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Equivalence classes of Latin squares and nets in CP2

Corey Dunn(1), Matthew Miller(2), Max Wakefield(3),
Sebastian Zwicknagl(4)

ABSTRACT. — The fundamental combinatorial structure of a net in CP2 is
its associated set of mutually orthogonal Latin squares. We define equiv-
alence classes of sets of orthogonal Latin squares by label equivalences of
the lines of the corresponding net in CP2. Then we count these equiva-
lence classes for small cases. Finally we prove that the realization spaces
of these classes in CP2 are empty to show some non-existence results for
4-nets in CP2.

RÉSUMÉ. — La structure combinatoire fondamentale d’un filet dans CP2

est donnée par l’ensemble des carrés latins orthogonaux associé. Nous
définissons des classes d’équivalence de carrés latins orthogonaux a l’aide
de classes d’équivalence des lignes apparaisant dans le filet de CP2. Nous
comptons le nombre de classes d’équivalence pour certains exemples de
carrés petits. Finalement, nous montrons que les espaces de réalisations
de ces classes pour n = 4 et k = 4, 5, 6 sont vides et nous en déduisons
que les filets correspondants n’existent pas.

1. Introduction

Nets have appeared in several different areas of mathematics over the
last century. Reidemeister was one of the first to examine nets in his research
on webs and their relationship to groups (see [15]). The existence of nets has
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also been shown to effect the existence of finite projective planes (see [8]).
More recently there has been a surge of interest in nets due to their connec-
tion with resonance and characteristic varieties. This began with the work
of Libgober and Yuzvinsky in [12] where they showed that nets supported
positive-dimensional characteristic varieties (see [12]). Then Yuzvinsky in
[21] studied nets exclusively, classified certain classes of nets in CP2, and
posed numerous open problems concerning nets. Problem 1 of [21] is exactly
the focus of this note.

Since Yuzvinsky’s work in [21], the work of Falk and Yuzvinsky in [10]
showed an even stronger connection between resonance and nets. In par-
ticular they showed that an arrangement supports a nontrivial resonance
component if and only if the arrangement supports a multinet. Then in
[14] Pereira and Yuzvinsky view nets as the collection of irreducible special
fibers of a pencil of hypersurfaces and use methods from the theory of folia-
tions to bound the number of special fibers. They then use this to bound the
dimensions of essential components of resonance and characteristic varieties.

The recent work of Artal-Bartolo, Cogolludo-Agustin and Libgober [2, 3]
demonstrates another application of the existence of nets and pencils of
curves with irreducible special fibers. They show, among other things, that
nets influence the characters of the fundamental group and the characteristic
varieties of the complement of a plane curve. Then Denham and Suciu in
[9] use multinets to exhibit non-trivial components of characteristic varieties
and generate arrangements with torsion in the homology of the Milnor fiber.
Still the exact parameters for the existence of nets are unknown. We next
give our definition of a net which is essentially taken from [21].

Definition 1.1. — A (n, k)-net in CP2 for n � 3 consists of a set of
lines A ⊂ CP2 and a finite set of points χ ⊂ A such that A can be partitioned

into n subsets A =
n⋃
i=1

Ai where |Ai| = k for all i = 1, . . . , n subject to the

following conditions

1. If �1 ∈ Ai and �2 ∈ Aj then �1 ∩ �2 ∈ χ whenever i �= j.

2. For every X ∈ χ and every i ∈ {1, . . . , n} there is exactly one line
� ∈ Ai such that X ∈ �.

In [16], Stipins makes significant progress on classifying nets with n =
4, 5. Then in [22] Yuzvinsky extends Stipins work to show no n = 5 nets
exist. In [20] and [19] Urzua has furthered the classification of (3, k)-nets in
CP2 by describing all possible realizations of (3, 6)-nets and their associated
moduli spaces. Yet for n = 4 there are still many open questions. In this
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note we take the first few steps towards showing that the only n = 4 net
is the Hessian. We define equivalence classes of pairs of orthogonal Latin
squares and use them to derive non-existence results for (4, k)-nets in CP2.

Our approach towards this question uses the well known fact that one
can associate n− 2 mutually orthogonal k× k Latin squares to a (n, k)-net
(see e.g. [8]), and we describe that association here. Recall that a Latin
square is a k× k array containing the numbers 1, . . . , k so that there are no
repetitions of any number within the same row or column. Given a (n, k)-
net we label the n sets of lines by the numbers 1, 2, . . . , n and label the
lines in each of the sets by the numbers 1, 2, . . . , k. With this labeling define
k × k-arrays Lm (for m = 1, . . . , n − 2) by setting the ith entry in the jth

column of Lm to be Lmij = �, if the ith line of the first set and the jth line

of the second set meet the � line of the mth set in their intersection point.
Every intersection of a line in the first set with a line in the second set is
contained by exactly one line from the mth set. Thus, Lm is a Latin square.
Recall also that two k×k Latin squares L1 and L2 are orthogonal if for each
pair (�,m) ∈ {1, . . . k}2 there exists exactly one pair (i, j) ∈ {1, . . . k}2 such
that L1

ij = � and L2
ij = m. When n � 4, every intersection of a line in the

first set with a line in the second set is contained in exactly one line from
the mth set, and one line from the (m′)th set. Thus, the Latin squares Lm

and Lm
′
are orthogonal. This labeling of the lines is not unique; permuting

the labels of the lines in one of the sets, or the numbering of the sets can
lead to different sets of orthogonal Latin squares.

Example 1.2. — The following is a standard example of a pair of (4× 4)
orthogonal Latin squares. We will refer to these squares subsequently. Set

(1.1)

It is easy to check that the following Latin square L2 is orthogonal to L1.

(1.2)

In this paper we propose the following program to classify (n, k)-nets:

(1) Define an equivalence relation on the set of (n − 2)-tuples of mutually
orthogonal k × k-Latin squares identifying those tuples which are obtained
from the same net.
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(2) Choose a representative for each equivalence class and investigate whether
it can be realized as a net in CP2. One obtains a system of equations whose
solutions describe the moduli space of isomorphism classes of nets in CP2.

In the present paper we will apply this approach to the case n = 4.
Denote the set of all pairs of orthogonal k × k Latin squares by OLSk. In
this paper, if (L,M) ∈ OLSk, we may refer to M as the orthogonal mate of
L or vice versa. We define the equivalence relation ∼′ in the next section.
We will call the set of these equivalence classes corresponding to Step (1)
of our program OLSk/ ∼′, and express the equivalence class of (L,M) in
OLSk/ ∼′ as [(L,M)]′. We obtain the following result (which is broken up
later into the Theorems 3.4, 3.5, 3.6).

Theorem 1.3. — Using the notation established above, we have

1. |OLS3/ ∼′ | = 1.

2. |OLS4/ ∼′ | = 1.

3. 1 � |OLS5/ ∼′ | � 2.

Then we calculate the realization space, as a net in CP2, of a repre-
sentative of each equivalence class in Theorem 1.3 to prove the following
theorem.

Theorem 1.4. — The following is a complete classification of (4, k)-nets
in CP2 up to projective isomorphism, for k = 3, 4, 5, 6.

1. The Hessian arrangement is the only (4, 3)-net in CP2 up to projective
isomorphism.

2. There are no (4, k)-nets in CP2 for k = 4, 5, 6.

The solution to Euler’s well-known “36 Officer Problem” says precisely
|OLS6| = 0 (see [18]), and so the case k = 6 in Assertion 2 of Theorem
1.4 is obvious.

Remark 1.5. — Other authors have studied different classes of orthogo-
nal Latin squares (see [7, 8] for example). Though the literature is vast, the
equivalence classes described herein appear in [11] where the author refers
to these relations as isotopy of Latin hypercubes (see Section 3 of [11]). Some
of our results overlap with previously known results, but we include our own
proofs in this new context to provide a more complete and self-contained
treatment of this subject.
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2. Preliminaries

We will use the following notation throughout the paper. Let Symk be
the standard permutation group of k objects. We denote permutations in
Symk using the following standard notation: for any subset {iq1iq2 . . . iqr} ⊂
{1, 2, . . . , k} the expression (iq1iq2 . . . iqr ) denotes the r-cycle in Symk which
maps iqh to iqh+1

and fixes its complement {1, 2, . . . , n} \ {iq1 , iq2 , . . . iqr}.
It is well known that any permutation can be written as a product of such
cycles. Let Lk be the set of all Latin squares of size k. An element L =
{Lij}ki,j=1 ∈ Lk is an k × k array containing the numbers 1, . . . , k so that
there are no repetitions of any number within the same row or column. Thus,
we can associate to each Latin square and each pair i �= j the permutation
σLij ∈ Symk defined by σLij(Lpi) = Lpj for p = 1, . . . , k. That means σLij is the

permutation that sends the pth entry of the ith column to the pth entry of
the jth column; we will suppress the superscript except in cases where there
could be ambiguity (see, for example, Proposition 3.3). For convenience,
we may express σLij as σLi,j in times where a comma would be appropriate.
A Latin square is therefore uniquely described by its first column and the
permutations σ1,2, σ2,3, . . . , σk−1,k. For this paper, we may refer to a Latin
square by these permutations as L(σ1,2, . . . , σk−1,k), and when we do, we
assume the first column reads downward as 1, 2, . . . , k. Since there are no
repetitions in any row, the σij must be fixed point free.

Example 2.1. — Consider again the Latin square L1 from Example 1.2.
In the Latin square L1, we have σL1

12 = σL1
34 = (12)(34) = τ1 and σL1

23 =
(14)(23) = τ2. So, we could unambiguously express L1 = L(τ1, τ2, τ1).

There are several operations on Latin squares that preserve the property
of being Latin, i.e., they define bijective maps from Lk to itself. Let L ∈ Lk.

(S1) Exchange row i with row j.
(S2) Exchange column i with column j.
(S3) Exchange two of the symbols in L.

These relations appear in Section 3 of [11].

Definition 2.2. — We define the relation ∼ on Lk by setting L ∼ L′ if
and only if one can transform L into L′ by applying finitely many exchanges
of type (S1), (S2), or (S3). We express the equivalence class of L in L/ ∼
as [L].

The following set, which is just the set of Latin squares that are multi-
plication tables of cyclic groups, will be of principal use in this note:

G′k := {L ∈ Lk |σLi,i+1 = σL1,2 for all i, and σL1,2 is a k − cycle},
Gk := {L ∈ Lk |∃H ∈ G′k so that L ∼ H} .
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In the event that L ∈ G′k, and the first column of L proceeds downward as
1, 2, . . . , k, we write L = Lσ instead of L(σ, . . . , σ) in reference to our earlier
convention.

It is easy to see that the Latin squares L and L′ are orthogonal if and
only if the map (i, j) �→ (Lij , L

′
ij) is surjective (and hence bijective) as a

function from {1, . . . , k} × {1, . . . , k} to itself. Denote the set of all ordered
pairs of orthogonal Latin squares of size k as OLSk. A transversal on a k×k
Latin square is a collection of k entries in L subject to two conditions: no
two entries are in the same row or column, and there is no repetition of the
values of the entries. The following useful theorem is well known and gives
an equivalent condition to a pair of Latin squares being orthogonal (see [8]).

Theorem 2.3 ([8]). — If L ∈ Lk, then there exists an L′ ∈ Lk so that
(L,L′) ∈ OLSk if and only if there exist k disjoint transversals on L.

As with Latin squares, there are several operations one can perform on pairs
of orthogonal Latin squares which preserve the property of being orthogonal.
We list some of them below. Suppose (L,L′) ∈ OLSk.

(R1) Exchange row i with row j in both L and L′.
(R2) Exchange column i with column j in both L and L′.
(R3) Exchange two symbols of {1, . . . , k} in L.
(R4) Exchange two symbols of {1, . . . , k} in L′.
(R5) Transpose either L or L′.
(R6) Apply the map (L,L′) �→ (L′, L).

Definition 2.4. — We define the relation ∼′ on OLSk by setting
(L1, L2) ∼′ (L′1, L′2) if and only if one can transform (L1, L2) into (L′1, L

′
2)

by applying finitely many operations (R1)–(R6).

The next corollary is an obvious consequence of Theorem 2.3.

Corollary 2.5. — If (L,H) ∈ OLSk and L ∼ L′, then there exists an
H ′ ∈ L so that (L,H) ∼′ (L′, H ′).

Most authors have attempted to determine |OLSk| for various k using
design theory; see, for example, [1, 6] and [17]. In addition to computing
their size the authors wish to understand these sets more explicitly. We
would like to compute the size of the set OLSk/ ∼′ and to exhibit sets of
representatives for these sets.
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3. Equivalence Classes of Orthogonal Latin Squares

In this section we explicitly describe the structure of the sets of represen-
tatives of OLSk/ ∼′ for k = 3, 4 and 5 in Theorems 3.4, 3.5, 3.6. In order to
prove these results we first have to establish some elementary results about
the sets Lk/ ∼ and Gk/ ∼.

Lemma 3.1. — Adopt the notation given in Section 1. Fix an integer
k � 3. Let L ∈ Gk, and let L ∼ Lσ ∈ G′k.

1. Lσ ∼ L(1···k). Thus, Gk/ ∼ contains only one element.

2. Let Lσ ∈ Gk. There exists one transversal to Lσ if and only if there
exists k disjoint transversals to Lσ.

3. If k is odd, and L ∈ Gk is given, then there exists an orthogonal mate
to L.

4. If k is even, and L ∈ Gk, then there does not exist an orthogonal mate
to L.

Proof. — Let Lσ ∈ Gk be given. Since σ is a k−cycle, it acts transitively
on the set {1, . . . , k}. Thus by a rearrangement of rows, we may order the
first column from top to bottom as σ1(1), σ2(1), . . . , σk(1). Since the second
column is produced by application of σ to each element of the first column,
the second column must now read σ2(1), . . . , σk(1), σk+1(1) = σ1(1). Now
relabel the symbols according to the rule σp(1) �→ p. Assertion (1) is now
established.

We now prove assertion (2). It is enough to prove the assertion for
Lσ ∈ G′k. Since permuting rows preserves σ, we may assume without loss
of generality that the transversal is the main diagonal {(Lσ)ii}ki=1. Now we
create a new transversal by applying σ and shifting each entry to the right
except that the right most entry moves to column 1. The new transversal
has σ((Lσ)ii) in the i, i + 1-entry written modulo k. Then we repeat this
process to obtain the remaining transversals. Since σ is a k-cycle each en-
try of the transversal are different and by construction we have exactly one
entry on each row and column. This proves Assertion (2).

Because of assertion (1) and Corollary 2.5 it is enough to produce a
transversal on L(1···k) when k is odd to prove assertion (3). The entries of
the diagonal are (L(1···k))ii = 2i− 1 considered modulo k. Since k is odd on
the we get all different entries. Assertion (3) is now established.

We finish the proof of Lemma 3.1 by establishing Assertion (4). By
Corollary 2.5, it suffices to show that there does not exist a single transversal
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on L(1···k). Suppose to the contrary that there exists a transversal. Make a
new Latin square L′ by rearranging the columns so that the transversal is
the main diagonal. For convenience let ξ = (1 · · · k). Note that σ1j in L′ is
the same as ξij where, {ij} is some ordering of the numbers 0, . . . , k − 1.
Recall that σ1j is the permutation sending column 1 to column j. Notice
that i1 = 0 and the numbers down the new first column are numbered
p, ξ(p), . . . , ξk−1(p). Thus, the numbers in the transversal are as follows:

p, ξ1+i2(p), ξ2+i3(p), . . . , ξk−1+ik(p) .

But ξ1+i2(p) = ξi2(ξ1(p)) = ξi2([p+1]k) = [p+1+i2]k, where [·]k denotes
reduction mod k. Similar to above, we have ξj−1+ij (p) = [p + j − 1 + ij ]k.
Since this is a transversal, the collection of these numbers (mod k) must
be in set bijection with Zk. Thus the sum of all of these elements must be
congruent to k(k − 1)/2k.

We compute:

k∑

j=1

[p+ j − 1 + ij ]k = [kp]k +



k−1∑

j=1

j



k

+




k∑

j=1

ij



k

=

[
k(k − 1)

2

]

k

+




k∑

j=1

ij



k

But the numbers ij are just reordering of the integers 1, . . . , k so this
becomes

= 2

[
k(k − 1)

2

]

k

= [0]k.

Now suppose, since k is even, k = 2t. Then above, as stated above,
should be congruent to [

2t(2t− 1)

2

]

k

which means that it should be [0]k. If
[

2t(2t−1)
2

]
k

= [0]k then there exists s

such that t(2t− 1) = 2ts. This means that t(2(t− s)− 1) = 0 which implies
that t = 0 hence we have a contradiction. �
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Theorem 3.2. — Let k � 3.

1. The set Gk/ ∼ contains exactly one element.

2. An element of Gk has an orthogonal mate if and only if k is odd.

Proof. — Theorem 3.2 (1) follows from Assertion (1) of Lemma 3.1, since
Lσ ∼ L(1...k) immediately yields that Gk/ ∼ contains exactly one element
as asserted. Assertions (3) and (4) of Lemma 3.1 establish Assertion (2) of
Theorem 3.2. �

There is a stronger version of Assertion 1 of Lemma 3.1 that will be of
use. Recall that we can associate to each permutation σ ∈ Symk, a multi-
index I(σ) that describes the size and number of disjoint cycles in σ when
it is written uniquely as a product of disjoint cycles (excluding the fixed
points of σ). For instance, the permutation (15)(236)(49) ∈ S9 corresponds
to the multi-index I((15)(236)(49)) = (2, 2, 3) since there are two disjoint
2-cycles, and one 3-cycle. The following result shows that this multi-index is
the only relevant information when considering permutations in equivalence
classes of Latin squares.

Proposition 3.3. — Let L ∈ Lk, and fix any i �= j, i, j ∈ 1, . . . , k. Let
σ ∈ Symk be any permutation with I(σLij) = I(σ). There exists W ∈ Lk such

that L ∼W and σW12 = σ. Moreover, one can choose W such that Wj1 = j.

Proof. — We produce L′ by exchanging columns i↔ 1, and j ↔ 2 in L
so that σLij = σL

′
12 . It is easy to verify that if τ ∈ Symk is a global relabeling

of the entries of L′ and we produce the equivalent square W ′ from such a
relabeling, then σW

′
12 = τσL

′
12τ
−1. Since the conjugation action of Sk on itself

is a transitive action among permutations of the same type, we may choose
a τ so that σ = τσL

′
12τ
−1, and produce W ′ by enforcing this global relabeling

on L′. This proves the first part of the proposition. Exchanging rows does
not change the permutation σW

′
12 , thus we may reorder the rows of W ′ to

produce W ∼W ′ so that the first column reads downward as 1, 2 . . . , k. �

We can now lay the framework for our study of 4-nets in CP2 below by
separately establishing Assertions 1, 2, and 3 of Theorem 1.3.

Theorem 3.4. — The set OLS3/ ∼′= {[(L(123), L(132))]}.

Proof. — It is a basic fact [5] that the maximum number of mutually
orthogonal Latin squares of order 3 is 2. The only Latin squares of size 3
must belong to G3. The only 3-cycles to generate these squares are (123)
and (132). �
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For the next theorem, set τ1 = (12)(34), τ2 = (14)(23), and τ3 = (13)(24)
as elements of Sym4, and set L1 := L(τ1, τ2, τ1), L2 := L(τ2, τ3, τ2), and
L3 := L(τ3, τ1, τ3) as 4 × 4 Latin squares. We have seen already that the
Latin square L1 from Example 2.1 satisfies L1 = L(τ1, τ2, τ1).

Theorem 3.5. — Let Li and τi be as above.

1. L1, L2, and L3 are mutually orthogonal.

2. Suppose that i �= j, and k �= �, where all of i, j, k, � ∈ {1, 2, 3}. Then
(Li, Lj) ∼′ (Lk, L�). In other words, any pair of squares using the Li
is equivalent under ∼′ to any other pair of squares using the Li for
i = 1, 2, 3.

3. OLS4/ ∼′ = {[(L1, L2)]} contains only one element.

Proof. — One can easily verify Assertion (1). The relation of orthogonal-
ity is symmetric. Thus, to establish Assertion (2), we produce a sequence
of steps showing (L1, L2) ∼′ (L2, L3) ∼′ (L3, L1). To show each relation,
simply use (R2) and cycle (column 2 → column 3 → column 4 → column
2) in both squares.

We now prove Assertion 3. Let (L,L′) ∈ OLS4, as in the proof of Theo-
rem 3.4, express L in terms of its associated fixed point free permutations
σ12, σ23, σ34, and σ41. The fixed point free permutations in Sym4 are exactly
τ1, τ2 and τ3, and the 4-cycles. We consider two cases: either one of σ12, σ23,
or σ34 is a 4-cycle σ, or none of them are.

Assume without loss of generality that σ12 is the 4−cycle σ = (1234).
By Proposition 3.3, we may assume the entries Lj1 = j. After filling in the
rest of the square by imposing the condition of it being Latin, we see L ∼
L(1234). By Theorem 3.2 and Corollary 2.5, we know that L must not have
an orthogonal mate, contradicting our assumption that (L,L′) ∈ OLS4. We
conclude that each of σ12, σ23, and σ34 are the permutations τ1, τ2, and τ3.

By considering the distinct permutations σ12, σ13, and σ14 instead (which
must collectively be, in some order, the permutations τ1, τ2 and τ3), we see
that up to a change of columns that L ∼ L1. It is an easy exercise to
show that there are two possibilities for orthogonal mates: (L1, L2) and
(L1, L3) ∈ OLS4. Assertion 3 now follows by Assertion 2. �

We conclude our study of orthogonal Latin squares with the following
result.
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Theorem 3.6. — Let L ∈ L5.

1. If σ12 = (12)(345), then there do not exist 5 disjoint transversals.

2. If L has an orthogonal mate, then L ∼ L(12345).

3. The possible orthogonal mates to L(12345) are L(15432), L(14253), and
L(13524).

4. The set OLS5/ ∼′ contains at most two elements: [(L(12345), L(15432))]
′

and [(L(12345), L(14253))]
′.

Proof. — Assertion 1 follows from a case-by-case check that there do
not exist 5 disjoint transversals in each of the possibilities for L where
σL12 = (12)(345). For all cases, we arrange the rows of L to read downward
as 1, 2, 3, 4, 5, and rearrange the final 3 columns of L so that the first row
reads to the right as 1, 2, 3, 4, 5 (the (1, 2) position of this square is deter-
mined as 2 since σL12(1) = 2). These adjustments shift representatives within
the equivalence class of L, but do not change the permutation changing col-
umn 1 to column 2. Note that the second column now reads downward as
2, 1, 4, 5, 3. In what follows to prove Assertion (1), we simply investigate
each case and show that there is can not be a 5 disjoint transversals.

There are 4 possibilities for L subject to the conditions outlined above,
and each is completely determined by specifying a certain value in each of
two locations in addition to the conditions above. Firs let’s examine the case
where L is the Latin square with σL12 = (12)(345) and has entries (L)23 = 4,
and (L)43 = 1. This uniquely determines L:

Now we show that there does not exist a transversal for this L. We start
with the (1, 1) entry and try to build a transversal that includes it. In doing
so there are three cases that are determined by either choosing 3,4, or 5 as
the element of the transversal in the second row. Then this choice deter-
mines the remainder of the entries except that the last entry fails to make a
transversal. We illustrate this with in the following pictures by circling the
entries which are determined and would be part of the transversal and then
boxing the last entry which breaks the transversal.
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The two cases where (L)23 = 4, and (L)43 = 2, and (L)23 = 5, and
(L)43 = 1 have exactly the same arguments. The case where (L)23 = 5, and
(L)43 = 2 is more interesting. In this case there are three different transver-
sals that all contain the 1 upper left entry. With each of these transversals
there are two possibilities for a second disjoint transversal. However in all of
these cases a second transversal does not exist. We illustrate this again with
a diagram where the first transversal is circled and the second attempt at
a transversal is boxed. Then we put an “X” over the entry or entries where
the second transversal fails. (In the diagram below the cases with the same
1st circled transversal are stacked on top of each other.)

For Assertion (2), we note that by Proposition 3.3, we need to only con-
sider two situations: either there is one permutation among σi,i+1 that is not
a 5−cycle (and therefore has multi-index (2, 3) since otherwise such a per-
mutation would not be fixed-point free), or all permutations are 5−cycles.
The assumption that L has an orthogonal mate excludes the first possibility
since we could then assume via Proposition 3.3 that σ12 = (12)(345), and
Assertion (1) violates the condition that there exists an orthogonal mate.
Therefore the only such square to fit our hypotheses can be arranged to have
σ12 = (12345), and 1, 2, 3, 4, 5 both down the first column (by rearranging
rows) and across the first row to the right (by rearranging columns 3, 4, and

– 346 –



Nets in CP2

5). To complete the square, we find that the (5, 3) position is either 2 or 4.
In the event it is 2, this square is nothing other than L(12345) and Assertion
(2) is complete. There are 5 different Latin squares where the (5, 3) position
is 4.

In each case there is one permutation of successive columns that has
index (2, 3) which falls outside our hypotheses.

Assertion (3) now follows since orthogonality is symmetric, and by using
the above argument one reveals that any Latin square of size 5 that has only
5−cycles between consecutive columns is equivalent to Lσ for a 5−cycle σ.

To prove the last assertion, we simply note that by permuting columns
in the pair (L(12345), L(14253)) and relabeling each square separately, we see
that

(L(12345), L(14253)) ∼′ (L(12345), L(13524)) .

This completes the proof of Assertion 4. �

Remark 3.7. — Let L = L(σ12, . . . , σk−1,k) ∈ Lk. We have proved in this
section that if k = 3, 4, or 5, and if L is to have an orthogonal mate, then
each of the associated permutations to L must be even (i.e., expressible as
a product of an even number of transpositions). However, for higher k there
are examples (of size k = 10, note below that 10 = 24) where (at least) one
of the associated permutations is odd and it has an orthogonal mate (see
[8]). There are also examples where all the permutations are even, but there
is no orthogonal mate. It would be interesting to know how the parity of the
σij effects the existence of an orthogonal mate. We conjecture the following:

If (L,L′) ∈ OLSk and k �= 24, then every permutation σLij and σL
′

ij is even.

– 347 –



Corey Dunn, Matthew Miller, Max Wakefield, Sebastian Zwicknagl

4. Realization Spaces

As discussed in the introduction, there is a relationship between (4, k)-
nets and OLSk/ ∼′. Given a (4, k)-net, one can construct a unique element
of OLSk/ ∼′ that represents the underlying combinatorial structure. Nets in
CP2 that are projectively isomorphic will produce equivalent combinatorial
structures. Conversely, however, given an element of OLSk/ ∼′ there need
not exist a (4, k)-net in CP2 with the given structure.

Now we construct a variety that represents possible net realizations in
CP2 of a pair of orthogonal Latin squares (see [4]). A pair of orthogonal Latin
squares (L1, L2) combinatorially defines the points of χ for the combinatorial
structure of a (4, k)-net. Let M(L1,L2) be a 4k×3 matrix of complex numbers,

defined by 4 blocks of k rows where the ith row in the jth block is aj,i bj,i cj,i.
Let the rows of M(L1,L2) be the coefficients of the linear forms defining

the lines of the alleged (4, k)-net in CP2. Then for each point of χ, the
corresponding

(
4
3

)
= 4 minors of M(L1, L2) should be zero. For example, if

(L1)ij = s and (L2)ij = t then the
(
4
3

)
minors are given by choosing 3 of

the rows following four: (a1,i, b1,i, c1,i), (a2,j , b2,j , c2,j), (a3,s, b3,s, c3,s), and
(a4,t, b4,t, c4,t). Thus, the variety of representations of the pair of orthogonal
Latin squares (L1, L2) is the variety defined by the vanishing of all of the
minors associated to χ; we denote this ideal of minors I(L1, L2) and the
associated variety R(L1, L2). Each line of the net to be realized is labeled
by a distinct element of {1, . . . , 4k}; hence the points of χ are given by 4-
tuples of distinct elements of this set. In each case we use the lexicographic
ordering of the 4-tuples to compute the minors consecutively. The next
proposition shows that we only need to consider one representative of each
equivalence class. This proposition is a consequence of the fact that the
relations (R1)-(R6) preserve the ideal I(L1, L2).

Proposition 4.1. — If (L1, L2) ∼′ (L′1, L
′
2) then R(L1, L2) and

R(L′1, L
′
2) are isomorphic as varieties.

Remark 4.2. — Note that R(L1, L2) is not necessarily the realization
space a of matroid. It is missing extra conditions that might occur between
the elements of a single class in the net. In [11] Kawahara discusses this
non-trivial point from the motivation of non-vanishing cohomology in the
Orlik-SOlomon algebra.

Remark 4.3. — Using Theorem 3.2(iii) in [21] we can assume that

B =




a1,1 b1,1 c1,1
a1,2 b1,2 c1,2
a1,3 b1,3 c1,3
a2,1 b2,1 c2,1


 =




1 0 0
0 1 0
0 0 1
1 1 1



.
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4.1. Realization of (4,3)-nets/Proof of Theorem 1.3 (1)

Theorem 3.4 shows that the only combinatorial structure possible for a
(4, 3)-net is given by the pair (L(123), L(132)) ∈ OLS3/ ∼′. By computing
minors, we conclude

M(L(123),L(132)) =

[
B

1 ωi ωj

]

where ω is a (primitive) root of x3 − 1 and i and j range through the set
{0, 1, 2}. This is the Hessian configuration, see Example 6.29 of [13] and
Example 3.6 of [21]. This proves Theorem 1.4 for k = 3. ��

4.2. Realization of (4,4)-nets/Proof of Theorem 1.3 (2)

By Theorem 3.5 and Proposition 4.1, there is only one combinatorial
structure for a (4, 4)-net. We prove Theorem 1.4 in the case k = 4 by at-
tempting to realize the combinatorial structure given by (L1, L2) ∈ OLS4/ ∼′,
where L1 and L2 are the squares given in Theorem 3.5. In this case |χ| = 16.
Using the first 13 points of χ given by the pair L1 and L2 we get that

M(L1,L2) =




B
r − t−1 1 + r 1− r

t −t 1
t 1 −1
−t−1 1 t−1

t 1 1
1 −t 1
1 1 −1
−1 1 t−1

−t−1 1 1
−1 −t 1
1 −1 1
1 1 t−1



.

Then using the last three points of χ we find that r = 1
4 (1 − t−2), t =

−2 ±
√

5, and t2 + 3 = 0. This system of equations has no solution, so
R(L1, L2) = ∅ proving Theorem 1.4 for k = 4: there do not exist any (4, 4)-
nets in CP2. ��

4.3. Realization of (4,5)-nets/Proof of Theorem 1.3 (3)

By Theorem 3.6 and Proposition 4.1, there are at most two possible
combinatorial structures for a (4, 5)-net. In this case |χ| = 25. First, we
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consider the pair (L(12345), L(15432)) as our combinatorial structure. Using
only the first 17 points of χ, we find that for some number t, there is a line in
class 2 corresponding to the line defined by the linear form tx+y+ t2z = 0,
and a line in class 3 that corresponds to the line defined by the linear form
x+ y+ tz = 0. Then using one more point of χ we get that t = 0 or 1. This
cannot happen, in both cases a line repeats. Hence the realization space is
empty and there does not exist any (4, 5)-net in CP2 with Latin squares
(L(12345), L(15432)).

Now, we compute the realization space for the pair of Latin squares
(L(12345), L(14253)). Using the first 22 points of χ we compute that

M(L(12345),L(14253)) =




B
1− qt−3 1− q 1− qt−1

a b c
t−1 t−3 1
t−1 1 t
t 1 t−1

t t3 1
t 1 1
1 t−3 1
1 1 t
t−3 1 t−1

t2 t3 1
t−1 1 1
t−2 t−3 1
t3 1 t
1 1 t−1

1 t3 1




where t5 − 1 = 0 and q = 1+t3

2+t3−t2 . Then using one more point of χ we get

that t3 − 1 = 0. Hence, R(L(12345), L(14253)) = ∅ and there does not exist

any (4, 5)-nets in CP2. This concludes the proof of Theorem 1.4. ��
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