Mathématiques

Tien Duc Luu
On some properties of three-dimensional minimal sets in \mathbb{R}^{4}

Tome XXII, $\mathrm{n}^{\circ} 3$ (2013), p. 465-493.
http://afst.cedram.org/item?id=AFST_2013_6_22_3_465_0
© Université Paul Sabatier, Toulouse, 2013, tous droits réservés.
L'accès aux articles de la revue «Annales de la faculté des sciences de Toulouse Mathématiques» (http://afst.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://afst.cedram. org/legal/). Toute reproduction en tout ou partie de cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques

On some properties of three-dimensional minimal sets in \mathbb{R}^{4}

Tien Duc LUU ${ }^{(1)}$

Abstract

We prove in this paper the Hölder regularity of Almgren minimal sets of dimension 3 in \mathbb{R}^{4} around a \mathbb{Y}-point and the existence of a point of particular type of a Mumford-Shah minimal set in \mathbb{R}^{4}, which is very close to a \mathbb{T}. This will give a local description of minimal sets of dimension 3 in \mathbb{R}^{4} around a singular point and a property of MumfordShah minimal sets in \mathbb{R}^{4}.

Résumé. - On prouve dans cet article la régularité Höldérienne pour les ensembles minimaux au sens d'Almgren de dimension 3 dans \mathbb{R}^{4} autour d'un point de type \mathbb{Y} et dans le cas d'un ensemble Mumford-Shah minimal dans \mathbb{R}^{4} qui est très proche d'un \mathbb{T}, l'existence d'un point avec une densité particulière. Cela donne une description locale des ensembles minimaux de dimension 3 dans \mathbb{R}^{4} autour d'un point singulier et une propriété des ensembles Mumford-Shah minimaux dans \mathbb{R}^{4}.

1. Introduction

In this paper we will prove two theorems. The first theorem is about local Hölder regularity of three-dimensional minimal sets in \mathbb{R}^{4} and the second theorem is about the existence of a point of a particular type of a Mumford-Shah minimal set, which is close enough to a cone of type \mathbb{T}.

Let us give the list of notions that we will use in this paper.
(*) Reçu le 22/03/2012, accepté le 20/12/2012
(1) Bâtiment 430, Département de Mathématique, Université Paris Sud XI, 91405 Orsay
luutienduc@gmail.com
Article proposé par Gilles Carron.
H^{d} the d-dimensional Hausdorff mesure.
$\theta_{A}(x, r)=\frac{H^{d}(A \cap B(x, r))}{r^{d}}$, where $A \subset \mathbb{R}^{n}$ is a set of dimension d and $x \in A$.
$\theta_{A}(x)=\lim _{r \rightarrow 0} \theta_{A}(x, r)$, called the density of A at x, if the limit exists.
Local Hausdorff distance $d_{x, r}(E, F)$. Let $E, F \subset \mathbb{R}^{n}$ be closed sets which meet the ball $B(x, r)$. We define
$d_{x, r}(E, F)=\frac{1}{r}[\sup \{\operatorname{dist}(z, F) ; x \in E \cap B(x, r)\}+\sup \{\operatorname{dist}(z, E) ; z \in F \cap B(x, r)\}]$.

Let $E, F \subset \mathbb{R}^{n}$ be closed sets and $H \subset \mathbb{R}^{n}$ be a compact set. We define

$$
d_{H}(E, F)=\sup \{\operatorname{dist}(x, F) ; x \in E \cap H\}+\sup \{\operatorname{dist}(x, E) ; x \in F \cap H\} .
$$

Convergence of a sequence of sets. Let $U \subset \mathbb{R}^{n}$ be an open set, $\left\{E_{k}\right\} \subset$ $U, k \geqslant 1$, be a sequence of closed sets in U and $E \subset U$. We say that $\left\{E_{k}\right\}$ converges to E in U and we write $\lim _{k \rightarrow \infty} E_{k}=E$, if for each compact $H \subset U$, we have

$$
\lim _{k \rightarrow \infty} d_{H}\left(E_{k}, E\right)=0
$$

Blow-up limit. Let $E \subset \mathbb{R}^{n}$ be a closed set and $x \in E$. A blow-up limit F of E at x is defined as

$$
F=\lim _{k \rightarrow \infty} \frac{E-x}{r_{k}}
$$

where $\left\{r_{k}\right\}$ is any positive sequence such that $\lim _{k \rightarrow \infty} r_{k}=0$ and the limit is taken in \mathbb{R}^{n}.

Now we give the definition of Almgren minimal sets of dimension d in \mathbb{R}^{n}.

Definition 1.1. - Let E be a closed set in \mathbb{R}^{n} and $d \leqslant n-1$ be an integer. An Almgren competitor (Al-competitor) of E is a closed set $F \subset \mathbb{R}^{n}$ that can be written as $F=\varphi(E)$, where $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a Lipschitz mapping such that $W_{\varphi}=\left\{x \in \mathbb{R}^{n} ; \varphi(x) \neq x\right\}$ is bounded.

An Al-minimal set of dimension d in \mathbb{R}^{n} is a closed set $E \subset \mathbb{R}^{n}$ such that $H^{d}(E \cap B(0, R))<+\infty$ for every $R>0$ and

$$
H^{d}(E \backslash F) \leqslant H^{d}(F \backslash E)
$$

for every Al-competitor F of E.

Next, we give the definition of Mumford-Shah (MS) minimal sets in \mathbb{R}^{n}.

Definition 1.2. - Let E be a closed set in \mathbb{R}^{n}. A Mumford-Shah competitor (also called $M S$-competitor) of E is a closed set $F \subset \mathbb{R}^{n}$ such that we can find $R>0$ such that

$$
\begin{equation*}
F \backslash B(0, R)=E \backslash B(0, R) \tag{1.2.1}
\end{equation*}
$$

and F separates $y, z \in \mathbb{R}^{n} \backslash B(0, R)$ when y, z are separated by E.
A Mumford-Shah minimal (MS-minimal) set in \mathbb{R}^{n} is a closed set $E \subset$ \mathbb{R}^{n} such that

$$
\begin{equation*}
H^{n-1}(E \backslash F) \leqslant H^{n-1}(F \backslash E) \tag{1.2.2}
\end{equation*}
$$

for any $M S$-competitor F of E.
Here, E separates y, z means that y and z lie in different connected components of $\mathbb{R}^{n} \backslash E$.

It is easy to show that any MS-minimal set in \mathbb{R}^{n} is also an Al-minimal set of dimension $n-1$ in \mathbb{R}^{n}. Next, if E is an MS-minimal set in \mathbb{R}^{n}, then $E \times \mathbb{R}$ is also an MS-minimal set in $\mathbb{R}^{n} \times \mathbb{R}$, by exercice 16 , p 537 of [5].

We give now the definition of minimal cones of type \mathbb{P}, \mathbb{Y} and \mathbb{T}, of dimension 2 and 3 in \mathbb{R}^{n}.

Definition 1.3.- A two-dimensional minimal cone of type Y is just a two-dimensional affine plane in \mathbb{R}^{n}. A three-dimensional minimal cone of type \mathbb{P} is a three-dimensional affine plane in \mathbb{R}^{n}.

Let S be the union of three half-lines in $\mathbb{R}^{2} \subset \mathbb{R}^{n}$ that start from the origin 0 and make angles 120° with each other at 0 . A two-dimensional minimal cone of type \mathbb{Y} is set of the form $Y^{\prime}=j(S \times L)$, where L is a line passing through 0 and orthogonal to \mathbb{R}^{2} and j is an isometry of \mathbb{R}^{n}. A three-dimensional minimal cone of type \mathbb{Y} is a set of the form $Y=j(S \times P)$, where P is a plane of dimension 2 passing through 0 and orthogonal to \mathbb{R}^{2} and j is an isometry of \mathbb{R}^{n}. We call $j(L)$ the spine of Y^{\prime} and $j(P)$ the spine of Y.

Take a regular tetrahedron $R \subset \mathbb{R}^{3} \subset \mathbb{R}^{n}$, centered at the origin 0 , let K be the cone centered at 0 over the union of the 6 edges of R. A twodimensional minimal cone of type \mathbb{T} is of the form $j(K)$, a three-dimensional minimal cone of type \mathbb{T} is a set of the form $T=j(K \times L)$, where L is the line passing through 0 and orthogonal to \mathbb{R}^{3} and j is an isometry of \mathbb{R}^{n}. We call $j(L)$ the spine of T.

We denote by d_{P}, d_{Y}, d_{T} the densities at the origin of the 3-dimensional minimal cones of type \mathbb{P}, \mathbb{Y} and \mathbb{T}, respectively. It is clear that $d_{P}<d_{Y}<$ d_{T}.

We can now define a Hölder ball for a set $E \subset \mathbb{R}^{n}$.

Definition 1.4. - Let E be a closed set in \mathbb{R}^{n}. Suppose that $0 \in E$. We say that $B(0, r)$ is a Hölder ball of E, of type \mathbb{P}, \mathbb{Y} or \mathbb{T} with exponent $1+\alpha$, if there exists a homeomorphism $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and a cone Y of dimension 2 or 3, centered at the origin, of type \mathbb{P}, \mathbb{Y} or \mathbb{T}, respectively, such that

$$
\begin{gather*}
|f(x)-x| \leqslant \alpha r \text { for } x \in B(0, r) \tag{1.4.1}\\
(1-\alpha)\left[\frac{|x-y|}{r}\right]^{(1+\alpha)} \leqslant \frac{|f(x)-f(y)|}{r} \leqslant(1+\alpha)\left[\frac{|x-y|}{r}\right]^{(1-\alpha)} \text { for } x, y \in B(0, r) \tag{1.4.2}
\end{gather*}
$$

$$
\begin{equation*}
E \cap B(0,(1-\alpha) r) \subset f(Y \cap B(0, r)) \subset E \cap B(0,(1+\alpha) r) \tag{1.4.3}
\end{equation*}
$$

For the sake of simplicity, we will say that E is Bi-Hölder equivalent to Y in $B(0, r)$, with exponent $1+\alpha$.

If in addition, our function f is of class $C^{1, \alpha}$, then we say that E is $C^{1, \alpha}$ equivalent to Y in the ball $B(0, r)$. Here, f is said to be of class $C^{1, \alpha}$ if f is differentiable and its differential is a Hölder continuous function, with exponent α.
J. Taylor in [11] has obtained the following theorem about local C^{1} regularity of two-dimensional minimal sets in \mathbb{R}^{3}.

Theorem 1.5. [11]. - Let E be a two-dimensional minimal set in \mathbb{R}^{3} and $x \in E$. Then there exists a radius $r>0$ such that in the ball $B(x, r)$, E is $C^{1, \alpha}$ equivalent to a minimal cone $Y(x, r)$ of dimension 2 , of type \mathbb{P}, \mathbb{Y} or \mathbb{T}. Here α is a universal positive constant.

As we know, any two-dimensional minimal cone in \mathbb{R}^{3} is automatically of type \mathbb{P}, \mathbb{Y} or \mathbb{T}. This is a great avantage when we study two-dimensional minimal sets of dimension 2 in \mathbb{R}^{3}, because each blow-up limit at some point of a two-dimensional minimal set is a minimal cone of the same dimension. So we can approximate our minimal set by cones which we know the structure of.

The problem of two-dimensional minimal sets in \mathbb{R}^{n} with $n>3$ is more difficult. Here we don't know the list of two-dimensional minimal cones. But G. David gives in section 14 of [3] a description of two-dimensional minimal
cones in \mathbb{R}^{n}. Thanks to this, he can prove the local Hölder regularity of two-dimensional minimal sets in \mathbb{R}^{n}.

Theorem 1.6. [3]. - Let E be a two-dimensional minimal set in \mathbb{R}^{n} and $x \in E$. Then for each $\alpha>0$, there exists a radius $r>0$ such that in the ball $B(x, r), E$ is Hölder equivalent to a two-dimensional minimal cone $Y(x, r)$, with exponent α.

The C^{1} regularity of two-dimensional minimal sets in \mathbb{R}^{n} needs more efforts. We have to prove that the local distance between E and a twodimensional minimal cone in $B(x, r)$ is of order r^{a}, where a is a positive universal constant when r tends to 0 . G. David in [4] shows the C^{1} regularity of E locally around x, but he needs to add an additional condition, called "full length"' to some blow-up limit of E in x.

Theorem 1.7. [4].- Let E be a two-dimensional minimal set in the open set $U \subset \mathbb{R}^{n}$ and $x \in E$. We suppose that some blow-up limit of E at x is a full length minimal cone. Then there is a unique blow-up limit X of E at x, and $x+X$ is tangent to E at x. In addition, there is a radius $r_{0}>0$ such that E is $C^{1, \alpha}$ equivalent to $x+X$ in the ball $B\left(x, r_{0}\right)$, where $\alpha>0$ is a universal constant.

Let us say more about the "full length" condition for a two dimensional minimal cone F centered at the origin in \mathbb{R}^{n}. As in [3, Sect 14], the set $K=F \cap \partial B(0,1)$ is a finite union of great circles and arcs of great circles $\mathfrak{C}_{j}, j \in J$. The \mathfrak{C}_{j} can only meet when they are arcs of great circles and only by sets of 3 and at a common endpoint. Now for each \mathfrak{C}_{j} whose length is more than $\frac{9 \pi}{10}$, we cut \mathfrak{C}_{j} into 3 sub-arcs $\mathfrak{C}_{j, k}$ with the same length so that we have a decomposition of K into disjoint arcs of circles $\mathfrak{C}_{j, k},(j, k) \in \tilde{J}$ with the same length and for each $\mathfrak{C}_{j, k}$, we have length $\left(\mathfrak{C}_{j, k}\right) \leqslant 9 \pi / 10$. The full lengh condition says that if we have another net of geodesics $K_{1}=$ $\cup_{(i, j) \in \tilde{J}} \mathfrak{C}_{j, k}^{1}$, for which the Hausdorff distance $d\left(\mathfrak{C}_{j, k}, \mathfrak{C}_{j, k}^{1}\right) \leqslant \eta$, where η is a small constant which depends only on n, and if $H^{1}\left(K_{1}\right)>H^{1}(K)$, then we can find a Lipschitz function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $f(x)=x$ out of the ball $B(0,1)$ and $f(B(0,1)) \subset B(0,1)$ such that $H^{2}\left(f\left(F_{1}\right) \cap B(0,1)\right) \leqslant$ $H^{2}\left(F_{1} \cap B(0,1)\right)-C\left[H^{1}\left(K_{1}\right)-H^{1}(K)\right]$. Here $C>0$ is a constant and F_{1} is the cone over K_{1}. See [4, Sect 2] for more details.

It happens that all two-dimensional minimal cones in \mathbb{R}^{3} satisfy the full length condition. So the theorem of G. David is a generalization of the theorem of J. Taylor.

For minimal sets of dimension $\geqslant 3$, little is known. Almgren in [1] showed that if F is a three-dimensional minimal cone in \mathbb{R}^{4}, centered at the origin and over a smooth surface in \mathbb{S}^{3}, the unit sphere of dimension 3 , then E must be a 3-plane. Then J. Simon in [10] showed that this is true for hyper minimal cones in \mathbb{R}^{n} with $n<7$. That is, if F is a minimal cone of dimension $n-1$ in \mathbb{R}^{n}, centered at the origin and over a smooth surface in \mathbb{S}^{n-1}, then F must be an $n-1$ plane. There is no theorem yet about the regularity of minimal sets of dimension $\geqslant 3$ with singularities.

Our first theorem is to prove a local Hölder regularity of three-dimensional minimal sets in \mathbb{R}^{4}. But we don't know the list of three-dimensional minimal cones in \mathbb{R}^{4} and we don't have a nice description of three-dimensional minimal cones as we have for two-dimensional minimal cones. So we shall restrict to some particular type of points, at which we can obtain some information about the blow-up limits.

Now let E be a three-dimensional minimal set in \mathbb{R}^{4} and $x \in E$. We want to show that E is Bi -Hölder equivalent to a three-dimensional minimal cone of type \mathbb{P} or \mathbb{Y} in the ball $B(x, r)$, for some radius $r>0$. If $\theta_{E}(x)=d_{P}$, then W. Allard in [2] showed that there exists a radius $r>0$ such that in the ball $B(x, r), E$ is C^{1} equivalent to a 3 -dimensional plane. We consider then the next possible density of E at x, so we suppose that $\theta_{E}(x)=d_{Y}$. Since every blow-up limit of E at x is a 3-dimensional minimal cone of type \mathbb{Y}, then for each $\epsilon>0$, there exists a radius $r>0$ and a 3-dimensional minimal cone $Y(x, r)$ of type \mathbb{Y} such that

$$
\begin{equation*}
d_{x, r}(E, Y(x, r)) \leqslant \epsilon . \tag{*}
\end{equation*}
$$

By using $(*)$ and the minimality of E, we shall be able to approximate E by 3-dimensional minimal cones of type \mathbb{P} or \mathbb{Y} at every point in $E \cap B(x, r / 2)$ and at every scale $t \leqslant r / 2$. We shall then use Theorem 1.1 in [6] to conclude that E is Bi -Hölder equivalent to a 3 -dimensional minimal cone of type \mathbb{Y} in the ball $B(x, r / 2)$. Our first theorem is the following.

Theorem 1. - Let E be a 3-dimensional minimal set in \mathbb{R}^{4} and $x \in E$ such that $\theta_{E}(x)=d_{Y}$. Then for each $\alpha>0$, we can find a radius $r>0$, which depends also on x, such that $B(x, r)$ is a Hölder ball (see Def 1.4) of type \mathbb{Y} of E, with exponent $1+\alpha$.

Our second theorem concerns Mumford-Shah minimal sets in \mathbb{R}^{4}. In [3], G. David showed that there are only 3 types of Mumford-Shah minimal sets in \mathbb{R}^{3}, which are the cones of type \mathbb{P}, \mathbb{Y} and \mathbb{T}. The most difficult part is to show that if F is a Mumford-Shah minimal set in \mathbb{R}^{3}, which is close enough in $B(0,2)$ to a \mathbb{T} centered at 0 , then there must be a \mathbb{T}-point of F in $B(0,1)$. To prove this proposition, G. David used very nice techniques which involve
the list of connected components. We want to obtain a similar result for a Mumford-Shah minimal set in \mathbb{R}^{4} which is close enough to a \mathbb{T} of dimension 3. But we cannot obtain a result which is as good as in [3, 18.1]. The reason is that we don't know if there exists a minimal cone C of dimension 3 in \mathbb{R}^{4}, centered at 0 , which satisfies $d_{Y}<\theta_{C}(0)<d_{T}$. Our second theorem is the following.

Theorem 2.- There exists an absolute constant $\epsilon>0$ such that the following holds. Let E be an MS-minimal set in $\mathbb{R}^{4}, r>0$ be a radius, and T be a 3-dimensional minimal cone of type \mathbb{T} centered at the origin such that

$$
d_{0, r}(E, T) \leqslant \epsilon
$$

Then in the ball $B(0, r)$, there is a point of E which is neither of type \mathbb{P} nor \mathbb{Y}.

See Definition 2.5 for the definition of points of type \mathbb{P} and \mathbb{Y}. We divide the paper into two parts. In the first part, we prove Theorem 1. In the second part, we prove Theorem 2.

I would like to thank Professor Guy David for many helpful discussions on this paper.

2. Hölder regularity near a point of type \mathbb{Y} for a 3-dimensional minimal set in \mathbb{R}^{4}

In this section we prove Theorem 1. We start with the following lemma.
Lemma 2.1. - Let F be a 3-dimensional minimal cone in \mathbb{R}^{4}, centered at the origin, and let $x \in F \cap \partial B(0,1)$. Then each blow-up limit G of F at x is a 3-dimensional minimal cone G of type \mathbb{P}, \mathbb{Y} or \mathbb{T} and centered at 0 . The type of G depends only on x and $\theta_{E}(x)=\theta_{G}(0)$.

We define the type of x to be the type of G.
Proof. - We denote by $0 x$ the line passing by 0 and x. Suppose that G is a blow-up limit of F at x. Then $G=\lim _{k \rightarrow \infty} \frac{F-x}{r_{k}}$ with $\lim _{k \rightarrow \infty} r_{k}=0$. Let $y \in G$, we want to show that $y+0 x \subset G$. Setting $F_{k}=\frac{F-x}{r_{k}}$, as $\left\{F_{k}\right\}$ converges to G, we can find a sequence $y_{k} \in F_{k}$ such that $\left\{y_{k}\right\}_{k=1}^{\infty}$ converges to y. Setting $z_{k}=r_{k} y_{k}+x$, then $z_{k} \in F$ by definition of F_{k}, and z_{k} converges to x because r_{k} converges to 0 . We fix $\lambda \in \mathbb{R}$ and we set $v_{k}=\left(1+\lambda r_{k}\right) z_{k}$. Then $v_{k} \in F$ as F is a cone centered at 0 . We have next that $w_{k}=r_{k}^{-1}\left(v_{k}-x\right) \in F_{k}$. On the other hand,

$$
\begin{aligned}
w_{k} & =r_{k}^{-1}\left(\left(1+\lambda r_{k}\right) z_{k}-x\right) \\
& =r_{k}^{-1}\left(\left(1+\lambda r_{k}\right)\left(r_{k} y_{k}+x\right)-x\right) \\
& =r_{k}^{-1}\left(r_{k} y_{k}+\lambda r_{k}^{2} y_{k}+\lambda r_{k} x\right) \\
& =y_{k}+\lambda x+\lambda r_{k} y_{k}
\end{aligned}
$$

we see that $\lim _{k \rightarrow \infty} w_{k}=y+\lambda x$. As $\left\{F_{k}\right\}$ converges to G, we see that $y+\lambda x \in G$. Call H the tangent plane to $\partial B(0,1)$ at x. Since for each $y \in G$ and $\lambda \in \mathbb{R}$, we have $y+\lambda x \in G$, we have that $G=G^{\prime} \times O x$, with $G^{\prime} \subset G \cap H$. Next, as F is a minimal set and G is a blow-up limit of F at x, by [3, 7.31], G is a minimal cone centered at 0 . But $G=G^{\prime} \times 0 x$, then by [3, 8.3], G^{\prime} is a minimal cone in H, centered at x. Since H is a 3 -plane, we must have that G^{\prime} is a 2 -dimensional minimal cone of type \mathbb{P}, \mathbb{Y} or \mathbb{T} and then G is also a 3 -dimensional minimal cone of type \mathbb{P}, \mathbb{Y} or \mathbb{T}. Next, as G is a blow-up limit of F at x, by $[3,7.31]$, we have $\theta_{F}(x)=\theta_{G}(0)$.

We see from this lemma that for each $x \in F \backslash\{0\}$, where F is a 3dimensional minimal cone in \mathbb{R}^{4} centered at the origin,

$$
\begin{equation*}
\theta_{F}(x) \text { can take only one of the three values } d_{P}, d_{Y}, d_{T} \text {. } \tag{1}
\end{equation*}
$$

But we do not know the list of possible values of $\theta_{F}(0)$. However, the following lemma says that for this cone F, it is not possible that $d_{P}<\theta_{F}(0)<d_{Y}$.

Lemma 2.2. - There does not exist a 3-dimensional minimal cone F in \mathbb{R}^{4}, centered at the origin such that $d_{P}<\theta_{F}(0)<d_{Y}$.

Proof. - Suppose that there is a cone F as in the hypothesis and

$$
\begin{equation*}
d_{P}<\theta_{F}(0)<d_{Y} . \tag{2.2.1}
\end{equation*}
$$

We first show that

$$
\begin{equation*}
\text { for each } x \in F \cap \partial B(0,1) \text {, we have } \theta_{F}(0) \geqslant \theta_{F}(x) \text {. } \tag{2.2.2}
\end{equation*}
$$

Indeed, since F is a minimal cone, for each $z \in F$, the function $\theta_{F}(z, t)$ is nondecreasing. So for $r>0$, we have $\theta_{F}(x, r) \geqslant \theta_{F}(x)$, which means that $H^{3}(F \cap B(x, r)) / r^{3} \geqslant \theta_{F}(x)$. Since $B(x, r) \subset B(0, r+1)$, we obtain $H^{3}(F \cap B(x, r)) \leqslant H^{3}(F \cap B(0, r+1))$ and thus $H^{3}(F \cap B(0, r+1)) / r^{3} \geqslant$ $\theta_{F}(x)$. We deduce that $\left(H^{3}(F \cap B(0, r+1)) /(r+1)^{3}\right)\left((r+1)^{3} / r^{3}\right) \geqslant \theta_{F}(x)$. Since F is a cone centered at $0, H^{3}(F \cap B(0, r+1)) /(r+1)^{3}=\theta_{F}(0)$ for each $r>0$. We deduce then $\theta_{F}(0)\left((r+1)^{3} / r^{3}\right) \geqslant \theta_{F}(x)$ for each $r>0$. We let $r \rightarrow+\infty$ and we obtain then $\theta_{F}(0) \geqslant \theta_{F}(x)$, which is (2.2.2).

Now (2.2.1) and (2.2.2) give us that $\theta_{F}(x)<d_{Y}$ for each $x \in F \cap$ $\partial B(0,1)$. By (1), we have $\theta_{F}(x)=d_{P}$ for $x \in F \cap \partial B(0,1)$. So by [2, 8.1], there exists a neighborhood U_{x} of x in \mathbb{R}^{4} such that $F \cap U_{x}$ is a 3-dimensional smooth manifold. We deduce that $F \cap \partial B(0,1)$ is a 2 -dimensional smooth sub-manifold of $\partial B(0,1)$. By [1, Lemma 1], F is a 3-plane passing through 0 . But this implies that $\theta_{F}(0)=d_{P}$, we obtain then a contradiction, Lemma 2.2 follows.

LEMMA 2.3. - Let F be a 3-dimensional minimal cone in \mathbb{R}^{4}, centered at the origin 0 . If $\theta_{F}(0)=d_{Y}$, then F is a 3-dimensional cone of type \mathbb{Y}.

Proof. - As in the argument for (2.2.2), we have that for each $x \in F \cap$ $\partial B(0,1), \theta_{F}(x) \leqslant \theta_{F}(0)=d_{Y}$. So $\theta_{F}(x)$ can only take one of the two values d_{P} or d_{Y}. If all $x \in F \cap \partial B(0,1)$ are of type \mathbb{P}, then by the same argument as above, F will be a 3 -plane, and then $\theta_{F}(0)=d_{P}$, a contradiction. So there must be a point $y \in F \cap \partial B(0,1)$, such that $\theta_{F}(y)=d_{Y}$. By the same argument like above, $\theta_{F}(0)(r+1)^{3} / r^{3} \geqslant \theta_{F}(y, r)$ for each $r>0$. Letting $r \rightarrow \infty$ and noting that $\theta_{F}(y, r)$ is non-decreasing in r, we have $d_{Y} \geqslant \lim _{r \rightarrow \infty} \theta_{F}(y, r)$. But $\theta_{F}(y, r) \geqslant \theta_{F}(y)=d_{Y}$ for each $r>0$, so we must have $\theta_{F}(y, r)=d_{Y}$ for $r>0$. By [3, 6.2], F must be a cone centered at y. But we have also that F is a cone centered at 0 . So F is of the form $F=F^{\prime} \times 0 y$, where F^{\prime} is a cone in a 3 -plane H passing through 0 and orthogonal to $0 y$. Since F is a minimal cone, by $[3,8.3], F^{\prime}$ is also a 2 dimensional minimal cone in H and centered at 0 . So F^{\prime} must be a cone of type \mathbb{P}, \mathbb{Y} or \mathbb{T}. Since $\theta_{F}(0)=d_{Y}$, we must have that F^{\prime} is a 2 -dimensional minimal cone of type \mathbb{Y} and we deduce that F is a 3 -dimensional minimal cone of type \mathbb{Y}.

We can now consider 3-dimensional minimal sets in \mathbb{R}^{4}. We start with the following lemma.

Lemma 2.4.-Let E be a 3-dimensional minimal set in \mathbb{R}^{4}. Then
(i) There does not exist a point $z \in E$ such that $d_{P}<\theta_{E}(z)<d_{Y}$.
(ii) If $x \in E$ such that $\theta_{E}(x)=d_{P}$, then each blow-up limit of E at x is a 3-dimensional plane.
(iii) If $\theta_{E}(x)=d_{Y}$, then each blow-up limit of E at x is a 3-dimensional minimal cone of type \mathbb{Y}.

Proof. - The proof uses Lemmas 2.2 and 2.3. Take any point $z \in E$, let F be a blow-up limit of E at z. Then by [3, 7.31], F is a cone and $\theta_{F}(0)=\theta_{E}(x)$. By Lemma 2.2, it is not possible that $d_{P}<\theta_{F}(0)<d_{Y}$, which means that it is also not possible that $d_{P}<\theta_{E}(x)<d_{P}$, (i) follows.

If $x \in E$ such that $\theta_{E}(x)=d_{P}$, then any blow-up limit F of E at x satisfies $\theta_{F}(0)=\theta_{E}(x)=d_{P}$. By the same arguments as in Lemma 2.2, for each $y \in F \cap \partial B(0,1), \theta_{F}(y) \leqslant \theta_{F}(0)=d_{P}$. We deduce that $\theta_{F}(y)=d_{P}$ for each $y \in F \cap \partial B(0,1)$, and then F will be a 3 -dimensional minimal cone over a smooth sub-manifold of $\partial B(0,1)$. By [1, Lemma 1$], F$ must be a 3 -dimensional plane, (ii) follows.

If $x \in E$ such that $\theta_{E}(x)=d_{Y}$, then any blow-up limit F of E at x satisfies $\theta_{F}(0)=d_{Y}$. By Lemma 2.3, F must be a 3 -dimensional minimal cone of type \mathbb{Y}, (iii) follows.

Lemma 2.4 allows us to define the points of type \mathbb{P} and \mathbb{Y} of a 3dimensional minimal set in \mathbb{R}^{4}.

Definition 2.5.-Let E be a 3-dimensional minimal set in \mathbb{R}^{4} and $x \in E$. We call x a point of type \mathbb{P} if $\theta_{E}(x)=d_{P}$. We call x a point of type \mathbb{Y} if $\theta_{E}(x)=d_{Y}$.

The following proposition says that if a 3 -dimensional minimal set E is close enough to a 3-dimensional plane P in the ball $B(x, 2 r)$, then E is Bi-Hölder equivalent to P in $B(x, r)$.

Proposition 2.6. - For each $\alpha>0$, we can find $\epsilon>0$ such that the following holds.

Let E be a 3-dimensional minimal set in \mathbb{R}^{4} and $x \in E$. Let P be a 3-dimensional plane such that

$$
\begin{equation*}
d_{x, 2^{5} r}(E, P) \leqslant \epsilon \tag{2.6.1}
\end{equation*}
$$

Then E is Bi-Hölder equivalent to P in the ball $B(x, r)$, with Hölder exponent $1+\alpha$.

Proof. - Take any point $y \in B(x, r)$. Since $B\left(y, 2^{4} r\right) \subset B\left(x, 2^{5} r\right)$, we have

$$
\begin{equation*}
d_{y, 2^{4} r}(E, P) \leqslant 2 d_{x, 2^{5} r}(E, P) \leqslant 2 \epsilon \tag{2.6.2}
\end{equation*}
$$

By [3, 16.43], for each $\epsilon_{1}>0$, we can find $\epsilon>0$ such that if (2.6.2) holds, then

$$
\begin{align*}
H^{3}\left(E \cap B\left(y, 2^{3} r\right)\right) & \leqslant H^{3}\left(P \cap B\left(y,\left(1+\epsilon_{1}\right) 2^{4} r\right)\right)+\epsilon_{1} r^{3} \\
& \leqslant d_{P}\left(2^{3} r\right)^{3}+C \epsilon_{1} r^{3} \tag{2.6.3}
\end{align*}
$$

Now (2.6.3) implies that $\theta_{E}\left(y, 2^{3} r\right) \leqslant d_{P}+C \epsilon_{1}$. If ϵ_{1} is small enough, then $\theta_{E}(y) \leqslant \theta_{E}\left(y, 2^{3} r\right)<d_{Y}$. We deduce that $\theta_{E}(y)=d_{P}$ and y is a \mathbb{P} point.

Since $\theta_{E}(y, t)$ is a non-decreasing function in t, we have

$$
\begin{equation*}
0 \leqslant \theta_{E}(y, t)-\theta_{E}(y) \leqslant C \epsilon_{1} \text { for } 0<t \leqslant 2^{3} r \tag{2.6.4}
\end{equation*}
$$

By [3, 7.24], for each $\epsilon_{2}>0$, we can find $\epsilon_{1}>0$ such that if (2.6.4) holds, then there exists a 3 -dimensional minimal cone F, centered at y, such that

$$
\begin{equation*}
d_{y, t / 2}(E, F) \leqslant \epsilon_{2} \text { for } 0<t \leqslant 2^{3} r \tag{2.6.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\theta_{E}\left(y, 2^{2} r\right)-\theta_{F}\left(y, 2^{2} r\right)\right| \leqslant \epsilon_{2} \tag{2.6.7}
\end{equation*}
$$

Since $d_{P} \leqslant \theta_{E}\left(y, 2^{2} r\right) \leqslant d_{P}+C \epsilon_{1}$, we deduce from (2.6.7) that $\theta_{F}\left(y, 2^{2} r\right) \leqslant$ $d_{P}+C \epsilon_{1}+\epsilon_{2}$. So if ϵ_{1} and ϵ_{2} are small enough, then $\theta_{F}\left(y, 2^{2} r\right)<d_{Y}$. Which implies $\theta_{F}(y)<d_{Y}$. Since F is a minimal cone centered at y, we deduce that F must be a 3 -dimensional plane, by the same arguments as in second part of Lemma 2.4.

Now we can conclude that for each $y \in E \cap B(x, r)$ and each $t \leqslant r$, there exists a 3 -dimensional plane $P(y, t)$, which is F in (2.6.5), such that $d_{y, t}(E, P(y, t)) \leqslant \epsilon_{2}$. By $[6,2.2]$, for each $\alpha>0$, we can find $\epsilon_{2}>0$, and then $\epsilon>0$, such that E is $\mathrm{Bi}-H o ̈ l d e r ~ e q u i v a l e n t ~ t o ~ a ~ P ~ i n ~ t h e ~ b a l l ~$ $B(x, r)$.

Proposition 2.7. - For each $\eta>0$, we can find $\epsilon>0$ with the following properties. Let E be a minimal set of dimension 3 in \mathbb{R}^{4} and Y be a 3-dimensional minimal cone of type \mathbb{Y}, centered at the origin. Suppose that $d_{0,1}(E, Y) \leqslant \epsilon$. Then in the ball $B(0, \eta)$, there must be a point $y \in E$, which is not of type \mathbb{P}.

Proof. - Suppose that the lemma fails. Then each $z \in B(0, \eta)$ is of type \mathbb{P}. We note F_{1}, F_{2}, F_{3} the three half-plane of dimension 3 which form Y and L the spine of \mathbb{Y}, which is a plane of dimension 2 . Then $F_{i}, 1 \leqslant i \leqslant 3$ have common boundary L. Take $w_{i} \in F_{i} \cap \partial B(0, \eta / 4), 1 \leqslant i \leqslant 3$, such that the distance $\operatorname{dist}\left(w_{i}, L\right)=\eta / 4$. We see that the w_{i} lie in a 2 -dimensional plane orthogonal to L. Since $d_{0,1}(E, Y) \leqslant \epsilon$, we have that for each $1 \leqslant i \leqslant 3$, there exists $z_{i} \in E$ such that $d\left(z_{i}, w_{i}\right) \leqslant \epsilon$. Now $d\left(z_{i}, 0\right) \leqslant d\left(w_{i}, 0\right)+\epsilon=$ $\eta / 4+\epsilon<3 \eta / 8$ and $\operatorname{dist}\left(z_{i}, L\right) \geqslant \operatorname{dist}\left(w_{i}, L\right)-\epsilon=\eta / 4-\epsilon>3 \eta / 16$. So if ϵ is small enough, we have that for each $1 \leqslant i \leqslant 3$, the ball $B\left(z_{i}, \eta / 8\right)$ does not meet L. As a consequence, Y coincide with F_{i} in the ball $B\left(z_{i}, \eta / 8\right)$ for $1 \leqslant i \leqslant 3$. We have next

$$
\begin{align*}
d_{z_{i}, \eta / 8}\left(E, F_{i}\right) & =d_{z_{i}, \eta / 8}(E, Y) \\
& \leqslant \frac{8}{\eta} d_{0,1}(E, Y) \\
& \leqslant \frac{8 \epsilon}{\eta} \tag{2.7.1}
\end{align*}
$$

Take a very small constant $\alpha>0$, say, 10^{-15}. Then by Proposition 2.6, we can find $\epsilon>0$ such that if (2.7.1) holds, then
E is $\mathrm{Bi}-\mathrm{Hölder}$ equivalent to F_{i} in the ball $B\left(z_{i}, \eta / 2^{8}\right)$ for each $1 \leqslant i \leqslant 3$ with Hölder exponent $1+\alpha$.

Next, since we suppose that each $z \in B(0, \eta)$ is of type \mathbb{P}, we have that there exists a radius $r_{z}>0$, such that
E is Bi -Hölder equivalent to a 3 -dimensional plane in the ball $B\left(z, r_{z}\right)$, with exponent $1+\alpha$.

In the ball $B(0, \eta)$, we have $d_{0, \eta}(E, Y) \leqslant \frac{1}{\eta} d_{0,1}(E, Y) \leqslant \frac{\epsilon}{\eta}$.

We can adapt the arguments in [3], section 17 to obtain that there does not exist a set E, which satisfies the conditions (2.7.2), (2.7.3) and (2.7.4). The idea is as follows, we construct a sequence of simple and closed curves $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{k}$ such that $\gamma_{k} \cap E=\varnothing$ and γ_{0} intersects E transversally at exactly 3 points in the ball $B\left(z_{i}, \eta / 2^{8}\right)$. For each $0 \leqslant i \leqslant k-1, \gamma_{i}$ intersects E transversally at a finite number of points and $\left|\gamma_{i} \cap E\right|-\left|\gamma_{i+1} \cap E\right|$ is even, here $\left|\gamma_{i} \cap E\right|$ denotes the number of intersections of γ_{i} with E. This is impossible since $\left|\gamma_{0} \cap E\right|=3$ and $\left|\gamma_{k} \cap E\right|=0$. We obtain then a contradiction. Proposition 2.7 follows.

Lemma 2.8. - For each $\delta>0$, we can find $\epsilon>0$ such that the following holds.

Let F be a 3-dimensional minimal cone in \mathbb{R}^{4}, centered at the origin. Suppose that $d_{Y}<\theta_{F}(0)<d_{Y}+\epsilon$. Then there exists a 3-dimensional minimal cone Y_{F}, of type \mathbb{Y}, centered at 0 such that $d_{0,1}\left(F, Y_{F}\right) \leqslant \delta$.

Proof. - Suppose that the lemma fails. Then there exists $\delta>0$, such that we can find 3 -dimensional minimal cones $F_{1}, \ldots, F_{k}, \ldots$ centered at 0 , satisfying $d_{Y} \leqslant \theta_{F_{i}} \leqslant d_{Y}+1 / 2^{i}$, and for any 3 -dimensional minimal cone Y of type \mathbb{Y}, centered at 0 , we have $d_{0,1}\left(Y, F_{i}\right)>\delta$.

Now we can find a sub-sequence $\left\{F_{j_{k}}\right\}_{k=1}^{\infty}$ of $\left\{F_{i}\right\}_{i=1}^{\infty}$ such that this subsequence converges to a closed set $G \subset \mathbb{R}^{4}$. By [3, 3.3], G is also a minimal set. Since each $F_{i_{k}}$ is a cone centered at $0, G$ is also a cone centered at 0 . So G is a 3 -dimensional minimal cone centered at 0 . By [3, 3.3], we have

$$
\begin{equation*}
H^{3}(G \cap B(0,1)) \leqslant \liminf _{k \rightarrow \infty} H^{3}\left(F_{j_{k}} \cap B(0,1)\right) \tag{2.8.1}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\theta_{G}(0) \leqslant \liminf _{k \rightarrow \infty}\left(d_{Y}+1 / 2^{j_{k}}\right)=d_{Y} \tag{2.8.2}
\end{equation*}
$$

By [3, 3.12], we have

$$
\begin{equation*}
H^{3}(G \cap \bar{B}(0,1)) \geqslant \limsup _{k \rightarrow \infty} H^{3}\left(F_{j_{k}} \cap \bar{B}(0,1)\right) \tag{2.8.3}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\theta_{G}(0) \geqslant \limsup _{k \rightarrow \infty}\left(d_{Y}+1 / 2^{j_{k}}\right)=d_{Y} \tag{2.8.4}
\end{equation*}
$$

From (2.8.2) and (2.8.4), we have that $\theta_{G}(0)=d_{Y}$. Then by Lemma 2.3, G must be a 3 -dimensional minimal cone of type \mathbb{Y}, centered at 0 . Since $\lim _{k \rightarrow \infty} F_{j, k}=G$, there is $k>0$ such that $d_{0,1}\left(F_{j_{k}}, G\right) \leqslant \delta / 2$, which is a contradiction. The lemma follows.

The following lemma is similar to Lemma 2.8, but we consider minimal sets in general.

Lemma 2.9. - For each $\delta>0$, we can find $\epsilon>0$ such that the following holds.

Suppose that E is a 3-dimensional minimal set in \mathbb{R}^{4} and $0 \in E$. Suppose that

$$
\begin{equation*}
d_{Y} \leqslant \theta_{E}(0) \leqslant d_{Y}+\epsilon, \tag{2.9.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta_{E}(0,4)-\theta_{E}(0) \leqslant \epsilon \tag{2.9.2}
\end{equation*}
$$

Then there exists a 3-dimensional minimal cone Y_{E}, of type \mathbb{Y}, centered at 0 such that

$$
d_{0,1}\left(E, Y_{E}\right) \leqslant \delta
$$

Proof. - By [3, 7.24], for each $\epsilon_{1}>0$, we can find $\epsilon>0$ such that if (2.9.2) holds, then there is a 3 -dimensional minimal cone F centered at the origin, such that

$$
\begin{equation*}
d_{0,2}(F, E) \leqslant \epsilon_{1} \tag{2.9.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\theta_{F}(0,2)-\theta_{E}(0,2)\right| \leqslant \epsilon_{1} . \tag{2.9.4}
\end{equation*}
$$

Since E is minimal, $\theta_{E}(0,4) \geqslant \theta_{E}(0,2) \geqslant \theta_{E}(0)$. So from (2.9.1) and (2.9.2), we have that $d_{Y} \leqslant \theta_{E}(0,2) \leqslant d_{Y}+2 \epsilon$. With (2.9.4), we have

$$
\begin{equation*}
d_{Y}-\epsilon_{1} \leqslant \theta_{F}(0,2) \leqslant d_{Y}+2 \epsilon+\epsilon_{1} \tag{2.9.5}
\end{equation*}
$$

Now if we choose ϵ_{1} small enough, then $\theta_{F}(0)=\theta_{F}(0,2) \geqslant d_{Y}-\epsilon_{1}>d_{P}$, so by Lemma 2.2 , we have $\theta_{F}(0) \geqslant d_{Y}$. Thus

$$
\begin{equation*}
d_{Y} \leqslant \theta_{F}(0) \leqslant d_{Y}+2 \epsilon+\epsilon_{1} \tag{2.9.6}
\end{equation*}
$$

By Lemma 2.8, for each $\epsilon_{3}>0$, we can find $\epsilon_{1}>0$, and then $\epsilon>0$, such that if (2.9.6) holds, then there is a 3 -dimensional minimal cone Y_{F} of type \mathbb{Y}, centered at 0 such that

$$
\begin{equation*}
d_{0,2}\left(F, Y_{F}\right) \leqslant \epsilon_{3} \tag{2.9.7}
\end{equation*}
$$

From (2.9.3) and (2.9.7) we have

$$
\begin{equation*}
d_{0,1}\left(E, Y_{F}\right) \leqslant 2\left(d_{0,2}(E, F)+d_{0,2}\left(F, Y_{F}\right)\right) \leqslant 2\left(\epsilon_{1}+\epsilon_{3}\right) \tag{2.9.8}
\end{equation*}
$$

Now for each $\delta>0$, we choose $\epsilon>0$ such that $2\left(\epsilon_{1}+\epsilon_{3}\right)<\delta$, we set then $Y_{E}=Y_{F}$ and the lemma follows.

We are ready to prove Theorem 1.

Theorem 2.10. - For each $\alpha>0$, we can find $\epsilon>0$ such that the following holds.

Let E be a 3-dimensional minimal set in \mathbb{R}^{4}, which contains the origin 0. Suppose that there exists a radius $r>0$ such that

$$
\begin{equation*}
d_{Y} \leqslant \theta_{E}(0) \leqslant d_{Y}+\epsilon, \tag{2.10.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta_{E}\left(0,2^{11} r\right)-\theta_{E}(0) \leqslant \epsilon \tag{2.10.2}
\end{equation*}
$$

Then E is Bi-Hölder equivalent to a 3-dimensional minimal cone Y of type \mathbb{Y} and centered at 0 in the ball $B(0, r)$, with Hölder exponent $1+\alpha$.

Proof. - By Lemma 2.9, for each $\epsilon_{1}>0$, we can find $\epsilon>0$ such that if (2.10.1) and (2.10.2) hold, then there exists a 3 -dimensional minimal cone Y, of type \mathbb{Y}, centered at 0 such that

$$
\begin{equation*}
d_{0,2^{9} r}(E, Y) \leqslant \epsilon_{1} . \tag{2.10.3}
\end{equation*}
$$

We consider a point $y \in E \cap B(0, r)$. We set

$$
\begin{equation*}
E_{Y}=\{z \in E \cap \bar{B}(0,4 r)\} z \text { is not a } \mathbb{P} \text {-point. } \tag{2.10.4}
\end{equation*}
$$

We note that E_{Y} is closed. Indeed, if z is an accumulation point of E_{Y}, then if z is a \mathbb{P}-point, then there exists a neighborhood V_{z} of z in E such
that V_{z} has only points of type \mathbb{P}, as in the proof of Proposition 2.6, which is not possible. So z cannot be a \mathbb{P}-point and as a consequence, $z \in E_{Y}$.

Case 1, $y \in E_{Y}$.
Since y is not a \mathbb{P}-point, $\theta_{E}(x) \neq d_{P}$, then by Lemma 2.4 , we have

$$
\begin{equation*}
\theta_{E}(y) \geqslant d_{Y} \tag{2.10.5}
\end{equation*}
$$

Next, $B\left(y, 2^{8} r\right) \subset B\left(0,2^{9} r\right)$, by (2.10.3), we have

$$
\begin{equation*}
d_{y, 2^{8} r}(E, Y) \leqslant 2 d_{0,2^{9} r}(E, Y) \leqslant 2 \epsilon_{1} . \tag{2.10.6}
\end{equation*}
$$

By [3, 16.43], for each $\epsilon_{2}>0$, we can find $\epsilon_{1}>0$ such that if (2.10.6) holds, then

$$
\begin{equation*}
H^{3}\left(E \cap B\left(y, 2^{7} r\right)\right) \leqslant H^{3}\left(Y \cap B\left(y,\left(1+\epsilon_{2}\right) 2^{7} r\right)\right)+\epsilon_{2} r^{3} \tag{2.10.7}
\end{equation*}
$$

which, together with (2.10.5), imply

$$
\begin{equation*}
d_{Y} \leqslant \theta_{E}\left(y, 2^{7} r\right) \leqslant d_{Y}+C \epsilon_{2} \tag{2.10.8}
\end{equation*}
$$

But E is a minimal set, so the function $\theta_{E}(y,$.$) is non-decreasing. So we$ have

$$
\begin{equation*}
d_{Y} \leqslant \theta_{E}(y, t) \leqslant d_{Y}+C \epsilon_{2} \text { for } 0<t \leqslant 2^{7} r . \tag{2.10.9}
\end{equation*}
$$

By Lemma 2.8, for each $\epsilon_{3}>0$, we can find $\epsilon_{2}, \epsilon_{1}>0$, and then $\epsilon>0$, such that if (2.10.5) and (2.10.8) hold, then there exists a 3 -dimensional minimal cone $Y(y, t)$ of type \mathbb{Y}, centered at y, such that

$$
\begin{equation*}
d_{y, t}(E, Y(y, t)) \leqslant \epsilon_{3} \text { for } 0<t \leqslant 2^{5} r \tag{2.10.10}
\end{equation*}
$$

We note as above, for $y \in B(0, r)$ and $t \leqslant 2^{5} r, Y(y, t)$ the cone of type \mathbb{Y} that satisfies (2.10.10).

Case 2, y is a \mathbb{P} point.
Let $d=\operatorname{dist}\left(y, E_{Y}\right)>0$. Take a point $u \in E_{Y}$ such that $d(y, u)=d$. Since $z \in B(0, r)$ and $0 \in E_{Y}$, we have $d \leqslant d(0, y) \leqslant r$. We take the cone $Y(u, 2 d)$ as in (2.10.10), then

$$
\begin{equation*}
d_{u, 2 d}(E, Y(u, 2 d)) \leqslant \epsilon_{3} . \tag{2.10.11}
\end{equation*}
$$

Call L the spine of $Y(u, 2 d)$, then L is a 2-dimensional plane passing through u. We want to show that

$$
\begin{equation*}
\operatorname{dist}(y, L) \geqslant d / 2 \tag{2.10.12}
\end{equation*}
$$

Indeed, if (2.10.12) fails, then there exists $u^{\prime} \in L$ such that $d\left(y, u^{\prime}\right)=$ $\operatorname{dist}(y, L)<d / 2$. So $d\left(u^{\prime}, u\right) \leqslant d\left(u^{\prime}, y\right)+d(y, u) \leqslant 3 d / 2$. As a consequence, $B\left(u^{\prime}, d / 2\right) \subset B(u, 2 d)$. We have next

$$
\begin{equation*}
d_{u^{\prime}, d / 2}(E, Y(u, 2 d)) \leqslant 4 d_{u, 2 d}(E, Y(u, 2 d)) \leqslant 4 \epsilon_{3} . \tag{2.10.13}
\end{equation*}
$$

By Proposition 2.7, we can choose $\epsilon_{3}>0$ such that if (2.10.13) holds, then there is a point $u_{1} \in E \cap B\left(u^{\prime}, d / 1000\right)$, which is not of type \mathbb{P}. Next, $d\left(y, u_{1}\right) \leqslant d\left(y, u^{\prime}\right)+d\left(u^{\prime}, u_{1}\right) \leqslant d / 2+d / 1000<3 d / 4$ and since $y \in B(0, r)$, $u^{\prime} \in B(0, r+3 d / 4) \subset B(0,4 r)$. As u^{\prime} is not a \mathbb{P}-point, we have that $u^{\prime} \in E_{Y}$. So we can find a point $u^{\prime} \in E_{Y}$ for which $d\left(y, u^{\prime}\right)<d$, a contradiction. We have then (2.10.12).

Since $B(y, d / 2) \subset B(u, 2 d)$, we have

$$
\begin{equation*}
d_{y, d / 2}(E, Y(u, 2 d)) \leqslant 4 d_{u, 2 d}(E, Y(u, 2 d)) \leqslant 4 \epsilon_{3} \tag{2.10.14}
\end{equation*}
$$

By [3, 16.43], for each $\epsilon_{4}>0$, we can find $\epsilon_{3}>0$ such that if (2.10.14) holds, then

$$
\begin{equation*}
H^{3}(E \cap B(y, d / 4)) \leqslant H^{3}\left(Y(u, 2 d) \cap B\left(y,\left(1+\epsilon_{4}\right) d / 4\right)+\epsilon_{4} d^{3}\right. \tag{2.10.15}
\end{equation*}
$$

Now as $\operatorname{dist}(y, L) \geqslant d / 2$, we see that $Y(u, 2 d)$ coincide with a 3 -dimensional plane in the ball $B\left(y,\left(1+\epsilon_{4}\right) d / 4\right)$. So $H^{3}\left(Y(u, 2 d) \cap B\left(y,\left(1+\epsilon_{4}\right) d / 4\right) \leqslant\right.$ $d_{P}\left(\left(1+\epsilon_{4}\right) d / 4\right)^{3}$, together with (2.10.15), we obtain

$$
\begin{equation*}
\theta_{E}(y, d / 4) \leqslant d_{P}+C \epsilon_{4} . \tag{2.10.16}
\end{equation*}
$$

By the proof of Proposition 2.6, we have that for each $\epsilon_{5}>0$, we can find $\epsilon_{4}>0$ such that for each $t \leqslant d / 8$, there exists a plane $P(y, t)$ of dimension 3 passing by y, such that

$$
\begin{equation*}
d_{y, t}(E, P(y, t)) \leqslant \epsilon_{5} \tag{2.10.17}
\end{equation*}
$$

For the case $d / 8 \leqslant t \leqslant r$, we take the cone $Y(u, t+d)$ as in 2.10 .10 which is possible since $t+d<8 r$. Since $B(y, t) \subset B(u, t+d)$, we have

$$
\begin{equation*}
d_{y, t}(E, Y(u, t+d)) \leqslant \frac{t+d}{t} d_{u, t+d}(E, Y(u, t+d)) \leqslant 10 \epsilon_{3} \tag{2.10.18}
\end{equation*}
$$

From (2.10.10), (2.10.17) and (2.10.18) we conclude that, for each $y \in E \cap$ $B(0, r)$ and $t \leqslant r$, there exists a 3 -dimensional minimal cone $Z(y, t)$ of type \mathbb{P} or \mathbb{Y}, such that $d_{y, t}(E, Z(y, t)) \leqslant \epsilon_{6}$, where $\epsilon_{6}=\max \left\{\epsilon_{5}, 10 \epsilon_{3}\right\}$. By [6,2.2], we conclude that for each $\alpha>0$, we can find $\epsilon>0$ such that if (2.10.1) and (2.10.2) hold, then E is $\mathrm{Bi}-\mathrm{Höld}$ er equivalent to a 3 -dimensional minimal
cone of type Y, centered at 0 in the ball $B(x, r)$, with Hölder exponent $1+\alpha$.

Now we see that Theorem 1 is a consequence of Theorem 2.10, since $\theta_{E}(x)=d_{Y}$ which lies between d_{Y} and $d_{Y}+\epsilon$ for any $\epsilon>0$. Next, for each $\epsilon>0$, since $\lim _{r \rightarrow 0} \theta_{E}(x, r)=\theta_{E}(x)$, so we can find $r>0$ such that $\theta_{E}\left(x, 2^{11} r\right) \leqslant \theta_{E}(x)+\epsilon=d_{Y}+\epsilon$. We conclude that E is $\mathrm{Bi}-\mathrm{Höld}$ der equivalent to a cone of type \mathbb{Y} in the ball $B(x, r)$.

Corollary 2.11. - For each $\alpha>0$, we can find $\epsilon>0$ such that the following holds. Let E be a 3-dimensional minimal set in $\mathbb{R}^{4}, x \in E$, r be a radius >0 and Y be a 3-dimensional minimal cone of type \mathbb{Y}, centered at x such that

$$
\begin{equation*}
d_{x, 2^{14} r}(E, Y) \leqslant \epsilon . \tag{2.11.1}
\end{equation*}
$$

Then E is Bi-Hölder equivalent to Y in the ball $B(x, r)$, with Hölder exponent $1+\alpha$.

Proof. - By Proposition 2.7, we can find ϵ small enough such that there exists a point $y \in B(x, r / 1000)$ which is not of type \mathbb{P}. So $\theta_{E}(y) \geqslant d_{Y}$. Since $B\left(y, 2^{12} r\right) \subset B\left(x, 2^{13} r\right)$, we have

$$
\begin{equation*}
d_{y, 2^{13} r}(E, Y) \leqslant 2 d_{x, 2^{14} r}(E, Y) \leqslant 2 \epsilon . \tag{2.11.2}
\end{equation*}
$$

By [3, 16.43], for each $\epsilon_{1}>0$, we can find $\epsilon>0$ such that if (2.11.2) holds, then

$$
\begin{equation*}
H^{3}\left(E \cap B\left(y, 2^{12} r\right)\right) \leqslant H^{3}\left(Y \cap B\left(y,\left(1+\epsilon_{1}\right) 2^{12} r\right)\right)+\epsilon_{1} r^{3}, \tag{2.11.3}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\theta_{E}\left(y, 2^{12} r\right) \leqslant d_{Y}+C \epsilon_{1} \tag{2.11.4}
\end{equation*}
$$

Now (2.11.4) together with the fact that $\theta_{E}(y) \geqslant d_{Y}$ are the conditions in the hypothesis of Theorem 2.10 with the couple $(x, 2 r)$. Following the proof of the theorem, for each $\epsilon_{2}>0$, we can find $\epsilon_{1}>0$ such that for each $z \in$ $B(y, 2 r)$ and for each $t \leqslant 2 r$, there is a 3-dimensional minimal cone $Z(z, t)$ of type \mathbb{P} or \mathbb{Y} such that $d_{z, t}(Z(z, t), E) \leqslant \epsilon_{2}$. Since $B(x, r) \subset B(y, 2 r)$, the above holds for any $z \in B(x, r)$ and $t \leqslant r$. Now since $d_{x, r}(E, Y) \leqslant 2^{14} \epsilon \leqslant \epsilon_{2}$, we can apply [DDT,2.2] to conclude that for each $\alpha>0$, we can find $\epsilon>0$ such that if (2.11.1) holds, then E is Hölder equivalent to Y in $B(x, r)$, with Hölder exponent $1+\alpha$.

By construction of the $\mathrm{Bi}-\mathrm{Hölder}$ function in [6], we see that if E is $\mathrm{Bi}-$ Hölder equivalent to a Y of type \mathbb{Y} in $B(x, r)$ by a function f, then f is a bijection of the spine of Y in $B(x, r / 2)$ to the points of type non- \mathbb{P} of E in a neighborhood of x. We have the remark.

Remark 2.12. - Let E be a 3 -dimensional minimal set in $\mathbb{R}^{4}, x \in E$ and $r>0$. Suppose that E is Bi-Hölder equivalent to a 3 -dimensional minimal cone Y of type \mathbb{Y} and centered at x in the ball $B(x, r)$. Note E_{Y} the set of the points of type non- \mathbb{Y} of E in $B(x, r)$ and L the spine of Y. Then

$$
\begin{equation*}
E_{Y} \cap B(x, r / 8) \subset f(L \cap B(x, r / 4)) \subset E_{Y} \cap B(x, r / 2) . \tag{2.12.1}
\end{equation*}
$$

3. Existence of a point of type non- \mathbb{P} and non- \mathbb{Y}

 for a Mumford-Shah minimal set in \mathbb{R}^{4} which is near a \mathbb{T}Let us restate Theorem 2.
ThEOREM 2.- There exists an absolute constant $\epsilon>0$ such that the following holds. Let E be an MS-minimal set in $\mathbb{R}^{4}, r>0$ be a radius and T be a 3-dimensional minimal cone of type \mathbb{T} centered at the origin such that

$$
\begin{equation*}
d_{0, r}(E, T) \leqslant \epsilon . \tag{2.1}
\end{equation*}
$$

Then in the ball $B(0, r)$, there is a point which is neither of type \mathbb{P} nor \mathbb{Y} of E.

We will prove Theorem 2 by contradiction. By homothety, we may assume that $r=2^{10}$. Suppose that (2.1) fails, that is

$$
\begin{equation*}
\text { there are only points of type } \mathbb{P} \text { and } \mathbb{Y} \text { in } E \cap B\left(0,2^{10}\right) \text {. } \tag{2.2}
\end{equation*}
$$

We fix a coordinate $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ of \mathbb{R}^{4}. Without loss of generality, we suppose that T is of the form $T=T^{\prime} \times l$, where T^{\prime} is a 2 -dimensional minimal cone of type \mathbb{T} which belong to a 3 -dimensional plane P of equation $P=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}: x_{4}=0$ and l the line of equation $x_{1}=x_{2}=x_{3}=0$. We call l the spine of T, which is also the set of \mathbb{T}-points of T. Let $l_{1}, l_{2}, l_{3}, l_{4}$ be the four axes of T^{\prime}; then $L_{i}=l_{i} \times l, i=1, \ldots, 4$ are the 2 -faces of T. We see that $\cup_{i=1}^{4} L_{i} \backslash l$ is the set of \mathbb{Y}-points of T. Finally, let $F_{j}, 1 \leqslant j \leqslant 6$ the faces of T^{\prime} in P. Then $F_{j} \times l, 1 \leqslant j \leqslant 6$ are the 3 -faces of T and $\cup_{j=1}^{6} F_{j}$ minus the set of \mathbb{Y}-points and the set of \mathbb{T}-points of T is the set of \mathbb{P}-points of T. The proof of Theorem 2 requires several lemmas. We begin with a lemma about the connected components of $\bar{B}(0,2) \backslash E$.

Lemma 3.1.- Let $a_{i}, 1 \leqslant i \leqslant 4$ be the four points in $\partial B\left(0,2^{9}\right) \cap P$ whose distances to T^{\prime} are maximal. Set $V_{i}, 1 \leqslant i \leqslant 4$ the connected component of $\bar{B}\left(0,2^{10}\right) \backslash E$ which contains a_{i}. Then we have $V_{i} \neq V_{j}$ for $1 \leqslant i \neq j \leqslant 4$.

Proof. - Suppose that the lemma fails. Then there are $i \neq j$ such that $V_{i}=V_{j}$. Without loss of generality, we may assume that $V_{1}=V_{2}=V$. Now
the point $a=\left(a_{1}+a_{2}\right) / 2$ belongs to a 3 -face P_{12} of T and T coincide with P_{12} in $B\left(a, 2^{8}\right)$.

Since $d_{0,2^{10}}(E, T) \leqslant \epsilon$, we have

$$
\begin{equation*}
d_{a, 2^{8}}(E, T)=d_{a, 2^{8}}\left(E, P_{12}\right) \leqslant 4 \epsilon \tag{3.1.1}
\end{equation*}
$$

By Proposition 2.6, for a constant τ very small, say, 10^{-25}, we can find $\epsilon>0$ such that E is Bi-Hölder equivalent to P_{12} in the ball $B\left(a, 2^{3}\right)$, with Hölder exponent $1+\tau$. We note f this Hölder function; then f is a homeomorphism and

$$
\begin{equation*}
E \cap B(a, 4) \subset f\left(P_{12} \cap B(a, 8)\right) \subset E \cap B(a, 16) \tag{3.1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
|f(x)-x| \leqslant \tau \text { for } x \in B(a, 16) \tag{3.1.3}
\end{equation*}
$$

We want to show that

$$
\begin{equation*}
\text { if } z \in \partial B(a, 4) \backslash E \text {, then } z \in V \tag{3.1.4}
\end{equation*}
$$

Indeed, set $z^{\prime}=f^{-1}(z)$, then $z^{\prime} \in B(a, 8)$ and as $z \notin E$, we have $z^{\prime} \notin P_{12}$. Now the 3 -plane P_{12} separate \mathbb{R}^{4} into two half-spaces H_{1} and H_{2} which contain a_{1} and a_{2}, respectively. Let $z_{1} \in H_{1}$ and $z_{2} \in H_{2}$ be two points in $\partial B(a, 4)$ whose distances to P_{12} are maximal. We see that a is the mid-point of the segment $\left[z_{1}, z_{2}\right]$ and this segment is orthogonal to P_{12}. Since z_{1} and z_{2} lie in two different half-spaces of \mathbb{R}^{4} separated by P_{12}, one of the two segment $\left[z^{\prime}, z_{1}\right]$ and $\left[z^{\prime}, z_{2}\right]$ doesn't meet P_{12}. We suppose that is the case of $\left[z^{\prime}, z_{1}\right]$; then the curve $\gamma=f\left(\left[z^{\prime}, z_{1}\right]\right)$ doesn't meet E.

Next, it is clear that $\operatorname{dist}(u, T) \geqslant 2$ for $u \in\left[a_{1}, f\left(z_{1}\right)\right]$ as $\left|f\left(z_{1}\right)-z_{1}\right| \leqslant \tau$. Since $d_{0,2^{10}}(E, T) \leqslant \epsilon$, the segment $\left[a_{1}, f\left(z_{1}\right)\right]$ doesn't meet E. Now the curve γ^{\prime} which goes first from a_{1} to $f\left(z_{1}\right)$ by the segment $\left[a_{1}, f\left(z_{1}\right)\right]$ and then from $f\left(z_{1}\right)$ to $f\left(z^{\prime}\right)=z$ by the curve γ is a curve in $B\left(0,2^{9}\right)$ which joint a_{1} to z and doesn't meet E. We deduce that $z \in V_{1}=V$, which is (3.1.4).

Now we want to obtain a contradiction. We will construct an MScompetitor F for E whose Hausdorff measure in $B\left(0,2^{10}\right)$ is smaller than that of E in the same ball. We set

$$
\begin{equation*}
F=E \backslash B(a, 4) \tag{3.1.5}
\end{equation*}
$$

It is clear that $F \backslash \bar{B}\left(0,2^{10}\right)=E \backslash \bar{B}\left(0,2^{10}\right)$. We want to show that F is an MS-competitor for E. For this, we suppose that $x_{1}, x_{2} \in \mathbb{R}^{4} \backslash\left(\bar{B}\left(0,2^{10}\right) \cup E\right)$ such that x_{1}, x_{2} are separated by E. We want to show that they are also separated by F.

We proceed by contradiction. Suppose that
there is a curve $\Gamma \subset \mathbb{R}^{4}$ connecting x_{1} and x_{2} which doesn't meet F.

Now if $\Gamma \cap \bar{B}(a, 4)=\varnothing$, then Γ doesn't meet E. Next, as $F=E \backslash B(a, 4)$, we have that x_{1}, x_{2} are not separated by E, a contradiction. So we must have that Γ meets $\bar{B}(a, 4)$. Let x_{1}^{\prime} be the first point at which Γ meets $\bar{B}(a, 4)$ and x_{2}^{\prime} be the last point at which Γ meets $\bar{B}(a, 4)$. Then it is clear that $x_{1}^{\prime}, x_{2}^{\prime} \in \partial B(a, 4)$. We note Γ_{1} the sub-curve of Γ from x_{1} to x_{1}^{\prime} and Γ_{2} the sub-curve of Γ from x_{2}^{\prime} to x_{2}. Since Γ_{1} and Γ_{2} belong to the same connected component of F and Γ_{1}, Γ_{2} don't meet $B(a, 4)$ and $F=E \backslash B(a, 4)$, we deduce that Γ_{1} and Γ_{2} belong to the same connected component of $\mathbb{R}^{4} \backslash E$.

In addition, since $x_{1}^{\prime}, x_{2}^{\prime} \in \partial B(a, 4) \backslash E$, so by (3.1.4), they both belong to V and then we can connect x_{1}^{\prime} and x_{2}^{\prime} by a curve Γ_{3} which doesn't meet E.

Now the curve Γ_{4} which is the union of Γ_{1}, Γ_{2} and Γ_{3} is a curve that connects x_{1} and x_{2} and doesn't meet E. This is a contradiction, as we suppose that x_{1} and x_{2} are separated by E.

Now since $\operatorname{dist}(a, E) \leqslant 2^{10} \epsilon$, there is a point $a^{\prime} \in E$ such that $d\left(a, a^{\prime}\right) \leqslant$ $2^{10} \epsilon$ and by consequence $B\left(a^{\prime}, 2\right) \subset B(a, 4)$. Next

$$
\begin{align*}
H^{3}\left(F \cap B\left(0,2^{10}\right)\right) & =H^{3}\left(E \cap B\left(0,2^{10}\right) \backslash B(a, 4)\right) \\
& \leqslant H^{3}\left(E \cap B\left(0,2^{10}\right) \backslash B\left(a^{\prime}, 2\right)\right) \\
& =H^{3}\left(E \cap B\left(0,2^{10}\right)\right)-H^{3}\left(E \cap B\left(a^{\prime}, 2\right)\right) \\
& \leqslant H^{3}\left(E \cap B\left(0,2^{10}\right)\right)-C 2^{3}<H^{3}\left(E \cap B\left(0,2^{10}\right)\right) . \tag{3.1.7}
\end{align*}
$$

Where the last line is obtained from the fact that E is Alhfors-regular (see [7]). Now (3.1.7) contradicts the hypothesis that E is MS-minimal, we thus obtain the lemma.

If x is a point of type \mathbb{P} or \mathbb{Y} of E, then by Proposition 2.6 and Theorem 1 , for $\tau=10^{-25}$, for example, we can find a radius $r>0$ and a Bi-Hölder mapping $\psi_{x}: B(x, 2 r) \rightarrow \mathbb{R}^{4}$, and a 3 -dimensional minimal cone Y of type \mathbb{P} or \mathbb{Y}, respectively, centered at x, such that

$$
\begin{gather*}
\left|\psi_{x}(z)-z\right| \leqslant \tau r \text { for } z \in B(x, 2 r) \tag{2}\\
E \cap B(x, r) \subset \psi_{x}(Y \cap B(x, 3 r / 2)) \subset E \cap B(x, 2 r) . \tag{3}
\end{gather*}
$$

By (2.2), there are only points of type \mathbb{P} or \mathbb{Y} of $E \cap \bar{B}\left(0,2^{10}\right)$. We set then

$$
\begin{equation*}
E_{Y} \text { the set of } \mathbb{Y} \text {-points of } E \cap \bar{B}\left(0,2^{10}\right) . \tag{4}
\end{equation*}
$$

It is clear that E_{Y} is closed by the proof of Theorem 2.10. If $x \in E_{Y} \cap$ $B\left(0,2^{10}\right)$, then there exists $r_{x}>0$ such that $B\left(x, r_{x}\right) \subset B\left(0,2^{10}\right)$ and a minimal cone Y_{x} of type \mathbb{Y}, centered at x, and a Hölder mapping ψ_{x} : $B\left(x, 2 r_{x}\right) \rightarrow \mathbb{R}^{4}$ such that (2) and (3) hold for ψ_{x} and Y_{x}. Let L_{x} be the spine of Y_{x}, then L_{x} is a 2 -plane passing through x. By Remark 2.12, there is a neighborhood U_{x} of x such that

$$
\begin{equation*}
E_{Y} \cap U_{x}=\psi_{x}\left(B\left(x, r_{x}\right) \cap L_{x}\right) \tag{5}
\end{equation*}
$$

Now we take four points $d_{i}, 1 \leqslant i \leqslant 4$ such that 0 is the mid-point of the segments $\left[a_{i}, d_{i}\right], 1 \leqslant i \leqslant 4$, here a_{i} is as in Lemma 3.1. It is clear that $d_{i} \in T^{\prime} \subset T$. In addition, $d_{i} \in L_{i}, 1 \leqslant i \leqslant 4$, where L_{i} are described just after the second statement of Theorem 2 . Next, for $1 \leqslant i \leqslant 4$, we have $d_{d_{i}, 4}(E, T) \leqslant 2^{8} d_{0,2^{10}}(E, T) \leqslant 2^{8} \epsilon$. But in the ball $B\left(d_{i}, 4\right), T$ coincide with a cone Y_{i} of type \mathbb{Y} whose spine is L_{i}. So $d_{d_{i}, 4}\left(E, Y_{i}\right) \leqslant 2^{8} \epsilon$. By Corollary 2.11, for $\tau=10^{-25}$, we can find $\epsilon>0$ such that E is Bi-Hölder equivalent to Y_{i} in the ball $B\left(d_{i}, 2\right)$, with Hölder exponent $1+\tau$. Call ψ_{i} this Hölder mapping, then by Remark 2.12

$$
\begin{equation*}
E_{Y} \cap B\left(d_{i}, 1\right) \subset \psi_{i}\left(L_{i} \cap B\left(d_{i}, 3 / 2\right)\right) \subset E_{Y} \cap B\left(d_{i}, 2\right) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\psi_{i}(z)-z\right| \leqslant \tau \text { for } z \in B\left(d_{i}, 2\right) . \tag{7}
\end{equation*}
$$

Setting

$$
\begin{equation*}
b_{i}=\psi_{i}\left(d_{i}\right), 1 \leqslant i \leqslant 4 \tag{8}
\end{equation*}
$$

By (7), we have $d\left(d_{i}, b_{i}\right) \leqslant \tau$. We want to prove the following lemma.

Lemma 3.2. - The point $b_{1} \in E_{Y}$ can be connected to another point $b_{i} \in E_{Y}, i \neq 1$ by a curve $\gamma \subset E_{Y} \cap B\left(0,3 \cdot 2^{8}\right)$.

Proof.- Recall that ψ_{i}, b_{i}, d_{i} are the same as (6),(7),(8) above. In addition, for each $x \in E_{Y} \cap B\left(0,2^{10}\right)$, there are a radius r_{x} and a Bi-Höder mapping ψ_{x}, a minimal cone Y_{x} of type \mathbb{Y}, centered at x such that (2),(3), and (5) hold.

We proceed by contradiction. We denote by E_{Y}^{1} the connected component of $E_{Y} \cap B\left(0,2^{10}\right)$ which contains b_{1}. Since in each ball $B\left(b_{i}, 2\right), E_{Y}$ is Hölder equivalent to a 2-plane, by (6), we deduce that each $z \in E_{Y} \cap B\left(b_{i}, 1\right)$
can be connected to b_{i} by a curve in E_{Y}. So if the lemma fails, that is E_{Y}^{1} doesn't contain any $b_{i}, i \neq 1$, we must have

$$
\begin{equation*}
E_{Y}^{1} \cap B\left(b_{i}, 1\right)=\varnothing \text { for } i \neq 1 \tag{3.2.1}
\end{equation*}
$$

Recall next that $T=T^{\prime} \times l$, where T^{\prime} is a 2 -dimensional minimal cone of type \mathbb{T} in the 3 -plane P of equation $x_{4}=0$ and l is the line of equation $x_{1}=x_{2}=x_{3}=0$.

Now we construct a family of functions $f_{t}, 0 \leqslant t \leqslant 1$ from \mathbb{R}^{4} to \mathbb{R}^{2} by the formula

$$
\begin{equation*}
f_{t}(x)=\left(x_{4},\left|x-t d_{2}\right|^{2}-\left((1-t) 2^{9}\right)^{2}\right) \tag{3.2.2}
\end{equation*}
$$

where $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}$ and $0 \leqslant t \leqslant 1$. If $x \in E_{Y}^{1}$, then

$$
\begin{equation*}
\left|f_{1}(x)\right| \geqslant\left|x-d_{2}\right| \geqslant 1 / 2 \tag{3.2.3}
\end{equation*}
$$

by (3.2.1) and the fact that $\left|d_{2}-b_{2}\right| \leqslant \tau$. We will construct a finite number of functions to go from f_{0} to f_{1}. First, let $K=E_{Y}^{1} \cap \bar{B}\left(0,3 \cdot 2^{8}\right)$. Then for each $z \in K$, there is a radius r_{z} such that E_{Y}^{1} is Bi-Hölder equivalent to a 2-plane P_{z}, with Hölder exponent $1+\tau$. Since K is compact, we can cover K by a finite number of balls $B\left(z_{i}, r_{z_{i}}\right), 1 \leqslant i \leqslant N$. Finally, we choose $\eta>0$ which is smaller than $\frac{1}{10} \min \left\{r_{z_{i}}\right\}, 1 \leqslant i \leqslant N$.

Next, let $\left\{x_{i}\right\}, 1 \leqslant i \leqslant l$ be a maximal collection of points in K such that $\left|x_{i}-x_{j}\right| \geqslant \eta$ for $i \neq j$. Set $\tilde{\varphi}_{j}$ a bump function with support in $B\left(x_{j}, 2 \eta\right)$ and such that $\tilde{\varphi}_{j}(x)=1$ for $x \in \bar{B}\left(x_{j}, \eta\right)$ and $0 \leqslant \tilde{\varphi}_{j}(x) \leqslant 1$ everywhere. We note that $\sum_{j} \tilde{\varphi}_{j}(x) \geqslant 1$ for $x \in E_{Y}^{1} \cap B\left(0,3 \cdot 2^{8}\right)$ since x must lie in one of the ball $B\left(x_{j}, \eta\right)$ by the maximality of the family $\left\{x_{i}\right\}$. Set $\tilde{\varphi}_{0}$ a C^{∞} function in \mathbb{R}^{4} such that $\tilde{\varphi}_{0}(x)=0$ for $|x| \leqslant 3 \cdot 2^{8}-\eta$ and $\tilde{\varphi}_{0}(x)=1$ for $|x| \geqslant 3 \cdot 2^{8}$ and $0 \leqslant \tilde{\varphi}_{0}(x) \leqslant 1$ everywhere. We have then $\sum_{j=0}^{l} \tilde{\varphi}_{j}(x) \geqslant 1$ on E_{Y}^{1} and we set

$$
\begin{equation*}
\varphi_{j}(x)=\tilde{\varphi}_{j}(x)\left\{\sum_{j=0}^{l} \tilde{\varphi}_{j}(x)\right\}^{-1} \text { for } x \in E_{Y}^{1} \text { and } 0 \leqslant j \leqslant l . \tag{3.2.4}
\end{equation*}
$$

The functions $\varphi_{j}, 0 \leqslant j \leqslant l$ have the following properties.

$$
\begin{equation*}
\varphi_{j} \text { has support in } B\left(x_{j}, 2 \eta\right) \text { for } j \geqslant 1 \tag{3.2.5}
\end{equation*}
$$

$$
\begin{align*}
& \sum_{j=0}^{l} \varphi_{j}(x)=1 \text { for } x \in E_{Y}^{1} \\
& \begin{array}{cc}
\sum_{j=1}^{l} \varphi_{j}(x)= & 1 \text { for } x \in E_{Y}^{1} \cap B\left(0,3 \cdot 2^{8}-\eta\right) \\
& -486-
\end{array} \tag{3.2.6}
\end{align*}
$$

since $\varphi_{0}(x)=0$ on $B\left(0,3 \cdot 2^{8}-\eta\right)$. Our first approximation is a sequence of functions given by

$$
\begin{equation*}
g_{k}=f_{0}+\sum_{0<j<k} \varphi_{j}\left(f_{1}-f_{0}\right) \tag{3.2.7}
\end{equation*}
$$

with $0 \leqslant k \leqslant l$. Then $g_{0}=f_{0}$ and

$$
\begin{equation*}
g_{l}(x)=f_{1}(x) \text { for } x \in E \cap B\left(0,3 \cdot 2^{8}-\eta\right) \tag{3.2.8}
\end{equation*}
$$

We note that for $k \geqslant 1$

$$
\begin{equation*}
g_{k}(x)-g_{k-1}(x)=\varphi_{k}(x)\left(f_{1}(x)-f_{0}(x)\right) \text { is supported in } B\left(x_{k}, 2 \eta\right) \tag{3.2.9}
\end{equation*}
$$

We compute the number of solutions in E_{Y}^{1} of the equations $g_{k}(x)=0$. We will modify f_{0} and the g_{k} such that they have only a finite number of zeroes. We modify first f_{0}.

Sub-Lemma 3.2.1. - There exists a continuous function h_{0} on E_{Y}^{1} such that

$$
\begin{equation*}
\left|h_{0}(x)-f_{0}(x)\right| \leqslant 10^{-6} \text { for } x \in E_{Y}^{1} \tag{3.2.9}
\end{equation*}
$$

h_{0} has exactly one zero b_{1} in E_{Y}^{1}, and b_{1} is a simple, non-degenerate zero of h_{0}.

Here, we say that $\xi \in E_{Y}^{1}$ is a non-degenerate, simple zero of a continuous function h on E_{Y}^{1} if $h(\xi)=0$ and there is a ball $B(\xi, \rho)$ and a Bi-Hölder function γ with Hölder exponent $1+\tau$ which maps $E_{Y}^{1} \cap B(\xi, \rho)$ to an open set V of a 2-plane, such that $h \circ \gamma^{-1}$ is of class C^{1} on V and the differential $D\left(h \circ \gamma^{-1}\right)$ at the point $\gamma(\xi)$ is of rank 2.

Proof. - We modify f_{0} in a neighborhood of d_{1}. We have already our Bi-Hölder homeomorphism ψ_{1} which satisfies (6),(7) and (8). Next, since E_{Y}^{1} is the connected component of E_{Y} which contains b_{1}, we have

$$
E_{Y} \cap B\left(d_{1}, 1\right)=E_{Y}^{1} \cap B\left(d_{1}, 1\right)
$$

thus

$$
\begin{equation*}
E_{Y}^{1} \cap B\left(d_{1}, 1 / 3\right) \subset \psi_{1}\left(B\left(L_{1} \cap B\left(d_{1}, 1 / 2\right)\right)\right) \subset E_{Y}^{1} \cap B\left(d_{1}, 1\right) \tag{3.2.10}
\end{equation*}
$$

here L_{1} is the 2 -face of T that contains d_{1}, which is $\mathrm{Bi}-\mathrm{Höder}$ equivalent to E_{Y}^{1} in the ball $B\left(d_{1}, 1\right)$.

Set $h_{0}=f_{0}$ outside the ball $B\left(d_{1}, 1 / 2\right)$. In $B\left(d_{1}, 1 / 4\right)$, we set $h_{0}=$ $f_{0} \circ \psi^{-1}$. In the region between the two balls $R=\bar{B}\left(d_{1}, 1 / 2\right) \backslash B\left(d_{1}, 1 / 4\right)$, we set

$$
\begin{equation*}
h_{0}(x)=\alpha(x) f_{0}(x)+(1-\alpha(x)) f_{0} \circ \psi^{-1}(x) \tag{3.2.11}
\end{equation*}
$$

where $\alpha(x)=4\left|x-d_{1}\right|-1$. We have then $\left|h_{0}(x)-f_{0}(x)\right| \leqslant \mid f_{0}(x)-f_{0} \circ$ $\psi_{1}^{-1}(x) \mid \leqslant C \tau$ for $x \in B\left(d_{1}, 1 / 2\right)$ since $\left|\psi_{1}(x)-x\right| \leqslant \tau$ and the differential of f_{0} is bounded in this ball. We have then (3.2.9).

Since $f_{0}(x)=\left(x_{4},|x|^{2}-4^{9}\right)$, so $\left|f_{0}(x)\right| \geqslant 1 / 500$ for $x \in E_{Y}^{1} \backslash B\left(d_{1}, 10^{-2}\right)$. By consequence, all the zeroes of h_{0} must lie in the ball $B\left(d_{1}, 1 / 4\right)$.

We verify next that h_{0} has exactly one zero in $B\left(d_{1}, 1 / 4\right)$, which is simple and non-degenerate. Set $\gamma_{1}(x)=\psi_{1}^{-1}(x)$ for $x \in E_{Y}^{1} \cap B\left(d_{1}, 1 / 4\right)$. Then γ_{1} is a homeomorphism from $E_{Y}^{1} \cap B\left(d_{1}, 1 / 4\right)$ onto its image, which is an open set in L_{1}.

Since $h_{0}=f_{0} \circ \psi_{1}^{-1}=f_{0} \circ \gamma_{1}$ on $E_{Y}^{1} \cap B\left(d_{1}, 1 / 4\right)$, we have that $h_{0}(\xi)=0$ for $\xi \in E_{Y}^{1} \cap B\left(d_{1}, 1 / 4\right)$ if and only if $\gamma_{1}(\xi)$ is a zero of $f_{0}(x)=\left(x_{4},|x|^{2}-4^{9}\right)$ in $L_{1} \cap B\left(d_{1}, 1 / 2\right)$, which can only be d_{1}. The verification that $D f_{0}$ is of maximal rank at d_{1} is clear. The sub-lemma follows.

We need another sub-lemma which allows us to go from h_{k-1} to h_{k}.

Sub-Lemma 3.2.2.-We can find continuous functions $\theta_{k}, 1 \leqslant k \leqslant l$, such that

$$
\begin{equation*}
\theta_{k} \text { is supported in } B\left(x_{k}, 3 \eta\right) \text {, } \tag{3.2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\theta_{k}\right\|_{\infty} \leqslant 2^{-k} 10^{-6} \tag{3.2.13}
\end{equation*}
$$

and if we set

$$
\begin{equation*}
h_{k}=h_{k-1}+\varphi_{k}\left(f_{1}-f_{0}\right)+\theta_{k}, \tag{3.2.14}
\end{equation*}
$$

for $1 \leqslant k \leqslant l$, then
each h_{k} has a finite number of zeroes in E_{Y}^{1}, which are all simple and non-degenerate.

Proof. - We will construct h_{k} by induction. For $k=0$, the function h_{0} satisfy clearly (3.2.15). Let $k \geqslant 1$, and we suppose that we have already constructed h_{k-1} such that (3.2.15) holds.

We note that $h_{k-1}+\varphi_{k}\left(f_{1}-f_{0}\right)$ coincide with h_{k-1} outside the ball $B\left(x_{k}, 2 \eta\right)$, by (3.2.5). We take a thin annulus

$$
\begin{equation*}
A=\bar{B}\left(x_{k}, \rho_{2}\right) \backslash B\left(x_{k}, \rho_{1}\right), 2 \eta<\rho_{1}<\rho_{2}<3 \eta \tag{3.2.16}
\end{equation*}
$$

which doesn't meet the finite set of zeroes of h_{k-1}. Recall that there is a Bi-Hölder function $\psi_{k}: B\left(x_{k}, 20 \eta\right) \rightarrow \mathbb{R}^{4}$ and a 2-plane P_{k} passing through
x_{k} such that $\left|\psi_{k}(x)-x\right| \leqslant 10 \eta \tau$ for $x \in B\left(x_{k}, 20 \eta\right)$ and

$$
\begin{equation*}
E_{Y}^{1} \cap B\left(x_{k}, 19 \eta\right) \subset \psi_{k}\left(P_{k} \cap B\left(x_{k}, 20 \eta\right)\right) \subset E_{Y}^{1} \tag{3.2.17}
\end{equation*}
$$

We choose θ_{k} such that θ_{k} is supported in $B\left(x_{k}, \rho_{2}\right)$ and $\left\|\theta_{k}\right\|_{\infty}<$ $\min \left\{2^{k} 10^{-6}, \inf _{x \in A}\left|h_{k-1}(x)\right|\right\}$, of course $\inf _{x \in A}\left|h_{k-1}(x)\right|>0$ since A doesn't meet the set of zeroes of h_{k-1}. Then $h_{k}=h_{k-1}$ outside the ball $B\left(x_{k}, \rho_{2}\right)$.

We will control h_{k} in the ball $B\left(x_{k}, \rho_{1}\right)$. Set $\gamma(x)=\psi_{k}^{-1}(x)$ for $x \in$ $E_{Y}^{1} \cap B\left(x_{k}, \rho_{1}\right)$. By (3.2.17) and since ψ_{k} is Bi-Hölder on $B\left(x_{k}, 20 \eta\right), \gamma$ is a Bi-Hölder homeomorphism from $E_{Y}^{1} \cap B\left(x_{k}, \rho_{1}\right)$ onto an open set V of the 2-plane P_{k}.

By the density of C^{1} function in the space of bounded continuous functions on V with the sup norm, we can choose θ_{k} with the above properties and such that

$$
\begin{equation*}
h_{k} \circ \theta_{k} \text { is of class } C^{1} \text { on } V \text {. } \tag{3.2.18}
\end{equation*}
$$

We can also add a very small constant $w \in \mathbb{R}^{2}$ to θ_{k} on $E_{Y}^{1} \cap B\left(x_{k}, \rho_{1}\right)$, and then interpolate continuously on A. We verify that for almost every choice of w,

$$
\begin{equation*}
h_{k} \text { has a finite number of zeroes in } E_{Y}^{1} \cap B\left(x_{k}, \rho_{1}\right) \text {. } \tag{3.2.19}
\end{equation*}
$$

For this, we set $Z_{y}=\left\{z \in V ; h_{k} \circ \psi_{k}(z)=y\right\}$. By (3.2.18), we can apply the co-area formula ([9,3.2.22]) for $h_{k} \circ \psi_{k}$ on V, and we obtain

$$
\begin{equation*}
\int_{V} J(z) d H^{2}(z)=\int_{y \in \mathbb{R}^{2}} H^{0}\left(Z_{y}\right) d H^{2}(y) \tag{3.2.20}
\end{equation*}
$$

here, $J(z)$ denote the Jacobian of $h_{k} \circ \psi_{k}$ at z, which is clearly bounded. We deduce that Z_{y} is finite for almost-every $y \in \mathbb{R}^{2}$. If we choose w such that Z_{w} is finite and then add $-w$ to θ_{k} in $E_{Y}^{1} \cap B\left(x_{k}, \rho_{1}\right)$, then the new Z_{0} will be finite, and we have (3.2.19).

We consider now the rank of the differential. By Sard's theorem, the set of critical values of $h_{k} \circ \psi_{k}$ has measure 0 in \mathbb{R}^{2}. So if we choose $w \in \mathbb{R}^{2}$ which is not a critical value, and add $-w$ to θ_{k} in $E_{Y}^{1} \cap B\left(x_{k}, \rho_{1}\right)$, then the differential of the new function $h_{k} \circ \psi_{k}$ at each zero of $h_{k} \circ \psi_{k}$ is of rank 2 .

So we take w very small with the above properties, and add $-w$ to θ_{k} in $B\left(x_{k}, \rho_{1}\right)$; next, we interpolate in the region A, we obtain a function h_{k} having a finite number of zeroes in $E_{Y}^{1} \cap B\left(x_{k}, \rho_{1}\right)$ which are all simple and non-degenerate. The sub-lemma follows.

Now let $N(k)$ be the number of zeroes of h_{k} in E_{Y}^{1}. Then $N(0)=1$ since the only zero of h_{0} in E_{Y}^{1} is b_{1}. Let us check that for the last index l,
$N(l)=0$. First we have

$$
h_{l}-h_{0}=\sum_{1 \leqslant k \leqslant l}\left(h_{k}-h_{k-1}\right)=\sum_{1 \leqslant k \leqslant l} \varphi_{k}\left(f_{1}-f_{0}\right)+\sum_{1 \leqslant k \leqslant l} \theta_{k} .
$$

If $x \in E_{Y}^{1} \cap B\left(0,3 \cdot 2^{8}-\eta\right)$, then $\sum_{1 \leqslant k \leqslant l} \varphi_{k}(x)=1$, thus

$$
h_{l}(x)=h_{0}(x)+f_{1}(x)-f_{0}(x)+\sum_{1 \leqslant k \leqslant l} \theta_{k}(x)
$$

so that

$$
\begin{aligned}
\left|h_{l}(x)\right| & \geqslant\left|f_{1}(x)\right|-\left|h_{0}(x)-f_{0}(x)\right|-\sum_{1 \leqslant k \leqslant l}\left|\theta_{k}(x)\right| \\
& \geqslant 1 / 4-10^{-6}-\sum_{1 \leqslant k \leqslant l} 2^{-k} 10^{-6}>0
\end{aligned}
$$

by (3.2.3), (3.2.6) and (3.2.13).
If $x \in E_{Y}^{1} \cap B\left(0,2^{10}\right) \backslash B\left(0,3 \cdot 2^{8}-\eta\right)$, then $\sum_{1 \leqslant k \leqslant l} \varphi_{k}(x)=1-\varphi_{0}(x)$, so

$$
h_{l}(x)=h_{0}(x)+\left(1-\varphi_{0}(x)\right)\left(f_{1}(x)-f_{0}(x)\right)+\sum_{1 \leqslant k \leqslant l} \theta_{k}(x)
$$

which implies

$$
\begin{aligned}
\mid h_{l}(x)-f_{0}(x)- & \left(1-\varphi_{0}(x)\right)\left(f_{1}(x)-f_{0}(x)\right) \mid \\
& \leqslant\left|h_{0}(x)-f_{0}(x)\right|+\sum_{1 \leqslant k \leqslant l}\left|\theta_{k}(x)\right| \leqslant 2.10^{-6} .
\end{aligned}
$$

But the second coordinate of $f_{0}(x)+\left(1-\varphi_{0}(x)\right)\left(f_{1}(x)-f_{0}(x)\right)$ is

$$
\begin{aligned}
& |x|^{2}-4^{9}+\left(1-\varphi_{0}\right)(x)\left(\left|x-d_{2}\right|^{2}-|x|^{2}+4^{9}\right) \\
& \quad=\varphi_{0}(x)\left(|x|^{2}-4^{9}\right)+\left(1-\varphi_{0}(x)\right)\left|x-d_{2}\right|^{2} \geqslant 1 / 4
\end{aligned}
$$

by (3.2.2) and because $|x| \geqslant 3 \cdot 2^{8}-\eta$. Thus $h_{l}(x) \neq 0$ in this case also. We deduce that h_{l} has no zero in E_{Y}^{1}, and $N(l)=0$.

Sub-Lemma 3.2.3.- $N(k)-N(k-1)$ is even for $1 \leqslant k \leqslant l$.

Proof. - We observe that h_{k-1} don't vanish on A, where A is the annulus defined in (3.2.16), and we took $\left\|\theta_{k}\right\|_{\infty}$ very small so that h_{k} does not vanish on A as well. Next, by definition of $\varphi_{k}, \varphi_{k}=0$ on A. Setting

$$
\begin{equation*}
m_{t}(x)=h_{k-1}(x)+t\left[h_{k}(x)-h_{k-1}(x)\right]=h_{k-1}(x)+\theta_{k}(x), \tag{3.2.21}
\end{equation*}
$$

for $x \in E_{Y}^{1} \cap \bar{B}\left(x_{k}, \rho_{2}\right)$ and $0 \leqslant t \leqslant 1$. Then $m_{0}=h_{k-1}$ and $m_{1}=h_{k}$ on $E_{Y}^{1} \cap \bar{B}\left(x_{k}, \rho_{2}\right)$. Since $m_{t}(x)=h_{k-1}(x)+t \theta(x)$ for $x \in E_{Y}^{1} \cap A$ and $0 \leqslant t \leqslant 1$, so $m_{t}(x) \neq 0$ if we take θ small enough. Let $\beta_{k}>0$ such that $\left|m_{t}(x)\right| \geqslant \beta_{k}$ for $x \in E_{Y}^{1} \cap A$. Set $S_{\infty}=\mathbb{R}^{2} \cup\{\infty\}$, so that S_{∞} can be stereographically identified with a sphere of dimension 2 , we define $\pi: \mathbb{R}^{2} \rightarrow S_{\infty}$ by

$$
\begin{equation*}
\pi(x)=\infty \text { if }|x| \geqslant \beta_{k} \text { and } \pi(x)=\frac{x}{\beta_{k}-|x|} \text { otherwise. } \tag{3.2.22}
\end{equation*}
$$

Next, we set

$$
\begin{equation*}
p_{t}(x)=\pi\left(m_{t}(x)\right) \text { for } x \in E_{Y}^{1} \cap \bar{B}\left(x_{k}, \rho_{2}\right) \text { and } 0 \leqslant t \leqslant 1 \tag{3.2.23}
\end{equation*}
$$

Then $p_{t}(x)$ is a continuous function of x and t, which takes values in S_{∞}. By the definition of β_{k},

$$
\begin{equation*}
p_{t}(x)=\infty \text { for } x \in E_{Y}^{1} \cap A \text { and } 0 \leqslant t \leqslant 1 \tag{3.2.24}
\end{equation*}
$$

We want to replace the domain $E_{Y}^{1} \cap \bar{B}\left(x_{k}, \rho_{2}\right)$ by an open set in a 2-plane P_{k}. We keep our Bi-Hölder function ψ_{k} as above, which maps an open set V of a 2-plane P_{k} onto $E_{Y}^{1} \cap B\left(x_{k}, \rho_{2}\right)$ and its inverse γ which is also Bi-Hölder and maps $E_{Y}^{1} \cap B\left(x_{k}, \rho_{2}\right)$ onto V. For $0 \leqslant t \leqslant 1$, we set

$$
\begin{equation*}
q_{t}(x)=p_{t}\left(\psi_{k}(x)\right) \text { for } x \in V \text { and } q_{t}(x)=\infty \text { for } x \in P_{k} \backslash V \tag{3.2.25}
\end{equation*}
$$

We check that q_{t} is continuous in $P_{k} \times[0,1]$. It is continuous in $V \times[0,1]$, since p_{t} is continuous in $\left[E_{Y}^{1} \cap B\left(x_{k}, \rho_{2}\right)\right] \times[0,1]$. It is also continuous in $\left[P_{k} \backslash \bar{V}\right] \times$ $[0,1]$, because it is ∞ here. Now if $x \in \partial V$, then $\psi_{k}(x) \in E_{Y}^{1} \cap \partial B\left(x_{k}, \rho_{2}\right)$, so there is a neighborhood of $\psi_{k}(x)$ in $\bar{B}\left(x_{k}, \rho_{2}\right)$ which is contained in A, and we have $p_{t}\left(\psi_{k}\right)=\infty$ on this neighborhood, so $q_{t}=\infty$ near x.

We set $q_{t}(\infty)=\infty$, so q_{t} is well defined on $S^{\prime}=P_{k} \cup\{\infty\}$ and it is clear that each q_{t} is continuous for $0 \leqslant t \leqslant 1$.

Now since q_{0} and q_{1} are two continuous functions from the 2 -sphere S^{\prime} to the 2 -sphere S_{∞}, we can compute their degrees. First, as q_{0} and q_{1} are homotopic, they have the same degrees. We compute the degree of q_{0}, for example. Let

$$
\begin{equation*}
q_{0}^{-1}(\{0\})=\left\{y_{1}, y_{2}, \ldots, y_{m}\right\} \tag{3.2.26}
\end{equation*}
$$

the set of zeroes of q_{0}. This is a finite set since q_{t} has only finite number of zeroes for $t \leqslant 1$. Since each zero of q_{0} is simple and non-degenerate, for each $1 \leqslant k \leqslant m$, there exists a neighborhood W_{k} of y_{k} such that

$$
\begin{equation*}
q_{0} \text { is a homeomorphism from } W_{k} \text { to } q_{0}\left(W_{k}\right), \tag{3.2.27}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{k} \cap W_{l}=\varnothing \text { if } k \neq l . \tag{3.2.28}
\end{equation*}
$$

So the degree of q_{0} is computed as follows. We begin by 0 , next, for $1 \leqslant k \leqslant$ m, if q_{0} preserve the orientation of W_{k}, we add 1 , if q_{0} doesn't preserve the orientation of W_{k}, we add -1 . Then it is clear that

$$
\begin{equation*}
d\left(q_{0}\right) \text { is of the same parity as } m . \tag{3.2.29}
\end{equation*}
$$

Here $d(q)$ denote the degree of the function q. By the same arguments, we have

$$
\begin{equation*}
d\left(q_{1}\right) \text { is of the same parity as the number of zeroes of } q_{1} \text {. } \tag{3.2.30}
\end{equation*}
$$

But $d\left(q_{0}\right)=d\left(q_{1}\right)$ as above, we obtain
the number of zeroes of q_{0} is of the same parity as the number of zeroes of q_{1}.

We want to prove next that the number of zeroes of h_{k-1} is of the same parity as the number of zeroes of h_{k}. Since $h_{k-1}=h_{k}$ outside the ball $B\left(x_{k}, \rho_{2}\right)$ and they both don't vanish on $E_{Y}^{1} \cap A$, we need only to consider their number of zeroes in $E_{Y}^{1} \cap B\left(x_{k}, \rho_{1}\right)$. We verify that
the number of zeroes of h_{k-1+s} in $E_{Y}^{1} \cap B\left(x_{k}, \rho_{1}\right)$ is equal to the number of zeroes of q_{s} in S^{\prime} for $s=0,1$.

We verify for $s=0$. If $q_{0}(x)=0$, then $x \in V$ (otherwise $\left.q_{0}(x)=\infty\right)$, so $q_{0}(x)=p_{0}\left(\psi_{k}(x)\right)$ and then $p_{0}\left(\psi_{k}(x)\right)=0$. Since $m_{0}\left(\psi_{k}(x)\right)=0$, we have $h_{k-1}\left(\psi_{k}(x)\right)=0$. Because $x \in V$, we have $\psi_{k}(x) \in B\left(x_{k}, \rho_{1}\right)$. So if $q_{0}(x)=0$, then $\psi_{k}(x) \in B\left(x_{k}, \rho_{1}\right)$ and is a zero of h_{k-1}.

Conversely, if $y \in B\left(x_{k}, \rho_{1}\right)$ is such that $h_{k-1}(y)=0$, then $p_{0}(y)=0$ and then there exists $y^{\prime} \in V$ such that $\psi_{k}\left(y^{\prime}\right)=y$ because ψ_{k} is a homeomorphism from V to $B\left(x_{k}, \rho_{1}\right)$. Now $q_{0}\left(y^{\prime}\right)=p_{0}\left(\psi_{k}\left(y^{\prime}\right)\right)=0$ and thus y^{\prime} is a zero of q_{0}.

So we have (3.2.32) for $s=0$. The case $s=1$ is the same, and we have then (3.2.32). By (3.2.31), we obtain that the number of zeroes of h_{k-1} is of the same parity as the number of zeroes of h_{k}, which means that $N(k)-N(k-1)$ is even. The sub-lemma follows.

Now by sub-lemma 3.2.3, we know that $N(0)-N(1)$ is even, but it is 1 , so we obtain a contradiction, and we finish the proof of Lemma 3.2.

3.3. Proof of Theorem 2

Let $U(y), y \in E_{Y} \cap B\left(0,3 \cdot 2^{8}\right)$ be the set of connected components V of $B\left(0,2^{10}\right) \backslash E$ such that $y \in \bar{V}$. Since for each $y \in E_{Y}$, there is a neighborhood W of y on which E is Bi-Hölder equivalent to a \mathbb{Y}, we see that $U(y)$ is locally constant. By Lemma 3.2, we can connect b_{1} to another point $b_{i}, i \neq 1$, by a curve in E_{Y}^{1}, and we can suppose that $i=2$. Because $b_{1}, b_{2} \in E_{Y}$ and $U(y)$ is locally constant on E_{Y}, we have $U\left(b_{1}\right)=U\left(b_{2}\right)$. By Lemma 3.1, and the fact that E is $\operatorname{Bi}-H o ̈ l d e r ~ e q u i v a l e n t ~ t o ~ a ~ \mathbb{Y}$ near each point of type \mathbb{Y}, we have

$$
\left\{V_{2}, V_{3}, V_{4}\right\}=U\left(b_{1}\right)
$$

and

$$
\left\{V_{1}, V_{3}, V_{4}\right\}=U\left(b_{2}\right)
$$

where $V_{i}, 1 \leqslant i \leqslant 4$ is as in Lemma 3.1. So we see that $U\left(b_{1}\right) \neq U\left(b_{2}\right)$, which is a contradiction. We finish the proof of Theorem 2.

Bibliography

[1] Almgren (F. J.). - Some interior regularity theorems for minimal surfaces and an extension of Bernstein's Theorem, Ann. of Math (2), Vol. 84, p. 277-292 (1966).
[2] Allard (W. K.). - On the First Variation of a Varifold, Ann. of Math (2), Vol. 95, p. 417-491 (1972).
[3] David (G.). - Hölder regularity of two-dimensional almost-minimal sets in \mathbb{R}^{n}, Ann. Fac. Sci. Toulouse Math, (6), 18(1) p. 65-246 (2009).
[4] DAVID (G.). - $C^{1+\alpha}$-regularity for two dimensional almost-minimal sets in \mathbb{R}^{n}, Journal of Geometric Analysis, Vol 20, Number 4, p. 837-954.
[5] David (G.). - Singular sets of minimizers for the Mumford-Shah functional, Progress in Mathematics 233 (581p.), Birkhauser (2005).
[6] David (G.), De Pauw (T.), and Toro (T.). - A generalization of Reifenberg's theorem in R^{3}, Geom. Funct. Anal. Vol. 18, p. 1168-1235 (2008).
[7] David (G.) and Semmes (S.). - Uniform rectifiability and quasiminimizing sets of arbitrary codimension, Memoirs of the A.M.S. Number 687, Vol 144 (2000).
[8] Dugundji (J.). - Topology, Allyn and Bacon, Boston (1966).
[9] Federer (H.). - Geometric measure theory, Grundlehren der Mathematishen Wissenschaften 153, Springer Verlag (1969).
[10] Simons (J.). - Minimal varieties in riemannian manifolds, Ann. of Math, (2), Vol. 88, p. 62-105 (1968).
[11] Taylor (J.). - The structure of singularities in soap-bubble-like and soap-filmlike minimal surfaces, Ann. of Math. (2) 103, no. 3, p. 489-539 (1976).

