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The systolic constant of orientable Bieberbach
3-manifolds

Chady El Mir(1), Jacques Lafontaine(2)

ABSTRACT. — A compact manifold is called Bieberbach if it carries a
flat Riemannian metric. Bieberbach manifolds are aspherical, therefore
the supremum of their systolic ratio, over the set of Riemannian metrics,
is finite by a fundamental result of M. Gromov. We study the optimal
systolic ratio of compact 3-dimensional orientable Bieberbach manifolds
which are not tori, and prove that it cannot be realized by a flat metric.
We also highlight a metric that we construct on one type of such mani-
folds (C2) which has interesting geometric properties: it is extremal in its
conformal class and the systole is realized by “very many” geodesics.

RÉSUMÉ. — Une variété compacte est appelée de Bieberbach si elle
porte une métrique riemannienne plate. Les variétés de Bieberbach sont
asphériques, par conséquent le supremum de leur quotient systolique, sur
l’ensemble des métriques riemanniennes, est fini d’après un résultat fon-
damental de M. Gromov. On étudie le quotient systolique optimal des
3-variétés de Bieberbach compactes et orientables qui ne sont pas des
tores, et on démontre qu’il n’est pas réalisé par une métrique plate. De
plus, on met en évidence une métrique que l’on construit sur un type de
telles variétés (C2) qui a une géométrie intéressante : elle est extrêmale
dans sa classe conforme et possède de « nombreuses » géodésiques sys-
toliques.
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1. Introduction

1.1. Motivations and main result

The systole of a compact non simply connected Riemannian manifold
(Mn, g) is the shortest length of a non contractible closed curve, we denote

it by Sys(g). We are interested in the systolic ratio Sys(g)n

Vol(g) , which is a scale-

invariant quantity. Note that it is well defined even if g is only continuous,
i.e. a continuous section of the fiber bundle S2T ∗M of symmetric forms.

An isosystolic inequality on a manifold M is a inequality of the form

Sys(g)n

Vol(g)
� C < +∞

that holds for any Riemannian metric g on M . The smallest such con-
stant C is called the systolic constant.

A systolic geodesic is a closed curve, not homotopically trivial, whose
length is equal to the systole.

A precursory work about systolic inequalities is that of Charles Loewner
(1949, unpublished) and his student P. M. Pu ([16]). The fundamental article
of Misha Gromov (cf. [13]) was the birth certificate of systolic geometry, that
is the study of systolic inequalities on manifolds. For more details about the
subject see the survey [6] of Marcel Berger and the book [15] of Mikhäıl
Katz.

As far as this work is concerned, we put emphasis on two facts :

a) Compact manifolds which are covered by Rn do satisfy an isosystolic
inequality (this is just an application of the general result of [13]).

b) The systolic constant is in general fairly non explicit (see [13] again).

In fact, the supremum of sys(g)n

vol(g) is known in three cases only:

1. The torus T 2: the supremum is achieved for the flat hexagonal metric
(C. Loewner, 1949, see [12], p. 95)

2. The real projective plane : the supremum is achieved for the constant
curvature metric (P.M. Pu 1952, see [16]).

3. The Klein bottle : the supremum is achieved for a singular Rieman-
nian metric, with constant curvature +1 outside a singular curve (C.
Bavard, see [2]).
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However, if the systole is replaced by the so-called stable systole stsys(g),
the explicit inequality

stsys(g)n

Vol(g)
� (γn)n/2

(where γn denotes the Hermite constant) holds for the n-dimensional torus,
and the bound is attained for some flat tori. See [15], ch. 17, for a more
general result (Burago-Ivanov-Gromov inequality), and details about the
stable systole.

In the present work, we are interested in Bieberbach manifolds, i.e. com-
pact manifolds that carry a flat Riemannian metric. Standard Riemannian
geometry shows that these manifolds are covered by Rn, and therefore sat-
isfy an isosystolic inequality.

For n = 3, there are six orientable Beberbach manifolds (Hantzsche–
Wendt classification, see [18] or 2.2 below). One of them is the torus T 3 for
which, in contrast with the stable case, it is not known whether the optimal
metric is flat. As for the other manifolds, since their first Betti number is
strictly smaller than 3, the assumptions of Burago-Ivanov-Gromov inequal-
ity are not satisfied.

Our result is the following :

Theorem 1.1. — Let M be a Bieberbach orientable manifold of dimen-
sion 3 that is not a torus. Then there exists on M a Riemannian metric g
such that, for any flat metric h,

(sys(h))3

vol(h)
<

(sys(g))3

vol(g)
.

(See theorem 5.6 for an example of a more precise statement.)

We already proved the same result for non-orientable 3-dimensional
Bieberbach manifolds (see [11]). The main idea consisted in the fact that we
can get any such manifold by suspending a Klein bottle. Then, by taking a
suitable metric suspension of the Bavard metric, one can beat the systolic
ratio of flat metrics. The orientable case is a bit more involved.

Actually this technique does not work for the orientable case, since the
manifolds cannot be foliated by Klein bottles or Möbius bands as in the
non-orientable case. The key idea is that all these manifolds contain isolated
systolic geodesics in the case of the extremal metric among the flat ones.
Therefore we will be able to decrease the volume by “digging” around the
geodesic systolic without shortening the systole (multiplying the metric in
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the direction of this systolic geodesic by a function equal to 1 on the geodesic
and less than 1 in its neighborhood).

The case of the manifold C2,2 (see 2.2 below) is straightforward thanks
to the following (folk) result.

If g is an extremal Riemannian metric (possibly singular) on M , the
systolic geodesics do cover M (see [8]).

This property is satisfied by flat tori, and real projectives endowed with
their metrics of constant curvature. On Bieberbach manifolds of dimension
3, the metrics that optimize the systolic ratio among flat metrics also sat-
isfy this property, except for the manifold C2,2 (cf. [18] p.117-118, and the
suggestive figure of [17], p.236). This property gives the result for C2,2.

The metrics that we construct also satisfy this property, and so there is
no obvious obstacle that prevents them from being extremal. Actually we
highlight the metric we construct on the manifold C2, (see sections 7 and
8) because it verifies an even stronger property : it is covered by systolic
geodesics of any systolic class (a systolic class is a free homotopy class
which contains at least one systolic geodesic).

It is worth-noting that the optimal flat metric on C2 does not satisfy
this property. We also prove in section 7 that this metric is extremal in its
conformal class.

2. Flat manifolds

2.1. Classification of flat manifolds

Compact flat manifolds are quotients Rn/Γ, where Γ is a discrete co-
compact subgroup of affine isometries of Rn acting freely. By the theorem
of Bieberbach Γ is an extension of a finite group G by a lattice Λ of Rn (see
for example [9]). This lattice is the subgroup of the elements of Γ that are
translations, we obtain then the following exact sequence:

0 −→ Λ −→ Γ −→ G −→ 1

Actually, if M is a flat manifold, M is the quotient of the flat torus Rn/Λ
by an isometry group isomorphic to G. Two compact and flat manifolds
Rn/Γ and Rn/Γ′ are homeomorphic if and only if the groups Γ and Γ′ are
isomorphic. Such groups are then conjugate by an affine isomorphism of Rn:
two compact and flat homeomorphic manifolds are affinely diffeomorphic.

– 626 –



The systolic constant of orientable Bieberbach 3-manifolds

2.2. 3-dimensional orientable flat manifolds

The classification of flat manifolds of dimension 3 results of a direct
method of classification of discrete, cocompact subgroups of Isom(R3) oper-
ating freely. This classification is due to W. Hantzsche and H. Wendt (1935),
and exposed in the book [18] of J.A. Wolf. There exist ten compact and flat
manifolds of dimension 3 up to diffeomorphism, six are orientable and four
are not.

In the orientable case, the types are caracterized by the holonomy group
G, this reason motivates the notation of W. Thurston (cf. [17] p.235) that
we follow. A rotation of angle α around an axis a will be denoted by ra,α.

i) G = {1}: type C1. This is the torus, it is the quotient of R3 by an
arbitrary lattice of R3.

ii) G = Z2: type C2. Given a basis (a1, a2, a3) of R3 with a3 ⊥ (a1, a2),
let Γ be the subgroup of isometries of R3 generated by ta3/2 ◦ ra3,π and the
translations ta1

and ta2
. The quotient R3/Γ is a manifold of type C2. The

lattice Λ generated by ta1
, ta2

et ta3
is of index 2 in Γ.

This manifold is the quotient of the torus R3/Λ by the cyclic group of
order 2 generated by (the quotient map of) ta3/2 ◦ ra3,π.

iii) G = Z4: type C4. Given an orthogonal basis (a1, a2, a3) of R3 with
|a1| = |a2|, let Γ be the subgroup of isometries of R3 generated by ta3/4 ◦
ra3,π/2 and the translations ta1 et ta2 . The quotient R3/Γ is a manifold of
type C4. The lattice Λ generated by ta1

,ta2
and ta3

is of index 4 in Γ.

This manifold is the quotient of the torus R3/Λ by the cyclic group of
order 4 generated by (the image of) ta3/4 ◦ ra3,π/2. It is also the quotient of
C2 (the basis (a1, a2, a3) should be chosen orthogonal with |a1| = |a2|), by
the subgroup generated by ta3/4 ◦ ra3,π/2.

iv) G = Z6: type C6. Given a basis (a1, a2, a3) of R3 with a3 ⊥ (a1, a2),
|a1| = |a2| and (a1, a2) = π/3, let Γ be the subgroup of isometries of R3

generated by ta3/6 ◦ ra3,π/3 and the translations ta1
et ta2

. The quotient
R3/Γ is a manifold of type C6. The lattice Λ generated by ta1

,ta2
and ta3

is
of index 6 in Γ.

The manifold C6 is the quotient of the torus R3/Λ by the cyclic group
of order 6 generated by (the image of) ta3/6 ◦ ra3,π/3. It is also the quotient
of C2 by the subgroup generated by ta3/6 ◦ ra1,π/3.

v) G = Z3: type C3. Given a basis (a1, a2, a3) of R3 with a3 ⊥ (a1, a2),
|a1| = |a2| and (a1, a2) = 2π/3, let Γ be the subgroup of isometries of R3
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generated by ta3/3 ◦ ra3,2π/3 and the translations ta1
et ta2

. The quotient
R3/Γ is a manifold of type C3. The lattice Λ generated by ta1 ,ta2 and ta3

is of index 3 in Γ. This manifold is the quotient of the torus R3/Λ but it is
not a quotient of C2.

vi) G = Z2 × Z2: type C2,2. Given an orthogonal basis (a1, a2, a3) of
R3, let Γ be the subgroup of isometries of R3 generated by ta1/2 ◦ ra1,π,
t
(
a1+a2

2 )
◦ ra2,π and t

(
a1+a2+a3

2 )
◦ ra3,π. The quotient R3/Γ is the manifold

C2,2. This time, the holonomy group G is not cyclic, it is equal isomorphic
to Z2 × Z2.

3. Singular metrics on Bieberbach manifolds

All the singular metrics we will use give rise to length spaces (cf. [7]).
In this section we will define these metrics in the setting of Riemannian
polyhedrons. For further details on this notion see [1].

A polyhedron is a topological space endowed with a triangulation, i.e.
divided into simplexes glued together by their faces. We denote by Σ an
arbitrary simplexe of a polyhedron P .

Definition 3.1. — A Riemannian metric on a polyhedron P is a family
of Riemannian metrics {gΣ}Σ∈I , where I is in bijection with the set of
simplexes of P . These metrics should satisfy the following conditions:

1. Every gΣ is a smooth metric in the interior of the simplex Σ.

2. The metrics gΣ cöıncide on the faces; i.e. for any pair of simplexes
Σ1, Σ2, we have the equality

gΣ1 |Σ1

⋂
Σ2

= gΣ2 |Σ1

⋂
Σ2

Such a Riemannian structure on the polyhedron allows us to calculate
the length of any piecewise smooth curve in P , this way, the polyhedron
(P, g) turns out to be a length space.

Note that the Riemannian measure is defined exactly as in the smooth
case. The volume of the singular part is equal to zero.

The geodesics of a Riemannian polyhedron are the geodesics of the as-
sociated length structure (see [7]). In the interior of a simplex (Σ, gΣ), the
first variation formula shows that such a geodesic is a geodesic of gΣ in the
Riemannian sense (see [11] p. 102 for an example).
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3.1. The Klein-Bavard bottle

We know by Bavard ([2]) that the unique extremal Klein bottle for the
isosystolic inequality is not flat (see also [13]), it is singular and has curvature
equal to +1 outside the singularities:

We start with the round sphere, and we locate the points by their latitude
φ and their longitude θ. For φo ∈]0, π/2[, let Σφo be the domain defined by
|φ| � φo. In Σφo , the round metric is given by dφ2 + cos2 φdθ2. Note that
the universal cover of Σφo is the strip R × [−φo, φo] with the same metric.
Here we introduce in R2 the singular Riemannian metric

dφ2 + f2(φ)dθ2, (3.1)

where f is the 2φ0 periodic function which agrees with cosφ in the interval
[−φo, φo].

Example 3.2. — The metric on the Klein bottle that gives the best sys-
tolic ratio ( π

2
√

2
) is obtained for φo = π

4 by taking the quotient of the plane

endowed with the metric 3.1 by the action of the group generated by

(θ, φ) �→ (θ + π,−φ) et (θ, φ) �→ (θ, φ+ 4φ0).

For more details on the Klein-Bavard bottle see [11], [3] and [5].

Remark 3.3. — It may seem more natural to take the quotient of the
plane (endowed with the metric 3.1) by the group generated by

(θ, φ) �→ (θ + π,−φ) and (θ, φ) �→ (θ, φ+ 2φ0)

the surface we obtain is indeed a Klein bottle but it does not give the
best systolic ratio: the geodesics closed by the correspondence (θ, φ) �→
(θ, φ + 2φ0) have a length equal to π/2 whereas the ones closed by the
correspondence (θ, φ) �→ (θ, φ + 2φ0) have length π. It is then possible to
reduce the volume without shortening the systole by reducing the metric in
the direction of the long closed curves.

3.2. Singular metrics on orientable Bieberbach manifolds

Starting with an arbitrary lattice ∆ of R2, we introduce the associated
Dirichlet-Voronöı tiling. It is a tiling of the plane by hexagons (or rectangles
if the lattice ∆ is rectangle) Ap centered at the points p of the lattice. Then
a lattice of R3 of the form ∆×cZ, where c > 0, allows us to tile R3 naturally
with hexagonal or rectangular prisms that we denote by Dp.
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Now we introduce on R3 the Riemannian singular metric h(m) = dx2 +
dy2+ψ(m)dz2, where we set, form(x, y, z) ∈ Dp, ψ(m) = cos2 dist

(
(x, y), p

)
,

with dist
(
(x, y), p

)
< π/2. If m is in two domains Dp and Dp′ then p

and p′ are at the same distance from m: the map ψ is well defined. It
is continuous, but it is not C1. The connected component of the identity
in the group of isometries of (R3, h) consists of the vertical translations
(x, y, z) �→ (x, y, z+c′). The translations by the vectors of ∆ are also isome-
tries. It is important to note that the metric h can also be written in the
form dx2 + dy2 + cos2

(
d((x, y),∆)

)
, where d((x, y),∆) is the distance from

the point (x, y) to the lattice ∆.

The quotient of (R3, h) by the group ∆×cZ is a singular torus of dimen-
sion 3. We denote by (T, h) this special torus. The sections of (T, h) by the
planes z = constant are 2−dimensional totally geodesic flat tori. All these
flat tori are isometric to R2/∆. Note that the map from (T, h) onto the torus
R2/∆, which consists in projecting onto the torus z = 0, is a Riemannian
submersion.

With a good choice of the lattice ∆, the transformations ta3/n ◦ ra3,2π/n

(n = 2, 3, 4, 6), described in the classification of the flat orientable mani-
folds, become isometries of (T, h) (The lattice ∆ should be square to get
C4 and hexagonal to get C3 and C6). This way we get a family of singular
Riemannian metrics on the manifolds of type C2, C3, C4 and C6.

Remark 3.4. — Actually this construction also works if we take the quo-
tient of (R3, h) by the lattice n∆ × cZ (n ∈ N∗). Starting with this torus,
we can re-obtain all the manifolds Ci (i = 2, 3, 4, 6) exactly the same way
as for the torus (T, h). We will see in the next sections that taking n = 2 is
more useful to get “good systolic ratios” on these manifolds.

4. Two singular tori and their systole

We take the quotient of the Riemannian singular space (R3, h) seen in
section 3.2 by the lattice 2∆ × 2πZ. We get a 3-dimensional torus (T, g)
whose singular locus is connected. It can be described as follows: the tiling
of R3 defined by the Voronöı domains associated to ∆ gives us a trian-
gulation (with four hexagonal faces in the generic case, four rectangular
faces if the lattice is rectangular) of R2/2∆. Let L be the 1-skeleton of this
triangulation. The singular locus is L× R/2πZ.

The sections of (T, g) by planes containing the axis of a domain Dp are
surfaces of curvature +1 as long as we stay in the interior of Dp. These sur-
faces, that we denote by Sp, are actually spherical cylinders with boundary.
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Remark 4.1. — To preserve the systole and reduce the volume of the
manifolds of type Ci we have to take the quotient of (R3, h) by the lattice
2∆ × 2πZ and not by ∆ × 2πZ. This prevents shortening closed curves at
the level of the surfaces Sp.

4.1. The torus (T, gc)

First suppose that the lattice ∆ is square and generated by two vectors of
norm 2a > 0. This lattice is generated by three translations t1 : (x, y, z) −→
(x+4a, y, z), t2 : (x, y, z) −→ (x, y+4a, z) and t3 : (x, y, z) −→ (x, y, z+2π).
We denote by (T, gc) the quotient torus.

Note that the symmetries with respect to the surfaces x = pa and y = qa
where p, q ∈ Z, are isometries of (T, gc).

Lemma 4.2. — The systole of (T, gc) is equal to inf{4a, 2π cos(a
√

2)}.

Proof. — Let γ be a curve in (R3, h), from m(x0, y0, z0) to t1(m), then

l(γ) �
∫ √

x′2 + y′2 + ψ(x, y)z′2dt �
∫
x′dt � 4a

Now, if γ is a curve from m(x0, y0, z0) to t2(m) we find the same way as
before that l(γ) � 4a. Finally, for a curve γ from m to t3(m), we have

l(γ) =

∫ √
x′2 + y′2 + ψ(x, y)z′2dt �

∫
inf(ψ)z′dt = 2π cos a

√
2

the equality is obtained for the points of the edges of the square prism Dp.
Using the same technique we can prove that the distance between a point m
and its image by the composition of several translations is greater or equal
to inf{4a, 2π cos a

√
2}. �

4.2. The torus (T, ghex)

Suppose now that the lattice ∆ is hexagonal and generated by two vec-
tors of norm 2a > 0. The lattice 2∆× 2πZ is generated by the translations
T1 : (x, y, z) −→ (x + 4a, y, z), T2 : (x, y, z) −→ (x + 2a, y + 2a

√
3, z) and

T3 : (x, y, z) −→ (x, y, z + 2π). The manifold we get is a singular torus that
we denote by (T, ghex).

Remark 4.3. — The symetries with respect to the surfaces x = pa, y +
x√
3

= 2pa√
3

and y − x√
3

= 2pa√
3
, give in the quotient isometries of (T, ghex).
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Lemma 4.4. — The systole of (T, ghex) is equal to inf{4a, 2π cos(2a/
√

3)}.

Proof. — For any curve γ from m to T1(m) we have

l(γ) �
∫ √

x′2 + y′2 + ψ(x, y)z′2dt �
∫
x′dt � 4a

the same inequality holds for any curve from m to T2(m) since the situation
is invariant by the rotation ra3,π/3 of angle π/3 around the axis z.
Finally, for any curve γ from m to T3(m), we have

l(γ) =

∫ √
x′2 + y′2 + ψ(x, y)z′2dt �

∫
inf(ψ)z′dt = 2π cos(2a

√
3)

the equality is achieved for the points of the edges of the hexagonal prisms
Dp. The distance between a point m and its image by the composition of
several translations is greater or equal to inf{4a, 2π cos(2a

√
3)}. �

5. The systolic ratio of C2

5.1. The systolic ratio of flat metrics

The volume is equal to 1
2 det(a2, a1)|a3| and the systole is equal to

inf{|a3|/2, s}, where s is the systole of the flat torus of dimension 2 de-
fined by the lattice of basis a1, a2. We normalize such that 1

2 |a3| = 1, then
the systolic ratio is equal to

s3

det(a1, a2)
if s � 1 and

1

det(a1, a2)
if s � 1,

Since we have s2

det(a1,a2)
� 2√

3
(lattice of dimension 2), the systolic ratio is

less or equal to 2/
√

3.

5.2. A singular metric on C2 better than the flat ones

We start by giving the following useful observations:

• The metric h defined in section 3.2 can be written locally (in the
domain D) in cylindrical coordinates in the form h = dr2 + r2dθ2 +
cos2 rdz2 (r is the distance to the vertical axes going through the
center p of the prism Dp, and θ is the angle with respect to the axis
“x”).
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• In restriction to a prism Dp, a surface Sp of equation θ = θ0 is totally
geodesic. To see this, just remark that the length of any curve γ in
Dp joining two points of θ = θ0 is always greater than its projection
on this surface. This is simply due to the expression of the metric in
the “cylindrical” coordinates:

l(γ) =

∫ √
r′2 + r2θ′2 + cos2 rz′2dt �

∫ √
r′2 + cos2 rz′2

Lemma 5.1. — Let γ be a curve of the universal Riemannian covering
of (T, ghex) and γ′ its minimal projection on a hexagonal prism Dp, then
we have l(γ) � l(γ′). (The minimal projection of a point m is here the
point of Dp at a minimal distance (Euclidean) of m. It is unique since Dp

is convex).

Proof. — If the minimal orthogonal projection is completely inside the
singularity x = pa, i.e. if γ′ is in such a hypersurface, then

l(γ) =

∫ √
x′2 + y′2 + ψ(x, y)z′2dt �

∫ √
y′2 + ψ(x, y)z′2dt = l(γ′)

but the situation is invariant by a rotation of angle π/3 around p; this shows
that if γ is projected on the surfaces y + x√

3
= 2pa√

3
or y − x√

3
= 2pa√

3
of the

singularity, we have l(γ) � l(γ′). Finally, the result is true for any curve
projected anywhere on the singularity. �

Remark 5.2. — In fact the previous lemma holds even if we take the
minimal projection on a hexagonal prism inside Dp and parallel to it. A
prism is parallel to Dp if every plane consisting its boundary is parallel to a
plane of the boundary of Dp. This remark will be used in the improvement
of the systolic ratio of the manifold C3.

We denote by σ the map (x, y, z) �→ (−x,−y, z + π) (see type C2 in
section 2.2), and the correponding quotient maps.

Remark 5.3. — In the torus (T, ghex) seen in section 4, the transforma-
tion σ keeps 4 geodesics globally invariant, these are the vertical axes con-
taining the 4 centers of the (quotiented) prisms that constitute a fundamen-
tal domain of C2.

Lemma 5.4. — For any point m(r0, θ0, z0) in (T, ghex) we have

d(T,ghex)(m,σ(m)) � π.

The equality is achieved for a geodesic of the surface θ = θ0.
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Proof. — Letm(r0, θ0, z0) be a point inDp, and γ a curve in (R3, h) from
m to σ(m). If γ stays in Dp, then by Remark 5.2 we have l(γ) � l(pr(γ))
where pr(γ) is the projection of γ on the surface θ = θ0. But l(pr(γ)) � π
since the metric on this surface is spherical (dr2 + cos2rdθ2). Now if γ gets
out of the prism Dp, let γ′ be the curve obtained by taking the projection
(minimal) of the part of γ outside Dp on the boundary ∂Dp, and by leaving
the part inside Dp unchanged. Then γ′ is a curve of Dp from m to σ(m).
Its length is greater or equal to π (using the same argument of projection
on the surface θ = θ0). We conclude that l(γ) � l(γ′).

Then we have to calculate in (R3, h) (a lower bound of) the distance to
(a lift of) σ(m) of the images of m by translations. We denote by σ0 any lift
of σ in (R3, h). If we translate m by T3, the situation will be equivalent to
the one above since T3(m) and σ0(m) are conjugate by σ−1

0 . Now a curve γ
in (R3, h) from σ0(m) to T1(m) should go through at least 3 domains Dp.
Among these let D′ be the domain that neither contains σ0(m) nor T1(m).

• If γ stays in these three domains, let γ′ be the curve obtained by
taking symmetrics of the parts of γ outside D′ with respect to the
singular “plane” of ∂D′ beside the curve (see fig.3.1). The curve γ′

is in D′, it joins two conjugate points by the transformation σ0, then
l(γ) � l(γ′) � π (above argument).

• If γ gets out of these domains, let γ′ be the curve obtained by pro-
jecting the part of γ outside D′ on its boundary ∂D′. We get a con-
tinuous curve in D′ joining two conjugate points by σ0, we conclude
that l(γ) � l(γ′) � π.

Finally, note that the distance to σ0(m) of the composition of several
translations of m is too large by arguments similar to those above. �

Remark 5.5. — The two preceding lemmas are also true for the torus
(T, gc) and can be proved exactly the same way.

Summing up this discussion, we get the following result.

Theorem 5.6. — Take the family of (singular) metrics on C2 defined
as follows.

• Take a hexagonal lattice ∆ in the plane.

• Equip the 3-space with the metric

hx,y,z = dx2+dy2+cos2 f(x, y, z)dz2, with f(x, y, z) = dist
(
(x, y),∆)

)

– 634 –



The systolic constant of orientable Bieberbach 3-manifolds

• Take the quotient by the group generated by 2∆ and σ : (x, y, z) �→
(−x,−y, z + π).

If the length of the shortest vector in ∆ is equal to π
2 then

Sys3

V ol
>

2√
3

In other words : this metric has a bigger systolic ratio than the biggest
systolic ratio of flat metrics on C2.

m

m'

D'

Figure 1. — A curve joining m to m′ = T1(σ(m)) will go through 3 domains Dp

For the parts of this curve outside D′ we take their symetrics

with respect to the boundary D′.

Proof. — This metric is just a quotient of the metric (T, ghex) which was
described in 4.2. Denote it by (C2, ghex). It depends on the real parameter
a; the minimal length of vectors in the lattice ∆ is 2a.

The volume of (C2, ghex) is equal to
∫ π

0

∫∫

D

cos
√
x2 + y2dydxdz

where D is a regular hexagon of shortest distance between its opposite edges
equal to 2a.

The systole is equal to

inf
{
Sys(T, ghex), inf{dist(T,ghex)(m,σ(m))}

}

By Lemmas 4.4 and 5.4, it is equal to inf{4a, 2π cos(a
√

2), π}. Then, for
a = π/4, we have Sys(C2, ghex) = π. Using the software “Maple” we find
an approximation of the volume (� 2,80), then a simple calculation gives
the systolic ratio Sys3(C2, ghex)/V ol(C2, ghex) � 1, 38. �
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5.3. The manifold C2 as a quotient of the torus (T, gc)

To get a manifold homeomorphic to C2, we can take an arbitrary plane
lattice ∆, then consider the quotient of (R3, h) by the same transformations
as before. To increase the most the systolic ratio, ∆ should have the smallest
volume possible, i.e. it should be hexagonal. It is nevertheless interesting
to get this manifold as a quotient of the torus (T, gc), i.e. when ∆ is the
“special” square lattice. We denote by (C2, gc) the quotient of (T, gc) by the
subgroup generated by σ ((x, y, z) �→ (−x,−y, z + π)).

When a = π/4, the intersection of (T, gc) with one of the planes x = 0
or y = 0 is the covering torus of the Klein-Bavard bottle (c.f. [2], see also
[11]). It turns out that with a good choice of the parameter a the manifold
(C2, gc) admits a systolic ratio greater than

√
3/2, and the calculation is

based, as in the case of (T, ghex), on the fact that the distance in (T, gc)
between a point and its image by σ is greater than π (c.f. 5.4).

Proposition 5.7. — If the length a of the shortest vector of ∆ satisfies

the equation 2a−π cos a
√

2 = 0, then the systolic ratio Sys3(C2,gc)
V ol(C2,gc)

is greater

than 2/
√

3. It is approximately equal to 1, 18.

6. The systolic ratio of C4, C6, C3 and C2,2

6.1. Type C4

In the flat case, we saw that C4 is the quotient of C2 (the basis (a1, a2, a3)
should be orthogonal with |a1| = |a2|) by the subgroup generated by ta3/4 ◦
ra3,π/2. Its volume is equal to |a1||a2||a3|/4, and the systole is equal to
inf{|a1|, |a2|, |a3|/4}. The systolic ratio is less than 1.

The transformation τ = ta3/4 ◦ ra3,π/2 is also an isometry of gc and the
quotient of (C2, gc) by this isometry gives a manifold of type C4, we denote
it by (C4, gc).

Remark 6.1. — The transformations τ and τ−1 are of order 4 in (T, gc)
and keep 2 geodesics globally invariant.

The transformation τ2 is of order 2 in (T, gc) and keeps, in addition
to the geodesics fixed by the transformation τ , 2 others globally invariant.
They are the vertical geodesics going through the points of the lattice ∆
(see fig.2).
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B

A

B'' B'''C'

C

D

O3 O4

O1 O2

A'

B'

Figure 2. — The transformations τ et τ−1 keep fixed the vertical axes going

through the points O1 and O4. The transformation τ2 keep fixed these same axes,

as well as the vertical ones going through the points O3 and O4.

Theorem 6.2. — Consider the singular metric on C4 given as follows.

• Take a square lattice ∆ in the plane.

• Equip the 3-space with the metric

hx,y,z = dx2+dy2+cos2 f(x, y, z)dz2, with f(x, y, z) = dist
(
(x, y),∆)

)

• Take the quotient by the group generated by 2∆ and τ : (x, y, z) �→
(−y, x, z + π

2 )

If the length of the shortest vector of ∆ is equal to π
4 then the systole is

equal to π/2 and the systolic ratio is greater than 1.

In other words: this metric has a bigger systolic ratio than the biggest
systolic ratio of flat metrics on C4.

Proof. — Denote by (C4, gc) this metric. It depends on the real param-
eter a, where 2a is the length of the shortest vector in ∆. The systole of
(T, gc) is equal to inf{4a, 2π cos(a

√
2)}. By proposition 5.5 we know that

d(m, τ2(m)) � π (τ2 = σ), therefore we are reduced to finding a “good”
lower bound of τ . Using the triangular inequality in (T, gc), we have

d(m, τ2(m)) � d(m, τ(m)) + d(τ(m), τ2(m))
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but d(p, τ(p)) = d(τ(p), τ2(p)) since τ is an isometry of (T, gc). Then
d(m, τ(m)) � π/2, and the equality is achieved for the points m of the
rotation axis. Note that using the same method, we get a good lower bound
of τ3 = τ−1.

Finally for a = π/8 the systole of (C4, gc) is equal to π/2. The volume
is equal to

4

∫ π
2

0

∫ π
8

−π8

∫ π
8

−π8
cos

√
x2 + y2dxdydz

Using Maple, we find the systolic ratio of our manifold, it is approximately
equal to 1, 05 > 1. �

6.2. Type C6

In the flat case, the volume is equal to 1
6det(a1, a2)|a3| and the systole is

equal to inf{|a3|/6, s}, where s is the systole of the flat 2-dimensional torus
defined by the lattice of basis a1, a2. Considering the usual normalisation
1
6 |a3| = 1, the systolic ratio is equal to

s3

det(a1, a2)
if s � 1 and

1

det(a1, a2)
if s � 1,

It is less than 2/
√

3.

Now to improve this systolic ratio, we start with the hexagonal torus
(T, ghex) defined in 4, since the lattice ∆ should be hexagonal. To get the
manifold C6, we take the quotient of (T, ghex) by the subgroup generated
by the isometry φ = ta3/6 ◦ ra3,π/3, the resulting manifold is (C6, ghex).

Remark 6.3. — The transformations φ and φ−1 are of order 6 in (T, ghex)
and keep only one geodesic globally invariant.

The transformations φ2 and φ4 are of order 3 in (T, ghex) and keep, in
addition to the one of φ, 2 vertical geodesics globally invariant.

The transformation φ3 is of order 2 and keeps, in addition to the one
kept invariant by φ, 3 vertical geodesics globally invariant (see fig.3).
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BB'

A

O3
O4

O1
O2

A'

Figure 3. — The transformations φ and φ−1 only keep fixed the vertical axis

going through the point O1. The transformations φ2 and φ−2 keep fixed, in addition

to the axis going through O1, the vertical axes going through the points A et B.

The transformation φ3 keeps fixed, in addition to these three axes,

the vertical ones going through the points Oi, (i = 2, 3, 4).

This discussion gives the following result.

Theorem 6.4. — If the norm of the shortest vector of ∆ is π/6, the
quotient metric on C6 with respect to the metric (T, ghex) (i.e. the manifold
(C6, ghex)) has a systolic ratio bigger than 2/

√
3, namely bigger than the

best systolic ratio for flat metrics on C6.

Proof. — The proof is exactly the same as for theorem 6.2. �

6.3. Type C2,2

In the flat case, the systole is equal to inf{a1/2, a2/2, a3/2}. The volume

is equal to |a1||a2||a3|
4 . The systolic ratio is less than 1/2, the equality is

achieved if and only if |a1| = |a2| = |a3|. In this case the systolic geodesics
are isolated and therefore do not cover the manifold C2,2.
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The criterion seen in the introduction allows us to conclude that the flat
metrics on C2,2 are not the best for the isosystolic inequality.

6.4. Type C3

In the flat case, the volume is equal to 1
3 det(a1, a2)|a3| but also to√

3
6 |a1||a3|, and the systole is equal to inf{|a3|/3, |a1|}, since the lattice gen-

erated by a1 and a2 is hexagonal. We conclude that the systolic ratio is less
or equal to 2/

√
3. The equality is achieved for |a3| = 3|a2| = 3|a1|.

To improve this systolic ratio, we start with the hexagonal torus (T, ghex)
defined in section 4. To get the manifold C3, we take the quotient of (T, ghex)
by the subgroup generated by the isometry ϕ = ta3/3 ◦ ra3,2π/3, the result
is the manifold (C3, ghex).

Since the manifold C3 is not a quotient of C2, it does not contain surfaces
that are Klein bottles or Möbius bands, therefore our previous methods of
getting a lower bound for the systole cannot be applied (it still satisfies
the property of having isolated systolic geodesics). Therefore, a special and
more general argument is necessary.

Let ϕc be the isometry of (T, ghex) which sends (p, z) to the point
(r2π/3(p), z+ c). The quotient of (T, ghex) by the subgroup generated by ϕc
is clearly a manifold homeomorphic to C3, we denote it by (C3, g

c
hex) (here

we suppose that the vertical translation in (T, ghex) is (p, z) �→ (p, z + 2c)).
Let γ be the vertical geodesic (closed by ϕc) in a domain Dp in (C3, g

c
hex)

going through the point p, it has length equal to c. Now let H be a piece-
wise smooth variation of γ through geodesics joining a point m to ϕc(m),
we impose that these curves stay in Dp and do not touch the singularity.

Lemma 6.5. — The second variation of H at the curve γ is strictly pos-
itive if 0 < c < 2π/3.

Proof. — Let O be a small tubular neighborhood of γ and let Ω be the set
of geodesics in Dp from mt ∈ O to ϕc(mt) that do not touch the singularity
(one parameter family since the situation is invariant under rotation around
γ). Then

H :]− ε, ε[−→ Ω

t −→ γt : [0, 1]→ (C3, g
c
hex)

is such that H(0) = γ. Let T = ∂γt
∂s (velocity vector of γt), and V = ∂γ

∂t |γt
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(the Jacobi field along γ), and set L =
∫ c

0
|T |ds. We have then

∂L

∂t
=

1

L(t)

∫ c

0

gchex(V,∇V T )ds

since ∇TV −∇V T = [V, T ] = 0 we get

L
∂L

∂t
= [gchex(V, T )]c0 (1st variation formula)

Now
∂

∂t
(L
∂L

∂t
) = (

∂L

∂t
)2 + L

∂2L

∂t2

=

∫ c

0

(|∇TV |2 + gchex(T,∇V∇TV ))ds

=

∫ c

0

|∇TV |2 +

∫ c

0

gchex(T,∇T∇V V ) +

∫ c

0

gchex(R(V, T )V, T )

where R is the curvature tensor of gchex. Now since the curvature in the
direction of the plane (T, V ) is equal to 1 we get

L
∂2L

∂t2
=

∫ c

0

|∇TV |2 − L2

∫ c

0

|V |2

=

∫ c

0

(∇T g
c
hex(V,∇TV )− gchex(V,R(T, V )T ))−L2

∫ c

0

|V |2 = gchex(V,∇TV )|c0

(see [10] p. 20 for more details on the second variation formula).

Now V is a Jacobi Field orthogonal to γ and so can be written in the
form V = f1E1 + f2E2, where (E1, E2) is an orthonormal basis of the
(horizontal) plane and parallel along γ. We can suppose that V (0) = E1

and V (c) = E1 cos (2π/3) + E2 sin (2π/3). Now solving the Jacobi Field

equation V ′′ + V = 0 we get f1(s) = cos (s) + cos (2π/3)−cos (c)
sin (c) sin (s) and

f2(s) = sin (2π/3)
sin (c) sin (s).

Finally

gchex(V,∇TV )|c0 = f2(c)f
′
2(c) + f1(c)f

′
1(c)− f ′1(0)

= sin2(2π/3)(cos(c)− cos(2π/3)) + cos(2π/3)(cos2(c)− cos2(2π/3))

�

Remark 6.6. — This lemma shows that there exists a neighbourhood U
of the geodesic γ in which γ is of minimum length among the geodesics
joining any point m to ϕc(m).

– 641 –



Chady El Mir, Jacques Lafontaine

Theorem 6.7. — If the norm of the shortest vector of ∆ is π/3, the
quotient metric on C3 with respect to the metric (T, ghex) (i.e. the manifold
(C3, ghex)) has a systolic ratio bigger than 2/

√
3, namely bigger than the

best systolic ratio for flat metrics on C3.

Proof. — We consider in the neighborhood U a hexagon H ”parallel”
(c.f. remark 5.2) to the boundary ∂Dp. Let δ be a curve in (R3, ghex) from a
point m in Dp to ϕc(m), the minimal projection of δ on the boundary ∂H
gives a curve δ′ in U joining two conjugate points by the transformation ϕc.
Then we have by lemma 5.1 and remark 5.2

l(δ) � l(δ′) � c

The same arguments as those used in lemma 5.4 (section 5) show that
d(T,ghex)(m,ϕc(m)) � c.

Now, passing to the limit when c→ 2π/3 we get

d(T,ghex)(m,ϕ(m)) � 2π/3

This allows us to calculate the systole of (C3, ghex), when a = π/6: it is
equal to 2π/3. The volume is equal to

∫ 2π
3

0

∫∫

D

cos
√
x2 + y2dydxdz

As before we calculate this integral using Maple, and we get an approxima-

tion of Sys(C3,ghex)
3

V ol(C3,ghex)
� 1.24. �

Remark 6.8. — The previous proof is also valid for the manifolds
(C6, ghex) and (C4, gc), and allows us to find a good lower bound for their
systoles. But the method we used for these manifolds is a lot more simple
(we just used the triangular inequality).

7. Extremality of (C2, ghex) in its conformal class

Theorem 7.1. — The metric ghex on the manifold C2 (see theorem 5.6)
is extremal in its conformal class.

The proof of this theorem relies on the following result of C. Bavard [4].

Let (M, g) be a compact essential Riemannian manifold of dimension n
and let Γ be the space of the systolic curves of (M, g). For every Radon mea-
sure µ on Γ, we associate a measure ∗µ on M by setting for ϕ ∈ C0(M,R)

<∗ µ, ϕ >=< µ,ϕ >
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where ϕ(γ) =
∫
ϕ ◦ γ(s)ds, ds is the arc length of γ with respect to g. Then

we have

Theorem 7.2 ([3],[4] and [14]). — The Riemannian manifold (M, g) is
minimal in its conformal class if and only if there exists a positive measure
µ, of mass 1, on Γ such that

∗µ =
Sys(g)

V ol(g)
· dg

where dg is the volume measure of (M, g).

Proof of theorem 7.1. — A fundamental domain for the action of 2∆ ×
2πZ is constituted of four hexagonal prismsDp. We consider in a domainDp

the Riemannian metric ghex written in the form g = dr2+r2dθ2+cos2(r)dz2.
Then we consider in the surface θ = ϕ = constant (inside Dp) the geodesic
γ(ϕ,0)

a going through the points (0, 0,−π/2), (0, 0, π/2) and (a, 0, 0), where
0 � a � f(ϕ) and f is a π/3-periodic function defined in [0, π/3] by

f(ϕ) =

{
π

4 cosϕ if 0 � ϕ � π/6
π

2(cosϕ+
√

3 sinϕ)
if π/6 � ϕ � π/3

Remark 7.3. — Inside a domainDp, any surface of equation θ = constant
is a Möbius band with boundary or a Klein bottle of constant positive cur-
vature. The maximum of the r-component is determined by the function
f .

Now, we consider the images γϕ,φ
a of γ(ϕ,0)

a by the isometries (r, θ, z) �→
(r, θ, z + φ). We put on the space Γ = {γϕ,φa : ϕ ∈ R/πZ, φ ∈ R/πZ, and
0 � a � f(ϕ)} the following mesure:

µ = h(a, ϕ)da⊗ dϕ⊗ dφ

Remark 7.4. — The function h depends on two parameters (a and ϕ)
since the isometry group of ghex is one dimensional.

We write γϕ,φ
a(t) = (r(t, a), ϕ, φ+t), where r is a C1 piecewise function.

Let ψ be a continuous function on (C2, ghex), then

<∗ µ, ψ >=

∫ f(ϕ)

a=0

∫ π/2

ϕ=−π/2

∫ π/2

φ=−π/2

∫ π/2

t=−π/2
ψ(r(t, a), ϕ, φ+ t)

×
√

cos2(r(t, a)) +
(∂r
∂t

(t, a)
)2

h(a, ϕ)dt dφ dϕ da
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The changes of variables: x = r(t, a), ϕ = y and z = φ+ t give

<∗ µ, ψ >= 2

∫ π/2

y=−π/2

∫ π/2

z=−π/2

∫ f(y)

x=0

∫ f(y)

a=x

ϕ(x, y, z)

×
√( cos(y)

α(y, a)

)2

+ 1 h(a, y)dy dz dx da

where we set α(x, a) = ∂r
∂t (t, a).

Finally

∗µ(r, θ, z) = 2
χ(r � f(θ))
r cos(r)

∫ f(θ)

a=r

√( cos(r)

α(r, a)

)2

+ 1 h(a, θ)da dghex(r, θ, z)

To calculate the function α(y, a), we will use the fact that the curves γϕ,φ
a

are geodesics. Let gϕhex be the metric induced by ghex on the hypersurface
θ = ϕ. Then gϕhex = dr2 + cos2(r)dz2 can be written in the form g(y)(dx2 +
dy2) and the geodesics {γϕ,φa : 0 � a � f(ϕ), φ ∈ R/πZ} will have to
satisfy the condition (see [16])

d

dx

(
y′

( g(x)
1 + y′2

)1/2
)

= 0

where y′ = dy
dx . In our case, we have g(x) = cos2(r) and y′ = cos(r)

α(r,a) . We get

α2(r, a) =
cos2(r)

cos2(a)

(
cos2(r)− cos2(a)

)

Finally we have

∗µ(r, θ, z) = 2
χ(r � f(θ))

r

( ∫ f(θ)

a=r

(
cos2(r)− cos2(a)

)− 1
2h(a, θ)da

)
dghex(r, θ, z)

Now we are capable of calculating the function h. It should satisfy the
equation

∗µ = dghex

on the band r � f(θ). Then we have

2

∫ f(θ)

a=r

(
cos2(r)− cos2(a)

)− 1
2h(a, θ)da = r
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We put z = cos2(a)− cos2(f(θ)) and t = cos2 r− cos2(f(θ)), we get the
equation ∫ t

0

(t− z)−1/2β(z, θ)dz = δ(t)

where δ(t) = cos−1(
√
t+ cos2(f(θ))). The solution of this equation is

β(z) =
1

π

(δ(0)√
z

+

∫ z

0

(z − x)1/2δ′(x)dx
)

We can easily verify that the integral in the preceding expression does
converge and that

β(z, θ) =
1

π

(f(θ)√
t
−

∫ z

0

dx

2
(
(z − x)(x+ cos2(f(θ)))(1− x− cos2(f(θ)))

)1/2

)

Finally

h(a, θ) =
4 cos(a)sin(a)

π

( f(θ)√
cos2 a− cos2(f(θ))

− I(a, θ)
)

where

I(a, θ)=

∫ cos2 a−cos2(f(θ))

0

dx

2
(
(cos2 a−cos2(f(θ))−x)(x+cos2(f(θ)))(1−x−cos2(f(θ)))

)1/2

We define the same way µ on the the family of systolic geodesics s(Γ)
where s is the symmetry with respect to the boundary of the hexagonal
prism Dp.

Finally we have ∗µ = dghex, which proves that ghex is extremal in its
conformal class. �

Remark 7.5. — The previous result still holds for metrics on C2 obtained
by taking the quotient of (R3, h) by the group generated by 2∆ and σ with
no condition on the parameter a (the length of the shortest vector in ∆)
but the calculations become a bit more complicated.
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8. Comparison between (C2, ghex)
and the face-centered cubic torus

Among flat tori of dimension 3, the face-centered cubic one is the best
for the isosystolic inequality. It is the quotient of R3 by a face-centered cubic
lattice. It is known that this torus, that we denote by Tfcc, is a very good
candidate to realize the systolic constant of tori of dimension 3. It satisfies
the following properties:

• At any point in Tfcc there exists exactly 6 systolic geodesics going
through the point.

• The systolic geodesics of any systolic class of Tfcc cover the torus. A
systolic class is an element of the fundamental group that contains
at least one systolic geodesic.

• It is extremal (for the isosystolic inequality) in its conformal class.

Our singular metric (C2, ghex) verifies the second and third properties,
and a stronger one than the first: At any point outside the singularity of
(C2, ghex), there exists infinitely many systolic geodesics going through the
point.

For the points on the singularity, there are 4 systolic geodesics going
through any of these points: 3 in the horizontal flat 2-torus and 1 in the
surface θ = constant. The singularity subset anyway has zero measure.

We think that as for the face-centered cubic torus, the manifold (C2, ghex)
is a very good candidate to realize the systolic constant because it has an
abondance of systolic geodesics that can be seen by the fact that it satisfies
the properties mentioned above.

When speaking about the metrics (C3, ghex),(C6, ghex) and (C4, gc), they
still satisfy the property of being covered by systolic geodesics mentioned
in the introduction. But we cannot say if they satisfy something stronger
as for the manifold (C2, ghex) since we do not have much information about
the length of the vertical geodesics.

The following table gives a comparison between the greatest systolic
ratio among the flat metrics on each one of the manifolds C2, C3, C4 and C6

(τ(flat)) and the greatest systolic ratio among the singular metrics we have
constructed on these manifolds (τ(singular)).
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type τ(flat) approximate value τ(singular)

C2
2√
3

≈ 1, 154 ≈ 1, 38

C3
2√
3

≈ 1, 154 ≈ 1, 24

C4 1 1 ≈ 1, 05

C6
2√
3

≈ 1, 154 ≈ 1, 18

Acknowledgements. — The first author is grateful to Benoit Michel
for useful discussions and remarks especially on lemma 6.5. He also thanks
the “Lebanese Association for Scientific Research” for hospitality and sup-
port. Both authors thank the referee for constructive criticism.

Bibliography

[1] Babenko (I.). — Souplesse intersystolique forte des variétés fermées et des
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