taking § = d(e) =
would lead to

1
4elog(e)
CC, (2H96) 4 e ) < QCCXe—é |-
As we shall see in the end of the proof of Theorem 1.2, in Subsection 5.5,
the analysis of the nonlinear problem leads us to choose § = % . But this
kind of optimization w.r.t § might be relevant in other frameworks.

We need to perform a frequency (or momentum) truncation. We decom-
pose a general ¢ into x(eDg)y + (1 — x(eDy))¥ and use rough estimates
for the part (1 — x(eDg))¥ which will be compensated in the minimization
problem for £, by good a priori estimates for the norm ||(1 — x(eDy))?|| of
the high-frequency part. We also have to check that the unitary transform
U , implementing the adiabatic approximation, does not perturb too much
the nonlinear part of £.(1).

In our case, the limit ¢ — 0 leads to the Born-Oppenheimer Hamilto-
nians

_82_ ) & 2 U(\/T_>
T e e

~52 —
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which, in a second step, in the limit 7, — 0, leads to Hy,, (with the sign —ix
for the lower energy band). This means that the convergence to the Born-
Oppenheimer Hamiltonian as ¢ — 0 has to be uniform w.r.t 7, € (0,1].
This last point requires to reconsider carefully the work of [36] by following
the uniformity w.r.t 7 of the estimates given by Weyl-Hormander calculus
([23, 10]) for T-dependent metrics which have uniform structural constants.

This is done for the low frequency part in Section 2 while the basic tools
of semiclassical calculus are reviewed and adapted in the Appendix A.

In Section 3 the error associated in the high-frequency part is considered,
as well as the effect of the unitary adiabatic transformation on the nonlinear
term.

Once the adiabatic approximation is well justified in this rather involved
framework, the accurate analysis, as well as the comparison when 7, is small,
of the two reduced models (the one with Hy, and the one with H_) is car-
ried out in Section 4. This follows the general scheme of comparison of
minimization problems: 1) Write energy estimates; 2) Refine the energy es-
timates and possibly use Lojasiewicz-Simon inequalities in order to compare
the minimizers in the energy space; 3) Use the Euler-Lagrange equations in
order to get a better comparison in higher regularity spaces.

In Section 5, all the information of the previous sections is gathered in
order to prove Theorem 1.2 : existence of a minimizer for £ in Proposition
5.3, key energy estimates in Proposition 5.4 and bounds for minimizers in
Proposition 5.6.

Some comments and additional results are pointed out in Section 6,
namely: 1) the question of the smallness condition of € w.r.t 7, appearing
in Theorem 1.2; 2) the possible extension to anisotropic nonlinearities (one
would have to check that the unitary transform implementing the adiabatic
approximation does not perturb the nonlinear part); 3) the minimization
problem for excited states, i.e. locally and approximately carried by 1 in-
stead of ¥_; 4) the extension to the problem of the time nonlinear dynamics
of adiabatically prepared states.

— 53 —



Amandine Aftalion, Francis Nier

2. Adiabatic approximation for the linear problem

In [36], the adiabatic approximation is completely justified for bounded
symbols or when global elliptic properties of the complete matricial symbol
allow to reduce to this case after spectral truncation. Unfortunately, it is
not the case here, because the eigenvalues of the symbol of the linear part
Hypn are e7,7,|p|? + Ve (z,y) £ Q(\/%x) . In [40], the adiabatic theory

for unbounded symbols is developed after stopping the complete asymptotic
expansion in an optimal way, under some analyticity assumptions, but this
would be particularly tricky here with divergences occurring both in the mo-
mentum and position directions. We shall see that the sublinear divergence
in position makes no difficulty after using the right Weyl-Hérmander class.
The quadratic divergence in momentum, with the kinetic energy 7'357'?,,|p\2
is solved by first considering truncated kinetic energies and using the addi-
tional scaling factor £2°, § > 0, in front of the kinetic energy term.

Our problem shows an anisotropy in the position variables (z,y). The
analysis of the linear problem can be treated in R?. Then we split the
position and momentum variables, ¢ € R? and p € R?, into:

g=1(¢.q") , p=0.p") ¢, peR" ¢ peR" | d+d =d,
and the pair (7,,7,) is accordingly denoted by (7/,7") € (0,1]2.

From this section, some notions and notations related with semiclassical
analysis are used. In particular, the notation S, (m,, g.) refers to classes of
(e, 7)-dependent symbols of which the seminorms are uniformly controlled
w.r.t to the parameters (¢, 7) € (0,0 x (0,1]%. For accurate definitions, we
refer the reader to appendix A where all the necessary material is reviewed

and adapted for our analysis, assuming knowledges about Fréchet spaces
and generalized functions.

2.1. Born-Oppenheimer Hamiltonian

Consider the Hamiltonian in H, = H(q,eDy, ¢) with the symbol on Radp
H(q,p,e) = *7'7"|p|*+(r'7"p|*) + V(4,7 €)
E,(q,1,¢) 0
25 112 11y 2 +4q, T, *
=g ) + o) (B4 0 Yuiare).

with § > 0 and (7/,7") € (0,1]%. The following properties, with the splitting
of variables ¢ = (¢/,¢") € R?, are assumed:
7 -r_/’/d 2 7
Ex e 5.4y Sa) —T=— + Sdd"™)
T o T
{ ﬁQ'>2
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_ T
E+(q77_7 5) - E—((LT, 5) 2 c 1< ﬁq/> ) (21)
L,l/d /2 "
uo = (uf) ™' € Su(1, ﬁ + Ddg" Ma(C),
=]

v ECP(R;Ry) with y=1€[0,2r2].

With these assumptions we are able to justify the Born-Oppenheimer adi-
abatic approximation for § > 0, 7,7 € (0,1]. We shall work with the
T-dependent metric
T—,l/dq’z 7_// T’T”d 2
gr = T —— + —dq”2 + e
(/ Zoq')? ad (VT'T"p)?
7-//

on the phase-space Rg,dp, which is checked to have uniform properties w.r.t
7 € (0,1]? in Proposition A.9. The exact definition of the parameter depen-
dent Hérmander symbol classes, S,,(m, g,; M2(C)), is given in Appendix A
(see in particular its meaning for 7-dependent metrics in Appendix A.4).

We shall use the notation

1 .
= BRIV S ©)

with the meaning of the exponent co being the same as in C*™ or O(e™).

THEOREM 2.1. — There exists a unitary operator U = U(g,eDq,T,¢€)
with symbol

U(qapa 7, 6) = uo(qa T, 5) + 5U1(q7p, T, 6) + 62”2((]7[)7 T7€) )

1
e Puyy € Su( , ,gT;Mz(C)> :
( Zd ) (V')
such that
s Fri hBO+(Q7ED 56) 0 >
U*HU = ’ a
( 0 hBO,—(Qa 5D(I7€)

+€2+45R1(q, €Dy, 7,€) + S0 R, (¢,eDy,7,¢), (2.2)

with hpo+(q,p, 7,€) equal to

= X (lpFeAP +1eX?) + By

d

o [Z(pk Fedr)? + e X ?
k=1

+ By ) (23)

— 55 —



Amandine Aftalion, Francis Nier

when V7T'T"|p| < ry, and
+Ak: Xk Lok
< X —Ak) = dug(Ogruo) -

The remainder terms satisfy Ry, Ry € Sy(1,g9:; M2(C)) and Ry wvanishes
in {\/T’T”|p| < Tv} and those estimates are uniform w.r.t 6 € (0,d0] (and
7€ (0,1)%, ¢ € (0,£0])-

Remark 2.2. —

o The remainder term 1is really negligible only for 6 > 0. This is ex-
plained in Subsection 2.4.

o The (Weyl)-quantization of e2°1'7" (|pFeA|>+|e X |?)+ E< is nothing

but
d

g Wl Z _(8qk F iAk)Q + ‘Xk|2 + Ey.
k=1

Theorem 2.1 will be proved in several steps: in Subsection 2.2 we recall
how the expansions of the adiabatically corrected spectral projections and
the diagonalized Hamiltonian can be computed up to second order, follow-
ing [36]; in Subsection 2.3 the unitary transform and the scalar effective
Hamiltonians h. are computed; the proof of Theorem 2.1 essentially ends
with the proof of Proposition 2.6 in Subsection 2.3; finally, the comparison
of this presentation with more usual introductions of Born-Oppenheimer
Hamiltonians is briefly discussed in the last Subsection 2.4.

2.2. Second order computations for space adiabatic approximate
projections of the reduced Hamiltonian

We shall consider the matricial symbol, on R2%,

H(qap, T, 6) = fe(pv T) + EJr(Q; T, E)HO(qa T, 5) + E*(quv 6)(1 - HO(qa T, 5))

where (g, 7,¢) = Ho(q, 7,€)* = (g, 7,¢)* € Ma(C), 7, E+ real-valued,
with 6 > 0 and the following properties:

7—/
Ey € Su(<\/ ﬁq/>a9q7) , g€ Su(lvgq,T§M2(C))a (2-4)

.
with  ggr = ——— + —dg"’,
T
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_ T/
E+(Q77—7 6) - E—(qa T, 5) > C 1< pq,> ) (25)

fs(p7T):€26fl(VT/7_Np) ) fl EC(C;O(Rd’R) i 520

For conciseness, the arguments p, ¢ and the parameters 7, ¢, will often be
omitted in 9 fe(p) and 95 E+(q) or 951l .

According to Appendix A.4, the metric

=g+ T’T”dpQ _ %dqﬂ +7__qu//2+ T/T//dpQ
T q,T < /T/T//p>2 < /:—;,q'>2 7! < /T/T//p>2

has the gain function

VTP () Fra)

/ )

[
1 p> 2 <" T’T”p> :

T

A — mi
(¢,p) = min .

The e-quantized version of the symbol A.(q,p) will be denoted

A= A(q,eD,).
Note that the symbols E — E_ is elliptic in its class S, ((1/Z-¢), g-) , and

1
<\/Wp>°° )gT

Our aim is to compute accurately the adiabatic projection H(”)(qm) =
HO(q7 5) +elly <Q7p> 8) T+t Ean((Lp? 8) such that

e f e Sy ).

100 f10) = 1) + o), [A.110)] = o).

The general theory presented in [36], tells us that the asymptotic expansion
can be pushed up to n = oo, but we will do here accurate calculations up to
n = 2 (with additional information for n = 3) and then discuss the influence
of the factor £2° . Those are feasible and rather easy because the kinetic en-
ergy term and the two-level potential are simple. This allows to reconsider
accurately the arguments sketched in [36] for the Born-Oppenheimer case
with all the technical new peculiarities of our example. Note also that in [31]-
chapter 10 explicit calculations have been made up to order n = 5 but in the
slightly different framework of time-dependent Born-Oppenheimer approxi-
mation oriented to polyatomic molecules : no use of the exponent é > 0, no
divergence as ¢ — oo and no ellipticity problem, no extra-parameter 7 and
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the techniques are slightly different although still relying on semiclassical
calculus.

Like in [36], [40], [30], [31], the calculations are first done at the symbolic
level and we write

(A(e) = 05(e")) & (VA € Su(1,9-; M2(C))) .

For a matricial symbol A(q, p) (possibly depending on (e, 7)), it is convenient
to introduce the diagonal and off-diagonal parts

AP(q,p) := To(q)A(g, p)o(q) + (1 — o(q))A(g, p)(1 —To(q)) (2.6)
A®P(q,p) := To(q)A(g, p)(1 — o (q)) + (1 — To(q)) Alg, p)Io(q) , (2.7)

where we recall T1(q) = IIy(g, 7, €) . Note the equalities
(AB)P = APBP + A9PBOP | (AB)°P = APBOP + A°PBP . (2.8)
The “Pauli matrix”
o3(q,1,¢) = 2lly(q, 7,e) — Idcz, (2.9)
will also be used, with the relations

o3(q) =Idce, o3(q)A”(q,p)os(q) = AP (q,p),
o3(9)A°P (¢, p)as(q) = —AP(q,p),
o3(q) AP (q,p) = To(q)A(q,p)(1 — o (q)) — (1 — To(q)) A(g, p)o(q) -

We are looking for

n

0™ (q,p,7e) =Y /T;(g,p,7,e) € Su(l, g, M2(C)),
7=0

with  II; € Su(1, g-; M2(C)),

and such that

MM — 1) = Og(en+), (2.10)
nm* = (2.11)
He ™ — I8 H = Og(e™ ). (2.12)

Like in [30], [36], this system is solved by induction by starting from
1) (q,p, ,) = Io(q, 7, ), with

Gyt = e~ FD) [HW)ﬁEH(") ~ 1™ ] mod O(e), (2.13)
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07, = —03Gr .y, (2.14)
Frny1 = g~(n+1) [Hﬂs(n(n) —|—€n+1HE+1)

ST 4 emHID, e H] mod Ogs(e)
— ¢—(n+1) [Hﬁfﬂ(”) — H(")ﬁEH} mod Og(e), (2.15)

1 1
HOD = —— FOD = —FOD . 2.16
ntl Bl - B (@ T B - Bog o (210

The general theory says that the principal symbol of F}, 11 is off-diagonal,
Fpi1 = FYBmod Og(e), and F,;1 can be chosen so that

Fop1 =F28. (2.17)

Below are the computations up to n = 2 in our specific case. In these
computations, we shall use Einstein’s summation rule s;t* = ok sEt* with
the coordinates (px, ¢*) or (p*, ¢*) with p* = p®d, 1. = py. like in the examples

0
|p|2 = p"pi = prped™* = pkpz(sk,e s (Opfe)-0q = (Opr fE)(S]ME = (Opi f2)0gp -

q

n = 0: Start with 1) = TIy(¢,7,€) and notice OpIlp = 0 and 9,11y =
(0,119)°P .

n = 1: Take
G =e¢'(Ilyolly —TIy) =0,
and P =o.

Next compute

671 [HﬁEHO(Qa 5) - HO(qv E)ﬂgH] = 571 [fEﬂ€H0(q7 6) - HO(Qa e)ﬁefa]
—iapkfgaqkno mod 05(5) s

and take
Fy = —i0y, f-0,:11g = —i0p, f-(9,+T0) P,
€10,
and H(l) = HQ —+ E!L%ké‘i(jg(aqkno)OD s
with
—26 iapk fl ) oD 1 .
Hl - E+ _ E_ JS(aq"HO) 6 Su( 797’7/\/12(@)) *
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n = 2: Consider now

e2Gy = MW#EI® — MW mod Og(e?)
= Tty — o + e(TTpt°TT; + I3 #°T) — IT; + €I, 411, mod Og(e?).

According to (A.3), with IIpgIly = IIy and with
oIl + 1,10y = P TPP + nPP1Y =114

we can take

1
Gy = Z [—8qu08pkH1 + 8pkH18qu0} + H% .
The first term —dy»Ilo0,, 111, with Einstein’s summation rule, equals
— 011Dy, 11, = By le (0,1 T10) PP 03(0,eI15) P
q Pr (E+ _E_ ) q q
00 p, I
— _ PrPe’E a 11 a 11
(E_;,.*E) (q" 0)( q¢ 0)’

while the second term +(0p, I11)(0,x1I1p) gives the same result.
The third term I1? is given by

m = —%%03(3&110)01303(&#110)017

(Op, f2) Oy, f2)

(E+ _ E_) (a HO)(anHO) :

Hence the diagonal second order correction is given by
(Ey — B’ = —(By — E—)QUBGz
= - [(8pkfe)(8pefa) + (E+ - )( pkpgf&‘)o-?)] (aquO)(aq‘HO)

and satisfies
1

(\/ T ) (V7T )

Consider now II9P: By referring to (2.17), Fy can be chosen as the off-
diagonal part of e 2 [HﬁEH(l) — H(l)ﬁeH] which, according to the previous
steps and (A.3), equals

e~2np e Su< 2 gr; Mg(@)) .

2 2 2 2
{8“ w0 ge1lo = Oge 4 To 0y, o, } (2.18)

+§Z [6‘pkH8qu1 — aquapk_Hl — 8pk_H16qu + 8qu13pkH} mod Os({:‘) .
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Since 02, H = (92, f) as a scalar symbol commutes with 63quH0 , the

first term of (2.18) vanishes.

Similarly the factor 9, II; appearing in the second term of (2.18) con-
tains three terms

O (Ey — E_ (O, [«
0ty = i ) 010, 10y e) + L) 0000y
o
+%03(3¢?quﬂo)7

where the second one is diagonal (Remember o3(q,7,e) = 2Ily(gq, T,¢) —
Idg:) . Since 0y, H = 0,, f- is diagonal, we get

1 oD
E [apkHaqkﬂl + aqkl'[lapkH]

_ o
= (Opy f)(Op, f2) 03 (O [(Ey — E_) 10, 1o])
In the quantity —0,x HOp, 11y — 09, I110,+ H, the derivatives

(0, fe)

are off-diagonal factors, while
O H = (0 E4 )Mo + (00 E_)(1 — o) + (E4 — E_)(9,+119)°P .
With the two equalities,

(8qu+)H003(6qu0) + 03(6qu0)(aqu+)Ho = (8qu+)03(8qu0) R
(8qu,)(1 — H0)03<6qzﬂo) + 03(8qu0)(8qu,)(1 — Ho) = (aqu,)O';;(aquo) 5

D

we get

2
apkpefa

1 oD
9% [8qu8pkH1 +8pkH18qu] = —72(E+ —E)

(O (B4 +E_))3(0 o).

This leads to

Fy = (apkfs)(apefe)o'?; (aqk [(E+ — E_)ilaqzno])

Opunee Op(Ey +E e
*m( o (Ey + E-))o3(04e110)

oD

and

9P — Ot Onto) (5 1, py19,1m,))0"

(Ey —E-)
8Z%kplf5 a a
“rm( qk(E+ -I-Ef))( qzﬂo),
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with
1

< %q/>< /T/T//p><>o

e PTPP € Su( ;9 Mz(C)) :

We have almost proved the

PRrROPOSITION 2.3. — The pseudodifferential operator ﬂ(e) = ﬁ(q, €Dy, ¢€)
given by

H(Q7pa 5) = H0<q7 5) + €H1<Q7p7€) + E2H2<Q7p7 E)

with  T(0,p.2) = M(g.p.2)°" = S 0,m1)
(Ey —E.)
> (q,p, €) = Ia(q,p,e)” + Ia(q,p,e)°7,

H2(Qﬂp75)D = _ﬁ [(8Pkf€)(apif€>

+(By — E)02, )] (04:110)(0,e1)

H2(Q7p75)OD — _% <aqk [(E+ _ E*)_laqéno])OD
P2l (0,8 4 B )OI,

1
(\/ Zrd" Y (V7T p)>

and & 0, =T, € 8, ( 97 Ma(0)) .

satisfies

Mofl=M+0E*+) | M =1 |, [ﬁ,ﬂ}:O(g?’%),

in L(L?(R%;C?)). Moreover the estimates in C(Lz(Rd C?)) of the remain-
der terms do not depend on the parameter T = (7', 7") € (0,1)% and § > 0,
as soon as € € (0,eq] .

Proof.— The above construction gives immediately
Mofl=H+0(%) , =1 |, [HH} = 0%,
The first improved estimates come from the fact that
[Moll —1I

contains only terms which are Moyal products with a II; or a Ily factor,
with cancellations up to the €2 coefficient. Both of them have seminorms of
order %9
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For the last one, this is a similar argument after decomposing
[f:f, ﬂ} = {526f1(\/ﬁ5D ), ﬂo} + [ﬁ,aﬂl +52ﬁ2:| )
O

The above result can be improved after considering what happens at
step n = 3 when f.,(p) = 2 fi(v/7/7"p) is at most quadratic w.r.t p in
some region. Before this, let us examine the remainders of order 3 in €.

n = 3 : The remainder term
Gy = N®@pEn® —n®
= & (oI + I #°Ilp — IIy) + & (I §°T0y + Io#* Ty + Mo Tlp — IIo)
+€3 (Hlﬂsﬂg + Hgﬂgnl) —+ €4H2ﬁEH2 .
Using the construction of I1; and I, and the fact that e=20T1; and e~ 2°TI,
belong to Su( \/— ,gT;Mg((C)>, the expansion of the Moyal
q / I/p OO
product (A.2)-(A.3) tolls us

N ® — 1@ = & [A6(9;Tlo, 93111, ) + Be (9,10, Bpll, )] + 74 Ry
(2.19)

where Rg € Su<< — ><1 T/Tup>oe’gT;M2((C)) and Ag(.,¢), Bg(.,€) have

an asymptotic expansmn in terms of €, of which all the terms are bilinear
differential expressions of their arguments. For the commutator with H,
write

Hn® —u®EH| = [£(p)FTo(g) — Mo()f" o (p)]

+ [fe D) (L + 2TTy) — (T + €2TIa)t /- (p)]
+ [(ByTly + B (1= T I1® — I (B, Ty + B (1 - Tly))|

After eliminating all the terms which are cancelled while constructing II;
and Ils, the contributions of all three terms of the right-hand side can be
analyzed. The contribution of the third term is similar to what we got for
Gg:

& [An(07(E+Ily), 0510, €) + Bp (9q(E+Tly), 0l €)] + et Ry 4

with Ryq € Sy ( Wp)()o,gT,Mg(C)). With the uniform estimate of

e~ 00, e XTI, and €20 f., the contribution of the second term is esti-
mated as e3 4 Ry o with Ry o € Su( ,gT;Mz((C)) . The

1
(\ Zr ) (VT Tp)
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contribution of the first term is e3Cp (9; fo, 9311p, €) and we get

(e O | = 2 [C (93 ., 3o, )+
1 (02(E+1y), 02111, €) + By (9q(E+1p), 0p11z,€)] + e Ry (2.20)
where the expansions of Ay, By and Cy w.r.t to € have terms which are
bilinear differential expression of their arguments, and the remainder Ry
belongs to S, ( \/ﬁpw,gT,Mg(C))

PROPOSITION 2.4. — With f.(p) = € f1(v/7'7""p), assume that the third
differential 8 fy vanishes in {|p| < r} and fix ' € (0,7) . Then the remain-
ders of Proposition 2.3 equal

Moll—IT =% Rg, + 9 Ra (2.21)
[ ] eV Ry + e Ry, (2.22)

797;/\42(@)), R 10r2 be-

long to OpS,, (\/ﬁ >oo,gq-,./\/lg ) and Rgoru1 =0 in {|\/T | < r }
€ (0,1)%, § € [0,80] and € € (0, 0] .

where Rg 1012 belong to OpS, ( \/7

T T//p oo

Those estimates are uniform for T

Proof. — After noticing that the symbol II; is a linear expression in
Opfe while the symbol Il is the sum of a linear expression of 82 fe and
quadratic expression in 0p f., the identities (2.19) and (2.20) imply

H(2)ﬁEH(2) o H(2) — €3+26+NRN + €3+46RG7
[HﬂsH(Q) _ H(Q)]iEH} _ HWENp L B

for an arbitrary large N € N, in {\/T’T”\p| < r} . Choose! N > 26 and take

a cut-off function x € C§° ({|p| < r}) such that x = 1 in a neighborhood
{lp| < 7'} . Writing for the symbol

S =@ 1@ o §= [HﬁEH@) U@l

§ =S xx(VT'Tp) + 8 x (1= x(V7'r"p))

yields the result. O

(1) Here the estimates become §-dependent, because a large 8§ requires a large N. It is
uniformly controlled when § < dg.
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2.3. Unitaries and effective Hamiltonian
We strengthen a little bit the assumptions (2.4)-(2.5), with the condition

HO(QaTag) = UO(Q7T7 E)P+UO((],T, 5)* (223)

. 1 0 o\ —
with Py= (o) o= () € 5L Ma(C).

fulfilled in our example. The operator g is nothing but the local unitary
transformation ug(q, 7), on L%(R%; C?).

With the approximate projection II = ﬁ(q,qu,T, €) given in Proposi-
tion 2.3, Proposition A.5 tells us that a true orthogonal projection P can
be associated when ¢ is chosen small enough, by taking

pP= _/ (z—T)~" dz, (2.24)
|z—1|=1/2
with
P = P(q,eDy,7,6) , PeS,(1,9-;M3(C)), (2.25)
P(q,p,7.¢) = (g, p,7,6) = > Ry (q,p, 7,6) + € Ry(q,p, 7,6) . (2.26)

: ! 79‘/‘7M2(C)) )
() 77 d" Y (VT'T"p)>

PoP=P=FP*

with Ry, Ry € Su(

)

[ff, P] = S0 (1, 2) + ey (7, 2), (2.27)
with C(176’2 S Su(17gT;M2((C))7
and  ||P — doPya ’am) < Ce. (2.28)

For a general f; € C3°, Ry and C3 are included in the main remainder
term. When f; is quadratic in {|p| < r}, then one can assume that R; and

C1 vanish in {\/ ' |p| < 7”} for v’ < r, according to Proposition 2.4 and
Proposition A.5
Instead of constructing unitaries between ]5(7, ¢) and P by the induc-
tion presented in [36] and similar to (2.13), (2.14), (2.15), (2.16), we use like
in [30] Nagy’s formula ([33], [30], [36])
P=wpPpw* |, WW=WW*"=1,
with W =(1— (P~ P))}) Y2[RP, + (1 - P)(1 - P1)] ,(2.29)
when Pj:Pf:Pj* forj=1,2, and||P,— Pz <1,

easier to handle for direct second order computations in our case.
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PROPOSITION 2.5. — With the definitions (2.23) and (2.24) after Propo-

sition 2.8, there exists a unitary operator U on L?(R;C?) such that
P=UP.U",
U=U(g,eDg,7e) , U € Su(l,gr;5Ma(C)),

with U(q7p7 T, 5) = Up (Q7 T, E) + guy (qa P, T, 6) + 52“’2 (q7 P, T, 5) )
i0p,. f

ui(g,p,€) = —ﬁ@qkﬂo)uov

1

WERRCEE

Moreover, when f1 is a quadratic function in {|p| < r} and r' is fized in
(0,7), the term ug can be decomposed into

and e Py, e Py € Su(

797;/\42(@))-

u?(qapa T, 5) = 6251}2(Q7pa T, E) + 545{}3(Q7pa T, E)
where vy does not depend on p in {\/T’T”|p\ < r’} and v,y belong to the

symbol class Sy, (m7 gr; M2((C)) :

Proof. — The notation R will denote a generic remainder term of the
form R = R(q,eD,, T, ¢ withReSu( _ 1 , Gri M (C).The
(q q ) INEerr g 2( )

notation R is used for a symbol R, like R but which vanishes around
{\/T’T”|p| < r’}. We apply Nagy’s formula (2.29) with P, = 4oPy a4 =
Iy(g,7,¢) and P, = ]3(7', €) with

p = HO(qv T, 6) + 5H1(Q7 qua 7, 5) + 52H2(Q7 qua T, 5) + 53+26E + 53+46R .

In the expression of W (e) given by (2.29), the first factor is nothing but

2
N B c R
(1—-(P- HO(%T,E))Q) 2 _ 14 7(1-11)2((17EDq’T’E) LR

owing to P — Iy = 05(525), In the factor [PoP + (1 — Py)(1 — Py)], the
first term equals
PoTly(q,e) =To(q,¢) + eIl (q, 7, €Dy, 7,€) 0 (g, 7€)
+e?a(q,eDy, 7€) o Mo (g, 7, 8) + TR+ TR,

while the second term is

(1 - P) o (1 - HO(QvTv 5)) = (1 - HO((LTa E))
_€H1(q,€an’ra 5) © (1 - HO(quv 6))
—52H2(q, eDgy,7,e) 0 (1 —1ly(q, 7€) + 320 R 4 SR,
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Hence we get

W =[PP+ (1-P)(1—P)]=1+¢lli(g,eDq,7,€) 0 03(q,7)
+62H2(q, {-fDq7 T, E) o UB(Q, 7—) + €3+263 + 53+46é .

The operator U(e) is given by U(e) = W (e) oo . The semiclassical calculus
recalled in (A.2)-(A.3) yields the result. In the decomposition of ug, when

f1 is quadratic around 0, the terms which are linear in £2° come with the
second derivative of f., which does not depend on p. O
PROPOSITION 2.6. — Introduce the notation for k € {1,...,d}

« (A X
ug (Ogrug) = —i (YZ _Xk> .

If U is the unitary operator introduced in Proposition 2.5, the conjugated
Hamiltonian U(e)*H(e)U (e) equals

BT — (h(;r BO >+53+251§?1 Ly (2.30)
where the remainder terms RLQ = Ria(q,eDg,1,e) belong to

OpS,, (1, gr; M2(C)) and additionally Ry = 0 in {\/T’T”|p| < r’} when f1
is quadratic in {|p| < r}, with ' <r.

The symbol hy and h_ are given by

2
hi = fop) + Bi(q) — £(@pf)-At S (3} f) A

52(8127kpzf€) 5'd 52(6pk J)(Op, fo)
— Y XkXZ+—E+_E_ Xk Xy,

he = L)+ B @) 420, A+ (0 ) A

52(812%17@]05)_ EQ(apkfe)(amfe)—
T M T

n (2.31)

n (2.32)

Proof. — From the semiclassical calculus, we already know that U* HU

is a semiclassical operator with a symbol in S,({1/Z7¢'), g-; M2(C)). Its
off-diagonal part equals
(1-P)U*HUP, + P.U*HUQ1 - Py)
=U [P, {P,HH U.
The almost diagonal form (2.30) of U*HU is then a consequence of (2.27).
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For the second result, it is necessary to compute the diagonal part of
the symbol U*#° H#°U up to O(£3+2%) in S, (1, g,; M>) . Let us compute the
diagonal part of

B = (uf + eul + 2ub) i HE (uo + euy + 2uz),
or equivalently (upBuj)? with our notations.

Since ug = uo(q,7,€) and H = 2 f1(v/7'7"p) + V(q,T,¢) , the first
Moyal product equals according to (A.2)-(A.3),

(up +euj + €2u§)ﬁEH = u(’jH +eutH + 2usH
g2
+ {UO’H}"’_ {uhH} ( o euo)(aQ H) H)+&3+2R

PrPe
* * pkff * 1 *
=ujH +¢ |ujH — Oppuy | + €2 u2H+2—Z.{u1,H}

PrPe

1 .
7§(a§quu3)(82 fs):| + 63+25E + 53+46R,

where R and R denote generic element of S, (1, g-; M2(C)), with the ad-
ditional property that R vanishes in {\/ ' |p| <1’ } when f; is quadratic
in {|p| < r} with 7" < r. The reason for the possible decomposition of the
remainder, comes again from the fact that the third order remainder term,
proportional to e3t2% arises with the third derivative of f., the second
derivative w.r.t p of u; and the first derivative w.r.t p of us .

In the same way, the complete expression of B is given by

Oit) o o Ont:
Oosl) g, gy + Pt

B(e) = ujHug + € {uSHul +uiHug — ug (Ogrug)
2 * * 1 * 1 * 1 *
+e UQHU() + ’LLOHUQ + 272 {UOH, ul} + ?Z {ulH, Uo} + Z {(apkfs)(aqkuo), UO}
0, 1
+ujHuy — %(aﬁué)ul + % {uy, H} ug
1 § 1
=3 5 u) (D, f) 0 = S5 (0, p, J2) (Do) | + ¥ R4 ¥R,

By recalling that (ujug)? = 0 by Proposition 2.5, we get

(uoB(e)ul)P = H + e~ ( o f2) [0 (Ogeu) — (Dgruo)u]”
+e2BD 4 S3T2R 4 S3TVR,
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where BY is made of several terms to be analyzed. We need the relations

Ogiy = —ug(Ogsuo)ug (2.33)
3§jqj/u8 = (0,5 u0)ug (Ogs o) ug + g (Fgs uo)ug (9, uo)ug — u;';(a;q,uo)uo
(08 Oy — (D 3) Dy w0 — (02, o, (2.34)

and  [uo(0,u)]°% = (@, To)ors (235)

coming from ugup = 1 and the differentiation of ujllyug = Py .
For example, the first one simplifies the O(g)-term into
(woB(e)ug)P = H — £i(0y, f-) [(Opuo)ug)” + &2BY + 2 R+ 349 R.

Many cancellations appear after assembling all the terms in BY . We need
accurate expressions for all of them:

e By using again (uju$)? = 0, the term [ugus H + Hugu) + uouTHulug]D
equals

(fe + Ex )Mo (uous + ugug)Io + (f + E-)(1 — o) (uouy + uzug)(1 — Ilo)
+(fe + E- )Mo (uouiurug)o + (fe + Ey)(1 — o) (uoujuyug) (1 — o) .

In the relation

1
ufuz + uiug +ujuy + o {uo, u} + o {ul, up} = PRy + TR,

the remainder terms satisfy Ry, R ESu< 1 , gr; Mo (C ),
v Zona I M)

with the same convention as for R, R. This identity is obtained by
writing that the O(e?) remainder of U*#°U — 1 vanishes and by notic-
ing that the remainder R + €28 B, involves second derivatives of wu;
w.r.t p and first derivatives of uy w.r.t p. We obtain

[uous H + Hugugy + uoui Huyud)® = (B_ — By ) (uouiuyul)Pos
1 ~ -
—§H [uo {uf, ur }ud + uo {ut, uo} uf]” + e t¥R + e TYR,
i

with R, R € S,(1, gr; M3(C)), again with the same convention.
(92

%3 <1l and (2.35),

Again with (Opur)uf = (apuwa‘)OD = (B

the last factor is

)OD (pzpkf5> (a kH())

(o {ugy, un Y uy + wo {uf, uo}ug]” = —(uo0geu i(Ey —E_)
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(agzpkff) *
i - gy G
(812721719 fs)
72m(aqkﬂo)(5qzﬂo)03 . (236)

With wyuf = M(aqk I1y) , we have proved

(Er—ED)
Op,, f<)(Op, fe
[wous H + Hugu 4 uout Huqug]® = —%(%kﬂo)(aﬂﬂo)%

(aizwpk f5)

| PePriE)
E, —E_

(00 T0) (0yeIlg)os + ' T2 Ry + T4 Ry . (2.37)

e The term

* * 1 * * 0, * * b
—uo {ug fe,ur fuy + —wo {uj fo, uot ufy — %uo(aqkuo)uluo

24 24
equals
1 * * * x1D
2—2,]”5 [uo {ug, w1} ug + wo {ul, uo} ug)

Op,, [ . . . . )
+% [(Ogrur)ug + ugui (Dgruo)uy — uo(aqkuo)uluO]D

The diagonal part of (Jgxu1)ug is
]D — 8174 fs
(B, —E)

But differentiating the relation (9,xIlo)IIo+11o(0,¢Ilg) = OgrIlg w.r.t
q* leads to

(agquHO)D = —(8qu08qu0 + 8qu08qu0)03 . (2.38)

[(8qku1)u8 (8§kq1HO)D .

With (2.35) and (ujul) = (wyug)?P = i(;f’%_)&qzﬂo, we obtain

* * * «1 D * *
[uout (Dgruo)uy — uo(dprug)urug] ™ = [—uguios(durlly) + (O Io)oguiug)

= _% [(8(1(1_[0)(8(1;91_[0) + (aquO)(aquO)] o3 .

‘We have found

1 1 Oy [ N

;%0 {ug fe,ur fug + o {uj fe,uot ug — Muo(aqkuo)uluo (2.39)
1 27 2¢

fa(a:gkpsz) (8Pkf5)(8péf5)

= 7(8(1191_[0)(8(1(1_[0)0'3 + 2 B, —

E+ — F_ (8qu0)<aqu0)03 .
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The diagonal part of %ug [{ugV, u1} + {uiV, uo}] uj equals
1 * * * * %1 D
% [_Uo(aqkuo)v(apkul)uo - (8qu)(apku1)u0 + Uo(apk%)v(aqkuo)uo]

By using (2.35) with

92 f
oD PrPed €
} - Z(E+ _E_)(anHO),

(0,V)°P = (B4 — B_)(9,TLy),
and E_IIj+E (1-1II)=V+ (E_ — E;)os,

(Opiur)ug = [(Op, ur)ug

it becomes

Oy f- 1
BB (9,0 T10) (0, TTo) + o2V [uo {1} + o i, o} ]

1 * * * *
+%(E_ — E) [uo {uf, ur } ufy + ug {ul,uo}uO]D o3.

The relation (2.36) yields

1 Tpepe )=
% [uo {ugV, ur }ug + uo {uiV, uo} uy] = —%(qu ITo)(9,4¢ 1)
61%kpzf5
+Vm(8qkﬂo)(8qeﬂo) . (2.40)

The term 3 [ug {uf, H}]” is the sum of two terms

1

o {uf, 217 + o o {u, VYT

27

a? e . . .
Since ugOp,ui = i%@qk Iy) is off-diagonal while

(0,V)OF = (B4 — E_)(9,11p),
the second term equals

92 f.
Toenel (5,0) 0,110)

The first term a priori contains more terms because uf has to be
differentiated:

]. ]- 8 g a ¢JE
5[ @0 f) (0, £)04e (E+—E) (0,T1g) — W(agzqkno)

—ug(,eut) CoeI) Opi fe)

D
o) (aqkno)]
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The first part is off-diagonal and vanishes after taking the diagonal
part. By using again (2.35) and (2.38) and 9,11y = (9,I19)°P, we
obtain

(apka)(apsz) (8qk,Ho)(8quo)03+ (apkf€)(apzf6) (3qu0)03(8qu0) =0.

E, -F_ E,-F_
Hence we have proved
1 \ 05, p. I
2_i [U() {U‘l? HHD = %(aqkno)(aqzno) . (241)

e The last term is
1 * *
T = 220 {(Dp f2) (Dri). w0}

D
10 (02 u5) (02, J2) = (D2, o) (021 00

Forgetting the § factor, the first part equals 2 (82, , f=)uo(Dgrul) (Dgeuo)ug -
By using (2. 34) in the second part gives

* «1D
8T = 4(Dpup, f2) [0 (Dgrut) (Dgeuo)ug]
Owing to (2.8) and (2.35), this gives

= (05, p, f) [0 (95| [(Ogeuo)ug] ® + (85, p, o) (0grTlo) (9ye o) -
With ug (9, uy) = —(9,xuo)ug, the last term equals

02 f. 02 .
T— —(Pk%f)[(aqkuo)u;;]f’[(aqzuo)ug]%%(aqkno)(aqzno) .
(2.42)
By summing (2.37), (2.39), (2.40), (2.41), (2.42), we obtain
B2D = ( pkmfs) [(quuo)uS]D[(aqeuo)uS]D + 4(6;0,6][5)(8;)@](5) (8qu0)(8qu0)ag

2 E,—E_

02 - -
+ Pk;)z f5 (8qu0)(8q€H0) + €1+26&+ €1+45R1 )

Hence the diagonal symbol that we seek, is

(ho+ h0_> - (fa(p7T)JBE+(q’T) fe(p, )JBE—(q,T)>

—ie(Op, fe)ug [(3qkuo)u3}Duo EQ%JE : [(8 kUO)UO]D [(8qku0)U3]DUO

—I-EQWUS (8qk Ho)(aqeﬂo)oguo + 62%”06?% ((9qu0)(8qu0)’&0
+ - —
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The symbol g [(9,ruo)ug] P o equals
uSHO(aqkuo)uE;HOuo + ug(l — Ho)((?qkuo)ug(l — HQ)’LLO

= Puj(Ogruo) Py + (1 — Pyug(9geuo)(1 — Py) = —i ( Ok _Ak> .

For the last term we deduce from ITy = ug Py ufy and (9guo)ug+uo(dquo) = 0,
P+ [ug(aqkno)ll@] [ué (8qu0)u0] P+
= Py [ug(Oy0uo) Py + Py (dgrug)uo] [uf(8euo) Py + Pr(0yeus)uo] Py
= Pyug(Ogruo) Prug(04eu0) Py 4 Prug (0 uo) Py (Ogeug ) uo Py
+ P (Ogrug)uoug (04etio) Py 4 Py (Ognug)uo Py (Ogeug )uo Py

= —Pruf(9,0u0) (1 — Pr)ug(0,0u0) Py = X X -

Taking the bracket with (1 — Py ) is even simpler and gives
(1= Py) [ug (9 To)ug | [ug(8gelo)ug ] (1 — Py)
—(1 = Py)ug(Ogruo) Prug (9 euo) (1 — Py) = X Xo .

This ends the proof. O

2.4. Discussion about the adiabatic approximation of the Born-
Oppenheimer Hamiltonian

The Theorem 2.1 is a direct application of Proposition 2.6 by taking
fe(p) = 77" p*y(7'7" ) .
The operators

Weyl

d
hi po(q,eDg ) = e27'7" [Z (pr F eAg)? o220 ”Z|X’“‘2

1
g2t 0 [—A + AP F [(gv).A + A.({V)] + X|2]
= 22000 [|%V T A|2 + |X|2} ,

are nothing but the usual adiabatic effective Hamiltonians which can be
found in the physics literature, including the Born-Huang potential | X|? =

Zzzl | X1 |?. We refer to [36] and [37] for a discussion of the various presen-
tations of the calculations and additional references.
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Even in the region {\/T’T”|p| < 7“7} with p quantized into €D, this
approximation makes sense, only for 6 > 0, because of the additional term

€2+467'/T//

:|:2ka)(€(58‘11¢)(€8‘1()

coming from the last terms of (2.31) and (2.32), that we have included in
the remainder. It is not surprising (see [40], [30]) that the degree of the dif-
ferential operators increases with the degree in € in the adiabatic expansion
of Schrédinger type Hamiltonians. The argument of physicists says that this
effective Hamiltonian is used for relatively small frequencies (or momentum)
so that e2 X X,p*p® is negligible w.r.t |p — eA|? 4+ 2| X|? . The introduction
of the additional factor £2 with § > 0 provides a mathematically accurate
and rather flexible implementation of this approximation.

3. Adaptation of the adiabatic asymptotics
to the full nonlinear minimization problem

In this section, we adapt our rather general adiabatic result to our non-
linear problem. In a first step, we give an explicit form of Theorem 2.1 in
our specific framework. Those results are effective when applied with wave
functions localized in the frequency variable, ¢ = x(,/7>7,eD,)¥ for some
compactly supported x . It could suffice if we considered minimizing the en-
ergy among such well prepared quantum states. We can do better by using
a partition of unity in the frequency variable, which will be combined, in the
end, with the a priori estimates coming from the complete and reduced mini-
mization problems. Finally an estimate of the effect of the unitary transform
U on the nonlinear term is provided.

3.1. Adiabatic approximation for the explicit Schrodinger Hamil-
tonian

Let us specify the result of Theorem 2.1 by going back to the coor-
dinates ¢ = (¢/,¢") = (z,y) and 7 = (7/,7") = (74, 7,). Provided that
Ve, (x,y) fulfills the proper assumptions, the unitary transform introduced
in Theorem 2.1 transforms Hp;, given by (1.9) into the Born-Oppenheimer
Hamiltonian with a good accuracy in the low frequency region, that is when
applied to wave functions ¢ such that ¢ = x(,/7z7yeDy)¥ for some com-
pactly supported x .

The operator Hp;, is the e-quantization of the symbol

Ei(q,T,¢ 0 *
ol + ) (PG o 0wl
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with  Ei(q,7,6) = Ver(e,y) £ Q[ 0) = Ver(a,y) £ [1+ a2
Yy Yy

The operator ug(g, 7) equals
C Set® "
(q7 ) (Se—up —-C ) = UO(qu)
with C = cos( 9 S = sm(e

)
and cot (6 ,/ goz,/&y.
Tx

PROPOSITION 3.1. — Assume 5 6 (0,60], (7, 7y) € (0,1]% and assume

2

that V. 7 belongs to Sy ((, /== (ﬁ e :_zdy2) then the matricial poten-
Ty

V(g, 7€) = Ver(z,y) + Q(\/%m) (6_?22(1?(9) eiﬂocsoi:((e%)>

fulfills the assumption of Theorem 2.1.

tial

Choose the function v € C§°(R) such that v = 1 in a neighborhood of
(2, 7“3], as in Theorem 2.1 and consider a cut-off function x € C3°((—r2,72)).

When U = U(q,eDg,7,€) € OpSu(1,g-; Ma(C)) is given in Theorem 2.1,
the identities

0*HL1‘71 UX(TwTylqu|2) - 52+46R1(Tv 5) =
. Ty Y A /Ty y
2426 e+z =2 H,e A 2
e T Ty \/ﬁ ) \/ﬁy X(T27yleDql™) (3.1)
0 w2 H e T 2

5
Hpinx(teTyleDg|?) — 2T Ry (7, ) =

iy 2 g];[ —iy/ XY 0
~[ e T e T
2L U + x(TaTyleDg|?) , (3.2)

0 VR SV

hold with
2
o = -9 %4-1#
2\/@
Y
1 s
M —— Ver(z,y) + L+ a + W (),
2
g = --|0,—i——

2, /1+ :—IzQ
Y
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1 =
e [Verlen) L e ),
WT(«/L') == TCE + Ty ,

Ty (1+ :—:1’2)2 T(1+ %xQ)
and the estimates

[R1(7,€)llczey + [[Ra(T,€) |l 2r2) < C
which are uniform w.r.t § € (0,80), 7 € (0,1]? and € € (0,&0] .

Proof. — Following the approach of Section 2, the Hamiltonian Hrp;, is
decomposed into

HLin = H(Qa €Dq7 T, E) + R”{(EDm T, 6)
. E 0 "
Wit Hg.0e) = P ol + [ (5 p ) u)@n).
and Ry (p,T,e) = 5267937y|p‘2(1 - 'Y(TwTy|p|2)) .

The Hamiltonian H(q,eDgy,T,¢) fulfills the assumptions of Theorem 2.1,
T 2

Ty T, Ty dp?

with the metric gr = &TZV + :_zdyQ + W’ because we assumed
Ty :

To g2
Ver € Sul((/ Za), WEwTh L dy?)
Y

[Zeg)2  Ta
Ty

while the gap Ey(q,7,e) — E_(q,7,¢) equals 2, /1 + Z=x2. Actually the
estimates

lo|=[8]
2

—|ef
agaguo(x,y)goaﬁ< “x> (T>

Ty

are due to 0,0 = —% and dye'? = i,/ e’ . Moreover the explicit
v Ty ©
computation with o + § =1 leads to

A, X, s 10,0 0 e
(X_w _Az> = iug(Opug) = 5 (—e‘“’ 0 ) (3.3)

A, X o T, S —Cet?
and (X_Z _Xy) = iugy(Oyug) = 4 /iS (—Ce‘w _g ) .(3.4)

Hence the effective Hamiltonians hpo +(g,eDq,€), when restricted to the
region {, [ToTy|D| < rw}, are given by the symbols
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0 1 Ty .
hpo.+ = e¥1,T, [px (py Fe, [Ty s1n2(2))2 + Z(\8x0|2 + T—y sm2(9))}

x

Vo () £ 1+ a2,
Ty

With cos(f and sin(6) = the Schrodinger Hamil-

i Ly 4 iy
TuTy€ WﬁyHie:FZ?x/ﬁy with

Tal
=5 NN
tonian corresponding to the RHS is g2+2¢

2
T Tx Ty

+ ; + -
2 i ze) 0T 5P R 5

1 Ty
— VL + . /14+ =22| .
ToTyE2 12 [ e (T, Y) + Tym }

Hi=-02-10,+i

The remainder term in Theorem 2.1 is
52+45R1(q, eD,, 7€)+ 53+2‘5R2(q, eDgy, 7€),

with Ry 2 € Syu(1, g-; M2(C)) and where Ry vanishes in a neighborhood of
{, [TaTy |p| < ry}. The first term provides the expected O(e?49) estimate
in L?(R?;C?).

It remains to check the effect of truncations. All the factors, including
the left terms

.o, 0
R’Y(pa T, 5) ) 5257’&:7—11 pi + (py + 581n2(§))2 (1 - ’y(TmTy|p|2)) )

belong to OpSy, ((m@ ,97; M32(C)). For any a,b belonging to the
class OpSy({\/TaTyp)?, gr; M2(C)), where b vanishes in a neighborhood of
{/Tamylpl <7}, and two cut-off functions x1,x2 € C°((—r2,r2)) such
that x1 < x2 (see Definition A.3), the pseudo-differential calculus says

(1- X2(TzTy|p|2))ﬁaaﬁEX1 (TzTy |p|2) € Nu,gf
bt X1 (Ta7y [PI?) € Nuvg,

with uniform estimates of all the seminorms w.r.t 7 € (0,1} and § € (0, §] .
Applying this with x; = x and various y2 such that x1 < x2 < 7, implies
that the remainder terms due to truncations are O(¢V) elements of £(L?)
for any N € N, uniformly w.r.t 7 € (0,1]2 and § € (0, dy] . Fixing N > 2+44,
ends the proof of (3.1).
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For (3.2) use (3.1) with a cut-off function x; such that x < x1 and
conjugate with U :

HLinﬁX1(TmTy|€Dq|2)U* -

R i—Ty 2 3 ==Y O A

2426 eV Hie 2V 2\

€ ToTyU S Jm X1(T2TyleDg|*)U
0 e v YH_e'2ve?

e AGE
Right-composing with x(7,7,|eD,|?) and noticing that
Xl(TxTy‘quF)U*X(TxTy|5Dq|2) - U*X(TJcTy‘quF) = R(q, €Dy, T, €),
with R € N, 4. lead to (3.2) like above. O

3.2. Linear energy estimates for non truncated states

PROPOSITION 3.2. — Assume § € (0,8, 7 = (72, 7y) € (0,1]* and that
el
Ve.r bel to th tri bol class S, Teg), i _—— 4 Tugy?),
.+ belongs to the parametric symbol class Sy ({, /Tyx> <\/%m>2 + dy )

Set X = x(mamyleDgl?) for x € C§°((—r2,72)). When U is the unitary
semiclassical operator U(q,eDq,T,€) € OpSy(1, g-; M2(C)), given in Theo-
rem 2.1 and parametrized by the truncation v around {, [TaTy|P| < 7"7}, then
for any x € C§°((—72,72)) the estimates
(6, [0" Huanll = 2427, Hpolw)| < CeM42° [ y3. (3.5)

(1 = R)YlTe +1(1 = R)YllL> % |yTaTyleDgl(1 = %)l L2]

‘<w, [Hrin — 82+25TmTyUHBOU*]1/}>‘ < Celt® [€1+26||w||2L2 (3.6)
(A= )Yl7e + 11 =X)Ylle % |y/TaTyleDg| (1 = X)¢lz2]

hold uniformly w.r.t T € (0,1]? and 6 € (0,8], for all p € L*(R?;C?), with

zﬁy S —iﬁy
e'vmYH, e "2 0
HBO = NI /Ty
0 e '2veYH_e'2vY
2
He = -02— (9, ti T +e727% {1/577(33,3;) + 1+a:2}
2, /14 T=a?
+We(z,y),
T, T,
Wr(z) = = + Y .
(z) Ty (1 + T—'ZJ:Q)Q (14 ﬁxQ)
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Proof. — Set
Ly —ixl Ly
A N Y H e 2 0
— 2428 +
0 e vV H ¢y

and bound the terms (¢, Dy) and ((1—X)¢, DY) by Ce*T4|[||2, with
the help of Proposition 3.1. The remaining term is

(1=X)¢, DA =X)¢), with § = x(ra7yleDg[*).
The operator D can be decomposed according to D = €2+267'1;7'ka1'77, +Dpot
with
_epi2pr (1Pa— AP+ X? 0
ka—U |Dq| U < 0 |Dq—|—A|2—|—|X‘2 ) (3~7)
ey (B4 0 ey B Tz o+l 0
Dpot—U UO ( 0 E_) UOU ‘/677'(I7y) 1+ Tyx ( 0 _1) (38)

The normalization in (3.8) allows to use directly the semiclassical calcu-
lus if one remembers that UsU = 1d + eR and U*Uy = Id + R’ with
e PR e ¥R € 8, (( — >7gT,./\/IQ( ) and Ei(q,7,e) = Ve (z,y) &

Ty

1+ :—sz . We obtain
(1= X)%, Dpor(L = )W) < Ce™F2|(1 = )12
which corresponds to the second term of our right-hand sides.

The kinetic energy term (3.7) is decomposed into

27,1y Diin = €107 DRy + Dhin »
with
DL, = XU r,7,|eDy|?U — e¥Uir,m,|eD, Uy, (3.9)
0 —— 27y |Dg — AP> + | X|? 0
Dl = GiioaPia— (171 D4 AP+ )10

Writing (3.9) in the form

D} = XU — U 7oyl Dy|?U + XU T,7,|eD, X (U — Uy),
while 7,7, [eDg|* € OpSu({\/TaTyp)?, gr: M2(C)), U, Uy € OpSu(1, gr; M3(C))
and e~ 1=2(0 — Up) € Op5u<w,g7—;/\/lg(@)> , leads to
(1 =X)¢, Dhin(1 = )¥)| < Ce™ 2|1 = R)lIZ2

which is even smaller than the D,,; upper bound.

— 79 —



Amandine Aftalion, Francis Nier

n (3.10), the first term can be computed via

<(I) ) U5|Dq|2U0(q)q/> = Z <qu' (uO(Q7 T)q)) ) Dle (UO(Q7 T)\I’» )
qJ‘E{ZL’,y}
with Dy (uof) = uo(Dg, — iuj0q,uo)f and equals
Ug‘DqFUO = |Dy — iugdyuo|?
= > {Di — (1u5(q)9q;u0(9))*) Dg; — Do, (iug(a)9g;u0(4))?)

qje{z’y}
(i1 (0), w0(0))?)

Meanwhile expanding the entries of the second term in (3.10) gives

D, FA@E = Y [D2 F Aj(@)Dy, F Doy Ai(@) + Ai(0)?] -

q;€{z,y}

By using the expressions (3.3) and (3.4) for A, X and iu{0yup, we obtain

1 0 R_
Dkzn = 5 <R+ 0 )

with Ry = £i(Dy(0,0) + (9,0)D,)e™® — | L sin(6)(D,e¥i® + e¥9D,,)
Tx

VT . 1
and  (0,0)= —— V" () = .
(6:5) V(L4 =a?) ©) 1+ Z=a?

Therefore, we obtain

(1= )%, DYn(1— %) 4maxf f D4l (1= )l 2 (1=l

and, owing to 7,7, € (0,1],

K 1 - ¢ €2+26T$Typkzn( - >A<)¢>‘
<42 Ty leDyl (1 = )¢l 2l (1 = %)l 2 -
This ends the proof of (3.5).
For (3.6) it suffices to replace 9 in (3.5) by U*y with a kinetic energy
cut-off function x; such that x < x; and then to use (1—x1)U*{ € OpNy 4.,
with uniform seminorm estimates w.r.t 7 € (0,1]? and § € (0,do]. The L*-

norm of the corresponding additional error term is O(¢V), for any N, and
one fixes N > 2 + 449 . O
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3.3. Control of the nonlinear term

In this subsection, we estimate the effect of the operator U= U(q,eDq,,¢€)
belonging to OpSy (1, g-; M2(C)) on the nonlinear term [g, |[* dady .

PROPOSITION 3.3. — Let U be the unitary operator introduced in Theo-
rem 2.1. The inequalities

/ o y)|* dady > (1 — Ce™+29) / (O (2, y)|* dedy, (3.11)
and / W )|t dedy > (1— C+29) / (") (. )| dedy (3.12)

hold for any ¢ € L*(R?;C?).

Proof. — For 17 and 15 belonging to L*(R?; C?), the local relations

2

[Wil*(a) = (1¥2(a)]* + 2Re(v2(q) , (1 —2)(q)) + [¥1(q) — 2(Q)|2)

2
o) * + 21 — w22+4(Re<¢2 o) + Lo W)

+4|1ho | Re(the, (1 — 1))
b2 (q)|* — 4lw2(q) 111 (q) — 2(q)]

is integrated w.r.t ¢ = (z,y) € R?, with Holder inequality, into

WV

91 l1zs = /lwll4 drdy > ||| s — Allallzallvn — ¢allzs -

With 91 = (]01/) = uo(q), |¥(q)|* = [¥1(q)|? for all ¢ € R?, and 1)y = O'zp =
P14+ (U — Up)t), we obtain

[l1zs = nllze > 1020 — 410015 )1(T ~ Uo)wllza -

1426

The operator U—U, equals r(g,eDy, T, ) with r belonging to the class

Tz .2

Su<W,QT;M2((C)), where we recall g, = ( L v :—zdyQ—F

. After introducing the isometric transform on L*(R?; C?)

1—1,
TeTy dpz

(\/ Tz Typ>2

(T r0)(x,y) = e3/TaTyP(eEN/TaTy®, €3/TaTyY) »

the difference U — ﬁo becomes

3 1+6p—1
U-Uy=c¢ + Te,‘r rl(EszaETyyv D, Dy,E, T)TE,T
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d(me)
(Tox)?

+d(ryy)* + %; M (C)). A for-
tiori, the symbol rq (e7,2, e7yy, &, m; €, 7) is uniformly bounded in S(1,dg* +

with 7y uniformly bounded in S(1,

%; M5 (C)) and the Lemma 3.4 below provides the uniform bound
1T = Uollg(ray < Coe™+?
We have proved

1Nz 2 10914 —C* 2|0 Talll s > 109174 =C'e 2 {0917 + 1901134 |

by using x'y'~t < Cy(z +y), when t € [0,1], x,y > 0, with = = ||U1/J||L4 ,
y = ||[¢[|34 and ¢t = 2. This implies (3.11). The second inequality (3.12) is
proved similarly with U* = U; + (U* — Ug) . O

The result below is a particular case of the general LP bound, 1 < p < oo,
for pseudodifferential operators in OpS(1, dg? +4 o >2 s L(H1;H2)), H; Hilbert

spaces, stated in [41]-Proposition 5.7 and relying on Calderon-Zygmund
analysis of singular integral operators.

LEMMA 3 4. — For any p € (1,400), there exists a seminorm n on
S(1,dq? +7 2,/\/12(((3)) such that
dp?

Va € S(1,dg® + ——
(Lde™+ 75

;M2(C)), lalg, Dy)llzzry < nla).

Proof.— The Proposition 5.7 of [41] says that for any a € S(1,dq* +

%Q;MQ((C)) the operator a(g, D) is bounded on LP(R?;C?). It is not
difficult to follow the control of the constants in the previous pages of [41]
in order to check that |a(q, Dg)|/z(z») is estimated by a seminorm of a.
More efficiently, a linear mapping from a Fréchet space into a Banach space
is continuous as soon as it is bounded on bounded sets. Apply this argument
with the result of [41] to

d 2
S(1,dg? + 2

i M2(€)) 3 a > alg, Dy) € LILM (R C).
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4. Reduced minimization problems

In this section, we assume that the potential V. , satisfies (1.13)-
(1.14). After the first paragraph of this section and in the rest of the paper,
we focus on the case 7, = 1, 7, — 0 (and ¢ — 0). Two reduced problems
have to be considered: 1) the one obtained as € — 0 and 7, is fixed; 2) the
one derived from the previous one as 7, — 0 and which is parametrized
only by (G, ¢y ). The linear part of this latter reduced problem is a purely
quadratic Schrodinger Hamiltonian (with a constant magnetic field), from
which many a priori information can be obtained. This section is divided
into three parts. First we specify the potential V, , and check our main
assumptions for the general theory. Then we review some properties of the
reduced Gross-Pitaevskii problem parametrized by (G, ¢y) . Finally we make
the comparison with the reduced Gross-Pitaevskii problem parametrized by
(G,ly,T:) as 7, — 0 and deduce properties which will be necessary for the
study of the complete minimization problem.

4.1. Reduced minimization problems

LEMMA 4.1. — The potential V.  defined by (1.13)-(1.14) belongs to the
class Sy, ((4 /:—z@,gqﬁ) with the metric gq, = 7'/(%2:062) + Ty

Proof. — After the change of variable (2/,y’) (, /TI 1/ y it is

equivalent to check

2425 2 2 2
€ T T, dx
W’U(Tylﬁ Ty)+V 1+ z2—?t? (1+22)2 + 1 +yx2 €Su((z), WJdeQ) .

It is done if v(7,x, 7,y) € Sy ({z), & @ >2 +dy?*). We know v € S(1, fixﬁii ).
Hence for all (o, 8) € N? there exists C, 5 > 0 such that

Vr € (0,1)2,Va,y € R2, 8207 (v )| <C 40
T T,y s V(TyZ, T2y NS o,
vy P 1202 4 r2yg2)

1
< CO&WB <x>1_‘a| )

SCopr1—575 <
75(7_% _'_1.2)04/2

which is what we seek. O
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If the error terms of Proposition 3.2 and Proposition 3.3 are assumed to

be negligible, the energy () of a state ¢ = U* (a() ) is close to

e a  Hoa ) + % / la_|* dedy = > 7,7,E(a),
. . e )
with & (a-)={a_,H_a_)+ 5 la_|* dxdy , (4.1)

xT

_ = —(“)i —19y,—i + = 1 V(\/TaTy@, \/TaTyY) »
2, /14 Zeg2 b 72Ty
Y

with the potential v chosen from (1.14).
When = and 7,7, are small, in particular in the regime 7, <1 and 7, =1
that we shall consider, this energy is well approximated by

1T z?+y
eute) =t [-02 -0, - TP+ S5 o+ 5 [l )
as this will be checked and specified in the next paragraph. Although more
general asymptotics could be considered, we concentrate from now on the
regime 7, < 1, 7, = 1. The parameters ¢y and G are assumed to be fixed
as 7, — 0.

In order to prove that the ground states of £y and &, are close, we need
good estimates on the energy £y .

4.2. Properties of the harmonic approximation

The energy functional £ does not any more depend on 7, and is parame-
trized only by (G, ¢y ). Let us start with its properties. We introduce the
spaces H1 and Ho which are given by

He=<SueL’R?) Y |¢"Diulr> <+o0p, s=12(q=(z,9))
lal+8]<s
(4.3)
endowed with the norm [|ull3, = > jal+18]<s ||angu||2L2 . For a compact set
K of H, and for u € H,, the distance ds(u, K) follows the usual definition
min,e g ||u—vl|3, . The self-adjoint operator associated with the linear part
of £y is denoted by

x2+y2
a2

Hey = —02 = (0, 5 +

(0 <ty < +00).
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Its domain is Ho while its form domain is H; . Note also the compact em-
beddings Ho CC Hy CC L?> N L*. Following the general scheme presented
in [22, 39], its spectrum equals

o(He) ={(1+2n)ry + (1 +2n)r_, (ng,n_)€N?*}

withrizﬁ\/l—ke%j:‘/l—ke%.
v \4

PROPOSITION 4.2. — The functional £y admits minima on {u € H;,
llul|2 =1}, with a minimum value Ex min satisfying

V2
EH,min Zrytro = 7

The set of minimizers Argmin Ep is a bounded subset of Ho and therefore a
compact subset of {u € Hi, ||u||z = 1} . Moreover for any ¢ € Argmin £y,
@ is an eigenvector of Hy + G|p|?. Finally there exist two constants C' =
Copc > 0 and v = vy, ¢ € (0,1/2] such that the conditions u € Hq,
lullz2 =1 and Eg(v) < Efmin + 1, imply

dy, (u, Argmin Ex) < C(Ep(u) — Emin)” - (4.4)

Proof.— On H; and Ho, the scalar products

(u, v)1,6, = (u, Hp,v)p2
(u, v)oe, = (Hp,u, He,v)p2

provide norms ||ul/xe,, k = 1,2, respectively equivalent to ||u||3, . In this
proof, all the “uniform estimates are actually parametrized by (G by).
The nonlinearity § [ |u|*(z) dz as well as the constraint ||lul|z = 1 are
continuous functlons on L2 N L4 while the quadratic part of £y (u) is simply

[|lul|? oy With Eg(u) > [|ul|? oy 2T T2 ‘2[ The compact embedding
H, cC L? N L* thus implies that the infimum infuea, | ful2=1 En(u) is

achieved.

A minimizer ¢ € Argmin g solves in a distributional sense the Euler-
Lagrange equation
Hy, ¢+ GlolPu = App

where A, is the Lagrange multiplier associated with the constraint ||p|| 2 =
1. By taking the scalar product with ¢, one obtains the bounds for A,:

gH,min < )\Lp < 2gH,m'Ln .
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Since H; is also (compactly) embedded in L®(R?), the equation
Hy, ¢ = =GloPo+ Ao

ensures that |||z, is uniformly bounded on Argmin Ep. Therefore
Argmin £ is a bounded subset of Hs and a compact subset of H;. In an
Hi-neighborhood of ¢ € Argmin €y (||¢llzz = 1), the L%-sphere
{u € Hy, |Ju||zz = 1} can be parametrized by

u=(1-|vli2)p+v, (p,v)r=2=0.

Notice also that the potential G|p|? is a relatively compact perturbation of
Hy,,, so that Hy, + G|p|? is a self-adjoint operator in L?(R?) with domain
Hy and with a compact resolvent. With (¢, v)1,¢, = =G [g. |¢|*®v da for
¢ is an eigenvector of Hy, + G|p|? and v L ¢, the energy €y (u) becomes

En((L—lol3)p+u) = Nolli e, + (1~ ollza)e, ey
_ G
~2G(1 - olRe [ loPdo+ S [ |1 lela)o+ off do
R2 R2
= ol ey + Folo)

where v lies in the closed subset H; , = {v € Hi, (p,v)r2 = 0} of H; and
F,(v) is the composition of the compact embedding H; — L? N L* with a
real analytic, real-valued, functional on L? N L*. Hence on H1,, endowed
with the scalar product {, )14, , the Hessian of E5((1—||v]|2.)¢+v) equals
Id + D?F}, (0), with D2?F,,, (0) compact (and self-adjoint). We can apply
the Lojasiewicz-Simon inequality which says that there exist two constants
Cy, >0, v, € (0,1/2], such that

lolle, < Cp (Er((L = [[v]1Z2)0 + ) = Errmin)

Since the set Argmin £y is a compact subset of H;1, it can be covered by
a finite number of neighborhoods of ¢; € Argmin £y, 1 < i < N, where a
Lojasiewicz-Simon inequality holds. Take

17, = min v, and Cy =2 max C,. .
v,G 1<icN  #i v,G LsieN i

O

Remark 4.3. — The Lojasiewicz inequality is a classical result of real
algebraic geometry (see e.g. [27, 6]) proved by Lojasiewicz after Tarski-
Seidenberg Theorem. It is usually written as |V f(z)| < C|f(z)|” with v €
(0,1] for a real analytic function of x lying around z¢ with f(z¢) = 0. The
variational form is a variant of it. It was extended to the infinite dimensional
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case with applications to PDE’s by L. Simon in [38]. We refer the reader
also to [15, 21, 24] and [7] for recent texts and references concerned with
the infinite dimensional case or the extension with o-minimal structures.

The nonlinear Euler-Lagrange equation is usually studied after linearization
via the Liapunov-Schmidt process. Here using some coordinate representa-
tion of the constraint submanifold, especially when it is a sphere for a simple
norm, allows to use directly the standard result for the minimization of real
analytic functionals.

When the minimization problem is non degenerate at every ¢ € Argmin g,
i.e. in the present case when the kernel of Id + D?F,,(0) is restricted to {0},
the compact set Argmin £ is made of a finite number of point. When £y is
fixed so that 1 and r_ are rationally independent, the spectrum of Hy, is
made of simple eigenvalues and when G is small enough, G < Gy,,, the non
degeneracy assumption is satisfied via a perturbation argument from the
case G = 0. For large G, we can only say that the set of (G, fy) € (0, +00)?
such that all the minima are non degenerate, vy, ¢ = 1/2, is a subanalytic
subset of R?. In our case with a linear part Hy,, which is a complex operator
with no rotational symmetry, no standard methods like in [4] allow to reduce
the minimization problem to some radial nonlinear ODE.

From the information given by the Lowest-Landau-Level reduction, when G
and £y are large, the supposed hexagonal symmetry, after removing some
trivial rotational invariance, of the problem (see [3, 34]) suggests that there
are presumably several minimizers.

A change of variable ¢(x,y)e™"*¥/* = au(az, ay) with o® = 1/(lyV/G)
leads to

Eu(p) L¢

_ _ 1 i 2 22 Lo
= gv\/é&{(u) = gv\@/w QEV@esz)M +G(r|ul +2|u| ),

(4.5)
with the notations 7= (;) r = |7]. This implies that £1,v/G is equivalent

to a rotation value. We have the following results from the literature

e when /,\/G is small and G is large, the minimizer is unique up to
rotation and vortex-free [4]: namely u(z,y) = f(r)e'® for some real
number ¢, where f does not vanish. If £,,v/G = 0, this is an adaptation
of a result of [12]. When ¢y/G is non zero, this requires refined
estimates for the jacobian.

e when (/G is large, then vortices are expected in the system and
this can be analyzed in details in the LLL regime (lowest Landau
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level) if additionally v/G /£y is small [2, 3]. More precisely, if vG/ ¢y
is small, then

= 1
inng———infELLLZO \/—é (46)
2 A%
where
1
Brea(w) = [ GOl + lul!) (@)

for functions u such that u(z, y)eeV‘/a’“Q/ 4 is a holomorphic function
of  + 4y. This space is called the LLL. If u is a ground state of £y
and w its projection onto the LLL, then |u —w| tends to 0 in H! and
C%« as \/@/ﬁv tends to 0. If additionally, £y v/G is large, then one

can estimate inf E 1y, [3] thanks to test functions with vortices and
infELLL =0 (\/@)

ly

e if /y\/G is large, and v/G/{y is large, then this is a Thomas Fermi
regime where the energy can be estimated as well [1] and is of order

VG/ty.

We complete the previous result with another comparison statement
which will be useful in the sequel.

PROPOSITION 4.4. — There exists C = Cp,, ¢ > 0 such that when u €
H1 satisfies Eg(u) < Egmin + 1, |Jullrz =1, and solves

Hy, cu+ Glul®u = Ayu + 7
with Ay € R and r € L?, then
o ucHy;
o there exists ug € Argmin g, with Lagrange multiplier \,,, such that
M= Auol + 1w = uollre < C(II7llze + (Em () — Emmin)")
where v = vy, ¢ € (0, %] is the exponent given in Proposition 4.2.

Proof. — Since Argmin £ is compact, Proposition 4.2 already provides
ug € Argmin £y such that

lu —uoll2, < C(E(u) — Emmin)” -
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Taking the difference of the equation for v and the Euler-Lagrange equation
for ug, we obtain

Hyya(u—1up) = (Ay — Ay ) o + Ay (v — up) + G(|uo|2uo — |u|2u) +r.

Taking the scalar product with ug, with || f|[zs < C||flln, < C"En(f)Y/?
and

[[|uoPuo—|ul?ull L2 < C (Ex(uo) + Er(w)) lu—uolla, < C" (Ex(w) — Efmin)”

implies
Au = Aol S C7 ([I7ll2 + (Ex(u) = Emmin)”) -

Using the ellipticity of Hy, ¢ and the equivalence of the norms ||¢||7, and
|Hey .cl L2 ends the proof. O

4.3. Comparison of the two reduced minimization problems

In the regime 7, = 1 and 7, — 0, while £}y > 0 and G > 0 are fixed,
we compare the two minimization problems for the energies £, and £y
defined in (4.1)-(4.2). We start with the next Lemma which is a simple
application of the so called IMS localization formula (see e.g. [14]). We shall
use the functional spaces H, defined by (4.3) associated with £y as well as
the standard Sobolev spaces H*(R?) associated with &,, with s = 1,2 and
Hs C H5(R?).

LEMMA 4.5. — Let x1 € C3°(R?) and x2 € Ci°(R?) satisfy x3 +x3 =1,
and take o € (0, %] . Then the following identity

Ea 1) = E (0 (7)) + Eu el —rmz )y SICRIR

e / x2) ()l (4.8)

holds for all w € H1, with the same formula for E.(u) when u e H'(R?).
Moreover when suppx1 C {|x|* + [y|* < R({,G)?} or a € (0,3), & and
Ey satisfy

Er(u) = Eulxa(ryJu )+5T(X2(T$~)U)—73QZ/RQ (V) (73 )Pl
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for all u € HY(R?) with

IR(w)] < Cy (&0 (2w 2 + €y Ca (72 )w) ) [lul gari >, (4.10)
for some constant C, > 0 determined by suppx -

Proof.— The first identity is a direct application of the IMS localization
formula (see e.g. [14]) which comes from the identity

1 1
PX*P = xPx = [P.X]" = 5 [X*, P] P = 5 P [P.]

when P is a differential operator of order < 1 and x is a C*° function. Simply
combine it with the identity

Jul* = D (72 Jul® + e (r Jul* + 2xEx3 ()l

Using the same argument for £, provides the same identity after replacing
Ex with &, . For the second estimate, it suffices to compare &, (x1(72.)u)
with £ (x1 (75 )u) . The definition (1.14) of the potential v and the condi-
tion on suppx; for a < & or the condition o < 3 imply

o(r %, 7)) = 1o (@? + 9)  on suppx1(72.).

Therefore, we obtain, by setting v, = x1(72.)u,

1E-(x1(5)u) — Er(xa (T Ju)| =

) — i Va2 — (9, — s

. x T
< ((ay il + 110, — i )urlzs

x| %ﬁx /2 (7o ull
U 2
zx2X1 z L

< Oy (&G0 (7202 + O (72 )2 ull o7d =52
]

PROPOSITION 4.6. — For any given ({v,G) € (0,+00)?, there ewists
Tey ¢ > 0 such that the following properties hold when T, < Ty, G -

e The minimization problem

Inf E-(u)
weH (), ul 2 =1

admits a solution u € H*(R?).
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o A solution u € HY(R?) to the above minimization problem, solves an
FEuler-Lagrange equation

. 1/2
a2 ot £ o v(1"") 2| .
9; — (0y 21t ngl‘z) + 21, + Glul” | u=Au

with 0 < Ay < 27 min and belongs to H?(R?) .

o Moreover the minimum value E: i = MiN, e 1 (R2) , [ul| 2 =1 Er(u)
satisfies the estimate

|g'r,min EH mzn‘ O/V,GT /3

e For u € Argmin & and any pairs x = (x1,x2) in C°(R?
that x? + x3 = 1 with suppx; C {x2—|—y2 < 1} and x1 = 1 in

{x2 +142 < 1/2}, the functions Xj(’]';/g.)u, j=1,2, satisfy

Ix2(m2/? Jull2 < Cyey.ama!? (4.11)
E-x1 (T )u) < Ermin + Cyoy o723 (4.12)
dy, (xl(Tw/g.)u,Argmin En) < Cyupy. GTT2VZVG/3, (4.13)
ve, ¢ € (0, 5} . (4.14)

A constant Cyp.c is a constant which is fized once (a,b,c) are given.

Proof. — Fix ¢y and G. We drop the indices ¢y, G in the constants.
The exponent a will be fixed to the value % within the proof.

First step, upper bound for inf{&, (u), u € H'(R?), |lu| > = 1}:

Let x = (x1,x2) and X = (X1, X2) be two pairs as in our statement such
that x1 < x1 according to Definition A.3. Take ug € Argmin & C H; .
According to Proposition 4.2, it belongs to a bounded set of Hs so that
Illg|?wol| 2, with ¢ = (=, y), is uniformly bounded. Hence, 0 ¢ suppVy; U
suppx1 Xz implies

/ V(72 Pluol? = O(r2)  while / B uol* > 0.

Lemma 4.5 above with the pair ¥ and « € (0, %] gives:

Ettmin = En(uo) = En(X1 (T2 )uo) + Ep (X (75 )ug) — CT5.
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On suppy2(72.), the potential

v(r2/2)
Z%/T

is bounded from below by ﬁ

Thus we get

Ermin (IIX1u0ll72 + [X2uollF2) = Emminl| X107+ IX2uol|7:—CTo%

_t
C'r2e
and finally
[X2uoll72 < C"73%,  [xauollZe = 1+ O(13%),
as soon as T, < (C’é'Hymm)’l/Qa .
The function u; = || X1uo|| 72 X1uo is normalized with
Exmin < Ea(u1) < Emin + O(18Y),

and x1(78)u1 = ug, x2(75.)us = 0. Applying the second formula (4.9)(4.10)
of Lemma 4.5 with, now, the pair y, leads to

ET(ul) = EH(Ul) + R(Ul) = SH,min + O(Tga) + R(ul)

with  R(ur) < Cyl€(un)2 + E ) /)7l
< Ox(gf(ul)l/2 + (E,min + O(Tfo‘))l/Q)T%*SO‘ .

With the estimate @ < E,min < C and by assuming o < % , we deduce

Er(u1) = Efmin + O(T0* + 747%%).

It’s time to fix a to the value é so that 76% = 713 = 712/3 and

inf & (1) <E (1) < Eqmin + K723
ue H'(R?)

Second step - Existence of a minimizer: Once the function u; € H*(R?) has

. . 2/3 1
been constructed as above, consider 7, < Ty with Ex min + K7y < -

The functional &, (u) is a non negative convex strongly continuous func-
tional (and therefore weakly lower semicontinuous) on H!(R?). Out of a
minimizing sequence (uy,),cn« which is bounded in H!(R?), we extract a
weakly converging subsequence in H!(R?). The weak limit, u, satisfies

Er(uw) < liminf & (up,) = lim & (uy, ),
k—o0 k—o0 ’
with |lul|2 <1.

Let us now check that when 7y is chosen small enough, ||ul|pz = 1 is
necessary. For any R > 0, let Bg be the ball {(x, y) €R?, 22 4+ 9% < Rz} ,
and let

el iz (s = (1= o(R)) with  lim o(R) = o,

— 00
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and assume ¢ > 0. Let us prove that this implies a lower bound for 7, ,
( 1 2 ) >

due to the upper bound of inf £ and the lower bound ~ Z— ina
2 T

neighborhood of co.

Due to the boundedness of (up, )ren in H(R?), we know that for any
R>0

Tt 32, = 3 gy = 1= 0(R)

Consider a pair (x1,x2) and set x;, = x;j(r~'.) for j = 1,2 and r > 1
We shall use the formula (4.8) with now a = %, Ex replaced by £, and x;
replaced by x;,,. We get

Er(tn,) = gT(XLT(Twl/Z')U’nk) + ST(XZT(T;/Q-)UM) - OXTwT_Q (4.15)

1/2
The present choice a = %, implies v(;z ) > E%/CTZ on suppx;r(T)}/Q.) and

therefore

ST<X2,T(T;11:/2~>UM) 2 ||X2 (T, p-)”m”i?

E%, Ta
One can fix a small value of 7y > 0, so that the estimates

gT(XQ,r(T;/2~>unk) < gr(unk)"i'CXTwr_ (gH mzn+K/7—0 )+C T0 X 3gH min
hold for k > K, ., where €y min depends only on (¢, G). We deduce

1 r
vk > K, , ig(m) < HX2,7’(TQJ;/2’)U’“IC||%2 < Crp < Cr,
Tx

and by taking 7y small enough

Vr>1, o<of 1T/2)<20Tx<207'0<

| =

The inequalities (4.15) and

c
gT(XQW(T;/Q')u"k) 2 72 HXQJ'(TQ}/Q')U”kH%Z = EQ 0(2R),
vz vz

. T
Wlth R= W 5
also lead to
1/2 Cy T 1/2
Er(X1,r (T Jun,) < Exlun,) + 5 Er(Xa,r (1277 )uny,)
C c
g g‘r n —X 2R 9
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while we know
Vk 2 K.~ ||X177"(T3}/2')unk“%2 z1- ”UnkH%%BR) >1-20(R).

By setting
1

Vk 2 K?",Tm I Wy = 1/2
(72" Juny, [l 2

Xl,T(T;cl/2-)unk )

the expression of & (u) = (u, H_u) + § [ |u[* implies

1

) S T O )
\T T . nE il 12
1
< W&(XLT(TQ}/Q-)UTL;C)
1 C c

- X
(= 2omy &) T iR T

o(2R)| .
Let us fix » > 2 and therefore R = 2+/2 such that:

0<o<o(2R) < o(R) <20,

We obtain

1 c

Vb Kpm s Er(wr) € £ (n) —
T (wk) (1 *4Q)2 (u k) QE%TzQ

< r__ ¢
< Er(up,) + [C %%/TJQ,

by using ¢ < 5 and & (un, ) < 3EH min - With

1
8

lim & (up,) < liminf & (wy),
k—o0 k—o0

we deduce
c

Hence when 79 is chosen small enough, the L?-norm of the weak limit u has
to be equal to 1 and u is a minimizer of &, .

The Euler-Lagrange equation can thus be written, with the stated straight-
forward consequences.
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Third step - a priori estimate for minimizers of &;:

Let u € H'(R?) satisfy |Jul|z2 = 1 and & (u) = Erpin < En + KT2!° .
Take two pairs X = (X1, X2) and x' = (X}, x%), like in our statement, and
such that x} < X1. In the first step, we chose a = §. The identities (4.8)
for £ and (4.9) in Lemma 4.5 provide

Ermin = E(Xa (137 Ju) — Cxr/*
Ermin = En(Xa (120 )u) — Cxr2/°
—C [EGa (32 ) 2 + € (R (720 Ju) /2] 722,
The first line says
E (X1 (T2 )u) < Ermin + Cx7 < Eqpmin + #72/% + Cx2 < O,
which combined with the second line provides the uniform estimate

Therefore 5(1(7;/ 9.)u is uniformly bounded in #H; with respect to 7, . Con-
sider now the Euler-Lagrange equation

) 1/2
a2 ot £ o v("") 2|
[ %O 2V1+ me2) " 07 Gl = A

and write its local version for uj = X’l(Tmz/g.)u in the form

1T 22 4 o2 ~
{55 —(0y — 5)2 T . ] uy = gty — Gl
v
+fut fa (4.16)
. . . 1 19 A - 2 Tt
with fu= *Zx(m - X' (7; ~)ay“1 - Zmul’

and  fi = =20 (VX0 (7)Y = 72 (Axd) (7 )i
after setting iy = X1 (r2/°.)u . Both functions, ii; and therefore ul=x4 (75/9.)121
are uniformly estimated in H; and therefore in H'(R?). From the embed-
ding H'(R?) C L5(R?), the term G|i;|?v} is uniformly bounded in L?(R?).
For the term fl, the support condition suppx’l(T,%/g.) C {|x\ < 73:1/9} im-

ply
Ifallze < Cor (a3 4+ =49y < O

while the estimate
I£2] < Cum/® < O,
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is straightforward. Hence the right-hand side of (4.16) is uniformly bounded
in L?(R?) and we have proved

X4 (722 ulla, < C2 (4.17)

for any good pair of cut-offs x' = (x}, x%) -

Fourth step- accurate comparison of minimal energies:

We already know & min < EH,min + m'f/ 3 and we want to check the

reverse inequality. Consider a minimizer u of £, and take two pairs of cut-
off x = (x1,x2) and X’ = (X}, x%), such that x; < x} . The identity (4.8)
for £; and (4.9) of Lemma 4.5 used with y imply

g‘r,min = ST(XI(T;/Q)U) + (‘:T(XQ(TII/Q)’U,)
2
Y [ )P, (4.18)
j=1/R?
g‘r,min > Ex (Xl (T;/g)u)

2
S [ P 4 R (119

/9

After setting v} = X} (72’".)u, we get the bound

Vi T;/g. 2
[wwmeap = [ Sy < o,

while we already know from the third step the bounds 5.(X1(Tr1/9.)u) < Cy

when e stands for 7 or H, which implies |R(u)| < CXT§/3 . From (4.18), we
deduce, as we did in the first step with the energy £y,

Ixa(ra/®Jullfe < OV Ia(r/®Julle = 1+ 0(27%),
while the second line implies
5T7min 2 (1 - CXTi/S) 5H7min - C)/(Ta?/s 2 5H,min - C;(/TIZ/S .

Fifth step- accurate comparison of minimizers:

The function u; = ||x1(7';/9.)

U||Zz1X1(T§/9.)u, satisfies
En(ur) < Emmin + Cy12/3
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1/9

while x1(72’".)u solves the equation (4.16) for some pair ¥ = (X1, X2) such

that x1 < x1 after replacing (x/, u}) with (X,Xl(ﬂi/g.)u) . After normaliza-

tion by setting @, = ||X(T$/9.)UI|Z;X1(T;/g.)u it becomes
Hy, cui + G\u1|2u1 = A\yu1 + fi + fi + fs, (4.20)
ur = | Jull (e, = xd(mull 2 v (%,
1 x? Tl

with  fl = —ix(

u

L e - T
m )X(T‘L ) y U1 4 1+me2u17
fi = =202 (Vxa) (70 V=720 (Axa) (7, )i

and fo = Glxa(ra/ull 22 (jan * = [ur[*)ur + G(L = [[xa (rp/* Jul 72 ) fua P -

The estimate (4.17), for any new good pair X' = (x},x%) such that
X1 < X1 < X}, implies that the terms f! and f2? of the right-hand side of
(4.20) have an L2-norm of order 72/% For the third term the estimate (4.17)
also implies that

(I = Jun Py = (1= x3(27%)) i P

has an L2-norm of order O(72/%) (use the L> bound for |i1|? with |||q|?u1| 2 <
Cy). We conclude by applying Proposition 4.4. O

We end this section with a comparison property similar to Proposi-
tion 4.4.

PROPOSITION 4.7. — Let by, G be fized positive numbers and take u €
H(R?) such that
57' (u) < gT,min + CEVYGTQ?/S

and which solves

x V2t ’U(Tzl/2.)
VIt Zr,
with A\, € R and ||ry| |2 < 1. Then for any pair x = (x1,x2) € C;°(R?) so
that x3+x3 = 1 with suppy: C {x2 +y% < 1} andx1 =1 in {x2 +4% < 1/2},
there exists Ty ¢, ¢ and Cy ¢, such that

—02u— (8y —i u+ Glul*u = A\u + 1,

Ix2(7a’ Jull72 < Cy a7a® (4.21)
|5T(X1(7'$/9-)U) — Ef,min| < CX,eV,GTf/?’ (4.22)

2V£V,G /3

d, (xl(T;/g.)u,Argmin &) < Cyuy (T + ||7ullz2), (4.23)

when 7, < Ty,e,,c and where vy, ¢ € (0, 3] is the exponent given in Propo-
sition 4.2.
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Proof. — The analysis follows essentially the same line as the study of
the minimizers of & in_the proof of Proposition 4.6. By taking two pairs
X' = (x1,x%) and ¥ = (X1, X2) such that x] < X1, we obtain successively
like in the Third Step in the proof of Proposition 4.6 :

o &(Ru(m")u) + & (Ra(ma’” )u) < Oy

. 2 2

2 2 + _ - 12 1, 2

o [0 (0, — 2+ 2] uh = NGl Puy f+ 2, where
uf i1, fi? have the same expressions as in (4.16);

1/9

o [IX1(7"" Julln, < Oy owing to [z < 1.

From the last estimate, the refined comparison of energies like in the Fourth Step
gives for a pair x = (x1, x2) such that x1 < x}:

Ix2 (a2 Jull}s < Cyr3 Ep(ur) < Empmin + Cr72/?

with u; = ||X1(T;/9.)u||_1xl(T;/g.)u and CXTQ?/3 < 1 for 7, < 7. The
equation (4.20) is replaced by

Hpy cur + Glui|Pur = Myur + f 4+ 2+ £2 4 Ixa (7% )ul| 7 tr

without changing the expressions of £1:23 . Again the estimate ||} (72/".)ul|3,
< Oy is used with various cut-offs x/, in order to get || f} + f2+ f3||2 =

(’)(75/3) . We conclude with the help of Proposition 4.4 applied to u; . O

5. Analysis of the complete minimization problem

We consider the complete minimization problem for the energy

(l/f) <w7HL1n¢ ET/‘¢4 2+26 |:<w> T 71HL’L’!L,Z;Z) /|¢4:|

and compare its solutions to the minimization of the reduced energies &,
and &g, introduced in the previous sections. We work with 7, =1, 7, — 0,
g — 0, while ¢y, G and 6 € (0, 0] are fixed. The analysis follows the same
lines as the proof of Proposition 4.6.

5.1. Upper bound for inf {& (¢), ||¢| L2 = 1}

The potential V; is chosen according to (1.13)-(1.14) while ¢y and G
are fixed. The parameter 7, is assumed to be smaller than 7, ¢ so that
the minimal energy &: ymin(7s) of & is achieved (see Proposition 4.6) and
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|Er min(Tz) — EH min| < C’g%Grg/?’ . Moreover Proposition 4.6 also says that
by truncating an element of Argmin &, one can find a_ € Hs such that

la_llLz =1, |€(a") = Emminl < Cop.ei® and  [la_|ls, < Coy -
(5.1)

PROPOSITION 5.1. — Under the above assumptions, take

- 0 . - .
v =U (e_iwyﬁa_) where a_ satisfies (5.1) and U = U(q,eDy,T,€) is

the unitary operator introduced in Theorem 2.1. The estimate
Ve € (0,e0], |E-(¥) — P76 (as)| < Cpy ™™, (5.2)
holds uniformly w.r.t m,, € (0,7, ¢] and § € (0,dp] .

Proof. — Let us compare first the linear part by estimating

R P

2
0Ty

JHpmt) — 200 (a_, | =82 — (8, — i x
= [0, (Hpin — PP 1,U*HpoU))| .
By Proposition 3.2, it suffices to estimate

(1 =X)9llrz and  |[y/7eleDy|(1 = X)¥| 22

for some given cut-off function x € C5°(R) with x = x(7,eD?) . Notice

i
(&

. Liu [ JTeD,
W= ().

Hence by using the functional calculus of \/eD,, we can say that there exists
a cut-off Y’ € Cgo(—r,zy, r,2y), with ¥’ = 1 around 0 and x’ < x such that

S (1 - e < (1 )2,

~—

Y ;Y

and €' TV (1,2 Dy*) (1 = 0)% ' < 2(me®|Dy[)(1 = X')7 +2(1 = x')?

as soon as € < g9 < 1, for a convenient choice of €9 and r,. By using
llall g2 (r2y < Ciy @, we deduce

(1= )Wll7: < (1 = X)a—|l72 < Coy aTret,
and

(V72| Dgl) (1 = %)= 2/|(v/7oel Dg)(1 = X)a—|Z2 +2[[(1 = X )a- ||

<
2
< Copamae”.
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By Proposition 3.2, we obtain

’W ) (HLML - 52+267_1U*HBOU)1/}>|

<O [5”45 o2y 54“575’/2} < CéV,G€2+46~ (5.3)

For the nonlinear part of the energy, Proposition 3.3 gives
a-ce) [ o< [t <arce®) [ o
R2 R2 R2
and the bound, [g, le ' ma_|t = Jg2 la—|* < Cyy, @, leads to

’—GWW / - 22T / ja_|*
2 2 B
R2 R2

which is smaller than the error term for the linear part. This ends the proof
of (5.2). O

2426 1426
<C@V7Gs+ Tm><6+ ,

Remark 5.2. —

o The energy &-(a_) = Ex min + O(T§/3) . Therefore the error given by
(5.2) is relevant, as compared with the energy scale of 52+25T$€T’mm7
when

e g Coy .GTz (5.4)

with ¢¢,, ¢ small enough. Remember that the constant ¢, ¢ depends
also on g, when 6 € (0, dg] .

A more accurate comparison, in the sense that the error has the same
size as the error coming from |Eg min — Ermin| = O(T§/3), will be
proved when

=4 5
¥ < Cpy o2 (and 6§ = Z)' (5.5)
The two regimes will be discussed further.

e [t is interesting to notice that the worst term in the right-hand
side of (5.3) comes from the error of order O(e2*%%) in the Born-
Oppenheimer approximation. There seems to be no way to get an
additional factor 7 with o > 0 because the initial problem is rapidly
oscillatory in the y-variable in a 7,-dependent scale. This can be seen
on the gain associated with the metric g,, for 7, = 1 and 7, > 0,
which is simply (\/7,p) or essentially 1 when p is small.
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5.2. Existence of a minimizer for &,

With the choice (1.13)-(1.14) of the potential V; , the linear Hamiltonian
Hy;, can be written

21+ 122 0 "
Hpin = =" 1,A + uo(q,7) ( 0 o 0) uo(q, 7)
1/2 1/2
—|—<€2+26 [U(Tm/ .132, TiE/ y) —WT(.T)‘| ,
V4
v
72 1

x

11227 122

with Wr(z) = wT(T:}/zx) ;o we(x) = (

This operator is unitarily equivalent to g2t20p . with

_o_ _ 2v1 2.0 _ "
hiin = —Tng +e72 2‘Suo(rw 1/2q,7') ( 0+ t 0) uo(T, 1/2(],7')

We recall
2Ry, G
lim inf {E% - w_r(x):| > (€+’) _ Tx2 —1,
(z,y)—o0 | £y, £
[% - wr<w>} > 21,
&

and the matricial part of the potential is non negative. In this subsection,
the value of R({y,G) is fixed large enough according to (¢y,G) in order
to ensure the existence of a ground state for £ . According to the above
change of variable it is more convenient to introduce the energy

Flu) = e B} u(rl e m ) +1 4 72

2
= (u, (hiin + 1+ 70)u) + %/ lul* dady .
R2

Minimizing &, is equivalent to minimizing F(u) and we know from Propo-
sition 5.1 that

inf f(u) < ngf,min + CKV,GSQ(S +1+ 7_3 < CZV,G

llull L2=1
when € < gy, ¢ and 7, < 7, ¢ With 7, ¢ small enough.
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PROPOSITION 5.3. — When R(¢y,G) is fized large enough according to
(by,G), the infimum

inf{&.(u), we H'(R2),|ul: =1}

is achieved for all € < ey, ¢ and 7, < 74y, @, With 7, g small enough. Any
element ¥ of Argmin &, solves an Fuler-Lagrange equation

HLinw + Ga,‘r

with the estimates

E-() + Mol < Cry.ae®® (14 72| Dg*)*9l| 2 < Coy
gs (77[}) = 58,min <e 2+28 57— min T CKV,G€26)]
< 229 ngH min + CZV G( 5/3 + 526):| °

Proof. — Let us start with the energy functional F introduced above. It
is a convex functional (therefore weakly lower semicontinuous) on H!(R?; C?)
such that F(u) > 72||Vu||2. . Out of a minimizing sequence (uy),cn With
lunllLz = 1, extract subsequence (up,)ren Wweakly converging to u in
H'(R?;C?) with

F(u) < liminf F(uy, ) = hm F(un,) -
k—oo k—o0

When R(¢y,G) is chosen large enough, the same argument as in the proof
of Proposition 4.6 (second step), briefly adapted here, says |jullpz = 1.
Actually, introducing a partition of unity (x1,r,X2,r)s X = X;(R™1.),
for j = 1,2, with x} + x3 = 1, and setting

1

V=
1, Rtn, |

X1,RUn,,

one obtains for R(¢y,G), R and k large enough
1 Cy 12 R(ly,G)?

F(uk) < m F(un,) + 2R CZV,GTQ@R)
with  ullfan, =1 o(R) . lul}s = Jim (1-o(R) =1-0,
and o< o(R) < %.
Assuming g > 0 allows to take R such that
0< 9 0(2R) < o(R) < 20,
and i <CgVGMQ<CZV’GMQ(2R).

R? 202, 202,
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This implies

inf  F(u) < Flvg) < F(un,) + [Cév-,G e

lull 2 =1

R(EVa G)2:|
203,

and taking the limit as k — oo leads to

R(ly,G)?

0 < |:02V’G - ceV’GW

which is impossible when R(¢y, G) is large enough.
Hence F and &, admit ground states with

gs,min < CZV,G52+26~

An element ¢ of Argmin &, satisfies
G
2020, =)+ 5 [ 11| < o+ (1 e

by recalling W, < 1+ 72. This implies

ZC‘éVaGT*l
G x

The first inequality with ||¢[|z2 = 1, gives ||(1 + 7.|Dy|?)Y/ 29[| = O(1).

13 < Chy ot Il0llTs <

The Euler-Lagrange equation

HLin'(/] + Ga,‘r|w|2w = >\¢

implies
A< 20 et + Z2 [lor]
~ e [y < e,
v
The lower bound & (¢) > —Cy,, ge2+?% is due to W, > —1 —712. O

5.3. Comparison of minimal energies between &, and &;

In this subsection, we specify a priori estimates for the minimizers of
&. and compare the energies & i and &; min without imposing relations
between £2° and 7, . This is not necessary at this level, if one looks carefully
at the error terms.
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PROPOSITION 5.4. — Let V; ; be given by (1.18)-(1.14) and assume T, <
Tey,c and € < €4y, ¢ S0 that & admits a ground state according to Propo-

sition 5.3. The operator U is the unitary transform promded by Theo-

+i 25
rem 2.1 and an element ¢ € Argmin &, is written U (e i a+) , with
e Wﬁa

a= (Z+> . Then, the estimates
11+ 72| Dy *)2all 12 < Coy i (5.6)
sl + Ger [ lal* < Cly G + Eoomin 1)
‘58(1/)) - 52+257'ac5 (a—)| S Oév G<€2+2(S [ 20 + ET:C} , (5'8)
‘gs,min - 52+267-w57 mzn| < CZV,G52+26 [ + 57—:1:] ) (59)

hold and the right-hand sides of (5.7), (5.8) and (5.9) can be replaced by
CéV7052+26Tz when € < ¢y, o7 -

2~/7'a‘ a+

Proof.— For a =
e Wﬁa

) and a = <Z+>, the norms |[|(1 +
72|Dg|?)2al| 12 and ||(1+47,|D,|?)'/2a|| 12 are uniformly equivalent because
T (D) T = (VED,) F

Hence it suffices to estimate \/ﬁaDqU*d; . Remember that U = U(g,eDq,T,¢€)
with U € S, (1, g-; M2(C)), while \/Top € Su({\/7zp), 9-; R?). With [|(1 +
Tm\Dq|2)1/2¢||L2 < Cy,, ¢ in Proposition 5.3, simply compute:

JT2eD U = U /7o Dyt + [\/aqu, U*} ¥ =0() in LA(R%C?),
and divide by ¢ for (5.6).
In order to compare the energies, consider first the linear part by writing
‘(w,Hme _ 22, {(a_,_, Hyaw)+ (o, Hoa_ ” -

\<&, (U HypinU — €272 Hpo)a)

9

with
BN RN 0
H = + ¥ o P
Bo ( 0 eZZﬁH_e”\/ﬁ)
. - - 1+1
Hy = —02— (9, +i z )2+U<\/T_ )+ ( )(1+Tz )L/2

2V1 + a2 &,
-~ 104 -



Adiabatic approximation for a two-level atom in a light beam

Here it is convenient to write

) 211/2
R e Sy (2(1‘*‘7(9;95 ) ) ’

B = (% BO> , Bi=Bi(q,eDy,7¢), (5.10)

2
€ Tz X e“V(\/Tx -
,( e Tz))2 —+ 7( 5 ) . (511)
2 V 1 + TI.TQ €V
With the notation ¥ = x(7,£2|D,|?) of Proposition 3.2, Lemma 5.5 below
says in particular

B:I:(q,pv T, 6) = Txpi + (\/7__:cpy =+

10 = ¢l < Cov o [(@ Ba) + 2 a3
IVEE DL = 6132 < Coy 6 [ (@ Ba) + 2 a3 -
Proposition 3.2 yields

. A A 2y1/2 .
@, <U*HLmU ey . <2(1 +77%) >) )| <Cry.c [5”45 F et (g, B&)} :

0

For the nonlinear part of the energy, Proposition 3.3 gives

(ot [ it [l = [t < aroee [
R R R R

i Y

. e VTwa a4 4 _1
= Y = . <

with a <el2 Y a> and a (a > The bound fRz [¥|* < Coy a7y

coming from & () = O(e2+?) with e2+20W, = O(£2+2%), leads to

Grye2t2d Grye2t2d _
iy My T
R2 R2

which is smaller than the error term for the linear part. We have proved

2426 1425 _—1
SC@W(;EJ'_ TIXEJ'_ Ty

_ 3+446
- CZV7G5 )

£(w) ¥ (a, Ba) — (@, 201+ ma?)2a) - S5 [ ol

<Crpa [ 4ex ¥, Ba)| . (512)
With & () = & min , this gives
» Gs T
(1-Ce)e*(a, Ba)+2(a, , (1+sz2)1/2a+>+—2’ /|a|4 < Ce?4E i,
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where all the terms of the left-hand side are now non negative. We deduce
(5.7) and —Cy,, g%t < . min , while Proposition 5.1 and the estimate

Ermin = EH min + O(T. 2/3) = (O(1) provide the upper bound
55,7711'71 < 52+26Tw87,min + CZV,G€2+45 < Cév, 2+25( + TL) :

Putting e'720(a, Ba) = eO(2t4 4+ £. ) in the right-hand side of (5.12)

gives
G -
2+26 <a_,H_ _ +%/|a\4<625<a,Ba /| ‘4
< Eomin + Coy €27 + €€min] < Ecomin + Cy, e g2t [ + 7]

Therefore the inequality [ |a[* = [ (la—|? + |a+|2)2 > [la_|* leads to
0 < fla |t sEmmin < Ex(a_) < Lomin 4 0, o[22
X Ha7||L2 T,min X T(CL,) X m + ly,G Z +e
x

, 625
S ET,m'in + Cg‘hG |:7_— + €:| .

With [1— [la_||2.| = [lat||? < Ce*F2 < C”(% + ¢), this finally leads to

Ee min g2
| - *5-,—(a_)| ngV,G |:7_ +€:| .

£2+20
|

LEMMA 5.5. — Assume B(q,p, 7,€) = 7|p|*+er withr € S, ((\/T2p), gr;
My(QC)), take any x € C°(R) and set B = B(q,eDy,7,¢) and X = x(1.6|Dy?) .
Then there exist epy > 0 and Cp > 0 such that the estimates

1= R)ullfe + IvFaleDal (1 = ullfe < Cry [(u, Bu) + 2 ull3s ]|
and ||(1 = R)ullzz + IV/FleDyl (1 = Qullzs < Cpy [[Bullzz + 42 jull 2]
hold uniformly w.r.t § € (0,00] and € € (0,ep.,y) -

Proof. — For xo € C§°(R) such that xo > 0 and xo = 1 around 0, the
symbol x¢(7,p?) + B is an elliptic symbol in S, ({/7zp)?, gr : M2(C)). For
e > 0 small enough according to (o, B), its quantization Yo+ B is invertible
and its inverse belongs to OpS,, ({/7zp) 2, gr, M2(C)) . Next we notice that
in

-1 -1

(1-%)=01-%)e[R+B] oB+(1-%)o|R+B| oxo,
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the last term belongs to OpN,, 4. if xo < x. All the estimates are conse-
quences of

11
(1= =0=%)o[Ro+B] B+,

with p € Su(y=, -3 M2(C)). O

(Tap)®’

5.4. Adiabatic Euler-Lagrange equation

As suggested by Proposition 4.7, or the last steps in the proof of Propo-
sition 4.6, an accurate comparison of minimizers requires some comparison
of the Euler-Lagrange equations. We check here that the a_ component in
Proposition 5.4 solves approximately the Euler-Lagrange equations for min-
imizers of &, . Here the analysis is made in terms of operators instead of
quadratic forms. In order to get reliable results, we now assume

e < ery aTa s
with ¢/, ¢ chosen small enough.
With such an assumption we know:
o from (5.9) and |&; imin — EHmin| = (9(73/3),

0_152+26Tz < gs,min < CEQ+26T$ .

e When ¢ € Argmin &, is written ¢ = U ( € o ) , the L*-norm
e WVeay

of a is uniformly bounded, [|a|* < Cy, ¢, according to (5.7). By
applying Lemma 3.4 this also gives [ |¢[! < Cp, ¢. We also have
laclZe < Coy.ee® 07, .

e The Lagrange multiplier Ay, associated with ¢ € Argmin & pin,
equals & (¢) + %=~ [ [4]*. Thus it is of order O(e+207,).

PROPOSITION 5.6. — Under the same assumptions as in Proposition 5.4
and with the above condition €*° < Coy GTx, Write a minimizer ¥ of & in

(e TEa, .
the formy =U | _, 4 . Then the component a_ solves the equation
e Wwq_
5 A e ¥
2 L .
H_a_+Gla_|?a_ = 52""7257'%@7 +re with |relLe < Cfv@'(ﬁ + ?) 5
x
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while ||a ||z < Cy, 229723 .

The LP-norms of a and ¢ are uniformly bounded by Cy,, ¢ for p € [2,4]

and ||al|zs < Coy o ’®.

i Y
e?ﬁa+ >

Moreover if B is the operator defined in (5.10)-(5.11),a = < iy
e Wwa_

satisfies
|Bal| > < Coy ge?m2/?. (5.13)
Remark 5.7. — The relation of || Bal|.> with ||a|| g2 is given by
O [Pl Dgal + 2l 2] < ||Balla+e?(alle < C [l Djall + &%l p2] -
Note that the L? remainder terms have a factor € and not €27, .

Proof. — Playing with the Euler-Lagrange equation for 1, we shall first
prove (5.13) by using the same argument as we did for (@, Ba) in the
variational proof of Proposition 5.4 and then use it in order to estimate
I7||lL2 - The Euler-Lagrange equation for v

Hpinth + G_ | = Ayt

becomes
U*HLinUd + Gs,TU* (|1/’|21/1) = >\7/’a .
Remember that Born-Oppenheimer Hamiltonian is given by
2425 2425 ei%mﬁ e_i% 0
P, Hpo = %7, * :

—’L'2 Yy A i Y
0 e 2V H_e 2V

R 2
6253_1_ (2\/1—579037 ) ,

by using the notations of (5.10)-(5.11).

Let us consider first the linear part after decomposing a into a = xa +
(1 — X)a, where the kinetic energy cut-off operator X = x(7.|eDy|?) has
been introduced in Proposition 3.2:

U*HpinUa = U*HpiUxa
~—_———
(1)
+ (U —U)HpinU(1 = )a+ Ut Hpin (U = Up)(1 — R)a

(1)

+ U HpinUo(1 — X)a .

(IT1)
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The three terms are treated by reconsidering the computations done for
Proposition 3.2. By inserting a cut-off X1, x < x1, in X1U HLmUxa with
(1 - x1)U*HpinUx € OpN,, 4., we get

(I) = 2t 7, Hpoxa + O(e**9)  in L*(R?).

With e 1=2(U—-U,) e OpSu(W%mw, gr; M5(C)) and by using Lemma 5.5,
the second term is estimated by

[(ID)]z < (1= Rall 2 < € [el|e® Bal o + 2+
We write the third term as
(IT1) = 27, Hpo(1 — X)a + 227, Dpin (1 — X)@ + Dpor (1 — X)a,

where Dy, and Dpor are defined by (3.7)-(3.8). Following the arguments
given in the proof of Proposition 3.2 after these definitions, we get

[Dpot(L = X)allr2 < Ce™™)(1 - Q)allre <
< |:E||526Bd||L2 +52+4‘1 ,

[Drin(1 = Q)allz: < C[e™(1 = Q)allre + e 7 |[(ey/Ta| Dyl ) (1 = X)a| 2]
< [5||5251§&||L2 +52+4‘1 .

Hence the Euler-Lagrange equation can be written
e 1, Hpod = Ayi — e 1,GU* (|9[*¢) +r
with ||l < C [s||525éa||L2 +52+45} .
From Proposition 5.4, with £2° < ¢7,., we know |||z« = ||allzs < C. The

L2-norm of U(|y|?¢) is estimated by

1 P9llze < Cllvlize < C'lallzs »

by applying Lemma 3.4, adapted for the metric g, like in the proof Propo-
sition 3.3. We start from the interpolation inequality (see e.g. [35])

1 8 1 8
1 £llze < CIDZAIZ=IFIIZ < 1722 D3 12211 £113a-

(7—15)%

1/2

By introducing the operator B = B(r, /“eq, Tm 2D,,T,e) with

T

V14 22
g? T 2 4
+— —— =Tz | + 5|,
4 l<\/1+w2 > &
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it becomes

< Coy B 3 5 2 3 5
[fllze < z |IBAIZ= NN Es + e Il Z= 1] 2s

(12€)3

1
The above relation with f = 7, 2

_1
a(7y 2 .) which satisfies

_1 1 ~ A
Il =7 ¥alle o Nfles =72 Nalls and [Bfllz2 = | Ball»
leads to
_1 Cy, L1 _2 8 2,1 _2 8
e lalle < [1Bal g Plallf. + e all g ®all
(12€)%

_4 A~ 1
< Copgma? [5’%||B&||22 + 1] ,

and . .
lallfe < Ciy e * [e~F Bl +1] -

By multiplying with G., = Ge?*?°7, and dropping the index (fy,G) in
the generic constants C, C’, this leads to

GerllWlls < GE*2m|[0]3e < © (62727722 Bal 5 + e+2072/%]

<’ {(5||€2‘SB&HL2)1/3 + 52”675/3} )

With |Ay| = O(e2+27,) = 02 27%) and ¥ = O(r,) = O(72'?), we
obtain

1€, Hpodl 2 < C [s||5251§a||m + (ele® Ball2)'/? + 52+25T§/3] :
and recall . 5
e*’By +2V/1+ 1,
52+267—mHBO _ < + 05 % T > )
e’ B_
According to Lemma 5.8 below
162 Byayllns + 121+ ez < CIES By + 23T+ raa?)islpa
We deduce
€2 Bal| > < Ce*272/3 and  ||a| e < O Y0
Plugging this result into the estimate of the remainder r gives

€2+26TxH30(~1 — )\TEL+ Gs,TU*(‘QZ}‘Qw) + O(ES+25T§/3 +E2+46) .
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Consider now more carefully the nonlinear term

0" (j6126) = Ug [[00af?(00d)| + (0 = 05) [|00al? (Doa)]

(1) (2)
+ U [|Ua|2(Ua) - |D‘0a|2(z70a)} .

3)
By differentiating the relation [ |f[* = [ |Uyf]* w.r.t f, the first term equals
(1) = fal%a.

By semiclassical calculus in the metric g,, the operator \/Tj.quUo equals
VTeeD,Uy = Uy\/Toe D, + {\/ﬁaDq, UO} Y = Ugy/TacDy + O(e),
where the remainder estimate holds in £(L?(R?;C?)). We have already

proved ||a|| s < C7z*/? and Lemma 3.4 leads again to
1Tall e + |1 Uod]l s < O /2.
With e=1=20(0 — Up) € OpSy(1, gr; M3(C)), this gives
1)) < Cet20r /3.
For the third term, we use
I [[0a20a) - 106a12(00)] 12 < Coll(@ ~ Colallzs [ITal0 + [100a10]
< CelH2,=1/3,
We have proved
Gr U ([0*0) = Gr clal’a = O(*H72/%),
which is even better than the estimate for the linear part.
For the a_ component, we get

Hoo (D) + G + i = o —a + OG5+ )
Bo a- - == 52+257—m - T;/3 Tx ’
and it remains to estimate the term |a;|?a_ . The first line of the system
can be written

e¥Bray +2V 1+ mpatay = —Ger (|ag]” +a-[?) ay + Ayiy

c 526

§
422 TzO(m + 7_—),
T z
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with [[(|a4[2 + |a-[)as[z2 < llafde = O %), Ay = O(e+%7,) and
£2° = O(r,) . By referring again to Lemma 5.8, we obtain

las e < IV1+maay |2 < CEF2r2/
According to Remark 5.7, the second derivatives of a are estimated by
ID2a4ll: < C [IByd e + 75 s e

< C {6_2_2679;1||62636~l”L2 +E2+25Tx—1/3} < C//Tm—l/S.

1 1
The interpolation inequality |lullr~ < Cllul|Z,||DZul|}. valid for any u €
H?(R?) (see [35]), implies

las]|z= < CeF0r/0,

25
- 2 . . € €
and a4 fa- 2 < [las|fa-llze < O/ = O(—5 + —).
Tx x
We have proved
0 e Ay € g28
and in the mean time ||Bal/,> = 0(52%2/3)’ lalle = O "), and

2/3
2+25Tw/ )

lat|z = O(e . The final result is just a transcription in terms

of a. O
LEMMA 5.8. — Let By be the symbol
€ Tad

2 lamat

introduced in (5.11). By setting B+ = B.(q,eDy, Ty, €), the operator A =
2B, +2y/1 + 1,22 is self-adjoint with D(A) = {ue L?(R?), Au € L*(R?)}
as soon as € < €y, with g9 independent of T,, . Moreover the inequality

Yu € D(A), ||e®Byullre + 12V1 + mox?ul| 12 < C||Aul| 12

holds with a constant C' independent of (e,7,) € (0,e0] x (0,1].

o+ ST )

Bi(¢,psTur€) = Tup2 + (\/Taby + 72
1%

Proof. — The operator A can be written
A =ao(q, Dy, 70) + e ay(q, 0Dy, ) + 2 ay(q, 70)
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with ay, € Su((/Tap)? F + (Fez)1-F)+ g.) and

aO(Qup7 TZL’) = sz2 + 2 V 1 +sz2 .

Therefore the operator A is elliptic in OpS, ((/72p)* + (\/T2), g) and the
result about the domain follows with

162 Boullys + 12v/T+ moaull 2 < C(lAullze + Julls2)
for all uw € D(A). We conclude with
2Alullze < (u, Au) < Jlulz2]| Aul 2

duetoB+20. O

5.5. End of the proof of Theorem 1.2

We shall now fix the parameter § in order to get the most accurate
information on the non linear problem. The parameter ¢y, G are fixed and
generic constants may depend on their values.

Remember that Proposition 5.4 and Proposition 4.6 give

26
2426 2426 €
|gs,min — € * Tm£‘r,min| g CE * Tx <7__ + 6) )
T

2
and |g7',min - gH,mzn‘ <07 .

Hence the energy €. min can be accurately compared with £2+29

when
226
(— + 6) = O(2/3).

Tz

ngH,min

It says € = (’)(min(ri’/“,Tg/S)) and the choice of § > 0, corresponding to

the weakest constraint on € w.r.t 7, is:

5:2 and €<C73/3.

When v =U ( eﬂ» L, ot ) is a ground state for &, Proposition 5.6 gives
e Tz q_
o]z < CEFPr22 <O allps + 737 lall s < C

and with the additional information of Remark 5.7

C
lallge < —.
Tx
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Proposition 5.6 also says that a_ solves the approximate Euler-Lagrange
equation
H_a_+Gla_|?a_ = ha_ +r ()\—/\71”)
== === Al="TTe, T g2+25,

c 626

with Irellze < C(m +—)< C/Ti/g,
Tz Ty

For u = [la_|2a_, [la_|r2 — 1 = O(="?) = 0(2"), Jla_||rs = O(1),
the energy &, (u) satisfy

IST(U) - g‘r,min| < CTwQ/S
and the above equation becomes
1H - + Glul*u — |2 < C(73/* + 73 |lul[76) < C'2/2 .

We conclude by referring to Proposition 4.7 applied to v and then renor-
malizing for a_: For x = (x1,x2) with x1 € C(R?), X3 +x3=1,x1 =1
in a neighborhood of 0

1 1
Ix2(7 a2 < O

1 2
|ST(X1(Tm9 a‘—) - gH,mzn)| < 07—13
2y, G 1

1
dp, (x1 (78 Ja_, Argmin ) < C(rz ° +72/%), w6 € (0, 5)-

1
For the L*°-estimates of ay and dp-(x1(72.)a—,Argmin £f), we simply

use the interpolation inequality
1 1 1 1
[ullzee < Cllullz2l|Aullf: < CllullFallull 7
valid for any u € H%(R?) (see [35]).

6. Additional comments

We briefly discuss and sketch how our analysis could be adapted to other
problems. No definite statement is given. Complete proofs require additional
work, which may be done in the future.

6.1. About the smallness condition of ¢ w.r.t 7,

In our main result, Theorem 1.2, condition (1.18) is used, namely
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One may wonder whether such a condition is necessary in order to compare
the minimization problems for & and 2t297,€y . When comparing the
minimal energies in Proposition 4.6 and Proposition 5.4, we found

2/3
|5*r,min - 6H,mzn| < CZV,GT;B/ y
2425 2426 2
and |Ee min — €272 T0Er min| < CE*T2°7, (7’ +5> ,
xr

while we know that Ex min = Emmin(bv, G) is a positive number indepen-
dent of 7, and ¢ . Hence it seems natural to say that €2 < 7, (e < Tf /5 with
§ = 3), at least, in order to ensure that 2727,y 1, is an approximation
of & min - The error is made of three parts:

e the error term for the Born-Oppenheimer approximation in the low-
frequency range given in Theorem 2.1;

e the error term coming from the truncated high frequency part;

e the non linear term.

The non linear term is % [ 1%]*, so that a small error in |||,
will give a negligible term w.r.t e2+207,& H,min - Lhe question is thus mainly
about the linear problem. If one looks more carefully at the error term of
Theorem 2.1, it is made of the term

2 (8Pkf6)(amf6)—
—et 2 X X 6.1
€ E+ I kAL, ( )
according to Proposition 2.6, and of terms coming from the third order term
of Moyal products. The function f. is in our case f.(p) = £2°7,p?v(1.p?),
P = (Pz:Dy), k, L € {x,y}, and the factors X, and X, computed in the proof
1

of Proposition 3.1 are at most of order 7 - Hence the quantity (6.1) is an
2426

O(€2+457x) which is again negligible w.r.t ToEH min - By considering
the higher order terms in the Moyal product, the fast oscillating part of the
symbol w.r.t y, at the frequency \/%, deteriorates the estimates: although
there are compensations with the slow variations w.r.t p,, always multiplied
by /7., only an e factor without 7, appears in the k-th order term.

Hence, computing the higher order terms, at least up to order 3, in
the adiabatic approximation and then considering the question of the high-
frequency truncation, is a way to understand whether the smallness of ¢
w.r.t 7, is necessary.
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6.2. Anisotropic nonlinearity

Our work assumes an isotropic nonlinearity. A more general nonlinear
term would be

Ge?t207,

2 /a1|¢1|4+20‘12|¢1\2|¢2|2+042|¢2|4 dedy, = (w) :

(o>

Our case IS ] = ag = a9 = 1. Let w U(;S, with the unitary transform
U =Uy+e't2R, (or conversely ¢ = U+ 1). Then the same arguments as
in Subsection 3.3 will lead to

/011|¢1|4 + 2000|0112 |* + azlihe|* dady

- </ ar [ + 2a02 YR P [81% + az|yf]* dxdy) (1+O(e1+29)),

after setting 1°(q) = uo(q)#(q) at every ¢ = (x,%) . In our case

c  Se¥ 0 . [0
(S“P C’> , Ccos(2>,Ss1n(2>,
with 0 = 0(\/Tzx), ¢ . The point-wise identities

212 + 3] = |¢1|2 + [¢2]?
|22 = [9* = cos(8) (|p1]* — |¢2]?) + 2sin(B)Re(p1e79 ) ,
lead to

a1 + 2019 + as 2
911+ 2012 USSR + gt = L2 (g

B2 (101 1al?) (cos(O)([ol*  [6a?) + 2sin(0) Re(@reven))

a1 — 2&12 —+ o

2 (cosO) (1 — 62

0 0
= |:011 cos4(§) + agsin(Z) + %bin (9)] |p1]*

+

%)+ 2sm(e)Re(W¢2))2

2
+ {al sin4(g) + sy COS4(Z) (9)} | |*
* {w in?(0) + a1a(1 + cos?(0)) | [¢1]?[al?

)
+[(a1 — az) = (a1 — 212 + az) cos(6)] sin(8)[do| Re(¢1e79 )

+[(0q — a2) + (a1 — 2a12 + a2) cos(9)] sin(d )|¢1|2R€(¢ €' )
(
+(o1 — 2012 4 @2) sin®(0)Re [ P26 §2 }
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At least three points have to be adapted from the previous analysis:

TEQ_

- 0
1) When we take a test function ¢ = U( —it > the energy & (¥)
e

will be close to e27297,&, (a_), with

E(a_ ) (a_, H_a _>
4,0 Q12 . 9 4

— ay cos?(=) + agsin (5) + — sin @) la—|" dzdy,
and cos(f) = —¥=Z_ . Hence before taking the limit 7, — 0 we

\ 147,22

have a position dependent nonlinearity. This will induce another error
term when comparing with the energy y(a-) = (a_, Hypa_) +
w [ la—|*, in the limit 7, — 0.

Another possibility consists in considering the case when |as — a;| +
|anz — aq] is small as (g,7,) — (0,0). The energy £-(¢), written as,

(a_, H_a_)
—/ [al + (ag — al)sm4(0) + — (a12 o) SIHQ(Q)] la_|* dady,

will converge to Eg(a_) = (a_, Hy,a_) + €2 [fa_|*.
2) The existence of a minimizer for £ and the variational argument show-

~ \/ﬁ
ing that [lai||7. = O(e***) + & jmin when ¢ = U( iy ) is

e v a_
a ground state for & will be essentially the same as in the isotropic
case.

3) The analysis and the use of the Euler-Lagrange equation for ground
states of &, like in Subsection 5.4, will certainly be more delicate
because it will be a system, and the vanishing of the crossing terms
has to be considered more carefully.

6.3. Minimization for excited states

One may consider like in [17] the question of minimizing the energy, for
states prepared according to 4 local eigenvector of the potential. Two
things have to be modified in order to adapt the previous analysis:

1) The space of states, on which the energy is minimized has to be specified.
The unitary transform U introduced in Theorem 2.1 provides a simple
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way to formulate this minimization problem: set F; = Ran UP+ with

P, = (é 8) and consider

inf & .
YeF,, Ivl=1 ®)

2) In order to get asymptotically as ¢ — 0, the same scalar minimiza-
tion problems with £ and €y, the external potential V, ; has to be
changed. It must be now

82+26
‘/;,T(xﬂ y) = ET’U( Tely A/ Tmy)
\4

2 1
1 T+ rz? — £2+26 T +

(1+722)2 14 1,22

The analysis of this problem is essentially the same as for the complete
minimization problem. It is even simpler because the unitary U is directly
introduced. A slightly different question is about the minimization of the en-
ergy &, in the space F) = Ran U0P+, but the accurate comparison between

U and Uy widely used through this article would lead to similar results.

Possibly this extension can even be generalized to higher rank matricial
potentials with eigenvectors 1, ...,%y, for states modeled on any given

Vg -

6.4. Time dynamics of adiabatically prepared states

Nonlinear adiabatic time evolution has been considered recently in [13].
Note that our problem is slightly different because, we are considering a
spatial adiabatic problem, but some techniques may be related.

When g = U (a() ) (resp. 1o = U (GB’()) ), the question is whether
-0
the solution ¥(t) to

101 = Hpinth + Gs,TWJ\ZTZJ ) 1/1(15 = O) =0
remains close to U (a_o(t)> (resp. <a+0(t) )) with

2425 _ Ge* 27, 2
i0a_ =", H a_ + f|a,| a- , a_(t=0)=a_p,
) R G52+257_
resp. iOay =2, Hoa, + 3 ZlagPar . ay(t=0)=aysp.
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More precisely, the question is about the range of time where this approxi-
mation is valid: what is the size of 7. w.r.t € such that sup,e_q, 1) [[¥(t) —

U <a0(t)> | (resp. supe(—7. 1 I¥(2) — <a+0(t)> |I) remains small.

Since the approximation of U*HpinU by (I{)"’ h(f) ) is good in the
low frequency range, a natural assumption will be that the initial data are

supported in the low frequency region

ao,+ = X(Ta|eDy|*)ao,+

for some compactly supported x . Then the question is whether the norm
of (1 — X(e?*,D2))¢(t) remains small for ¢ € [0,T%] for ¥ € C§°(R), x < X .
Then the two last parts of Section 3, concerned with the high frequency
part and the effect of U on the nonlinear term, have to be reconsidered.

0
probably not stable for very long time, 7. = O(e*), because the character-
istic set

Note that the adiabatically prepared state with ¥y = U (a0’+> are

Cr={(a,p) €RY, det (¥ mp” + Ve, (q) + M(g) — \) = 0}

contains two components when A > min F, one corresponding to the higher
level of M(q) with [p|> < C(\), and another one for the lower level of
M (q) but with large p’s. This means that a tunnel effect will occur between
the two levels, so that adiabatically prepared states, with energies close to
A > min E, will not remain in this state for (very) large times.

A. Semiclassical calculus

A.1. Short review in the scalar case

Consider a Hérmander metric, g, that is a metric on Rﬁfﬁ,, which satisfies
the uncertainty principle, the slowness and temperance conditions (see [23,
10]) and consider g-weights (slow and tempered for g) M, My, My. The
symplectic form on Rgfip is denoted by o :

d
o(X, X )= Pgj—qp”, X=I(¢p),X =(.p).

j=1

The dual metric g7 is given by g% (7)) = supz 4 % and the gain
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associated with g is

- 1/2
AMX) = %I;éf;) <§§E§;) > 1 (uncertainty). (A.1)

In the scalar case, the space S(M, g) is then the subspace of C‘X’(Rf,:iq; C) of
functions such that

VN € N,3Cy sup [(Th...Tna)(X)| < CnM(X),
gx (Te)=1

after identifying a vector field T, with a first-order differentiation operator.
For a given N € N, the system of seminorms (pn,a,q) yen defined by

PN,M,g(a) = sup  sup M(X)_1|(T1,...,TNa)(X)|
XeR2d gx (Te)=1

makes S(M, g) a Fréchet space.

For a € S'(Rﬁi,) and e > 0, the Weyl quantized operator a"V (q,eD,) :
S(R?) — S'(R?) is given by its kernel

w / jamahe q+4 dp
D = c .
a (Q75 q)(QaQ) /Rde (l( 2 7p) (27T€)d

When no confusion is possible, we shall use the shortest notations
a(q,eD,) = " = a(q,eD,).

When a € S(M, g), it sends S(R?) (resp. S’'(R)) into itself and the com-
position a; o az makes sense for a; € S(Mj;, g). The Moyal product a1f%as
is then defined as the Weyl-symbol of a}" (¢,eD,) o a¥ (q,eD,):

v

a1fEas(X) = (é%a(DXl,sz)al(Xl)ag(XQ)) ‘

X1=Xo2=X

<
=

(%EO'(DXND)Q))j
4!

al(Xl)a2 (X2) ‘X1:X2:X

-
Il
= o

1-0)7-1 . ie !
((J—)l)!e +00(Dx,,Dx,) <20(Dx1,DX2)> a1 (X1)az(Xs)

— (%EO'(DXND)Q))j
4!

+
S—

X1=Xo=X

<

a(X)ar(Xo)| e Rian,02,)(X). (A2)

<.
I
o)

where R(.,.,€) is a uniformly continuous bilinear operator from S(Mj, g) X
S(Ma, g) into S(M;MaA=7,g) (i.e. any seminorm of Rj(ay,az,¢) is uni-
formly controlled by some bilinear expression of a finite number of semi-
norms of a; and asq).
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The three first terms of the previous expansion are given by
€
allisag = ajas + Z [8pka16qka2 — 8qka18pk,ag]
2

9
_g[(azmmal)(aqquzaﬁ +(8q2’°7q’5a1)(65k »pe as) _2(6§k7q£a1)(a§k7ma2)] (A-3)

+e3R3(ar, as,€),

by making use of the Einstein convention s/ ti=> j s t;.

DEFINITION A.1. — With the small parameter ¢ € (0,&¢], it is more
convenient to consider the Fréchet-space Sy, (M, g) of bounded functions from
(0,e0] to S(M,g) endowed with the seminorms:

Py g(a) = sup png(ale)).
e€(0,e0]

The subscript , stands for uniform seminorm estimates.
The space of e-quantized family of symbols will be denoted by OpS, (M, g):
(a(e) € Su(M, g)) & (a" (q,eDy, ) € OpS, (M, g)) -
We shall give a variation of this definition in Subsection 6.4 below for
parameter dependent metrics.

We recall the Beals-criterion proved in [8] (see [32] for the e-dependent

i2
version) for diagonal Hormander metrics of the form g = 2?21 % +
J
dpj2
¥ (X)?

Set ® = (Dy1,...,Dya,q",...,q%) and for E € N*? introduce the multi-
commutator ady = H.‘jE:‘l adgj acting on the continuous operators from
S(RY) to S'(R?) and the weight Mpg(X) = (¢(X),¥(X))E.

Then the Beals criterion says that an operator A : S(R?) — S’(R?)
belongs to OpS(1, g) if and only if

ad5 A € L(L*(RY), H*(Mp))
for all E € N2¢ | when the Sobolev space H*(Mg) is given by
lull - (ar) = Mg €Dy el
Moreover the family of seminorms (Qx) yen, defined by,

Qn(A) = sup max e N|adBA(e)l £(r2Ray,He (Mp.g)) (A4)
e€(0,e0] |E|=N

- 121 -



Amandine Aftalion, Francis Nier

on OpS,, (M, g), is uniformly equivalent to the family (Py(a)) yen on S, (M, g)
after the identification A(e) = a"(q,eDy, ). “Uniformly” means here that
the comparison of the two topologies is expressed with constants indepen-
dent of € € (0,e¢] .

Below is an example of a metric which satisfies all the assumptions and
which is used in our computations

dp?

+ ClQ”2 +
(1+[pl*)e

dq’2
g:( m>0, o0 €[0,1], (A.5)

L+ |g'?)e
with the gain function A(g,p) = (p}Q, .

It is convenient to introduce the class of negligible symbols and opera-
tors.

DEFINITION A.2. — An element a € S, (1,g), belongs to N, 4 if
VN,N' eN, e Nale) e S,(AN,g).
Similarly, OpN,,,4 denotes the e-quantized version:
(" (q,eDq,€) € OpN, ) & (a € Nuy) -
Combined with the following relation between cut-off functions it provides
easy estimates from phase-space localization.

DEFINITION A.3. — For two cut-off functions x1,x2 € C°(R??), 0 <
X1,2 < 1, the notation x1 < x2 means that xo = 1 in a neighborhood of

Suppxu -
For example the pseudodifferential calculus leads to
(x1 = x2) = (Va € Su(M,g), (1 —x2)f"ai*x1 € Nug) , (A.6)

when the weight M satisfies M < CA¢ for some C' > 0.

A.2. Applications to matricial operators

Operator valued pseudodifferential calculus has been studied in [5]. When
b is a Hilbert space it suffices to tensorize the previous calculus with L£(h),
which corresponds to the componentwise definition in M,,(C) when h = C™.
The corresponding class of symbols associated with a Hormander metric g
and a g-tempered weight M is denoted by S(M,g; £(h)) while the set of
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bounded families in S(M, g; £(h)) parametrized by € € (0, eg] is denoted by
Su(M, g; L(B)) .

The asymptotic expansions (A.2)-(A.3) of the Moyal product clearly
holds (see [36] for a presentation without specifying the remainder terms) if
one takes care of the order of the symbols. For example, the two first terms
of the expansion of a commutator [a1(g,eDy), as(q,eDy)] are

a1az — asfa; = [a1 (q,p),ag(q,p)]
+%(8pa18qa2 - aqazlapCLQ) - %(@,agaqal - Bqag(‘)pal)
+e? [Ra(a1,a2,¢) — Ra(ag, ar,¢)] (A7)

with no simpler expression when the matricial symbols do not commute.

.. . 2 dp? .
When the Hérmander metric g has the form ) y dgjz + % the uniform

Beals criterion also holds: In the seminorms Q(a) defined in (A.4) simply
replace L2(R?) by the Hilbert tensor product L?(R%) @ h and consider the
operators © and Mg(q,eD,) as the diagonal ones ® ® Idy and Mg(,eD,) ®
Idy .

Finally the Definition A.2 of negligible symbols also makes sense for
matricial symbols after replacing OpS(A~", g) by OpS(A\~", g; L(B)).

We end this section with standard applications of the Beals criterion.

ProPOSITION A.4. — Consider a diagonal Hérmander  metric
> 2
g= 2?21 % + % and the constant metric go = dg® +dp® . Assume
J J
that any f chosen in {p;,v;, j € {1,...,d}} is a go-slow and -tempered
weight such that f(q,eD,)* belongs OpS.(f*,go) for any s € N. ?

Assume that A € OpS,(1,9;L(h)) is a family of invertible operators
in L(L*(RY) ® b) and such that |A=1(e)|| is uniformly bounded in w.r.t
e € (0,e0] . Then A=Y belongs to OpS,(1,g; L(H)) .

Proof. — We start from the relation
|E| o
adfA~! = S A ]] Kadng) A*l] . (A.8)
|E'|=|E|,E'eNIE| j=1

which holds in £(L?(R?) ® h) for all E € N?¢. Hence the Beals criterion in
the metric gy says that A=! belongs to OpS,(1,g; £(h)). In particular A~!

(2) This last condition is redundant after a possible modification of w; and ; if one
refers to [8], but easier to check directly in our examples than giving the general proof.
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belongs to L(H®(Mg»)) for any E” € N2¢ ., This allows to apply the Beals
criterion in the metric g and yields the result. O

A.3. Pseudodifferential projections

An application of the Beals criterion says that a true pseudodiffer-
ential projection can be made from an approximate one at the principal
symbol level. This holds for matricial symbols.

PROPOSITION A5 — Consider a diagonal Hérmander metric
2

g = Zj 1 %(X)g + 7y ( )2 with the same properties as in Proposition A.J.
Assume that the operator II € OpS.(1,9; L(h)) satisfies

(f[ oll — ﬂ) = 5“]% +5”R,,,

with R, € S,(M,g;L(h)), R, € Su(N,g; L)) v>pu>0and M,N <1
Assume additionally that there exist x,x" € Su(1,9;L(h)), 0 < x < X' <1
such that x < x" and 'R, =0.

Then for €1 < g9 small enough, the operator
1

p:f
Zim |z—1]=1/2

(z—1)~" dz

is well defined for € € (0,e1) and satisfies

PoP=P in LL*RY) @),
and ( ) = E’Jﬁu +&¥11, .

with 11, € S, (M, g; L(h)), II, € S, (N, g; L(h)) and I, 0 X € OpN, .

Proof. — The first result concerned with the definition of P is a direct
application of the simple general result in Lemma A.6 applied with T = II
and H = L*(R%) ® . Note that our assumptions v > 1 and M < 1 ensure
that ||T1? — TI|| < % as soon as € < &1 with £; small enough.

Writing R .
II— P =17 —1I)(A; — Ap)

with
1

~ 2ir

/ (z—1ID)"'dz, ze{0,1},
|z—=]
reduces the problem to proving
Ay € OpSu(l,g;£(h) or (2 —I)7" € OpSu(1,:£(D)),
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when {|z — z| = 1/2} with uniform bounds. But this was proved in Proposi-
tion A.4 as a consequence of the Beals criterion. This ends the proof. ([l

LEMMA A.6. — Assume that in an Hilbert space H, the operator T €
L(H) satisfies |T? —T|| < 6 < 1/4 and ||T|| < C. Then there ezists cs < %
such that

o(T)C{z€C,l2(z—=1)| <0} C{2€C,[z|<cs}U{z €C, |z~ 1| <5},

1 2C+1
~T) M z=1=5¢ <2 .
max {1 = 7)1 - 11 = 5 b < 235
Moreover, the operator
1 -1
P=_— (z—=T)" " dz.

- 2m lz—1]|=1/2
differs from T according to

T—P=(T?>-T)(A — A) = (A1 — Ap)(T* - T), (A.9)
1

ith A = — T—-2)"t1-2"14d Al
wi 1= 5 ‘27”:%( ) (1—2)" dz (A.10)
and Ao = € (T —2)"'27 1 dz. (A.11)
2 \z\:%

Proof. — 1If z € o(T) then z(2—1) € o(T(T—1)) C {z € C,|2(z — 1)| < 1}
(Remember that [2(z — 1)| = } means |Z — §| = § with Z = (z — 3)?).
Consider z € C such that |z — 1| = 3, then the relation

(T —2)(T = (1= 2)) = 2(1 - 2) + (T* ~ T),

with |z(1 —2)| > % and [|T? — T < § < %, implies

Q

+

N

1
I(T=2)7H < IT=(1=2)l[e(1—2)+T*=T] 7| < for |o—1] = 5.

(o9

=

The symmetry with respect to z = 1 due to (1-T)(1-T7)—(1-T) = T?-T
implies also

Q

_|_

N[

(T —2)7") <

1
for |z| = 3

>

=
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Compute
1
T—-P = — T(z—1)"t = (z—T)!
Gy |zfl\:%[ (z—1) (2 )7 dz
= (T-1)P+(T°-T)4
with A; = ! (T —2)"'1—-2)"" dz.

T |z71\:%

In particular this implies to T(1 — P) = (T? — T') A; while replacing T with
(1-7T) and P with 1 — P leads to

1
P-T=-T(1-P)+(T*-T)Ay with Ay= -—— (T—2)"'2"tdz.

um \z\:%

Summing the two previous identities yields the result. O

A.4. Extension to parameter dependent metrics

Additionally to the semiclassical (or adiabatic) parameter, we need other
parameters 7 = (7/,7") € (0,1]? on which the metric ¢ = g, depends. In
general consider 7 € T C R” and a family of Hérmander metrics (g;)re7
defined on R2% .

DEFINITION A.7. — The family of metrics (gr)ret s said admissible if
the uncertainty principle (A.1) is satisfied and if the slowness and temper-
ance constants C1,Co, No involved in

+1
(slowness) (gﬂX(X -Y) < 1) = <(gTX) < C’1> ,
Cy gry

gT,X
gy

+1
(temperance) ( > < Co(1+ g7 x(X —Y)N2,

can be chosen uniformly w.r.t ™ €T .

Accordingly a family of weights (M;)re7 will be admissible if the slow-
ness and temperance constants of M, w.r.t g, can be chosen uniform w.r.t

TeT.

The important point is that all the estimates of the Weyl-Hérmander
pseudodifferential calculus (see [23, 10]), including the equivalence of norms
in the Beals criterion of [8], occur with constants which are determined by
the dimension d, the uncertainty lower bound (which is 1 here), the slowness
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and temperance constants. Hence all the pseudodifferential and semiclassical
estimates, (operator norms or seminorms of remainder terms) are uniform
w.r.t to (e,7) as long as the symbols, ax(e,7), k = 1,2, have uniformly
controlled seminorm in S(M: k, g,), w.r.t (e,7) € (0,e0] x T .

The definition of symbol classes S, (M, g) with uniform control of semi-
norms w.r.t € € (0,&¢] can be extended to admissible families (M., g )reT -

DEFINITION A.8. — For an admissible family (M., g;)re1, the set of
parameter dependent symbol a(X,e,7), X € R* (g,7) € (0,e0] x T with
uniform estimates

VN eN, 3Cy >0, V(e,7) € (0,60) X T, pn,M. g, (ale, 7)) < Cn,
is denoted by Sy, (M, g-,L(H)), T€T .

Equivalently the set of semiclassically quantized operators a(q,eDy,
g,7) when the symbol a belongs to S,(M;,g-;L(h)) is denoted by
OpSu(M7, g-; L()) -

The set of negligible symbols and operators associated with (g;)reT with
uniform estimates in Definition A.2 w.r.t T € T is denoted by Ny 4. and

OpN.yq. .

PROPOSITION A.9. — For 7 = (7/,7") € (0,1]? the family (g+)re(0,12
defined on R2? = R2(@'+d") py

g = 7_/dq/Z N T//dq//2 N 7_/7_l/dpQ
= —— _—

V7P VT
is admissible.

Proof. — It is easier to consider the symplectically equivalent metric (use
1

1 1 _1
the transform (q/, q”,p’,p”) N (,rlﬁq/’ 7_//5(1//7 - 2p/’ 7 Qp//))

"2 g 112

_ dq/2 —|—dq”+ TIde/Q—I—T

Iy ()2

after setting (p)2 =1+ 2% + 7%p""? | Firstly remember that the metric

dq/2 dpQ
g0 = 7oy HH g

dp

is a Hormander metric. The metric g7 is given by

(p)2

. (D)7
Y 7.//2

7 = 7/2 dq/2+ dq"2+<q'>2dp'2+dp”2.
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Hence the uncertainty principle (A.1) is satisfied with

(¢ d" 7 p") = min {<q'> uid <p?7} > (o) > 1.

T T

In order to check the uniform slowness and temperance of g, introduce
"1

the new variables X, = (¢/,¢",7'p',7"p") when X = (¢/,q¢",p’,p") with a
similar definition for Y, and T, .

Slowness: Write
- 1 -
(gT,X(X -Y) < a) < (9(1,1),XT (Xr =Y < _> .

When C is slowness constant of g(;,1), this implies
~ +1
9 -
<~(1,1),X ) <0
9a,1),y,
. +1
(qT—X) <.
gry
Temperance: Write

(—gva(T))ﬂ _ (M
97y (T) Ja).y, (Tr)

which is nothing but

+1
) < 02(1+§E71,1),X7(XT—Y7))N2 )

when Cy and N; are the temperance constants for g(; 1) . The problem
is reduced to showing

VX, T eR*, 374 x, (Tr) < 37.x(T).

The expression of g7 gives with X = (¢/,¢”,p’,p") and T = (¢',6",
7.[./’ ﬂ.//)

I0yx, (Tr) = (0)207 + (p)70" + ()77 + 77" < g7 5 (T)

owing to max{7’, 7"} < 1.
|
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