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Valiron-Titchmarsh Theorem for Subharmonic
Functions in Rn With Masses on a Half-Line

Alexander I. Kheyfits(1)

ABSTRACT. — The Valiron-Titchmarsh theorem on asymptotic behav-
ior of entire functions with negative zeros is extended to subharmonic
functions in Rn, n � 3, having the Riesz masses on a ray.

RÉSUMÉ. — Le théorème de Valiron-Titchmarsh sur le comportement
asymptotique des fonctions entières avec des zéros négatifs est étendu
aux fonctions sous-harmoniques dans Rn, n � 3, ayant les masses de
Riesz sur un rayon.

1. Introduction and Statement of Results

In 1913, Georges Valiron published his well-known memoir [24] in An-
nales de la faculté des sciences de Toulouse, which became his dissertation
the next year. A century later, this work is still regularly cited. The well-
known result of [24] is the sequel Tauberian theorem about entire functions
with roots on a half-line. An elegant succinct account of the current research
about this class of functions has been recently given by Drasin [11].
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Theorem (Valiron1 [24, p. 237]). — Let f(z), z = reıθ, be an entire
function of non-integer order ρ and finite type with negative zeros, and n(t)
be the counting function of its zeros, that is, the number of the zeros of f
in the closed disk {|z| � t}.

If there exists the limit over the positive ray

lim
r→∞

r−ρ log f(r) =
π∆

sinπρ
, (1.1)

where ∆ is a constant, then there exists the limit

lim
t→∞

t−ρn(t) = ∆. (1.2)

The positivity of the counting function is the Tauberian condition of the
theorem.

The Valiron theorem was later independently proved by Titchmarsh [23],
thus it is often referred to as the Valiron-Titchmarsh theorem on entire func-
tions with negative zeros; its current exposition can be found, for example, in
[19, Lect. 12-13]. The result was extended to holomorphic and subharmonic
functions in R2 with associated masses on several rays or on logarithmic
spirales, and to functions with many-term asymptotics, see [2, 5, 16, 17]
and the references therein. The Abelian converse of the theorem, that is,
the implication (1.2) ⇒ (1.1) for subharmonic functions with many-term
asymptotics and with masses on one ray in Rn, n � 3, was considered by
Agranovich [1].

Delange [10] proved that the positive x−axis in (1.1) can be replaced by
any ray z = reıφ subject to the restriction

φ �= 2k + 1

2ρ
π with an integer k, −ρ− 1/2 < k < ρ− 1/2. (1.3)

This restriction does not appear in the original Valiron theorem, where limit
(1.1) is taken over the positive x−axis. The phenomenon was later consid-
ered in [16] and studied in detail by Azarin [4].

In this paper we extend the Valiron-Titchmarsh theorem to subharmonic
functions with masses on a ray in Rn, n � 3. We use the approach based
on the General Tauberian Theorem by Wiener [20, Chap. V]. It invokes

(1) In fact, Valiron proved the theorem for the entire functions of proximate order and
so-called directed products.
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an integral representation of the indicators of the subharmonic functions
under consideration through the associated Legendre functions Pµν (cosψ) of
the first kind. To derive this, likely new representation, we compute in the
Appendix the Mellin integral transform of the Weierstrass canonical kernel
and of the Riesz kernel |x− y|−λ. In this section we fix notation, following
[14] and [12], and state our results. The proofs are given in section 2.

Introduce in Rn = {x = (x1, . . . , xn)} spherical coordinates x = (r, θ),
r = |x|, θ = (θ1, . . . , θn−1), such that x1 = r cos θ1. Here 0 � θ1 � π and
0 � θk � 2π for k = 2, 3, . . . , n − 1. The ball of radius t centered at the
origin of Rn is denoted as Bt, Bt being its closure.

Let u(x) be a subharmonic function of finite non-integer order ρ in
Rn, n � 3, such that its Riesz associated measure µ is supported by the
negative x1−axis, and let

n(t) = t2−nµ(Bt)

be the counting function of the measure µ. By the Hadamard representation
theorem [14, Sect. 4.2.2]

u(x) =

∫

Rn
Kq(x, y)dµ(y) +Q(x). (1.4)

Here Kq is the Weierstrass canonical kernel,

Kq(x, y) = −(r2 + t2 − 2tr cosψ)−
n−2

2 + t2−n
q∑

j=0

(r
t

)j
G
n−2

2
j (cosψ),

the integral in (1.4) is convergent uniformly on any compact set and abso-
lutely at the vicinity of infinity, Q is a harmonic polynomial of degree at
most q, q = E(ρ) being the integer part of ρ, 0 � q < ρ < q + 1. Also, let

t = |y|, ψ = ̂(x, y) be the angle between vectors x and y, and G
(n−2)/2
j (cosψ)

the Gegenbauer polynomials given by the generating function

(1− 2t cosψ + t2)−
n−2

2 =

∞∑

j=0

G
n−2

2
j (cosψ) tj .

Since we are interested in the asymptotic properties of u, which are not
affected by the polynomial Q, we assume hereafter that Q = 0. Due to the
same reason, we suppose, without loss of generality, that the closed unit ball
B1 is free of the Riesz masses of u, thus n(t) = 0 for 0 � t � 1.

For a vector y = (t, θ) with θ1 = π, all the other angular coordinates
are undefined, and we represent such a vector as y = (t, π). If a measure
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µ is distributed over the negative x1−axis, the angle between the vectors
x = (r, θ1, . . . , θn−1) with the latitude θ1, and y = (t, π) in representation
(1.4) is ψ = π − θ1 for any θ2, . . . , θn−1, and integral (1.4) becomes

u(x) =

∫ ∞

0

Kq(x, (t, π))d
(
tn−2n(t)

)
.

Moreover, due to our assumptions, this integral can be transformed (see [12,
Eq-ns (9) and (11)]) as

u(x) =

∫ ∞

0

t2−nhn
(r
t
, θ1, q

)
d

(
tn−2n(t)

)
, (1.5)

where the kernel is

hn(s, θ1, q) = −
(
1 + 2s cos θ1 + s2

) 2−n
2 +

q∑

j=0

(−s)jG
n−2

2
j (cos θ1).

Remark 1.1. — It is worth mentioning that in the case under consider-
ation the kernel hn(s, θ1, q) and the integral in formula (1.5) depend only
on the angle θ1, but not upon the other angular coordinates θ2, . . . , θn−1 of
the point x.

Before stating our results, we formulate an Abelian proposition, which
is a converse of Valiron’s theorem above; its proof is straightforward.

If there exists the limit (1.2), then there exist the limits

lim
r→∞

r−ρ log f(reıθ) =
π∆

sinπρ
eıρθ

for any θ ∈ (−π, π), uniformly in any sector −π+δ � θ � π−δ, 0 < δ < π,
therefore, f is a function of the completely regular growth in the plane.

Now we state the Abelian result regarding the subharmonic functions
given by (1.5).

Proposition 1.2. — Let u be a subharmonic function in Rn, n � 3, of
non-integer order ρ and finite type, whose Riesz masses are distributed over
the negative x1−axis. If there exists the limit

lim
t→∞

t−ρn(t) = ∆, (1.6)

then for any x = (r, θ), with 0 � θ1 < π, there exists the limit

lim r−ρu(x) = H(θ) = H(θ1). (1.7)
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This limit, that is, the indicator function of the subharmonic function u, is
given by

H(θ1) = (ρ+ n− 2)∆

∫ ∞

0

s−ρ−1hn(s, θ1, q)ds. (1.8)

Moreover, the indicator can be expressed through the associated Legendre
spherical functions of the first kind

Pµν (cos θ1)

on the cut −1 < ξ = cos θ1 � 1 [6, Chap. 3], as

H(θ1) =
π2

n−3
2 Γ(n−1

2 )
∏n−2
k=1(ρ+ k) ∆

(n− 3)! sin(πρ) (sin θ1)
n−3

2

P
3−n

2

−ρ−n−1
2

(cos θ1).

Using the known property, Pµν = Pµ−ν−1, of the Legendre functions, [6, Sect.
3.3.1(1)], the latter can be rewritten as

H(θ1) =
π2

n−3
2 Γ(n−1

2 )
∏n−2
k=1(ρ+ k) ∆

(n− 3)! sin(πρ) (sin θ1)
n−3

2

P
3−n

2

ρ+n−3
2

(cos θ1). (1.9)

Equation (1.8) holds good for θ1 = π as well, since in this case both its sides
are equal to −∞.

The fact that (1.6) implies (1.7) is not new, it was established by Azarin
[3] as early as in 1961, together with an integral representation of the indi-
cator of subharmonic functions in Rn, n � 3, in terms of the fundamental
solutions of the Legendre differential equation

t(1− t)y′′(t) + (n− 1)

(
1

2
− t

)
y′(t) + ρ(ρ+ n− 2)y(t) = 0.

The occurrence of the associated Legendre functions in problems like ours
was mentioned in [14, p. 160], without explicit formulas though.

A new feature of our result is the explicit representation (1.9) of the indi-
cator in terms of the associated Legendre functions of the first kind, leading
to a precise description of the zero sets of the indicators of subharmonic
functions at question. We need this description to apply Wiener’s tauberian
theorem.

The zeros of the spherical functions have been carefully studied. It is
known in particular, that if ν is not real, then Pµν (cosβ) is never zero [15,
p. 403], while for any real µ and ν the equation Pµν (cosβ) = 0 has only
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finitely many roots. In our case µ = (3− n)/2 and ν = ρ+ (n− 3)/2, hence
the function

f(β) = P
(3−n)/2
ρ+(n−3)/2(cosβ)

has finitely many real zeros on (0, π).

More precisely [15, p. 386-388], the equation f(β) = 0 has E(ρ+1) = q+1
zeros in the interval (0, π), where E(x) is the integer part of x. In particular,
if 0 < ρ < 1, then for any dimension n there is only one root, which was
observed in [14, p.161]. For instance [8], if n = 3 and ρ ≈ 0.5, then the only
root β1 ≈ 0.7π; if n = 5 and ρ ≈ 0.5, then the unique root β1 ≈ 0.6π.

Let Θn(ρ) = {βn1 , . . . , βnq+1} stand for the set of the roots of the equation
f(β) = 0. Similarly to condition (1.3), our results include the restriction
φ �∈ Θn(ρ). Now we state the Tauberian counterpart of Proposition 1.

Theorem 1.3. — Let u be a subharmonic function in Rn, n � 3, of
non-integer order ρ and finite type, whose Riesz masses are distributed over
the negative x1−axis. Let φ, 0 � φ < π, be an angle between a vector x ∈ Rn
and the positive x1−axis. If φ �∈ Θn(ρ) and the limit

lim r−ρu(x) = H(φ) (1.10)

exists, then there exists the limit

lim
t→∞

t−ρn(t) =M(g; 0)H(φ)

where

M(g, 0) =
2(n−3)/2Γ((n− 2)/2) sin(πρ) (sinφ)

(n−3)/2

π3/2
∏n−3
k=1(ρ+ k)P

(3−n)/2
ρ+(n−3)/2(cosφ)

and therefore, by Proposition 1, there exist the limits for any θ1, 0 � θ1 < π,

lim r−ρu(x) = H(θ) ≡ H(θ1), x = (r, θ1, . . . , θn−1),

with

H(θ1) =

(
sinφ

sin θ1

)n−3
2 P

(3−n)/2
ρ+(n−3)/2(cos θ1)

P
(3−n)/2
ρ+(n−3)/2(cosφ)

H(φ). (1.11)

If φ ∈ Θn(ρ), the conclusion fails as an example below shows.

Remark 1.4. — If n = 2, then there exists an entire function, whose
indicator vanishes on finitely many rays, and the function has the completely
regular growth on these and only these rays [18, p. 161].
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Remark 1.5. — If n = 2, the Weierstrass canonical kernel is different
from that in (1.4), therefore in this case our proof is invalid. Nonetheless, if
n = 2, we have [6]

P
1/2
−ρ−1/2(cosα) =

√
2/(π sinα) cos(ρα), 0 < α < π,

thus in this case formula (1.9) becomes the known one, [16, Theor. 1’],

H(θ1) =
H(φ)

cos ρφ
cos ρθ1.

2. Proofs

Proof of Proposition 1.2. — By condition (1.2), n(t) = ∆tρ+tρε(t), with
limt→∞ ε(t) = 0, thus

u(x) = u1(x) + u2(x),

where

u1(x) =

∫ ∞

0

Kq(x, (t, π))d
(
tn−2∆tρ

)

= (ρ+ n− 2)∆

∫ ∞

0

tρ+n−3Kq(x, (t, π))dt

and u2 = u− u1.

Due to (1.5),

u1(x) = (ρ+ n− 2)∆

∫ ∞

0

tρ−1hn

(r
t
, θ1, q

)
dt

= (ρ+ n− 2)∆

(∫ ∞

0

s−ρ−1hn (s, θ1, q) ds

)
rρ.

To get from here (1.7), we have to estimate the second term u2.

The latter is a subharmonic function of the non-integer order ρ. We need
the known bound of the kernel hn, see for example, [12],

∣∣hn(u, θ, q)
∣∣ � Cmin

(
uq;uq+1

)
(2.1)

for all u > 0 with a constant C depending only on n and q.

Since the associated measure of u2 has the minimal type with respect
to the non-integer ρ, the estimates in [21, Chap. 2] or [14, Chap. 4] imply
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that the function u2 itself has zero type with respect to ρ, thus proving
(1.7)-(1.8).

Equation (1.9) for θ1 �= π follows from (1.8) and Corollary 1 in Ap-
pendix A.

To verify (1.9) when θ1 = π, we notice that in this case the integral in
(1.8) is divergent to −∞. On the other hand, by making use of the known
asymptotic formulas for the associated Legendre function [6, Sect. 3.9.1],
we straightforwardly find that as θ1 ↑ π,

H(θ1) ≈ −
(ρ+ n− 2)

(
Γ

(
n−3

2

))2
∆

2(n− 4)!

1

(cos(θ1/2))n−3
↘ −∞

for n � 4, and

H(θ1) ≈ (ρ+ 1)∆ [2 log(cos(θ1/2)) + γ + 2ψ(−ρ)− π cot(πρ)]↘ −∞

if n = 3. Here γ is the Euler-Mascheroni constant and ψ the logarithmic
derivative of the Γ−function. �

Before proving Theorem 1, we formulate the following variant of the
General Tauberian Theorem of Wiener [13, Sect. 12.8, Theor. 233].

Theorem W. — Let a function g ∈ L(0,∞) be such that

∫ ∞

0

g(t)t−ıxdt �= 0

for all real x. Let a bounded real function f be slowly decaying, that is,

limx→∞ (f(y)− f(x)) � 0

as y > x and y
x → 1. If there exists the limit

lim
x→∞

1

x

∫ ∞

0

g

(
t

x

)
f(t)dt = l

∫ ∞

0

g(t)dt,

then there exists the limit
lim
x→∞

f(x) = l

with the same constant l.

Remark 2.1. — A proof of the Valiron-Titchmarsh theorem for analytic
functions in R2 can be based on Montel’s theorem [18, p. 464-465], however,
Montel’s theorem is not valid for subharmonic functions [9].
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Proof of Theorem 1.3. — We again represent u(x) by (1.5) and transform
it into the equation

u(r, θ)

rρ
=

1

r

∫ ∞

0

(r
t

)1−ρ
hn

(r
t
, θ1, q

)
dα(t), (2.2)

where
dα(t) = t3−n−ρd

(
tn−2n(t)

)
.

Set in (2.2) θ1 = φ from (1.10). Denote also f(t) = 1
tα(t),

g(t) = tρ−1hn(1/t, φ, q),

and the integral in (2.2) as J(r). Integrating J(r) by parts, we get

J(r) = −1

r

∫ ∞

0

f(t) t
∂

∂t
g

(
t

r

)
dt,

since the integrated term vanishes due to (2.1). We have

f(t) =
α(t)

t
=

1

t

∫ t

0

s3−n−ρd(sn−2n(t)).

For a subharmonic function u of order ρ and finite type, its counting function
n(t) is non-decreasing and satisfies n(t) � Ctρ. Therefore, after integrating
f(t) by parts, we get

f(t) =
α(t)

t
=
n(t)

tρ
+
n− 3 + ρ

t

∫ t

0

n(t)

tρ
dt. (2.3)

Since
n(y)

yρ
− n(x)
xρ

=
n(y)− n(x)

xρ
+
n(y)

yρ

(
1−

(y
x

)ρ)
,

the integrated term in (2.3) is a slowly decaying function. The same is valid
for the integral in (2.3), since

1

y

∫ y

0

n(s)

sρ
ds− 1

x

∫ x

0

n(s)

sρ
ds =

1

y

∫ y

x

n(s)

sρ
ds+

(
x

y
− 1

)
1

x

∫ x

0

n(s)

sρ
ds

� C y − x
y

+ C
|x− y|
y

→ 0

as x→∞ and y/x→ 1.

To apply Theorem W, we write the integral J(r) as

J(r) =
1

r

∫ ∞

0

(
−u ∂
∂u
g(u)

) ∣∣∣∣
u=t/r

f(t)dt,
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and we have to show that the Mellin transformation of the kernel in (2.2)
has no real zeros. Therefore, we are to show that the integral

M(g; v) = −
∫ ∞

0

u
∂

∂u
g(u)u−ıvdu = −

∫ ∞

0

∂

∂u
g(u)u1−ıvdu, (2.4)

as a function of v, has no real zeros. Integrating (2.4) by parts, we again
notice that the integrated term vanishes, and we have

M(g; v) = (1− ıv)
∫ ∞

0

g(u)u−ıvdu.

We remind that g(u) = uρ−1hn(1/u, φ, q), thus we consider the integral

M(hn; v) = (1− ıv)
∫ ∞

0

uρ−1hn

(
1

u
, φ, q

)
u−ıvdu

= (1− ıv)
∫ ∞

0

hn(u, θ0, q)u
−1−ρ−ıvdu,

and by virtue of Proposition 2 in the Appendix, equations (A.2)-(A.4) with
s = −ρ−ıv, we expressM(hn; v) through the associated Legendre functions
of the first kind

P
3−n

2

−ρ−ıv−n−1
2

(cosφ).

As we have stated above, the latter has no complex roots; while if v = 0,
it has E(ρ+ 1) zeros, which are excluded by the condition φ �∈ Θn(ρ), thus

M(hn; 0) =
π2

n−3
2 Γ(n−1

2 )
∏n−2
k=1(ρ+ k)∆

(n− 3)! sin(πρ) (sinφ)
n−3

2

P
3−n

2

−ρ−n−1
2

(cosφ).

After some simple algebra we derive from here equation (1.9).

To show that the restriction φ �∈ Θn(ρ) is essential, we consider, in the
simplest case n = 3 and 0 < ρ < 1, the function

u0(x) = rρ + rρ sin log log r Pρ(cos θ1),

where as usual, Pρ = P 0
ρ . We straightforwardly verify that the Laplacian

∆u0(x)

= rρ−2

{
ρ(ρ+ 1) + (2ρ+ 1)

cos log log r

log r
Pρ(cos θ1) +O

(
1

log2 r

)}
.
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It is known [6, Sect.3.9.2 (15)] that Pρ(x) ≈ sinπρ
π log 1+x

2 as x→ −1, thus
∆u0(x) � 0 for r > r0 uniformly in θ1. Whence, the function u0 is subhar-
monic in R3 outside of a fixed ball B(r0) if r0 is large enough. Moreover,
if φ �∈ Θ3(ρ), then limits (1.8) do not exist since u0 is oscillating. On the
other hand, for φ ∈ Θ3(ρ), limit (1.10) does exist since Pρ(cosφ) = 0. �

Appendix

A. Mellin Transform of the Riesz Kernel

The associated Legendre functions of the first kind Pµν (z) are particular
solutions of the Legendre differential equation [6, Chap. 3]

(1− z2)y′′(z)− 2zy′ +
[
ν(ν + 1)− µ2(1− z2)−1

]
y = 0,

where µ and ν are, in general, complex parameters; Pµν (ξ) stands for these
functions on the cut −1 < ξ < 1 [6, Sect. 3.4]. In many instances the Leg-
endre functions are a natural replacement of the trigonometric functions
in many-dimensional problems, so that there is a continuous stream of re-
search regarding the spherical functions. In particular, it may be of interest
to represent certain analytic objects, like series and integrals as Legendre’s
functions; among the newest work see, e.g., [22]. The following statement is
used in the proof of the main result of this paper.

Instead of the Weierstrass canonical kernel in (1.4), we consider a slightly
more general case of the Riesz kernel

kλ(t, ξ) = (1 + t2 + 2tξ)−λ

with any λ such that �λ > 0. It is known that its Mellin transform can be
represented through the associated Legendre’s function,

∫∞
0
tν−µ

(
1 + t2 + 2tξ

)µ−1/2
dt

= Γ(1−µ)Γ(ν−µ+1)Γ(−µ−ν)
2µΓ(1−2µ)

(
1− ξ2

)µ/2
Pµν (ξ),

(A.1)

where Γ is Euler’s Γ−function, [7, Sect. 6.2, Eq. (22)]. The integral in (A.1)
is convergent if

�µ−�ν < 1 and �µ+ �ν < 0.

It should be also mentioned that the kernel kλ is a generating function of
the Gegenbauer polynomials Gλj (ξ), Cf. the case λ = (n− 2)/2 in Section 1,

kλ(t, ξ) = (1 + 2tξ + t2)−λ =

∞∑

j=0

(−t)jGλj (ξ).
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We consider only the case n � 3, since for n = 2 the spherical functions
are essentially the trigonometric functions, and the integral (A.1) for n = 2
is well known, it is equal to π cos ρθ

ρ sinπρ . Thus, let

h(u) = h(λ, q, u, ξ) = −
(
1 + 2uξ + u2

)−λ
+

q∑

j=0

(−u)jGλj (ξ)

= −kλ(u, ξ) +

q∑

j=0

(−u)jGλj (ξ),

which has the same bound as (2.1),

|h(λ, q, u, ξ)| � Cmin{uq;uq+1}, 0 < u <∞,

where a positive constant C does not depend on u and ξ.

Proposition A.1. — For any integer q = 0, 1, 2, . . ., real ξ, −1 < ξ < 1,
and complex λ and s such that

0 < �λ

and
−q − 1 < �s < −q,

the Mellin transformation of h is

M(h, s) =
∫∞
0

{
−

(
1 + u2 + 2uξ

)−λ
+

∑q
j=0(−u)jGλj (ξ)

}
us−1du

= −
√
πΓ(s)Γ(2λ−s)
2λ−1/2Γ(λ)

(
1− ξ2

) 1−2λ
4 P

1/2−λ
s−λ−1/2(ξ).

(A.2)

Proof. — The Mellin transform of the kernel h,

M(h, s) =

∫ ∞

0

h(u)us−1du (A.3)

is convergent for −1 − q < �s < −q. We integrate by parts the integral in
(A.3) q + 1 times, so that the polynomial part of h vanishes, whence

∂q+1

∂uq+1
kλ(u, ξ) = − ∂

q+1

∂uq+1
h(u)

and

M(h, s) =
(−1)q∏q

k=0(s+ k)

∫ ∞

0

us+q
∂q+1

∂uq+1

(
(1 + u2 + 2uξ)−λ

)
du. (A.4)
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The latter integral is convergent for non-integer s such that

−1− q < �s < 2�λ,
thus providing the analytic continuation of M(h,s) as a meromorphic func-
tion into this broader domain of the s−plane.

Now we consider the Mellin transform of the kernel kλ,

M(kλ, s) =

∫ ∞

0

(1 + t2 + 2tξ)−λts−1dt,

which is convergent for

−q − 1 < �s < 2�λ. (A.5)

Integrating it by parts q + 1 times, we get

M(kλ, s) =
(−1)q+1

∏q
k=0(s+ k)

∫ ∞

0

ts+q
∂q+1

∂tq+1

(
(1 + t2 + 2tξ)−λ

)
dt. (A.6)

Due to (A.5), all the integrated terms vanish and the integral is convergent
in the wider region −1−q < �s < 2�λ excluding the poles at integer points.

By (A.1), we express M(kλ, s) through Pµν (ξ) with µ = 1
2 − λ and ν =

s− 1
2 −λ. Finally, combining (A.4) and (A.6) and using Legendre’s formula

for the Γ−function with double argument,

Γ(2z) = 22z−1π−1/2Γ(z)Γ(1/2 + z),

we get the result.

The Legendre functions Pµν (ξ) are entire functions in both µ and ν, thus
all the equations are justified due to the principle of analytic continuation.
�

Remark A.2. — If q = 0, a simpler proof can be given. In this case, we
can explicitly compute the derivative in (A.4) and split the integral into the
two integrals of kind

∫ ∞

0

uα(1 + u2 + 2uξ)βdu

with two different α. Then we apply (A.1) to express each of them as Pµν (z)
and use the recurrence formula [6, Sect. 3.8, Eq-n (18)]

(ν − µ+ 1)Pµν+1(cos θ1)− (ν + µ+ 1) cos θ1P
µ
ν (cos θ1)

= sin θ1P
µ+1
ν (cos θ1)
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to arrive at (A.2) with q = 0. However, the explicit computation of the
derivatives for bigger q becomes cumbersome.

In the case, we are interested in, λ = n−2
2 and s = −ρ, and formula

(A.2) reads as follows.

Corollary A.3. — For any integer q = 0, 1, 2, . . ., real ξ, −1 < ξ < 1,
and complex ρ such that

q < �ρ < q + 1,

the Mellin transform of the function hn is

M(hn, ρ) = −π
√
π2(3−n)/2

∏n−3
k=1(ρ+ k)(1− ξ2)(3−n)/4

sinπρ Γ((n− 2)/2)
P

(3−n)/2
−ρ−(n−1)/2(ξ),

where ξ = cos θ1, or using the equation

√
π(n− 3)! = 2n−3Γ((n− 1)/2)Γ((n− 2)/2),

which can be immediately proved by induction,

M(hn, ρ)

=
π2(n−3)/2

∏n−3
k=1(ρ+ k)Γ((n− 1)/2)(1− ξ2)(3−n)/4

(n− 3)! sinπρ
P

(3−n)/2
−ρ−(n−1)/2(ξ).

Acknowledgement. — The author is grateful to Professors P.Z. Agra-
novich, T.M. Dunster, M. Messaoudene, F.W.J. Olver, and the anonymous
referee for very useful comments.

This work was done during a sabbatical leave from the City University
of New York.

Bibliography

[1] Agranovich (P.Z.). — Polynomial asymptotic representations of subharmonic
functions with masses on one ray in the space (Ukrainian). Matematychni Studii,
Lviv. 23, p. 169-178 (2005).

[2] Agranovich (P.Z.), Logvinenko (V.N.). — An analog of the Valiron-Titchmarsh
theorem for two-term asymptotics of subharmonic functions with masses on a finite
system of rays. Sib. Math. J. 5, p. 3-19 (1985).

[3] Azarin (V.S.). — Indicator of a function subharmonic in n-dimensional space
(Russian). Dokl. Akad. Nauk SSSR, 139, p. 1033-1036 (1961).

[4] Azarin (V.S.). — On the Valiron-Titchmarsh theorem and limit sets of entire
functions. Proceedings of the Ashkelon Workshop on Complex Function Theory
(1996), 5360. Israel Math. Conf. Proc., 11, Bar-Ilan Univ., Ramat Gan (1997).

– 172 –



Valiron-Titchmarsh Theorem for Subharmonic Functions in Rn

[5] Azarin (V.S.). — Growth Theory of Subharmonic Functions. Birkhauser, Basel –
Boston – Berlin (2009).
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