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On some properties of three-dimensional
minimal sets in R4

Tien Duc LUU(1)

ABSTRACT. — We prove in this paper the Hölder regularity of Almgren
minimal sets of dimension 3 in R4 around a Y-point and the existence of
a point of particular type of a Mumford-Shah minimal set in R4, which
is very close to a T. This will give a local description of minimal sets of
dimension 3 in R4 around a singular point and a property of Mumford-
Shah minimal sets in R4.

RÉSUMÉ. — On prouve dans cet article la régularité Höldérienne pour les
ensembles minimaux au sens d’Almgren de dimension 3 dans R4 autour
d’un point de typeY et dans le cas d’un ensemble Mumford-Shah minimal
dansR4 qui est très proche d’un T, l’existence d’un point avec une densité
particulière. Cela donne une description locale des ensembles minimaux
de dimension 3 dans R4 autour d’un point singulier et une propriété des
ensembles Mumford-Shah minimaux dans R4.

1. Introduction

In this paper we will prove two theorems. The first theorem is about
local Hölder regularity of three-dimensional minimal sets in R4 and the
second theorem is about the existence of a point of a particular type of a
Mumford-Shah minimal set, which is close enough to a cone of type T.

Let us give the list of notions that we will use in this paper.
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Hd the d-dimensional Hausdorff mesure.

θA(x, r) = Hd(A∩B(x,r))
rd

, where A ⊂ Rn is a set of dimension d and
x ∈ A.

θA(x) = limr→0 θA(x, r), called the density of A at x, if the limit exists.

Local Hausdorff distance dx,r(E,F ). Let E,F ⊂ Rn be closed sets which
meet the ball B(x, r). We define

dx,r(E,F ) =
1

r
[sup{dist(z, F );x ∈ E∩B(x, r)}+sup{dist(z, E); z ∈ F∩B(x, r)}].

Let E,F ⊂ Rn be closed sets and H ⊂ Rn be a compact set. We define

dH(E,F ) = sup{dist(x, F );x ∈ E ∩H}+ sup{dist(x,E);x ∈ F ∩H}.

Convergence of a sequence of sets. Let U ⊂ Rn be an open set, {Ek} ⊂
U, k � 1, be a sequence of closed sets in U and E ⊂ U . We say that {Ek}
converges to E in U and we write limk→∞Ek = E, if for each compact
H ⊂ U , we have

lim
k→∞

dH(Ek, E) = 0.

Blow-up limit. Let E ⊂ Rn be a closed set and x ∈ E. A blow-up limit
F of E at x is defined as

F = lim
k→∞

E − x

rk
,

where {rk} is any positive sequence such that limk→∞ rk = 0 and the limit
is taken in Rn.

Now we give the definition of Almgren minimal sets of dimension d in
Rn.

Definition 1.1. — Let E be a closed set in Rn and d � n − 1 be an
integer. An Almgren competitor (Al-competitor) of E is a closed set F ⊂ Rn
that can be written as F = ϕ(E), where ϕ : Rn → Rn is a Lipschitz mapping
such that Wϕ = {x ∈ Rn;ϕ(x) �= x} is bounded.

An Al-minimal set of dimension d in Rn is a closed set E ⊂ Rn such
that Hd(E ∩B(0, R)) < +∞ for every R > 0 and

Hd(E \ F ) � Hd(F \ E)

for every Al-competitor F of E.
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Next, we give the definition of Mumford-Shah (MS) minimal sets in Rn.

Definition 1.2. — Let E be a closed set in Rn. A Mumford-Shah com-
petitor (also called MS-competitor) of E is a closed set F ⊂ Rn such that
we can find R > 0 such that

F \B(0, R) = E \B(0, R) (1.2.1)

and F separates y, z ∈ Rn \B(0, R) when y, z are separated by E.

A Mumford-Shah minimal (MS-minimal) set in Rn is a closed set E ⊂
Rn such that

Hn−1(E \ F ) � Hn−1(F \ E) (1.2.2)

for any MS-competitor F of E.

Here, E separates y, z means that y and z lie in different connected
components of Rn \ E.

It is easy to show that any MS-minimal set in Rn is also an Al-minimal
set of dimension n− 1 in Rn. Next, if E is an MS-minimal set in Rn, then
E × R is also an MS-minimal set in Rn × R, by exercice 16, p 537 of [5].

We give now the definition of minimal cones of type P, Y and T, of
dimension 2 and 3 in Rn.

Definition 1.3. — A two-dimensional minimal cone of type Y is just
a two-dimensional affine plane in Rn. A three-dimensional minimal cone of
type P is a three-dimensional affine plane in Rn.

Let S be the union of three half-lines in R2 ⊂ Rn that start from the
origin 0 and make angles 120◦ with each other at 0. A two-dimensional
minimal cone of type Y is set of the form Y ′ = j(S × L), where L is a
line passing through 0 and orthogonal to R2 and j is an isometry of Rn. A
three-dimensional minimal cone of type Y is a set of the form Y = j(S×P ),
where P is a plane of dimension 2 passing through 0 and orthogonal to R2

and j is an isometry of Rn. We call j(L) the spine of Y ′ and j(P ) the spine
of Y .

Take a regular tetrahedron R ⊂ R3 ⊂ Rn, centered at the origin 0,
let K be the cone centered at 0 over the union of the 6 edges of R. A two-
dimensional minimal cone of type T is of the form j(K), a three-dimensional
minimal cone of type T is a set of the form T = j(K × L), where L is the
line passing through 0 and orthogonal to R3 and j is an isometry of Rn. We
call j(L) the spine of T .
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We denote by dP , dY , dT the densities at the origin of the 3-dimensional
minimal cones of type P, Y and T, respectively. It is clear that dP < dY <
dT .

We can now define a Hölder ball for a set E ⊂ Rn.

Definition 1.4. — Let E be a closed set in Rn. Suppose that 0 ∈ E. We
say that B(0, r) is a Hölder ball of E, of type P,Y or T with exponent 1+α,
if there exists a homeomorphism f : Rn → Rn and a cone Y of dimension
2 or 3, centered at the origin, of type P,Y or T, respectively, such that

|f(x)− x| � αr for x ∈ B(0, r) (1.4.1)

(1−α)[
|x− y|

r
](1+α) � |f(x)− f(y)|

r
� (1+α)[

|x− y|
r

](1−α)for x, y ∈ B(0, r)

(1.4.2)
E ∩B(0, (1− α)r) ⊂ f(Y ∩B(0, r)) ⊂ E ∩B(0, (1 + α)r). (1.4.3)

For the sake of simplicity, we will say that E is Bi-Hölder equivalent to Y
in B(0, r), with exponent 1 + α.

If in addition, our function f is of class C1,α, then we say that E is
C1,α equivalent to Y in the ball B(0, r). Here, f is said to be of class C1,α if
f is differentiable and its differential is a Hölder continuous function, with
exponent α.

J. Taylor in [11] has obtained the following theorem about local C1-
regularity of two-dimensional minimal sets in R3.

Theorem 1.5. [11]. — Let E be a two-dimensional minimal set in R3

and x ∈ E. Then there exists a radius r > 0 such that in the ball B(x, r),
E is C1,α equivalent to a minimal cone Y (x, r) of dimension 2, of type P,
Y or T. Here α is a universal positive constant.

As we know, any two-dimensional minimal cone in R3 is automatically
of type P, Y or T. This is a great avantage when we study two-dimensional
minimal sets of dimension 2 in R3, because each blow-up limit at some
point of a two-dimensional minimal set is a minimal cone of the same di-
mension. So we can approximate our minimal set by cones which we know
the structure of.

The problem of two-dimensional minimal sets in Rn with n > 3 is more
difficult. Here we don’t know the list of two-dimensional minimal cones. But
G. David gives in section 14 of [3] a description of two-dimensional minimal
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cones in Rn. Thanks to this, he can prove the local Hölder regularity of
two-dimensional minimal sets in Rn.

Theorem 1.6. [3]. — Let E be a two-dimensional minimal set in Rn
and x ∈ E. Then for each α > 0, there exists a radius r > 0 such that in
the ball B(x, r), E is Hölder equivalent to a two-dimensional minimal cone
Y (x, r), with exponent α.

The C1 regularity of two-dimensional minimal sets in Rn needs more
efforts. We have to prove that the local distance between E and a two-
dimensional minimal cone in B(x, r) is of order ra, where a is a positive
universal constant when r tends to 0. G. David in [4] shows the C1 regularity
of E locally around x, but he needs to add an additional condition, called
”‘full length”’ to some blow-up limit of E in x.

Theorem 1.7. [4]. — Let E be a two-dimensional minimal set in the
open set U ⊂ Rn and x ∈ E. We suppose that some blow-up limit of E at x
is a full length minimal cone. Then there is a unique blow-up limit X of E
at x, and x + X is tangent to E at x. In addition, there is a radius r0 > 0
such that E is C1,α equivalent to x+X in the ball B(x, r0), where α > 0 is
a universal constant.

Let us say more about the “full length” condition for a two dimensional
minimal cone F centered at the origin in Rn. As in [3, Sect 14], the set
K = F ∩ ∂B(0, 1) is a finite union of great circles and arcs of great circles
Cj , j ∈ J . The Cj can only meet when they are arcs of great circles and only
by sets of 3 and at a common endpoint. Now for each Cj whose length is
more than 9π

10 , we cut Cj into 3 sub-arcs Cj,k with the same length so that

we have a decomposition of K into disjoint arcs of circles Cj,k, (j, k) ∈ J̃
with the same length and for each Cj,k, we have length(Cj,k) � 9π/10. The
full lengh condition says that if we have another net of geodesics K1 =
∪(i,j)∈J̃C

1
j,k, for which the Hausdorff distance d(Cj,k,C

1
j,k) � η, where η is

a small constant which depends only on n, and if H1(K1) > H1(K), then
we can find a Lipschitz function f : Rn → Rn such that f(x) = x out of
the ball B(0, 1) and f(B(0, 1)) ⊂ B(0, 1) such that H2(f(F1) ∩ B(0, 1)) �
H2(F1 ∩ B(0, 1))− C[H1(K1)−H1(K)]. Here C > 0 is a constant and F1

is the cone over K1. See [4, Sect 2] for more details.

It happens that all two-dimensional minimal cones in R3 satisfy the full
length condition. So the theorem of G. David is a generalization of the
theorem of J. Taylor.
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For minimal sets of dimension � 3, little is known. Almgren in [1] showed
that if F is a three-dimensional minimal cone in R4, centered at the origin
and over a smooth surface in S3, the unit sphere of dimension 3, then E
must be a 3-plane. Then J. Simon in [10] showed that this is true for hyper
minimal cones in Rn with n < 7. That is, if F is a minimal cone of dimension
n− 1 in Rn, centered at the origin and over a smooth surface in Sn−1, then
F must be an n− 1 plane. There is no theorem yet about the regularity of
minimal sets of dimension � 3 with singularities.

Our first theorem is to prove a local Hölder regularity of three-dimensional
minimal sets in R4. But we don’t know the list of three-dimensional mini-
mal cones in R4 and we don’t have a nice description of three-dimensional
minimal cones as we have for two-dimensional minimal cones. So we shall
restrict to some particular type of points, at which we can obtain some
information about the blow-up limits.

Now let E be a three-dimensional minimal set in R4 and x ∈ E. We want
to show that E is Bi-Hölder equivalent to a three-dimensional minimal cone
of type P or Y in the ball B(x, r), for some radius r > 0. If θE(x) = dP ,
then W. Allard in [2] showed that there exists a radius r > 0 such that in
the ball B(x, r), E is C1 equivalent to a 3-dimensional plane. We consider
then the next possible density of E at x, so we suppose that θE(x) = dY .
Since every blow-up limit of E at x is a 3-dimensional minimal cone of type
Y, then for each ε > 0, there exists a radius r > 0 and a 3-dimensional
minimal cone Y (x, r) of type Y such that

dx,r(E, Y (x, r)) � ε. (∗)
By using (∗) and the minimality of E, we shall be able to approximate E by
3-dimensional minimal cones of type P or Y at every point in E ∩B(x, r/2)
and at every scale t � r/2. We shall then use Theorem 1.1 in [6] to conclude
that E is Bi-Hölder equivalent to a 3-dimensional minimal cone of type Y
in the ball B(x, r/2). Our first theorem is the following.

Theorem 1. — Let E be a 3-dimensional minimal set in R4 and x ∈ E
such that θE(x) = dY . Then for each α > 0, we can find a radius r > 0,
which depends also on x, such that B(x, r) is a Hölder ball (see Def 1.4) of
type Y of E, with exponent 1 + α.

Our second theorem concerns Mumford-Shah minimal sets in R4. In [3],
G. David showed that there are only 3 types of Mumford-Shah minimal sets
in R3, which are the cones of type P, Y and T. The most difficult part is to
show that if F is a Mumford-Shah minimal set in R3, which is close enough
in B(0, 2) to a T centered at 0, then there must be a T-point of F in B(0, 1).
To prove this proposition, G. David used very nice techniques which involve
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the list of connected components. We want to obtain a similar result for a
Mumford-Shah minimal set in R4 which is close enough to a T of dimension
3. But we cannot obtain a result which is as good as in [3, 18.1]. The reason
is that we don’t know if there exists a minimal cone C of dimension 3 in
R4, centered at 0, which satisfies dY < θC(0) < dT . Our second theorem is
the following.

Theorem 2. — There exists an absolute constant ε > 0 such that the
following holds. Let E be an MS-minimal set in R4, r > 0 be a radius, and
T be a 3-dimensional minimal cone of type T centered at the origin such
that

d0,r(E, T ) � ε.

Then in the ball B(0, r), there is a point of E which is neither of type P
nor Y.

See Definition 2.5 for the definition of points of type P and Y. We divide
the paper into two parts. In the first part, we prove Theorem 1. In the
second part, we prove Theorem 2.

I would like to thank Professor Guy David for many helpful discussions
on this paper.

2. Hölder regularity near a point of type Y
for a 3-dimensional minimal set in R4

In this section we prove Theorem 1. We start with the following lemma.

Lemma 2.1. — Let F be a 3-dimensional minimal cone in R4, centered
at the origin, and let x ∈ F ∩ ∂B(0, 1). Then each blow-up limit G of F at
x is a 3-dimensional minimal cone G of type P, Y or T and centered at 0.
The type of G depends only on x and θE(x) = θG(0).

We define the type of x to be the type of G.

Proof . — We denote by 0x the line passing by 0 and x. Suppose that G
is a blow-up limit of F at x. Then G = limk→∞ F−x

rk
with limk→∞ rk = 0.

Let y ∈ G, we want to show that y + 0x ⊂ G. Setting Fk = F−x
rk

, as

{Fk} converges to G, we can find a sequence yk ∈ Fk such that {yk}∞k=1

converges to y. Setting zk = rkyk + x, then zk ∈ F by definition of Fk,
and zk converges to x because rk converges to 0. We fix λ ∈ R and we set
vk = (1 + λrk)zk. Then vk ∈ F as F is a cone centered at 0. We have next
that wk = r−1

k (vk − x) ∈ Fk. On the other hand,
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wk = r−1
k ((1 + λrk)zk − x)

= r−1
k ((1 + λrk)(rkyk + x)− x)

= r−1
k (rkyk + λr2

kyk + λrkx)

= yk + λx + λrkyk,

we see that limk→∞ wk = y + λx. As {Fk} converges to G, we see that
y+λx ∈ G. Call H the tangent plane to ∂B(0, 1) at x. Since for each y ∈ G
and λ ∈ R, we have y+λx ∈ G, we have that G = G′×Ox, with G′ ⊂ G∩H.
Next, as F is a minimal set and G is a blow-up limit of F at x, by [3, 7.31],
G is a minimal cone centered at 0. But G = G′×0x, then by [3, 8.3], G′ is a
minimal cone in H, centered at x. Since H is a 3-plane, we must have that
G′ is a 2-dimensional minimal cone of type P,Y or T and then G is also a
3-dimensional minimal cone of type P, Y or T. Next, as G is a blow-up limit
of F at x, by [3, 7.31], we have θF (x) = θG(0). �

We see from this lemma that for each x ∈ F \ {0}, where F is a 3-
dimensional minimal cone in R4 centered at the origin,

θF (x) can take only one of the three values dP , dY , dT . (1)

But we do not know the list of possible values of θF (0). However, the follow-
ing lemma says that for this cone F , it is not possible that dP < θF (0) < dY .

Lemma 2.2. — There does not exist a 3-dimensional minimal cone F in
R4, centered at the origin such that dP < θF (0) < dY .

Proof . — Suppose that there is a cone F as in the hypothesis and

dP < θF (0) < dY . (2.2.1)

We first show that

for each x ∈ F ∩ ∂B(0, 1), we have θF (0) � θF (x). (2.2.2)

Indeed, since F is a minimal cone, for each z ∈ F , the function θF (z, t)
is nondecreasing. So for r > 0, we have θF (x, r) � θF (x), which means
that H3(F ∩ B(x, r))/r3 � θF (x). Since B(x, r) ⊂ B(0, r + 1), we obtain
H3(F ∩B(x, r)) � H3(F ∩B(0, r + 1)) and thus H3(F ∩B(0, r + 1))/r3 �
θF (x). We deduce that (H3(F ∩B(0, r+1))/(r+1)3)((r+1)3/r3) � θF (x).
Since F is a cone centered at 0, H3(F ∩ B(0, r + 1))/(r + 1)3 = θF (0) for
each r > 0. We deduce then θF (0)((r + 1)3/r3) � θF (x) for each r > 0. We
let r → +∞ and we obtain then θF (0) � θF (x), which is (2.2.2).
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Now (2.2.1) and (2.2.2) give us that θF (x) < dY for each x ∈ F ∩
∂B(0, 1). By (1), we have θF (x) = dP for x ∈ F ∩ ∂B(0, 1). So by [2, 8.1],
there exists a neighborhood Ux of x in R4 such that F∩Ux is a 3-dimensional
smooth manifold. We deduce that F ∩ ∂B(0, 1) is a 2-dimensional smooth
sub-manifold of ∂B(0, 1). By [1, Lemma 1], F is a 3-plane passing through
0. But this implies that θF (0) = dP , we obtain then a contradiction, Lemma
2.2 follows. �

Lemma 2.3. — Let F be a 3-dimensional minimal cone in R4, centered
at the origin 0. If θF (0) = dY , then F is a 3-dimensional cone of type Y.

Proof . — As in the argument for (2.2.2), we have that for each x ∈ F ∩
∂B(0, 1), θF (x) � θF (0) = dY . So θF (x) can only take one of the two values
dP or dY . If all x ∈ F ∩ ∂B(0, 1) are of type P, then by the same argument
as above, F will be a 3-plane, and then θF (0) = dP , a contradiction. So
there must be a point y ∈ F ∩ ∂B(0, 1), such that θF (y) = dY . By the
same argument like above, θF (0)(r + 1)3/r3 � θF (y, r) for each r > 0.
Letting r → ∞ and noting that θF (y, r) is non-decreasing in r, we have
dY � limr→∞ θF (y, r). But θF (y, r) � θF (y) = dY for each r > 0, so we
must have θF (y, r) = dY for r > 0. By [3, 6.2], F must be a cone centered
at y. But we have also that F is a cone centered at 0. So F is of the form
F = F ′ × 0y, where F ′ is a cone in a 3-plane H passing through 0 and
orthogonal to 0y. Since F is a minimal cone, by [3, 8.3], F ′ is also a 2-
dimensional minimal cone in H and centered at 0. So F ′ must be a cone of
type P, Y or T. Since θF (0) = dY , we must have that F ′ is a 2-dimensional
minimal cone of type Y and we deduce that F is a 3-dimensional minimal
cone of type Y. �

We can now consider 3-dimensional minimal sets in R4. We start with
the following lemma.

Lemma 2.4. — Let E be a 3-dimensional minimal set in R4. Then

(i) There does not exist a point z ∈ E such that dP < θE(z) < dY .

(ii) If x ∈ E such that θE(x) = dP , then each blow-up limit of E at x is
a 3-dimensional plane.

(iii) If θE(x) = dY , then each blow-up limit of E at x is a 3-dimensional
minimal cone of type Y.

Proof . — The proof uses Lemmas 2.2 and 2.3. Take any point z ∈ E,
let F be a blow-up limit of E at z. Then by [3, 7.31], F is a cone and
θF (0) = θE(x). By Lemma 2.2, it is not possible that dP < θF (0) < dY ,
which means that it is also not possible that dP < θE(x) < dP , (i) follows.
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If x ∈ E such that θE(x) = dP , then any blow-up limit F of E at x
satisfies θF (0) = θE(x) = dP . By the same arguments as in Lemma 2.2, for
each y ∈ F ∩ ∂B(0, 1), θF (y) � θF (0) = dP . We deduce that θF (y) = dP
for each y ∈ F ∩∂B(0, 1), and then F will be a 3-dimensional minimal cone
over a smooth sub-manifold of ∂B(0, 1). By [1, Lemma 1], F must be a
3-dimensional plane, (ii) follows.

If x ∈ E such that θE(x) = dY , then any blow-up limit F of E at x
satisfies θF (0) = dY . By Lemma 2.3, F must be a 3-dimensional minimal
cone of type Y, (iii) follows. �

Lemma 2.4 allows us to define the points of type P and Y of a 3-
dimensional minimal set in R4.

Definition 2.5. — Let E be a 3-dimensional minimal set in R4 and
x ∈ E. We call x a point of type P if θE(x) = dP . We call x a point of type
Y if θE(x) = dY .

The following proposition says that if a 3-dimensional minimal set E
is close enough to a 3-dimensional plane P in the ball B(x, 2r), then E is
Bi-Hölder equivalent to P in B(x, r).

Proposition 2.6. — For each α > 0, we can find ε > 0 such that the
following holds.

Let E be a 3-dimensional minimal set in R4 and x ∈ E. Let P be a
3-dimensional plane such that

dx,25r(E,P ) � ε. (2.6.1)

Then E is Bi-Hölder equivalent to P in the ball B(x, r), with Hölder expo-
nent 1 + α.

Proof . — Take any point y ∈ B(x, r). Since B(y, 24r) ⊂ B(x, 25r), we
have

dy,24r(E,P ) � 2dx,25r(E,P ) � 2ε. (2.6.2)

By [3, 16.43], for each ε1 > 0, we can find ε > 0 such that if (2.6.2) holds,
then

H3(E ∩B(y, 23r)) � H3(P ∩B(y, (1 + ε1)2
4r)) + ε1r

3

� dP (23r)3 + Cε1r
3. (2.6.3)

Now (2.6.3) implies that θE(y, 23r) � dP +Cε1. If ε1 is small enough, then
θE(y) � θE(y, 23r) < dY . We deduce that θE(y) = dP and y is a P point.
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Since θE(y, t) is a non-decreasing function in t, we have

0 � θE(y, t)− θE(y) � Cε1 for 0 < t � 23r. (2.6.4)

By [3, 7.24], for each ε2 > 0, we can find ε1 > 0 such that if (2.6.4) holds,
then there exists a 3-dimensional minimal cone F , centered at y, such that

dy,t/2(E,F ) � ε2 for 0 < t � 23r, (2.6.5)

and
|θE(y, 22r)− θF (y, 22r)| � ε2. (2.6.7)

Since dP � θE(y, 22r) � dP +Cε1, we deduce from (2.6.7) that θF (y, 22r) �
dP +Cε1+ε2. So if ε1 and ε2 are small enough, then θF (y, 22r) < dY . Which
implies θF (y) < dY . Since F is a minimal cone centered at y, we deduce
that F must be a 3-dimensional plane, by the same arguments as in second
part of Lemma 2.4.

Now we can conclude that for each y ∈ E ∩ B(x, r) and each t � r,
there exists a 3-dimensional plane P (y, t), which is F in (2.6.5), such that
dy,t(E,P (y, t)) � ε2. By [6,2.2], for each α > 0, we can find ε2 > 0,
and then ε > 0, such that E is Bi-Hölder equivalent to a P in the ball
B(x, r). �

Proposition 2.7. — For each η > 0, we can find ε > 0 with the fol-
lowing properties. Let E be a minimal set of dimension 3 in R4 and Y be a
3-dimensional minimal cone of type Y, centered at the origin. Suppose that
d0,1(E, Y ) � ε. Then in the ball B(0, η), there must be a point y ∈ E, which
is not of type P.

Proof . — Suppose that the lemma fails. Then each z ∈ B(0, η) is of type
P. We note F1, F2, F3 the three half-plane of dimension 3 which form Y and
L the spine of Y, which is a plane of dimension 2. Then Fi, 1 � i � 3 have
common boundary L. Take wi ∈ Fi ∩ ∂B(0, η/4), 1 � i � 3, such that the
distance dist(wi, L) = η/4. We see that the wi lie in a 2-dimensional plane
orthogonal to L. Since d0,1(E, Y ) � ε, we have that for each 1 � i � 3,
there exists zi ∈ E such that d(zi, wi) � ε. Now d(zi, 0) � d(wi, 0) + ε =
η/4 + ε < 3η/8 and dist(zi, L) � dist(wi, L) − ε = η/4 − ε > 3η/16. So if ε
is small enough, we have that for each 1 � i � 3, the ball B(zi, η/8) does
not meet L. As a consequence, Y coincide with Fi in the ball B(zi, η/8) for
1 � i � 3. We have next

dzi,η/8(E,Fi) = dzi,η/8(E, Y )

� 8

η
d0,1(E, Y )

� 8ε

η
. (2.7.1)
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Take a very small constant α > 0, say, 10−15. Then by Proposition 2.6, we
can find ε > 0 such that if (2.7.1) holds, then

E is Bi-Hölder equivalent to Fi in the ball B(zi, η/2
8) for each 1 � i � 3

with Hölder exponent 1 + α. (2.7.2)

Next, since we suppose that each z ∈ B(0, η) is of type P, we have that
there exists a radius rz > 0, such that

E is Bi-Hölder equivalent to a 3-dimensional plane in the ball B(z, rz),
with exponent 1 + α. (2.7.3)

In the ball B(0, η), we have d0,η(E, Y ) � 1
ηd0,1(E, Y ) � ε

η . (2.7.4)

We can adapt the arguments in [3], section 17 to obtain that there does
not exist a set E, which satisfies the conditions (2.7.2), (2.7.3) and (2.7.4).
The idea is as follows, we construct a sequence of simple and closed curves
γ0, γ1, ..., γk such that γk ∩ E = ∅ and γ0 intersects E transversally at
exactly 3 points in the ball B(zi, η/2

8). For each 0 � i � k−1, γi intersects E
transversally at a finite number of points and |γi∩E|−|γi+1∩E| is even, here
|γi∩E| denotes the number of intersections of γi with E. This is impossible
since |γ0 ∩ E| = 3 and |γk ∩ E| = 0. We obtain then a contradiction.
Proposition 2.7 follows. �

Lemma 2.8. — For each δ > 0, we can find ε > 0 such that the following
holds.

Let F be a 3-dimensional minimal cone in R4, centered at the origin.
Suppose that dY < θF (0) < dY + ε. Then there exists a 3-dimensional
minimal cone YF , of type Y, centered at 0 such that d0,1(F, YF ) � δ.

Proof . — Suppose that the lemma fails. Then there exists δ > 0, such
that we can find 3-dimensional minimal cones F1, ..., Fk, ... centered at 0,
satisfying dY � θFi � dY + 1/2i, and for any 3-dimensional minimal cone
Y of type Y, centered at 0, we have d0,1(Y, Fi) > δ.

Now we can find a sub-sequence {Fjk}∞k=1 of {Fi}∞i=1 such that this sub-
sequence converges to a closed set G ⊂ R4. By [3, 3.3], G is also a minimal
set. Since each Fik is a cone centered at 0, G is also a cone centered at 0.
So G is a 3-dimensional minimal cone centered at 0. By [3, 3.3], we have

H3(G ∩B(0, 1)) � lim inf
k→∞

H3(Fjk ∩B(0, 1)), (2.8.1)
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which implies that

θG(0) � lim inf
k→∞

(dY + 1/2jk) = dY . (2.8.2)

By [3, 3.12], we have

H3(G ∩B(0, 1)) � lim sup
k→∞

H3(Fjk ∩B(0, 1)), (2.8.3)

which implies that

θG(0) � lim sup
k→∞

(dY + 1/2jk) = dY . (2.8.4)

From (2.8.2) and (2.8.4), we have that θG(0) = dY . Then by Lemma 2.3,
G must be a 3-dimensional minimal cone of type Y, centered at 0. Since
limk→∞ Fj,k = G, there is k > 0 such that d0,1(Fjk , G) � δ/2, which is a
contradiction. The lemma follows. �

The following lemma is similar to Lemma 2.8, but we consider minimal
sets in general.

Lemma 2.9. — For each δ > 0, we can find ε > 0 such that the following
holds.

Suppose that E is a 3-dimensional minimal set in R4 and 0 ∈ E. Suppose
that

dY � θE(0) � dY + ε, (2.9.1)

and
θE(0, 4)− θE(0) � ε. (2.9.2)

Then there exists a 3-dimensional minimal cone YE, of type Y, centered at
0 such that

d0,1(E, YE) � δ.

Proof . — By [3, 7.24], for each ε1 > 0, we can find ε > 0 such that if
(2.9.2) holds, then there is a 3-dimensional minimal cone F centered at the
origin, such that

d0,2(F,E) � ε1, (2.9.3)

and
|θF (0, 2)− θE(0, 2)| � ε1. (2.9.4)

Since E is minimal, θE(0, 4) � θE(0, 2) � θE(0). So from (2.9.1) and (2.9.2),
we have that dY � θE(0, 2) � dY + 2ε. With (2.9.4), we have

dY − ε1 � θF (0, 2) � dY + 2ε + ε1. (2.9.5)
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Now if we choose ε1 small enough, then θF (0) = θF (0, 2) � dY − ε1 > dP ,
so by Lemma 2.2, we have θF (0) � dY . Thus

dY � θF (0) � dY + 2ε + ε1. (2.9.6)

By Lemma 2.8, for each ε3 > 0, we can find ε1 > 0, and then ε > 0, such
that if (2.9.6) holds, then there is a 3-dimensional minimal cone YF of type
Y, centered at 0 such that

d0,2(F, YF ) � ε3. (2.9.7)

From (2.9.3) and (2.9.7) we have

d0,1(E, YF ) � 2(d0,2(E,F ) + d0,2(F, YF )) � 2(ε1 + ε3). (2.9.8)

Now for each δ > 0, we choose ε > 0 such that 2(ε1 + ε3) < δ, we set then
YE = YF and the lemma follows. �

We are ready to prove Theorem 1.

Theorem 2.10. — For each α > 0, we can find ε > 0 such that the
following holds.

Let E be a 3-dimensional minimal set in R4, which contains the origin
0. Suppose that there exists a radius r > 0 such that

dY � θE(0) � dY + ε, (2.10.1)

and
θE(0, 211r)− θE(0) � ε. (2.10.2)

Then E is Bi-Hölder equivalent to a 3-dimensional minimal cone Y of type
Y and centered at 0 in the ball B(0, r), with Hölder exponent 1 + α.

Proof . — By Lemma 2.9, for each ε1 > 0, we can find ε > 0 such that if
(2.10.1) and (2.10.2) hold, then there exists a 3-dimensional minimal cone
Y , of type Y, centered at 0 such that

d0,29r(E, Y ) � ε1. (2.10.3)

We consider a point y ∈ E ∩B(0, r). We set

EY = {z ∈ E ∩B(0, 4r)} z is not a P-point. (2.10.4)

We note that EY is closed. Indeed, if z is an accumulation point of EY ,
then if z is a P-point, then there exists a neighborhood Vz of z in E such
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that Vz has only points of type P, as in the proof of Proposition 2.6, which
is not possible. So z cannot be a P-point and as a consequence, z ∈ EY .

Case 1, y ∈ EY .

Since y is not a P-point, θE(x) �= dP , then by Lemma 2.4, we have

θE(y) � dY ; (2.10.5)

Next, B(y, 28r) ⊂ B(0, 29r), by (2.10.3), we have

dy,28r(E, Y ) � 2d0,29r(E, Y ) � 2ε1. (2.10.6)

By [3, 16.43], for each ε2 > 0, we can find ε1 > 0 such that if (2.10.6) holds,
then

H3(E ∩B(y, 27r)) � H3(Y ∩B(y, (1 + ε2)2
7r)) + ε2r

3, (2.10.7)

which, together with (2.10.5), imply

dY � θE(y, 27r) � dY + Cε2. (2.10.8)

But E is a minimal set, so the function θE(y, .) is non-decreasing. So we
have

dY � θE(y, t) � dY + Cε2 for 0 < t � 27r. (2.10.9)

By Lemma 2.8, for each ε3 > 0, we can find ε2, ε1 > 0, and then ε > 0, such
that if (2.10.5) and (2.10.8) hold, then there exists a 3-dimensional minimal
cone Y (y, t) of type Y, centered at y, such that

dy,t(E, Y (y, t)) � ε3 for 0 < t � 25r. (2.10.10)

We note as above, for y ∈ B(0, r) and t � 25r, Y (y, t) the cone of type Y
that satisfies (2.10.10).

Case 2, y is a P point.

Let d = dist(y,EY ) > 0. Take a point u ∈ EY such that d(y, u) = d.
Since z ∈ B(0, r) and 0 ∈ EY , we have d � d(0, y) � r. We take the cone
Y (u, 2d) as in (2.10.10), then

du,2d(E, Y (u, 2d)) � ε3. (2.10.11)

Call L the spine of Y (u, 2d), then L is a 2-dimensional plane passing through
u. We want to show that

dist(y, L) � d/2. (2.10.12)

– 479 –



Tien Duc Luu

Indeed, if (2.10.12) fails, then there exists u′ ∈ L such that d(y, u′) =
dist(y, L) < d/2. So d(u′, u) � d(u′, y) + d(y, u) � 3d/2. As a consequence,
B(u′, d/2) ⊂ B(u, 2d). We have next

du′,d/2(E, Y (u, 2d)) � 4du,2d(E, Y (u, 2d)) � 4ε3. (2.10.13)

By Proposition 2.7, we can choose ε3 > 0 such that if (2.10.13) holds, then
there is a point u1 ∈ E ∩ B(u′, d/1000), which is not of type P. Next,
d(y, u1) � d(y, u′) + d(u′, u1) � d/2 + d/1000 < 3d/4 and since y ∈ B(0, r),
u′ ∈ B(0, r+3d/4) ⊂ B(0, 4r). As u′ is not a P-point, we have that u′ ∈ EY .
So we can find a point u′ ∈ EY for which d(y, u′) < d, a contradiction. We
have then (2.10.12).

Since B(y, d/2) ⊂ B(u, 2d), we have

dy,d/2(E, Y (u, 2d)) � 4du,2d(E, Y (u, 2d)) � 4ε3. (2.10.14)

By [3, 16.43], for each ε4 > 0, we can find ε3 > 0 such that if (2.10.14) holds,
then

H3(E ∩B(y, d/4)) � H3(Y (u, 2d) ∩B(y, (1 + ε4)d/4) + ε4d
3. (2.10.15)

Now as dist(y, L) � d/2, we see that Y (u, 2d) coincide with a 3-dimensional
plane in the ball B(y, (1 + ε4)d/4). So H3(Y (u, 2d) ∩ B(y, (1 + ε4)d/4) �
dP ((1 + ε4)d/4)3, together with (2.10.15), we obtain

θE(y, d/4) � dP + Cε4. (2.10.16)

By the proof of Proposition 2.6, we have that for each ε5 > 0, we can find
ε4 > 0 such that for each t � d/8, there exists a plane P (y, t) of dimension
3 passing by y, such that

dy,t(E,P (y, t)) � ε5. (2.10.17)

For the case d/8 � t � r, we take the cone Y (u, t + d) as in 2.10.10 which
is possible since t + d < 8r. Since B(y, t) ⊂ B(u, t + d), we have

dy,t(E, Y (u, t + d)) � t + d

t
du,t+d(E, Y (u, t + d)) � 10ε3. (2.10.18)

From (2.10.10), (2.10.17) and (2.10.18) we conclude that, for each y ∈ E ∩
B(0, r) and t � r, there exists a 3-dimensional minimal cone Z(y, t) of type
P or Y, such that dy,t(E,Z(y, t)) � ε6, where ε6 = max{ε5, 10ε3}. By [6,2.2],
we conclude that for each α > 0, we can find ε > 0 such that if (2.10.1) and
(2.10.2) hold, then E is Bi-Hölder equivalent to a 3-dimensional minimal
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cone of type Y , centered at 0 in the ball B(x, r), with Hölder exponent
1 + α. �

Now we see that Theorem 1 is a consequence of Theorem 2.10, since
θE(x) = dY which lies between dY and dY + ε for any ε > 0. Next, for
each ε > 0, since limr→0 θE(x, r) = θE(x), so we can find r > 0 such that
θE(x, 211r) � θE(x)+ε = dY +ε. We conclude that E is Bi-Hölder equivalent
to a cone of type Y in the ball B(x, r).

Corollary 2.11. — For each α > 0, we can find ε > 0 such that the
following holds. Let E be a 3-dimensional minimal set in R4, x ∈ E, r be a
radius > 0 and Y be a 3-dimensional minimal cone of type Y, centered at
x such that

dx,214r(E, Y ) � ε. (2.11.1)

Then E is Bi-Hölder equivalent to Y in the ball B(x, r), with Hölder expo-
nent 1 + α.

Proof . — By Proposition 2.7, we can find ε small enough such that there
exists a point y ∈ B(x, r/1000) which is not of type P. So θE(y) � dY . Since
B(y, 212r) ⊂ B(x, 213r), we have

dy,213r(E, Y ) � 2dx,214r(E, Y ) � 2ε. (2.11.2)

By [3, 16.43], for each ε1 > 0, we can find ε > 0 such that if (2.11.2) holds,
then

H3(E ∩B(y, 212r)) � H3(Y ∩B(y, (1 + ε1)2
12r)) + ε1r

3, (2.11.3)

which implies that
θE(y, 212r) � dY + Cε1. (2.11.4)

Now (2.11.4) together with the fact that θE(y) � dY are the conditions in
the hypothesis of Theorem 2.10 with the couple (x, 2r). Following the proof
of the theorem, for each ε2 > 0, we can find ε1 > 0 such that for each z ∈
B(y, 2r) and for each t � 2r, there is a 3-dimensional minimal cone Z(z, t)
of type P or Y such that dz,t(Z(z, t), E) � ε2. Since B(x, r) ⊂ B(y, 2r), the
above holds for any z ∈ B(x, r) and t � r. Now since dx,r(E, Y ) � 214ε � ε2,
we can apply [DDT,2.2] to conclude that for each α > 0, we can find ε > 0
such that if (2.11.1) holds, then E is Hölder equivalent to Y in B(x, r), with
Hölder exponent 1 + α. �

By construction of the Bi-Hölder function in [6], we see that if E is Bi-
Hölder equivalent to a Y of type Y in B(x, r) by a function f , then f is a
bijection of the spine of Y in B(x, r/2) to the points of type non-P of E in
a neighborhood of x. We have the remark.
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Remark 2.12. — Let E be a 3-dimensional minimal set in R4, x ∈ E and
r > 0. Suppose that E is Bi-Hölder equivalent to a 3-dimensional minimal
cone Y of type Y and centered at x in the ball B(x, r). Note EY the set of
the points of type non-Y of E in B(x, r) and L the spine of Y . Then

EY ∩B(x, r/8) ⊂ f(L ∩B(x, r/4)) ⊂ EY ∩B(x, r/2). (2.12.1)

3. Existence of a point of type non-P and non-Y
for a Mumford-Shah minimal set in R4 which is near a T

Let us restate Theorem 2.

Theorem 2. — There exists an absolute constant ε > 0 such that the
following holds. Let E be an MS-minimal set in R4, r > 0 be a radius and T
be a 3-dimensional minimal cone of type T centered at the origin such that

d0,r(E, T ) � ε. (2.1)

Then in the ball B(0, r), there is a point which is neither of type P nor Y
of E.

We will prove Theorem 2 by contradiction. By homothety, we may as-
sume that r = 210. Suppose that (2.1) fails, that is

there are only points of type P and Y in E ∩B(0, 210). (2.2)

We fix a coordinate (x1, x2, x3, x4) of R4. Without loss of generality, we
suppose that T is of the form T = T ′ × l, where T ′ is a 2-dimensional
minimal cone of type T which belong to a 3-dimensional plane P of equation
P = {x1, x2, x3, x4} : x4 = 0 and l the line of equation x1 = x2 = x3 = 0.
We call l the spine of T , which is also the set of T-points of T . Let l1, l2, l3, l4
be the four axes of T ′; then Li = li × l, i = 1, ..., 4 are the 2-faces of T . We
see that ∪4

i=1Li \ l is the set of Y-points of T . Finally, let Fj , 1 � j � 6 the
faces of T ′ in P . Then Fj × l, 1 � j � 6 are the 3-faces of T and ∪6

j=1Fj
minus the set of Y-points and the set of T-points of T is the set of P-points
of T . The proof of Theorem 2 requires several lemmas. We begin with a
lemma about the connected components of B(0, 2) \ E.

Lemma 3.1. — Let ai, 1 � i � 4 be the four points in ∂B(0, 29)∩P whose
distances to T ′ are maximal. Set Vi, 1 � i � 4 the connected component of
B(0, 210) \ E which contains ai. Then we have Vi �= Vj for 1 � i �= j � 4.

Proof . — Suppose that the lemma fails. Then there are i �= j such that
Vi = Vj . Without loss of generality, we may assume that V1 = V2 = V . Now
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the point a = (a1 + a2)/2 belongs to a 3-face P12 of T and T coincide with
P12 in B(a, 28).

Since d0,210(E, T ) � ε, we have

da,28(E, T ) = da,28(E,P12) � 4ε. (3.1.1)

By Proposition 2.6, for a constant τ very small, say, 10−25, we can find ε > 0
such that E is Bi-Hölder equivalent to P12 in the ball B(a, 23), with Hölder
exponent 1+τ . We note f this Hölder function; then f is a homeomorphism
and

E ∩B(a, 4) ⊂ f(P12 ∩B(a, 8)) ⊂ E ∩B(a, 16), (3.1.2)

and
|f(x)− x| � τ for x ∈ B(a, 16). (3.1.3)

We want to show that

if z ∈ ∂B(a, 4) \ E, then z ∈ V . (3.1.4)

Indeed, set z′ = f−1(z), then z′ ∈ B(a, 8) and as z /∈ E, we have z′ /∈ P12.
Now the 3-plane P12 separate R4 into two half-spaces H1 and H2 which
contain a1 and a2, respectively. Let z1 ∈ H1 and z2 ∈ H2 be two points in
∂B(a, 4) whose distances to P12 are maximal. We see that a is the mid-point
of the segment [z1, z2] and this segment is orthogonal to P12. Since z1 and
z2 lie in two different half-spaces of R4 separated by P12, one of the two
segment [z′, z1] and [z′, z2] doesn’t meet P12. We suppose that is the case
of [z′, z1]; then the curve γ = f([z′, z1]) doesn’t meet E.

Next, it is clear that dist(u, T ) � 2 for u ∈ [a1, f(z1)] as |f(z1)−z1| � τ .
Since d0,210(E, T ) � ε, the segment [a1, f(z1)] doesn’t meet E. Now the
curve γ′ which goes first from a1 to f(z1) by the segment [a1, f(z1)] and
then from f(z1) to f(z′) = z by the curve γ is a curve in B(0, 29) which
joint a1 to z and doesn’t meet E. We deduce that z ∈ V1 = V , which is
(3.1.4).

Now we want to obtain a contradiction. We will construct an MS-
competitor F for E whose Hausdorff measure in B(0, 210) is smaller than
that of E in the same ball. We set

F = E \B(a, 4). (3.1.5)

It is clear that F \B(0, 210) = E \B(0, 210). We want to show that F is an
MS-competitor for E. For this, we suppose that x1, x2 ∈ R4 \(B(0, 210)∪E)
such that x1, x2 are separated by E. We want to show that they are also
separated by F .
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We proceed by contradiction. Suppose that

there is a curve Γ ⊂ R4 connecting x1 and x2 which doesn’t meet F .
(3.1.6)

Now if Γ∩B(a, 4) = ∅, then Γ doesn’t meet E. Next, as F = E \B(a, 4), we
have that x1, x2 are not separated by E, a contradiction. So we must have
that Γ meets B(a, 4). Let x′1 be the first point at which Γ meets B(a, 4)
and x′2 be the last point at which Γ meets B(a, 4). Then it is clear that
x′1, x

′
2 ∈ ∂B(a, 4). We note Γ1 the sub-curve of Γ from x1 to x′1 and Γ2 the

sub-curve of Γ from x′2 to x2. Since Γ1 and Γ2 belong to the same connected
component of F and Γ1, Γ2 don’t meet B(a, 4) and F = E \ B(a, 4), we
deduce that Γ1 and Γ2 belong to the same connected component of R4 \E.

In addition, since x′1, x
′
2 ∈ ∂B(a, 4) \ E, so by (3.1.4), they both belong

to V and then we can connect x′1 and x′2 by a curve Γ3 which doesn’t meet
E.

Now the curve Γ4 which is the union of Γ1,Γ2 and Γ3 is a curve that
connects x1 and x2 and doesn’t meet E. This is a contradiction, as we
suppose that x1 and x2 are separated by E.

Now since dist(a,E) � 210ε, there is a point a′ ∈ E such that d(a, a′) �
210ε and by consequence B(a′, 2) ⊂ B(a, 4). Next

H3(F ∩B(0, 210)) = H3(E ∩B(0, 210) \B(a, 4))

� H3(E ∩B(0, 210) \B(a′, 2))

= H3(E ∩B(0, 210))−H3(E ∩B(a′, 2))

� H3(E ∩B(0, 210))− C23 < H3(E ∩B(0, 210)).

(3.1.7)

Where the last line is obtained from the fact that E is Alhfors-regular (see
[7]). Now (3.1.7) contradicts the hypothesis that E is MS-minimal, we thus
obtain the lemma. �

If x is a point of type P or Y of E, then by Proposition 2.6 and Theorem
1, for τ = 10−25, for example, we can find a radius r > 0 and a Bi-Hölder
mapping ψx : B(x, 2r) → R4, and a 3-dimensional minimal cone Y of type
P or Y, respectively, centered at x, such that

|ψx(z)− z| � τr for z ∈ B(x, 2r) (2)

E ∩B(x, r) ⊂ ψx(Y ∩B(x, 3r/2)) ⊂ E ∩B(x, 2r). (3)
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By (2.2), there are only points of type P or Y of E ∩B(0, 210). We set then

EY the set of Y-points of E ∩B(0, 210). (4)

It is clear that EY is closed by the proof of Theorem 2.10. If x ∈ EY ∩
B(0, 210), then there exists rx > 0 such that B(x, rx) ⊂ B(0, 210) and a
minimal cone Yx of type Y, centered at x, and a Hölder mapping ψx :
B(x, 2rx) → R4 such that (2) and (3) hold for ψx and Yx. Let Lx be the
spine of Yx, then Lx is a 2-plane passing through x. By Remark 2.12, there
is a neighborhood Ux of x such that

EY ∩ Ux = ψx(B(x, rx) ∩ Lx). (5)

Now we take four points di, 1 � i � 4 such that 0 is the mid-point of the
segments [ai, di], 1 � i � 4, here ai is as in Lemma 3.1. It is clear that
di ∈ T ′ ⊂ T . In addition, di ∈ Li, 1 � i � 4, where Li are described just
after the second statement of Theorem 2. Next, for 1 � i � 4, we have
ddi,4(E, T ) � 28d0,210(E, T ) � 28ε. But in the ball B(di, 4), T coincide with
a cone Yi of type Y whose spine is Li. So ddi,4(E, Yi) � 28ε. By Corollary
2.11, for τ = 10−25, we can find ε > 0 such that E is Bi-Hölder equivalent
to Yi in the ball B(di, 2), with Hölder exponent 1 + τ . Call ψi this Hölder
mapping, then by Remark 2.12

EY ∩B(di, 1) ⊂ ψi(Li ∩B(di, 3/2)) ⊂ EY ∩B(di, 2) (6)

and

|ψi(z)− z| � τ for z ∈ B(di, 2). (7)

Setting

bi = ψi(di), 1 � i � 4. (8)

By (7), we have d(di, bi) � τ . We want to prove the following lemma.

Lemma 3.2. — The point b1 ∈ EY can be connected to another point
bi ∈ EY , i �= 1 by a curve γ ⊂ EY ∩B(0, 3 · 28).

Proof . — Recall that ψi, bi, di are the same as (6),(7),(8) above. In ad-
dition, for each x ∈ EY ∩ B(0, 210), there are a radius rx and a Bi-Höder
mapping ψx, a minimal cone Yx of type Y, centered at x such that (2),(3),
and (5) hold.

We proceed by contradiction. We denote by E1
Y the connected compo-

nent of EY ∩B(0, 210) which contains b1. Since in each ball B(bi, 2), EY is
Hölder equivalent to a 2-plane, by (6), we deduce that each z ∈ EY ∩B(bi, 1)
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can be connected to bi by a curve in EY . So if the lemma fails, that is E1
Y

doesn’t contain any bi, i �= 1, we must have

E1
Y ∩B(bi, 1) = ∅ for i �= 1. (3.2.1)

Recall next that T = T ′ × l, where T ′ is a 2-dimensional minimal cone of
type T in the 3-plane P of equation x4 = 0 and l is the line of equation
x1 = x2 = x3 = 0.

Now we construct a family of functions ft, 0 � t � 1 from R4 to R2 by
the formula

ft(x) = (x4, |x− td2|2 − ((1− t)29)2), (3.2.2)

where x = (x1, x2, x3, x4) ∈ R4 and 0 � t � 1. If x ∈ E1
Y , then

|f1(x)| � |x− d2| � 1/2, (3.2.3)

by (3.2.1) and the fact that |d2− b2| � τ . We will construct a finite number
of functions to go from f0 to f1. First, let K = E1

Y ∩ B(0, 3 · 28). Then for
each z ∈ K, there is a radius rz such that E1

Y is Bi-Hölder equivalent to a
2-plane Pz, with Hölder exponent 1 + τ . Since K is compact, we can cover
K by a finite number of balls B(zi, rzi), 1 � i � N . Finally, we choose η > 0
which is smaller than 1

10 min{rzi}, 1 � i � N .

Next, let {xi}, 1 � i � l be a maximal collection of points in K such that
|xi − xj | � η for i �= j. Set ϕ̃j a bump function with support in B(xj , 2η)
and such that ϕ̃j(x) = 1 for x ∈ B(xj , η) and 0 � ϕ̃j(x) � 1 everywhere.
We note that

∑
j ϕ̃j(x) � 1 for x ∈ E1

Y ∩ B(0, 3 · 28) since x must lie in
one of the ball B(xj , η) by the maximality of the family {xi}. Set ϕ̃0 a C∞

function in R4 such that ϕ̃0(x) = 0 for |x| � 3 · 28 − η and ϕ̃0(x) = 1 for

|x| � 3 · 28 and 0 � ϕ̃0(x) � 1 everywhere. We have then
∑l
j=0 ϕ̃j(x) � 1

on E1
Y and we set

ϕj(x) = ϕ̃j(x){
l∑

j=0

ϕ̃j(x)}−1 for x ∈ E1
Y and 0 � j � l. (3.2.4)

The functions ϕj , 0 � j � l have the following properties.

ϕj has support in B(xj , 2η) for j � 1, (3.2.5)

l∑

j=0

ϕj(x) = 1 for x ∈ E1
Y ,

l∑

j=1

ϕj(x) = 1 for x ∈ E1
Y ∩B(0, 3 · 28 − η), (3.2.6)
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since ϕ0(x) = 0 on B(0, 3 · 28− η). Our first approximation is a sequence of
functions given by

gk = f0 +
∑

0<j<k

ϕj(f1 − f0), (3.2.7)

with 0 � k � l. Then g0 = f0 and

gl(x) = f1(x) for x ∈ E ∩B(0, 3 · 28 − η). (3.2.8)

We note that for k � 1

gk(x)− gk−1(x) = ϕk(x)(f1(x)− f0(x)) is supported in B(xk, 2η). (3.2.9)

We compute the number of solutions in E1
Y of the equations gk(x) = 0. We

will modify f0 and the gk such that they have only a finite number of zeroes.
We modify first f0.

Sub-lemma 3.2.1. — There exists a continuous function h0 on E1
Y such

that
|h0(x)− f0(x)| � 10−6for x ∈ E1

Y , (3.2.9)

h0 has exactly one zero b1 in E1
Y , and b1 is a simple, non-degenerate zero

of h0.

Here, we say that ξ ∈ E1
Y is a non-degenerate, simple zero of a continuous

function h on E1
Y if h(ξ) = 0 and there is a ball B(ξ, ρ) and a Bi-Hölder

function γ with Hölder exponent 1+ τ which maps E1
Y ∩B(ξ, ρ) to an open

set V of a 2-plane, such that h ◦ γ−1 is of class C1 on V and the differential
D(h ◦ γ−1) at the point γ(ξ) is of rank 2.

Proof . — We modify f0 in a neighborhood of d1. We have already our
Bi-Hölder homeomorphism ψ1 which satisfies (6),(7) and (8). Next, since
E1
Y is the connected component of EY which contains b1, we have

EY ∩B(d1, 1) = E1
Y ∩B(d1, 1),

thus

E1
Y ∩B(d1, 1/3) ⊂ ψ1(B(L1 ∩B(d1, 1/2))) ⊂ E1

Y ∩B(d1, 1), (3.2.10)

here L1 is the 2-face of T that contains d1, which is Bi-Höder equivalent to
E1
Y in the ball B(d1, 1).

Set h0 = f0 outside the ball B(d1, 1/2). In B(d1, 1/4), we set h0 =
f0 ◦ ψ−1. In the region between the two balls R = B(d1, 1/2) \ B(d1, 1/4),
we set

h0(x) = α(x)f0(x) + (1− α(x))f0 ◦ ψ−1(x), (3.2.11)
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where α(x) = 4|x − d1| − 1. We have then |h0(x) − f0(x)| � |f0(x) − f0 ◦
ψ−1

1 (x)| � Cτ for x ∈ B(d1, 1/2) since |ψ1(x) − x| � τ and the differential
of f0 is bounded in this ball. We have then (3.2.9).

Since f0(x) = (x4, |x|2−49), so |f0(x)| � 1/500 for x ∈ E1
Y \B(d1, 10−2).

By consequence, all the zeroes of h0 must lie in the ball B(d1, 1/4).

We verify next that h0 has exactly one zero in B(d1, 1/4), which is simple
and non-degenerate. Set γ1(x) = ψ−1

1 (x) for x ∈ E1
Y ∩ B(d1, 1/4). Then γ1

is a homeomorphism from E1
Y ∩B(d1, 1/4) onto its image, which is an open

set in L1.

Since h0 = f0 ◦ψ−1
1 = f0 ◦γ1 on E1

Y ∩B(d1, 1/4), we have that h0(ξ) = 0
for ξ ∈ E1

Y ∩B(d1, 1/4) if and only if γ1(ξ) is a zero of f0(x) = (x4, |x|2−49)
in L1 ∩ B(d1, 1/2), which can only be d1. The verification that Df0 is of
maximal rank at d1 is clear. The sub-lemma follows.

We need another sub-lemma which allows us to go from hk−1 to hk.

Sub-lemma 3.2.2. — We can find continuous functions θk, 1 � k � l,
such that

θk is supported in B(xk, 3η), (3.2.12)

and

||θk||∞ � 2−k10−6, (3.2.13)

and if we set

hk = hk−1 + ϕk(f1 − f0) + θk, (3.2.14)

for 1 � k � l, then
(3.2.15)

each hk has a finite number of zeroes in E1
Y , which are all simple and

non-degenerate.

Proof . — We will construct hk by induction. For k = 0, the function h0

satisfy clearly (3.2.15). Let k � 1, and we suppose that we have already
constructed hk−1 such that (3.2.15) holds.

We note that hk−1 + ϕk(f1 − f0) coincide with hk−1 outside the ball
B(xk, 2η), by (3.2.5). We take a thin annulus

A = B(xk, ρ2) \B(xk, ρ1), 2η < ρ1 < ρ2 < 3η, (3.2.16)

which doesn’t meet the finite set of zeroes of hk−1. Recall that there is a
Bi-Hölder function ψk : B(xk, 20η)→ R4 and a 2-plane Pk passing through
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xk such that |ψk(x)− x| � 10ητ for x ∈ B(xk, 20η) and

E1
Y ∩B(xk, 19η) ⊂ ψk(Pk ∩B(xk, 20η)) ⊂ E1

Y . (3.2.17)

We choose θk such that θk is supported in B(xk, ρ2) and ||θk||∞ <
min{2k10−6, infx∈A |hk−1(x)|}, of course infx∈A |hk−1(x)| > 0 since A doesn’t
meet the set of zeroes of hk−1. Then hk = hk−1 outside the ball B(xk, ρ2).

We will control hk in the ball B(xk, ρ1). Set γ(x) = ψ−1
k (x) for x ∈

E1
Y ∩B(xk, ρ1). By (3.2.17) and since ψk is Bi-Hölder on B(xk, 20η), γ is a

Bi-Hölder homeomorphism from E1
Y ∩B(xk, ρ1) onto an open set V of the

2-plane Pk.

By the density of C1 function in the space of bounded continuous func-
tions on V with the sup norm, we can choose θk with the above properties
and such that

hk ◦ θk is of class C1 on V . (3.2.18)

We can also add a very small constant w ∈ R2 to θk on E1
Y ∩B(xk, ρ1), and

then interpolate continuously on A. We verify that for almost every choice
of w,

hk has a finite number of zeroes in E1
Y ∩B(xk, ρ1). (3.2.19)

For this, we set Zy = {z ∈ V ;hk ◦ ψk(z) = y}. By (3.2.18), we can apply
the co-area formula ([9, 3.2.22]) for hk ◦ ψk on V , and we obtain

∫

V

J(z)dH2(z) =

∫

y∈R2

H0(Zy)dH
2(y), (3.2.20)

here, J(z) denote the Jacobian of hk ◦ ψk at z, which is clearly bounded.
We deduce that Zy is finite for almost-every y ∈ R2. If we choose w such
that Zw is finite and then add −w to θk in E1

Y ∩ B(xk, ρ1), then the new
Z0 will be finite, and we have (3.2.19).

We consider now the rank of the differential. By Sard’s theorem, the set
of critical values of hk ◦ ψk has measure 0 in R2. So if we choose w ∈ R2

which is not a critical value, and add −w to θk in E1
Y ∩B(xk, ρ1), then the

differential of the new function hk ◦ ψk at each zero of hk ◦ ψk is of rank 2.

So we take w very small with the above properties, and add −w to θk
in B(xk, ρ1); next, we interpolate in the region A, we obtain a function hk
having a finite number of zeroes in E1

Y ∩B(xk, ρ1) which are all simple and
non-degenerate. The sub-lemma follows.

Now let N(k) be the number of zeroes of hk in E1
Y . Then N(0) = 1

since the only zero of h0 in E1
Y is b1. Let us check that for the last index l,
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N(l) = 0. First we have

hl − h0 =
∑

1�k�l

(hk − hk−1) =
∑

1�k�l

ϕk(f1 − f0) +
∑

1�k�l

θk.

If x ∈ E1
Y ∩B(0, 3 · 28 − η), then

∑
1�k�l ϕk(x) = 1, thus

hl(x) = h0(x) + f1(x)− f0(x) +
∑

1�k�l

θk(x)

so that

|hl(x)| � |f1(x)| − |h0(x)− f0(x)| −
∑

1�k�l

|θk(x)|

� 1/4− 10−6 −
∑

1�k�l

2−k10−6 > 0

by (3.2.3), (3.2.6) and (3.2.13).

If x ∈ E1
Y ∩B(0, 210) \B(0, 3 · 28 − η), then

∑
1�k�l ϕk(x) = 1− ϕ0(x),

so
hl(x) = h0(x) + (1− ϕ0(x))(f1(x)− f0(x)) +

∑

1�k�l

θk(x)

which implies

|hl(x)− f0(x)− (1− ϕ0(x))(f1(x)− f0(x))|
� |h0(x)− f0(x)|+

∑

1�k�l

|θk(x)| � 2.10−6.

But the second coordinate of f0(x) + (1− ϕ0(x))(f1(x)− f0(x)) is

|x|2 − 49 + (1− ϕ0)(x)(|x− d2|2 − |x|2 + 49)

= ϕ0(x)(|x|2 − 49) + (1− ϕ0(x))|x− d2|2 � 1/4,

by (3.2.2) and because |x| � 3 · 28 − η. Thus hl(x) �= 0 in this case also. We
deduce that hl has no zero in E1

Y , and N(l) = 0.

Sub-lemma 3.2.3. — N(k)−N(k − 1) is even for 1 � k � l.

Proof . — We observe that hk−1 don’t vanish on A, where A is the annu-
lus defined in (3.2.16), and we took ||θk||∞ very small so that hk does not
vanish on A as well. Next, by definition of ϕk, ϕk = 0 on A. Setting

mt(x) = hk−1(x) + t[hk(x)− hk−1(x)] = hk−1(x) + θk(x), (3.2.21)
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for x ∈ E1
Y ∩ B(xk, ρ2) and 0 � t � 1. Then m0 = hk−1 and m1 = hk on

E1
Y ∩B(xk, ρ2). Since mt(x) = hk−1(x)+tθ(x) for x ∈ E1

Y ∩A and 0 � t � 1,
so mt(x) �= 0 if we take θ small enough. Let βk > 0 such that |mt(x)| � βk
for x ∈ E1

Y ∩ A. Set S∞ = R2 ∪ {∞}, so that S∞ can be stereographically
identified with a sphere of dimension 2, we define π : R2 → S∞ by

π(x) =∞ if |x| � βk and π(x) =
x

βk − |x|
otherwise. (3.2.22)

Next, we set

pt(x) = π(mt(x)) for x ∈ E1
Y ∩B(xk, ρ2) and 0 � t � 1. (3.2.23)

Then pt(x) is a continuous function of x and t, which takes values in S∞.
By the definition of βk,

pt(x) =∞ for x ∈ E1
Y ∩A and 0 � t � 1. (3.2.24)

We want to replace the domain E1
Y ∩B(xk, ρ2) by an open set in a 2-plane

Pk. We keep our Bi-Hölder function ψk as above, which maps an open set V
of a 2-plane Pk onto E1

Y ∩B(xk, ρ2) and its inverse γ which is also Bi-Hölder
and maps E1

Y ∩B(xk, ρ2) onto V . For 0 � t � 1, we set

qt(x) = pt(ψk(x)) for x ∈ V and qt(x) =∞ for x ∈ Pk \ V. (3.2.25)

We check that qt is continuous in Pk×[0, 1]. It is continuous in V ×[0, 1], since
pt is continuous in [E1

Y ∩B(xk, ρ2)]× [0, 1]. It is also continuous in [Pk \V ]×
[0, 1], because it is ∞ here. Now if x ∈ ∂V , then ψk(x) ∈ E1

Y ∩ ∂B(xk, ρ2),
so there is a neighborhood of ψk(x) in B(xk, ρ2) which is contained in A,
and we have pt(ψk) =∞ on this neighborhood, so qt =∞ near x.

We set qt(∞) =∞, so qt is well defined on S′ = Pk ∪{∞} and it is clear
that each qt is continuous for 0 � t � 1.

Now since q0 and q1 are two continuous functions from the 2-sphere S′

to the 2-sphere S∞, we can compute their degrees. First, as q0 and q1 are
homotopic, they have the same degrees. We compute the degree of q0, for
example. Let

q−1
0 ({0}) = {y1, y2, ..., ym}, (3.2.26)

the set of zeroes of q0. This is a finite set since qt has only finite number
of zeroes for t � 1. Since each zero of q0 is simple and non-degenerate, for
each 1 � k � m, there exists a neighborhood Wk of yk such that

q0 is a homeomorphism from Wk to q0(Wk), (3.2.27)
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and
Wk ∩Wl = ∅ if k �= l. (3.2.28)

So the degree of q0 is computed as follows. We begin by 0, next, for 1 � k �
m, if q0 preserve the orientation of Wk, we add 1, if q0 doesn’t preserve the
orientation of Wk, we add -1. Then it is clear that

d(q0) is of the same parity as m. (3.2.29)

Here d(q) denote the degree of the function q. By the same arguments, we
have

d(q1) is of the same parity as the number of zeroes of q1. (3.2.30)

But d(q0) = d(q1) as above, we obtain

the number of zeroes of q0 is of the same parity as the number of zeroes of
q1. (3.2.31)

We want to prove next that the number of zeroes of hk−1 is of the same
parity as the number of zeroes of hk. Since hk−1 = hk outside the ball
B(xk, ρ2) and they both don’t vanish on E1

Y ∩A, we need only to consider
their number of zeroes in E1

Y ∩B(xk, ρ1). We verify that

the number of zeroes of hk−1+s in E1
Y ∩B(xk, ρ1) is equal to the number of

zeroes of qs in S′ for s = 0, 1. (3.2.32)

We verify for s = 0. If q0(x) = 0, then x ∈ V (otherwise q0(x) = ∞),
so q0(x) = p0(ψk(x)) and then p0(ψk(x)) = 0. Since m0(ψk(x)) = 0, we
have hk−1(ψk(x)) = 0. Because x ∈ V , we have ψk(x) ∈ B(xk, ρ1). So if
q0(x) = 0, then ψk(x) ∈ B(xk, ρ1) and is a zero of hk−1.

Conversely, if y ∈ B(xk, ρ1) is such that hk−1(y) = 0, then p0(y) = 0
and then there exists y′ ∈ V such that ψk(y

′) = y because ψk is a homeo-
morphism from V to B(xk, ρ1). Now q0(y

′) = p0(ψk(y
′)) = 0 and thus y′ is

a zero of q0.

So we have (3.2.32) for s = 0. The case s = 1 is the same, and we
have then (3.2.32). By (3.2.31), we obtain that the number of zeroes of
hk−1 is of the same parity as the number of zeroes of hk, which means that
N(k)−N(k − 1) is even. The sub-lemma follows.

Now by sub-lemma 3.2.3, we know that N(0)−N(1) is even, but it is 1,
so we obtain a contradiction, and we finish the proof of Lemma 3.2. �
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3.3. Proof of Theorem 2

Let U(y), y ∈ EY ∩B(0, 3 · 28) be the set of connected components V of
B(0, 210)\E such that y ∈ V . Since for each y ∈ EY , there is a neighborhood
W of y on which E is Bi-Hölder equivalent to a Y, we see that U(y) is locally
constant. By Lemma 3.2, we can connect b1 to another point bi, i �= 1, by a
curve in E1

Y , and we can suppose that i = 2. Because b1, b2 ∈ EY and U(y)
is locally constant on EY , we have U(b1) = U(b2). By Lemma 3.1, and the
fact that E is Bi-Hölder equivalent to a Y near each point of type Y, we
have

{V2, V3, V4} = U(b1)

and
{V1, V3, V4} = U(b2),

where Vi, 1 � i � 4 is as in Lemma 3.1. So we see that U(b1) �= U(b2), which
is a contradiction. We finish the proof of Theorem 2. �
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