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Numerical characterization of nef arithmetic divisors
on arithmetic surfaces

Atsushi Moriwaki(1)

ABSTRACT. — In this paper, we give a numerical characterization of nef
arithmeticR-Cartier divisors of C0-type on an arithmetic surface. Namely
an arithmetic R-Cartier divisor D of C0-type is nef if and only if D is

pseudo-effective and d̂eg(D
2
) = v̂ol(D).

RÉSUMÉ. — Dans le présent article, nous donnons une caractérisation
numérique des R-diviseurs arithmétiques nef et de type C0 sur une sur-
face artihmétique. Plus exactement, nous montrons qu’un R-diviseur de
Cartier D de type C0 est nef si et seulement si D est pseudo-effectif et

d̂eg(D
2
) = v̂ol(D).

Introduction

Let X be a generically smooth, normal and projective arithmetic surface
and let X → Spec(OK) be the Stein factorization of X → Spec(Z), where
K is a number field and OK is the ring of integers in K. Let L be an
arithmetic divisor of C∞-type on X with deg(LK) = 0 (cf. Conventions
and terminology 2). Faltings-Hriljac’s Hodge index theorem ([6], [8]) says
that

d̂eg(L
2
) � 0

and the equality holds if and only if L = (̂φ) + (0, η) for some F∞-invariant
locally constant real valued function η on X(C) and φ ∈ Rat(X)×Q :=

Rat(X)× ⊗Z Q. The inequality part of their Hodge index theorem can be
generalized as follows: Let D be an integrable arithmetic R-Cartier divisor
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of C0-type on X, that is, D = P − Q for some nef arithmetic R-Cartier
divisors P and Q of C0-type (cf. Conventions and terminology 2 and 5). If
deg(DK) � 0, then

d̂eg(D
2
) � v̂ol(D)

(cf. [12, Theorem 6.2], [13, Theorem 6.6.1], Theorem 4.3). This inequality
is called the generalized Hodge index theorem. It is very interesting to ask
the equality condition of the inequality. It is known that if D is nef, then

d̂eg(D
2
) = v̂ol(D) (cf. [12, Corollary 5.5], [13, Proposition-Definition 6.4.1]),

so that the problem is the converse. In the case where deg(DK) = 0 (and

hence v̂ol(D) = 0), it is nothing more than the equality condition of the
Hodge index theorem (cf. Lemma 4.1). Thus the following theorem gives an
answer to the above question.

Theorem 0.1 (cf. Theorem 4.3). — We assume that deg(DK) > 0.

Then D is nef if and only if d̂eg(D
2
) = v̂ol(D).

For the proof of the above theorem, we need the integral formulae of
the arithmetic volumes due to Boucksom-Chen [4] and the existence of the
Zariski decomposition of big arithmetic divisors [13]. From the point of
view of a characterization of nef arithmetic R-Cartier divisors, the following
variant of the above theorem is also significant.

Corollary 0.2 (cf. Corollary 4.4). — D is nef if and only if D is pseudo-

effective and d̂eg(D
2
) = v̂ol(D).

Let Υ(D) be the set of all arithmetic R-Cartier divisorsM of C0-type on
X such that M is nef and M � D. As an application of the above theorem,
we have the following numerical characterization of the greatest element of
Υ(D).

Corollary 0.3 (cf. Corollary 5.4). — We assume that X is regular.
Let P be an arithmetic R-Cartier divisor of C0-type on X. Then the follow-
ing are equivalent:

(1) P is the greatest element of Υ(D), that is, P ∈ Υ(D) and M � P
for all M ∈ Υ(D).

(2) P is an element of Υ(D) with the following property:

d̂eg(P ·B) = 0 and d̂eg(B
2
) < 0

for all integrable arithmetic R-Cartier divisors B of C0-type with
(0, 0) � B � D − P (cf. Conventions and terminology 5).
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Finally I would like to thank Prof. Yuan and Prof. Zhang for their helpful
comments. I also express my thanks to the referee for giving me several
comments and remarks.

Conventions and terminology

Here we fix several conventions and the terminology of this paper. An
arithmetic variety means a quasi-projective and flat integral scheme over Z.
It is said to be generically smooth if the generic fiber over Z is smooth over
Q. Throughout this paper, X is a (d+ 1)-dimensional, generically smooth,
normal and projective arithmetic variety. Let X → Spec(OK) be the Stein
factorization of X → Spec(Z), where K is a number field and OK is the
ring of integers in K. For details of the following 2 and 4, see [13] and [15].

1. A pair (M, ‖ · ‖) is called a normed Z-module if M is a finitely generated
Z-module and ‖ · ‖ is a norm of MR := M ⊗Z R. A quantity

log

(
vol ({x ∈MR | ‖x‖ � 1})

vol(MR/(M/Mtor))

)
+ log #(Mtor)

does not depend on the choice of the Haar measure vol on MR, where Mtor

is the group of torsion elements of M . We denote the above quantity by
χ̂(M, ‖ · ‖).

2. Let K be either Q or R. Let Div(X) be the group of Cartier divisors on
X and let Div(X)K := Div(X) ⊗Z K, whose element is called a K-Cartier
divisor on X. For D ∈ Div(X)R, we define H0(X,D) and H0(XK , DK)
to be

{
H0(X,D) = {φ ∈ Rat(X)× | D + (φ) � 0} ∪ {0},
H0(XK , DK) = {φ ∈ Rat(XK)× | DK + (φ)K � 0 on XK} ∪ {0},

where XK is the generic fiber of X → Spec(OK).

A pair D = (D, g) is called an arithmetic K-Cartier divisor of C∞-type
(resp. of C0-type) if the following conditions are satisfied:

(a) D is a K-Cartier divisor on X, that is, D =
∑r

i=1 aiDi for some
D1, . . . , Dr ∈ Div(X) and a1, . . . , ar ∈ K.

(b) g : X(C)→ R ∪ {±∞} is a locally integrable function and g ◦ F∞ =
g (a.e.), where F∞ : X(C)→ X(C) is the complex conjugation map.
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(c) For any point x ∈ X(C), there exist an open neighborhood Ux of x
and a C∞-function (resp. continuous function) ux on Ux such that

g = ux +

r∑

i=1

(−ai) log |fi|2 (a.e.)

on Ux, where fi is a local equation of Di over Ux for each i.

The function g is called a D-Green function of C∞-type (resp. of C0-
type). Note that ddc([ux]) does not depend on the choice of local equations
f1, . . . , fr, so that ddc([ux]) is defined globally on X(C). It is called the first
Chern current of D and is denoted by c1(D), that is, c1(D) = ddc([g])+δD.
Note that, if D is of C∞-type, then c1(D) is represented by a C∞-form,
which is called the first Chern form of D. Let C be either C∞ or C0. The
set of all arithmetic K-Cartier divisors of C-type is denoted by D̂ivC(X)K.
Moreover, the group

{
(D, g) ∈ D̂ivC(X)Q | D ∈ Div(X)

}

is denoted by D̂ivC(X). An element of D̂ivC(X) is called an arithmetic

Cartier divisor of C-type. For D = (D, g), E = (E, h) ∈ D̂ivC0(X)K, we
define relations D = E and D � E as follows:

D = E
def⇐⇒ D = E, g = h (a.e.),

D � E def⇐⇒ D � E, g � h (a.e.).

Let Rat(X)×K := Rat(X)× ⊗Z K, and let

( )K : Rat(X)×K → Div(X)K and (̂ )K : Rat(X)×K → D̂ivC∞(X)K

be the natural extensions of the homomorphisms

Rat(X)× → Div(X) and Rat(X)× → D̂ivC∞(X)

given by φ �→ (φ) and φ �→ (̂φ), respectively. Let D be an arithmetic R-

Cartier divisor of C0-type. We define Γ̂×(X,D) and Γ̂×K(X,D) to be





Γ̂×(X,D) :=
{
φ ∈ Rat(X)× | D + (̂φ) � (0, 0)

}
,

Γ̂×K(X,D) :=
{
φ ∈ Rat(X)×K | D + (̂φ)K � (0, 0)

}
.

Note that Γ̂×Q(X,D) =
⋃∞

n=1 Γ̂×(X,nD)1/n. Moreover, we set

Ĥ0(X,D) := Γ̂×(X,D) ∪ {0} and Ĥ0
K(X,D) := Γ̂×K(X,D) ∪ {0}.
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For ξ ∈ X, we define the K-asymptotic multiplicity of D at ξ to be

µK,ξ(D) :=

{
inf

{
multξ(D + (φ)K) | φ ∈ Γ̂×K(X,D)

}
if Γ̂×K(X,D) �= ∅,

∞ otherwise,

(for details, see [13, Proposition 6.5.2, Proposition 6.5.3] and [15, Section 2]).

3. Let D = (D, g) be an arithmetic R-Cartier divisor of C0-type on X. Let
φ ∈ H0(X(C), DC), that is, φ ∈ Rat(X(C))× and (φ) +DC � 0 on X(C).
Then |φ| exp(−g/2) is represented by a continuous function |φ|cg on X(C)
(cf. [13, SubSection 2.5]), so that we may consider sup{|φ|cg(x) | x ∈ X(C)}.
We denote it by ‖φ‖D or ‖φ‖g. Note that, for φ ∈ H0(X,D), φ ∈ Ĥ0(X,D)

if and only if ‖φ‖D � 1. We define v̂ol(D) and v̂olχ(D) to be

v̂ol(D) := lim sup
m→∞

log #Ĥ0(X,mD)

md+1/(d+ 1)!
,

v̂olχ(D) := lim sup
m→∞

χ̂(H0(X,mD), ‖ · ‖mD)

md+1/(d+ 1)!
.

It is well known that v̂ol(D) � v̂olχ(D). More generally, for ξ1, . . . , ξl ∈ X
and µ1, . . . , µl ∈ R�0, we define v̂ol(D;µ1ξ1, . . . , µlξl) to be

v̂ol(D;µ1ξ1, . . . , µlξl) :=

lim sup
m→∞

log #
({
φ ∈ Γ̂×(X,mD) | multξi(mD + (φ)) � µi (∀i)

}
∪ {0}

)

md+1/(d+ 1)!
.

Note that v̂ol(D;µξ) = v̂ol(D) for 0 � µ � µQ,ξ(D).

4. LetD be an arithmetic R-Cartier divisor of C0-type onX. The effectivity,
bigness, pseudo-effectivity and nefness of D are defined as follows:

• D is effective
def⇐⇒ D � (0, 0).

• D is big
def⇐⇒ v̂ol(D) > 0.

• D is pseudo-effective
def⇐⇒ D + A is big for any big arithmetic

R-Cartier divisor A of C0-type.

• D = (D, g) is nef
def⇐⇒

(a) d̂eg(D
∣∣
C

) � 0 for all reduced and irreducible 1-dimensional
closed subschemes C of X.

(b) c1(D) is a positive current.
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A decomposition D = P + N is called a Zariski decomposition of D if
the following properties are satisfied:

(1) P and N are arithmetic R-Cartier divisors of C0-type on X.

(2) P is nef and N is effective.

(3) v̂ol(P ) = v̂ol(D).

We set

Υ(D) :=

{
M

∣∣∣∣
M is an arithmetic R-Cartier divisor of C0-type
such that M is nef and M � D

}
.

If P is the greatest element of Υ(D) (i.e. P ∈ Υ(D) and M � P for all
M ∈ Υ(D)) and N = D − P , then D = P +N is a Zariski decomposition
of D (cf. Proposition B.1).

5. Let D be an arithmetic R-Cartier divisor of C0-type on X. According
to [18], we say D is integrable if there are nef arithmetic R-Cartier divi-
sors P and Q of C0-type such that D = P − Q. Note that if either D
is of C∞-type, or c1(D) is a positive current, then D is integrable (cf.
[13, Proposition 6.4.2]). Moreover, for integrable arithmetic R-Cartier di-
visors D0, . . . ,Dd of C0-type on X, the arithmetic intersection number

d̂eg(D0 · · ·Dd) is defined in the natural way (cf. [13, SubSection 6.4], [15,
SubSection 2.1]). Note that if D = P +N is a Zariski decomposition and D
is integrable, then N is also integrable.

6. We assume that X is regular and d = 1. Let D1, . . . , Dk be R-Cartier
divisors on X. We set Di =

∑
C ai,CC for each i, where C runs over all

reduced and irreducible 1-dimensional closed subschemes on X. We define
max{D1, . . . , Dk} to be

max{D1, . . . , Dk} :=
∑

C

max{a1,C , . . . , ak,C}C.

Let D1 = (D1, g1), . . . ,Dk = (Dk, gk) be arithmetic R-Cartier divisors of
C0-type on X. Then max{D1, . . . ,Dk} is defined to be

max{D1, . . . ,Dk} := (max{D1, . . . , Dk},max{g1, . . . , gk}) .

Note that max{D1, . . . ,Dk} is also an arithmetic R-Cartier divisor of C0-
type (cf. [13, Lemma 9.1.2]).
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1. Relative Zariski decomposition of arithmetic divisors

We assume that X is regular and d = 1. The Stein factorization X →
Spec(OK) of X → Spec(Z) is denoted by π. Let D = (D, g) be an arithmetic
R-Cartier divisor of C0-type on X. We say D is relatively nef if c1(D) is a

positive current and d̂eg(D
∣∣
C

) � 0 for all vertical reduced and irreducible
1-dimensional closed subschemes C on X. We set

Υrel(D) :=

{
M

∣∣∣∣
M is an arithmetic R-Cartier divisor of C0-type
such that M is relatively nef and M � D

}
.

Theorem 1.1 (Relative Zariski decomposition). — If deg(DK) � 0,
then there is the greatest element Q of Υrel(D), that is, Q ∈ Υrel(D) and
M � Q for all M ∈ Υrel(D). Moreover, if we set N := D −Q, then Q and
N satisfy the following properties:

(a) N is vertical.

(b) d̂eg(Q ·N) = 0.

(c) For any P ∈ Spec(OK), π−1(P )red �⊆ Supp(N).

(d) The natural homomorphism H0(X,nQ) → H0(X,nD) is bijective
and ‖ · ‖nD = ‖ · ‖nQ for each n � 0.

(e) v̂olχ(Q) = v̂olχ(D).

Before staring the proof of Theorem 1.1, we need several preparations.
Let D be an R-Cartier divisor on X. We say D is π-nef if deg(D|C) � 0 for
all vertical reduced and irreducible 1-dimensional closed subschemes C on
X. First let us consider the relative Zariski decomposition on finite places.

Lemma 1.2. — Let D be an R-Cartier divisor on X and let Σ(D) be the
set of all R-Cartier divisors M on X such that M is π-nef and M � D.
If deg(DK) � 0, then there is the greatest element Q of Σ(D), that is,
Q ∈ Σ(D) and M � Q for all M ∈ Σ(D). Moreover, if we set N := D−Q,
then Q and N satisfy the following properties:

(a) N is vertical.

(b) deg(Q|C) = 0 for all reduced and irreducible 1-dimensional closed
subschemes C in Supp(N).

(c) For any P ∈ Spec(OK), π−1(P )red �⊆ Supp(N).
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(d) The natural homomorphism H0(X,nQ)→ H0(X,nD) is bijective for
each n � 0.

Proof. — Let us begin with following claim:

Claim 1.3. — Σ(D) �= ∅.

Proof. — First we assume that deg(DK) = 0. Then, by using Zariski’s
lemma (cf. [15, Lemma 1.1.4]), we can find a vertical and effective R-Cartier
divisor E such that deg((D − E)|C) = 0 for all vertical reduced and irre-
ducible 1-dimensional closed subschemes C on X, and hence Σ(D) �= ∅.

Next we assume that deg(DK) > 0. Let A be an ample Cartier divisor on
X. As deg(DK) > 0, H0(XK ,mDK − AK) �= {0} for some positive integer
m, and hence H0(X,mD−A) �= {0}. Thus, there is φ ∈ Rat(X)× such that
mD −A+ (φ) � 0, that is, D � (1/m)(A− (φ)), as required. �

Claim 1.4. — If L1, . . . , Lk are π-nef R-Cartier divisors, then
max{L1, . . . , Lk} is also π-nef (cf. Conventions and terminology 6).

Proof. — We set L′i := max{L1, . . . , Lk} − Li for each i. Let C be a
vertical reduced and irreducible 1-dimensional closed subscheme onX. Then
there is i such that C �⊆ Supp(L′i). As L′i is effective, we have deg(L′i|C) � 0,
so that

deg(max{L1, . . . , Lk}|C) = deg(Li|C) + deg(L′i|C) � 0.

�

For a reduced and irreducible 1-dimensional closed subscheme C on X,
we set

qC := sup{multC(M) |M ∈ Σ(D)},
which exists in R because multC(M) � multC(D) for all M ∈ Σ(D). We fix
M0 ∈ Σ(D).

Claim 1.5. — There is a sequence {Mn}∞n=1 of R-Cartier divisors in
Σ(D) such that M0 � Mn for all n � 1 and limn→∞multC(Mn) = qC for
all reduced and irreducible 1-dimensional closed subschemes C in Supp(D)∪
Supp(M0).

Proof. — For each reduced and irreducible 1-dimensional closed sub-
scheme C in Supp(D)∪ Supp(M0), there is a sequence {MC,n}∞n=1 in Σ(D)
such that

lim
n→∞

multC(MC,n) = qC .
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If we set

Mn = max
(
{MC,n}C⊆Supp(D)∪Supp(M0) ∪ {M0}

)
,

then M0 �Mn and Mn ∈ Σ(D) by Claim 1.4. Moreover, as

multC(MC,n) � multC(Mn) � qC ,

limn→∞multC(Mn) = qC . �

Since max{M0,M} ∈ Σ(D) for all M ∈ Σ(D) by Claim 1.4, we have

multC(M0) � qC � multC(D).

In particular, if C �⊆ Supp(D)∪ Supp(M0), then qC = 0, so that we can set
Q :=

∑
C qCC.

Claim 1.6. — Q is the greatest element Q in Σ(D), that is, Q ∈ Σ(D)
and M � Q for all M ∈ Σ(D).

Proof. — By Claim 1.5, we can see that Q ∈ Σ(D), so that the assertion
follows. �

We need to check the properties (a) – (d).

(a) We choose effective R-Cartier divisors N1 and N2 such that N =
N1+N2,N1 is horizontal andN2 is vertical. IfN1 �= 0, thenQ � Q+N1 � D
and Q+N1 is π-nef, so that we have N1 = 0, that is, N is vertical.

(b) Let C be a vertical reduced and irreducible 1-dimensional closed
subscheme in Supp(N). If deg(Q|C) > 0, then Q+εC is π-nef and Q+εC �
D for a sufficiently small ε > 0, and hence deg(Q|C) = 0.

(c) We assume the contrary. Then we can find δ > 0 such that δπ−1(P ) �
N , so that Q � Q + δπ−1(P ) � D and Q + δπ−1(P ) is π-nef. This is a
contradiction.

(d) It is sufficient to see that if φ ∈ Γ×(X,nD), then φ ∈ Γ×(X,nQ).
Since (−1/n)(φ) ∈ Σ(D), we have (−1/n)(φ) � Q, that is, nQ + (φ) � 0.
Therefore φ ∈ Γ×(X,nQ). �

Moreover, we need the following lemma.

Lemma 1.7. — Let S be a connected compact Riemann surface and let
D be an R-divisor on S with deg(D) � 0. Let g be a D-Green function
of C0-type on S and let G(D, g) be the set of all D-Green functions h of
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C0-type on S such that c1(D,h) is a positive current and h � g (a.e.).
Then there is the greatest element q of G(D, g), that is, q ∈ G(D, g) and
h � q (a.e.) for all h ∈ G(D, g). Moreover, q has the following property:

(1) ‖φ‖ng = ‖φ‖nq for all φ ∈ H0(S, nD) and n � 0.

(2)

∫

S

(g − q)c1(D, q) = 0.

Proof. — The existence of q follows from [3, Theorem 1.4] or [13, The-
orem 4.6]. We need to check the properties (1) and (2).

(1) Clearly ‖φ‖nq � ‖φ‖ng because q � g (a.e.). Let us consider the
converse inequality. We may assume that φ �= 0. We set

q′ := max

{
q,

1

n
log(|φ|2/‖φ‖2ng)

}
.

Since D � (−1/n)(φ) and (1/n) log(|φ|2/‖φ‖2ng) is a (−1/n)(φ)-Green func-
tion of C∞-type with the first Chern form zero, by [13, Lemma 9.1.1], q′

is a D-Green function of C0-type such that c1(D, q
′) is a positive current.

Note that ‖φ‖2ng � |φ|2 exp(−ng) (a.e.), that is,

g � (1/n) log(|φ|2/‖φ‖2ng) (a.e.),

and hence q′ ∈ G(D, g). Therefore, as q′ � q (a.e.), we have q = q′ (a.e.), so
that q � (1/n) log(|φ|2/‖φ‖2ng) (a.e.), that is, ‖φ‖2ng � |φ|2 exp(−nq) (a.e.),
which implies ‖φ‖ng � ‖φ‖nq.

(2) If deg(D) = 0, then the assertion is obvious because c1(D, q) = 0, so
that we assume that deg(D) > 0. First we consider the case where g is of
C∞-type. We set α := c1(D, g) and

ϕ := sup {ψ | ψ is an α-plurisubharmonic function on S and ψ � 0}

(cf. [3]). Then, by [13, Proposition 4.3], q = g + ϕ (a.e.). In particular, ϕ is
continuous because g and q are of C0-type. If we set D = {x ∈ S | ϕ(x) =
0}, then, by [3, Corollary 2.5], c1(D, q) = 1Dα, where 1D is the indicator
function of D. Thus ∫

S

(g − q)c1(D, q) = 0.

Next we consider a general case. Let g′ be a D-Green function of C∞-
type. We set g = g′ + u (a.e.) for some continuous function u on S. By
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using the Stone-Weierstrass theorem, we can find a sequence {un} of C∞-
functions on S such that limn→∞ ‖un − u‖sup = 0. We set gn := g′ + un.
Let qn be the greatest element of G(D, gn). As

g − ‖un − u‖sup � gn � g + ‖un − u‖sup (a.e.),

we can see q − ‖un − u‖sup � qn � q + ‖un − u‖sup (a.e.). Thus, if we set
qn = g′ + vn (a.e.) and q = g′ + v (a.e.) for some continuous functions vn
and v on S, then limn→∞ ‖vn − v‖sup = 0. Moreover, by using the previous
observation,

0 =
∫
S
(gn − qn)c1(D, qn) =

∫
S
(un − vn)c1(D, qn).

Since c1(D, qn) = c1(D, g
′) + ddc([vn]) � 0, by using [5, Corollary 3.6] or

[15, Lemma 1.2.1], we can see that c1(D, qn) converges weakly to c1(D, q)
as functionals on C0(S). In particular, there is a constant C such that∫
S
c1(D, qn) � C for all n. Thus

∣∣∣∣
∫

S

(un − vn)c1(D, qn)−
∫

S

(u− v)c1(D, q)
∣∣∣∣

�
∣∣∣∣
∫

S

(un − vn)c1(D, qn)−
∫

S

(u− v)c1(D, qn)

∣∣∣∣

+

∣∣∣∣
∫

S

(u− v)c1(D, qn)−
∫

S

(u− v)c1(D, q)
∣∣∣∣

� ‖(u− v)− (un − vn)‖supC +

∣∣∣∣
∫

S

(u− v)c1(D, qn)−
∫

S

(u− v)c1(D, q)
∣∣∣∣ .

Therefore,

lim
n→∞

∫

S

(un − vn)c1(D, qn) =

∫

S

(u− v)c1(D, q),

and hence the assertion follows. �

Proof of Theorem 1.1. — Let us start the proof of Theorem 1.1. First we
consider the existence of the greatest element of Υrel(D). By Lemma 1.2,
there is the greatest element Q of Σ(D). Note that D − Q is vertical. On
the other hand, let G(D) be the set of all D-Green functions h of C0-type
such that c1(D,h) is a positive current and h � g (a.e.). By Lemma 1.7,
there is the greatest element q of G(D), that is, q ∈ G(D) and h � q (a.e.)
for all h ∈ G(D). Let us see that q is F∞-invariant. For this purpose,
it is sufficient to see that F ∗∞(q) ∈ G(D) and h � F ∗∞(q) (a.e.) for all
h ∈ G(D). The first assertion follows from [13, Lemma 5.1.2]. Let us see
the second assertion. Since F ∗∞(h) ∈ G(D) by [13, Lemma 5.1.2], F ∗∞(h) �

– 727 –



Atsushi Moriwaki

q (a.e.), and hence h � F ∗∞(q) (a.e.). Here we set Q := (Q, q). Clearly Q ∈
Υrel(D). Moreover, for M ∈ Υrel(D), (M ′, h′) := max{Q,M} ∈ Υrel(D)
by Claim 1.4 and [13, Lemma 9.1.1] (for the definition of max{Q,M}, see
Conventions and terminology 6). In particular, M ′ ∈ Σ(D) and h′ ∈ G(D),
and hence (M ′, h′) = Q, that is, M � Q, as required.

Finally let us see (a) — (e). As Q is the greatest element of Σ(D), (a), (c)
and the first assertion of (d) follow from Lemma 1.2. The second assertion
of (d) follows from (1) in Lemma 1.7. The property (e) is a consequence of

(d). Finally we consider (b). If we set N = (N, k), then d̂eg(Q · (N, 0)) = 0

by (b) in Lemma 1.2, and d̂eg(Q · (0, k)) = 0 by (2) in Lemma 1.7, and

hence d̂eg(Q ·N) = 0. �

2. Generalized Hodge index theorem for v̂olχ

In this section, we consider a refinement of the generalized Hodge index
theorem on an arithmetic surface, that is, the case where d = 1. As in
Conventions and terminology 5, an arithmetic R-Cartier divisor D of C0-
type on X is said to be integrable if D = P − Q for some nef arithmetic
R-Cartier divisors P and Q of C0-type.

Theorem 2.1. — Let D be an integrable arithmetic R-Cartier divisor

of C0-type on X such that deg(DK) � 0. Then d̂eg(D
2
) � v̂olχ(D) and the

equality holds if and only if D is relatively nef. In particular, d̂eg(D
2
) �

v̂ol(D).

Proof. — Let µ : X ′ → X be a desingularization of X (cf. [11]). Then

d̂eg(D
2
) = d̂eg(µ∗(D)2) and v̂olχ(D) = v̂olχ(µ∗(D)). Moreover, D is rela-

tively nef if and only if µ∗(D) is relatively nef. Therefore we may assume
that X is regular.

Claim 2.2. — If D is relatively nef, then d̂eg(D
2
) = v̂olχ(D).

Proof. — We divide the proof into five steps:

Step 1 (the case where D is an arithmetic Q-Cartier divisor of C∞-type
and c1(D) is a semi-positive form) : In this case, the assertion follows from
Ikoma [9, Theorem 3.5.1].

Step 2 (the case where D is of C∞-type, c1(D) is a positive form and

d̂eg(D
∣∣
C

) > 0 for all vertical reduced and irreducible 1-dimensional closed
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subschemes C) : We choose arithmetic Cartier divisors D1, . . . ,Dl of C∞-
type and real numbers a1, . . . , al such that D = a1D1 + · · · + alDl. Then
there is a positive number δ0 such that c1(b1D1 + · · · + blDl) is a positive
form for all b1, . . . , bl ∈ Q with |bi − ai| � δ0 (∀i = 1, . . . , l). Let C be
a smooth fiber of X → Spec(OK) over P . Then, for b1, . . . , bl ∈ Q with
|bi − ai| � δ0 (∀i = 1, . . . , l),

d̂eg
(
(b1D1 + · · ·+ blDl)

∣∣
C

)
= deg((b1D1 + · · ·+blDl)K) log #(OK/P ) > 0.

Let C1, . . . , Cr be all irreducible components of singular fibers of X →
Spec(OK). Then, for each j = 1, . . . , r, there is a positive number δj such
that

d̂eg
(

(b1D1 + · · ·+ blDl)
∣∣
Cj

)
> 0

for all b1, . . . , bl ∈ Q with |bi − ai| � δj (∀i = 1, . . . , l). Therefore, if we
set δ = min{δ0, δ1, . . . , δr}, then, for b1, . . . , bl ∈ Q with |bi − ai| � δ (∀i =
1, . . . , l),

c1(b1D1 + · · ·+ blDl)

is a positive form and d̂eg
(
(b1D1 + · · ·+ blDl)

∣∣
C

)
> 0 for all vertical re-

duced and irreducible 1-dimensional closed subschemes C on X, and hence

d̂eg((b1D1 + · · ·+ blDl)
2) = v̂olχ(b1D1 + · · ·+ blDl)

by Step 1. Thus the assertion follows by the continuity of v̂olχ due to Ikoma
[9, Corollary 3.4.4].

Step 3 (the case where D is of C∞-type and c1(D) is a semi-positive
form) : Let A be an ample arithmetic Cartier divisor of C∞-type on X.

Then, for any positive ε, c1(D+εA) is a positive form and d̂eg((D + εA)
∣∣
C

) >
0 for all vertical reduced and irreducible 1-dimensional closed subschemes
C on X, so that, by Step 2,

d̂eg((D + εA)2) = v̂olχ(D + εA).

Therefore the assertion follows by virtue of the continuity of v̂olχ.

Step 4 (the case where deg(DK) > 0) : Let h be a D-Green function of
C∞-type such that c1(D,h) is a positive form. Then there is a continuous
function φ onX(C) such thatD = (D,h+φ), and hence c1(D,h)+dd

c([φ]) �
0. Thus, by [13, Lemma 4.2], there is a sequence {φn}∞n=1 of F∞-invariant
C∞-functions on X(C) with the following properties:

(a) limn→∞ ‖φn − φ‖sup = 0.

(b) If we set Dn = (D,h+ φn), then c1(Dn) is a semipositive form.
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Then, by Step 3, d̂eg(D
2

n) = v̂olχ(Dn) for all n. Note that limn→∞ v̂olχ(Dn) =

v̂olχ(D) by using the continuity of v̂olχ. Moreover, by [15, Lemma 1.2.1],

lim
n→∞

d̂eg(D
2

n) = d̂eg(D
2
),

as required.

Step 5 (general case) : Finally we prove the assertion of the claim. As
before, let A be an ample arithmetic Cartier divisor of C∞-type onX. Then,
for any positive number ε, deg(DK + εAK) > 0. Thus, in the same way as
Step 3, the assertion follows from Step 4. �

Let us go back to the proof of the theorem. Let Q be the greatest element
of Υrel(D) (cf. Theorem 1.1) and N := D − Q. Then, by using Claim 2.2
and the properties (b) and (e) in Theorem 1.1,

v̂olχ(D)− d̂eg(D
2
) = v̂olχ(Q)− d̂eg(D

2
) = d̂eg(Q

2
)− d̂eg(D

2
) = −d̂eg(N

2
).

On the other hand, if we set N = (N, k), then

d̂eg(N
2
) = d̂eg((N, 0)2) +

1

2

∫

X(C)

kddc(k)

because N is vertical. By (c) in Theorem 1.1 together with Zariski’s lemma,

d̂eg((N, 0)2) � 0 and the equality holds if and only if N = 0. Moreover, by
[15, Proposition 1.2.3 and Proposition 2.1.1],

∫

X(C)

kddc(k) � 0

and the equality holds if and only if k is locally constant. Thus d̂eg(N
2
) � 0,

that is, v̂olχ(D) � d̂eg(D
2
). Moreover, if D is relatively nef, then v̂olχ(D) =

d̂eg(D
2
) by Claim 2.2. Conversely, if v̂olχ(D) = d̂eg(D

2
), that is, d̂eg(N

2
) =

0, thenN = 0 and k is locally constant, and henceD = Q+(0, k) is relatively
nef. �

As a corollary of the above theorem, we have the following:

Corollary 2.3. — We assume that X is regular. The following are
equivalent:

(1) Q is the greatest element of Υrel(D).

(2) Q is an element of Υrel(D) with the following properties:
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(i) D −Q is vertical.

(ii) d̂eg(Q · B) = 0 and d̂eg(B
2
) < 0 for all integrable arithmetic

R-Cartier divisors B of C0-type with (0, 0) � B � D −Q.

Proof. — First, let us see the following claim:

Claim 2.4. — Let D1 and D2 be arithmetic R-Cartier divisors of C0-
type on X such that D1 � D2. If the natural map H0(X,nD1)→ H0(X,nD2)

is bijective for each n � 0, then v̂olχ(D1) � v̂olχ(D2),

Proof. — This is obvious because ‖ · ‖nD1
� ‖ · ‖nD2

. �

(1) =⇒ (2) : By the property (a) in Theorem 1.1, D−Q is vertical. For

0 < ε � 1, we set Dε = Q + εB. Then Dε is integrable and v̂olχ(Dε) =

v̂olχ(Q) because

v̂olχ(Q) � v̂olχ(Dε) � v̂olχ(D) and v̂olχ(Q) = v̂olχ(D)

by Claim 2.4 and the properties (d) and (e) in Theorem 1.1. Thus, by using
Theorem 2.1,

d̂eg(D
2

ε) � v̂olχ(Dε) = v̂olχ(Q) = d̂eg(Q
2
),

which implies 2d̂eg(Q · B) + εd̂eg(B
2
) � 0. In particular, d̂eg(Q · B) � 0.

On the other hand, as B is vertical,

d̂eg(Q ·B) = d̂eg(Q · (B, 0)) +
1

2

∫

X(C)

c1(Q)b � 0

where B = (B, b). Therefore, d̂eg(Q · B) = 0 and d̂eg(B
2
) � 0. Here we

assume that d̂eg(B
2
) = 0. Note that

d̂eg(B
2
) = d̂eg((B, 0)2) +

1

2

∫

X(C)

bddc(b).

Thus, by using the property (c) in Theorem 1.1, Zariski’s lemma and [15,
Proposition 1.2.3 and Proposition 2.1.1], B = 0 and b is a locally constant
function. In particular, Q + B is relatively nef and Q + B � D, so that
B = 0.

(2) =⇒ (1) : LetM be an element of Υrel(D). If we set A := max{Q,M}
(cf. Conventions and terminology 6) and B = (B, b) := A − Q, then B is
effective, A � D and A is relatively nef by Claim 1.4 and [13, Lemma 9.1.2].
Moreover,

B = A−Q � D −Q.
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If we assume B � (0, 0), then, by the property (ii), d̂eg(Q · B) = 0 and

d̂eg(B
2
) < 0. On the other hand, as A is relatively nef, B is effective and B

is vertical by the property (i),

d̂eg(B
2
) = d̂eg(Q+B·B) = d̂eg(A·B) = d̂eg(A·(B, 0))+

1

2

∫

X(C)

c1(A)b � 0,

which is a contradiction, so that B = (0, 0), that is, Q = A, which means
that M � Q, as required. �

Remark 2.5. — Let D be an integrable arithmetic R-Cartier divisor of
C0-type on X with deg(DK) > 0. For a positive number ε, we set

α :=
d̂eg(D

2
)

[K : Q] deg(DK)
− 2ε.

Then, as d̂eg((D − (0, α))2) = 2ε[K : Q] deg(DK) > 0, by Theorem 2.1,
there is

φ ∈ Ĥ0(X,n(D − (0, α))) \ {0}
for some n > 0. Note that ‖φ‖n(D−(0,α)) = ‖φ‖nD exp((nα)/2), so that

φ ∈ H0(X,nD) \ {0} and ‖φ‖nD � exp

(
− nd̂eg(D

2
)

2[K : Q] deg(DK)
+ nε

)
,

which is nothing more than Autissier’s result [2, Proposition 3.3.3].

Remark 2.6. — The referee points out that Step 1 of Claim 2.2 can
be proved by using Randriambololona’s version of the arithmetic Hilbert-
Samuel formula [17].

3. Necessary condition for the equality v̂ol = v̂olχ

This section is devoted to consider a necessary condition for the equality

v̂ol = v̂olχ as an application of the integral formulae due to Boucksom-Chen
[4].

First of all, let us review Boucksom-Chen’s integral formulae [4] in terms
of arithmetic R-Cartier divisors. For details, see [16, Section 1]. We fix a
monomial order � on Zd�0, that is, � is a total ordering relation on Zd�0

with the following properties:

(a) (0, . . . , 0) � A for all A ∈ Zd�0.

(b) If A � B for A,B ∈ Zd�0, then A+ C � B + C for all C ∈ Zd�0.
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The monomial order� on Zd�0 extends uniquely to a totally ordering relation
� on Zd such that A+C � B+C for all A,B,C ∈ Zd with A � B. Indeed,
for A,B ∈ Zd, we define A � B as follows:

A � B def⇐⇒ there is C ∈ Zd�0 such that A+ C,B + C ∈ Zd�0

and A+ C � B + C.

It is easy to see that this definition is well-defined and it yields the above
extension. Uniqueness is also obvious.

As X → Spec(OK) is the Sten factorization of X → Spec(Z), XK is
geometrically integral over K. Let K be an algebraic closure of K and
XK := X ×Spec(K) Spec(K). Let zP = (z1, . . . , zd) be a local system of

parameters of OX
K
,P for P ∈ X(K). Note that the completion ÔX

K
,P of

OX
K
,P with respect to the maximal ideal of OX

K
,P is naturally isomorphic

to K[[z1, . . . , zd]]. Thus, for f ∈ OX
K
,P , we can put

f =
∑

(a1,...,ad)∈Zd�0

c(a1,...,ad)z
a1
1 · · · zadd , (c(a1,...,ad) ∈ K).

We define ord�zP (f) to be

ord�zP (f) :=

{
min
�

{
(a1, . . . , ad) | c(a1,...,ad) �= 0

}
if f �= 0,

∞ otherwise,

which gives rise to a rank d valuation, that is, the following properties are
satisfied:

(i) ord�zP (fg) = ord�zP (f) + ord�zP (g) for f, g ∈ OX
K
,P .

(ii) min
{

ord�zP (f), ord�zP (g)
}
� ord�zP (f + g) for f, g ∈ OX

K
,P .

By the property (i), ord�zP : OX
K
,P \ {0} → Zd�0 has the natural extension

ord�zP : Rat(XK)× → Zd

given by ord�zP (f/g) = ord�zP (f) − ord�zP (g). Note that this extension also

satisfies the same properties (i) and (ii) as before. Since ord�zP (u) = (0, . . . , 0)

for all u ∈ O×X
K
,P , ord�zP induces Rat(XK)×/O×X

K
,P → Zd. The composi-

tion of homomorphisms

Div(XK)
αP−→Rat×(XK)/O×X

K
,P

ord
�
zP−→ Zd
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is denoted by mult�zP , where αP : Div(XK)→ Rat(XK)×/O×X
K
,P is the nat-

ural homomorphism. Moreover, the homomorphism mult�zP : Div(XK) →
Zd gives rise to the natural extension Div(XK)⊗ZR→ Rd over R. By abuse

of notation, the above extension is also denoted by mult�zP .

Let D = (D, g) be an arithmetic R-Cartier divisor of C0-type (cf. Con-
ventions and terminology 2). Let V• =

⊕
m�0 Vm be a graded subalgebra of

R(DK) :=
⊕

m�0H
0(XK ,mDK) over K. The Okounkov body ∆(V•) of V•

is defined by the closed convex hull of

⋃

m>0

{
mult�zP (DK + (1/m)(φ)) ∈ Rd

�0 | φ ∈ Vm ⊗K K \ {0}
}
.

For t ∈ R, let V t
• be a graded subalgebra of V• given by

V t
• :=

⊕

m�0

〈
Vm ∩ Ĥ0(X,m(D + (0,−2t)))

〉
K
,

where
〈
Vm ∩ Ĥ0(X,m(D + (0,−2t)))

〉
K

means the subspace of Vm gen-

erated by Vm ∩ Ĥ0(X,m(D + (0,−2t))) over K. Let G(D;V•)
: ∆(V•) →

R ∪ {−∞} be a function given by

G(D;V•)
(x) :=

{
sup {t ∈ R | x ∈ ∆(V t

• )} if x ∈ ∆(V t
• ) for some t,

−∞ otherwise.

Note that G(D;V•)
is an upper semicontinuous concave function (cf. [4, Sub-

Section 1.3]). We define v̂ol(D;V•) and v̂olχ(D;V•) to be





v̂ol(D;V•) := lim sup
m→∞

# log
(
Vm ∩ Ĥ0(X,mD)

)

md+1/(d+ 1)!
,

v̂olχ(D;V•) := lim sup
m→∞

χ̂
(
Vm ∩H0(X,mD), ‖ · ‖mD

)

md+1/(d+ 1)!
.

Moreover, for ξ ∈ XK , we define µQ,ξ(D;V•) as follows:

µQ,ξ(D;V•) :=
{

inf
{

multξ
(
D+ 1

m (φ)
)
|m∈Z>0, φ∈Vm∩Ĥ0(X,mD)\{0}

}
if N(D;V•) �= ∅,

∞ otherwise,

where N(D;V•) = {m ∈ Z>0 | Vm ∩ Ĥ0(X,mD) �= {0}}. Note that

v̂ol(D;V•) = v̂ol(D), v̂olχ(D;V•) = v̂olχ(D) and µQ,ξ(D;V•) = µQ,ξ(D)
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if Vm = H0(XK ,mDK) for m� 0 (cf. Conventions and terminology 2 and
3). Let Θ(D;V•) be the closure of

{
x ∈ ∆(V•) | G(D;V•)

(x) > 0
}
.

If V• contains an ample series (cf. [16, SubSection 1.1]), then, in the similar
way as [4, Theorem 2.8] and [4, Theorem 3.1], we have the following integral
formulae:

v̂ol(D;V•) = (d+ 1)![K : Q]

∫

Θ(D;V•)
G(D;V•)

(x)dx (3.1)

and

v̂olχ(D;V•) = (d+ 1)![K : Q]

∫

∆(V•)
G(D;V•)

(x)dx. (3.2)

Note that the arguments in [4] work for an arbitrary monomial order. The
boundedness of the Okounkov body is not obvious for an arbitrary monomial
order. It can be checked by Theorem C.1. Let ν : Rd → R be a linear map.
If we give the monomial order ≺ν on Zd�0 by the following rule:

a ≺ν b
def⇐⇒ either ν(a) < ν(b), or ν(a) = ν(b) and a ≺lex b,

then ν(a) � ν(b) for all a, b ∈ Zd�0 with a �ν b. Let us begin with the
following lemma.

Lemma 3.3. — If V• contains an ample series and v̂ol(D;V•) > 0, then
we have the following:

(1) Θ(D;V•) = ∆(V 0
• ) =

{
x ∈ ∆(V•) | G(D;V•)

(x) � 0
}
.

(2) We assume that ν is given by ν(x1, . . . , xd) = x1 + · · · + xr, where
1 � r � d. We further assume that the monomial order � satisfies the
property: ν(a) � ν(b) for all a, b ∈ Zd�0 with a � b. Let B is a reduced
and irreducible subvariety of XK such that B is given by z1 = · · · =
zr = 0 around P . Then µQ,B(D;V•) = min

{
ν(x) | x ∈ Θ(D;V•)

}
.

Proof. — (1) Note that

{
x ∈ ∆(V•) | G(D;V•)

(x) > 0
}
⊆ ∆(V 0

• ) ⊆
{
x ∈ ∆(V•) | G(D;V•)

(x) � 0
}

and
{
x ∈ ∆(V•) | G(D;V•)

(x) � 0
}

is closed because G(D;V•)
is upper semi-

continuous. Thus it is sufficient to show that
{
x ∈ ∆(V•) | G(D;V•)

(x) � 0
}
⊆
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Θ(D;V•). Let x ∈ ∆(V•) with G(D;V•)
(x) � 0. As

v̂ol(D;V•) = (d+ 1)![K : Q]

∫

Θ(D;V•)
G(D;V•)

(x)dx > 0

by (3.1), we can choose y ∈ Θ(D;V•) with G(D;V•)
(y) > 0. Then

G(D;V•)
((1− t)x+ ty) � (1− t)G(D;V•)

(x) + tG(D;V•)
(y) � tG(D;V•)

(y) > 0

for all t ∈ R with 0 < t � 1. Thus x ∈ Θ(D;V•).

(2) First let us see the following claim:

Claim 3.4. — For L ∈ Div(X)R, ν
(
mult�zP (L)

)
= multB(L).

Proof. — It is sufficient to see that ν
(
ord�zP (f)

)
= ordB(f) for f ∈

OX
K
\{0}. We set f =

∑
β∈Zd�0

cβz
β and α = ord�zP (f). Note that ordB(f) =

min{ν(β) | cβ �= 0}. Thus the assertion follows because cα �= 0 and ν(α) �
ν(β) for β ∈ Zd�0 with cβ �= 0. �

If we set
xφ = mult�zP (D + (1/m)(φ))

for φ ∈ Vm ∩ Ĥ0(X,mD) \ {0} and m > 0, then G(D;V•)
(xφ) � 0 by

the definition of G(D;V•)
, and hence, xφ ∈ Θ(D;V•) by (1). Therefore, by

Claim 3.4,

min{ν(x) | x ∈ Θ(D;V•)} � ν(xφ) = multB(D + (1/m)(φ)),

which implies min{ν(x) | x ∈ Θ(D;V•)} � µQ,B(D;V•).

Claim 3.5. —

µQ,B(D;V•) � ν


mult�zP


D + (1/m)


 ∑

φ∈Vm∩Ĥ0(X,mD)\{0}

cφφ








 ,

where cφ ∈ K and
∑

φ∈Vm∩Ĥ0(X,mD)\{0} cφφ �= 0.

Proof. — By the property (ii),

min
φ∈Vm∩Ĥ0(X,mD)\{0}

{
ord�zP (φ)

}
� ord�zP


 ∑

φ∈Vm∩Ĥ0(X,mD)\{0}

cφφ
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on Zd, which yields

min
φ∈Vm∩Ĥ0(X,mD)\{0}

{
ν

(
ord�zP (φ)

)}
�ν


ord�zP


 ∑

φ∈Vm∩Ĥ0(X,mD)\{0}

cφφ




 ,

and hence

min
φ∈Vm∩Ĥ0(X,mD)\{0}

{
ν

(
mult�zP (D + (1/m)(φ))

)}

� ν


mult�zP


D + (1/m)


 ∑

φ∈Vm∩Ĥ0(X,mD)\{0}

cφφ








 .

Thus the claim follows by Claim 3.4. �

By the above claim together with (1),

Θ(D;V•) = ∆(V 0
• ) ⊆ {x ∈ ∆(V•) | µQ,B(D;V•) � ν(x)},

which shows that min{ν(x) | x ∈ Θ(D;V•)} � µQ,B(D;V•), as required. �

The following theorem is the main result of this section.

Theorem 3.6. — If V• contains an ample series, v̂ol(D;V•) =

v̂olχ(D;V•) > 0 and

inf {multξ(D + (1/m)(φ)) | m ∈ Z>0, φ ∈ Vm \ {0}} = 0

for ξ ∈ XK , then µQ,ξ(D;V•) = 0.

Proof. — First let us consider the following claim:

Claim 3.7. — Θ(D;V•) = ∆(V•).

Proof. — It is sufficient to see that ∆(V•)◦⊆
{
x∈∆(V•) |G(D;V•)

(x)�0
}

.

We assume the contrary, that is, there is y ∈ ∆(V•)◦ with G(D;V•)
(y) < 0.

Then, by using the upper semicontinuity of G(D;V•)
, we can find an open

neighborhood U of y such that U ⊆ ∆(V•)◦ and G(D;V•)
(x) < 0 for all

x ∈ U . Then, as Θ(D;V•) ⊆ ∆(V•) \ U , by the integral formulae of v̂ol and

v̂olχ (cf. (3.1), (3.2)) and (1) in Lemma 3.3,

v̂olχ(D;V•)
(d+ 1)![K : Q]

=

∫

∆(V•)
G(D;V•)

(x)dx
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=

∫

U

G(D;V•)
(x)dx+

∫

∆(V•)\U
G(D;V•)

(x)dx

<

∫

∆(V•)\U
G(D;V•)

(x)dx �
∫

Θ(D;V•)
G(D;V•)

(x)dx

=
v̂ol(D;V•)

(d+ 1)![K : Q]
.

This is a contradiction. �

Let B be the Zariski closure of {ξ} in X. We choose P ∈ X(K) and a
local system of parameters zP = (z1, . . . , zd) at P such that P is a regular
point of BK and z1 = · · · = zr = 0 is a local equation of BK at P . Let
ν : Rd → R be the linear map given by ν(x1, . . . , xd) = x1 + · · · + xr. We
also choose a monomial order � such that ν(a) � ν(b) for all a, b ∈ Zd�0

with a � b. By our assumption,

inf {multξ(D + (1/m)(φ)) | m ∈ Z>0, φ ∈ Vm \ {0}} = 0.

This means that min{ν(x) | x ∈ ∆(V•)} = 0, and hence, by Claim 3.7 and
(2) in Lemma 3.3,

µQ,ξ(D;V•) = min{ν(x) | x ∈ Θ(D;V•)} = 0.

�

Corollary 3.8. — If DK is nef and big on the generic fiber XK and

v̂ol(D) = v̂olχ(D) > 0, then µQ,ξ(D) = 0 for all ξ ∈ XK .

Proof. — As DK is nef and big, in the similar way as [13, Proposi-
tion 6.5.3], for any ε > 0, there is φ ∈ Rat(XK)×Q such that

DK + (φ)Q � 0 and multξ(DK + (φ)Q) < ε,

which means that

inf
{
multξ(D + (1/m)(φ)) | m ∈ Z>0, φ ∈ H0(XK ,mDK) \ {0}

}
= 0.

Thus the corollary follows from Theorem 3.6. �

4. Equality condition for the generalized Hodge index theorem

Here let us give the proof of the main theorem of this paper. We assume
that d = 1. Let us begin with the following two lemmas.
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Lemma 4.1. — We assume that X is regular. For an integrable arith-
metic R-Cartier divisor D of C0-type on X (cf. Conventions and terminol-
ogy 5), we have the following:

(1) We assume that deg(DK) = 0. Then d̂eg(D
2
) = 0 if and only if

D = (̂ψ)R + (0, λ) for some ψ ∈ Rat(X)×R and λ ∈ R. Moreover, if

d̂eg(D
2
) = 0 and D is pseudo-effective, then D = (̂ψ)R + (0, λ) for

some ψ ∈ Rat(X)×R and λ ∈ R�0.

(2) The following are equivalent:

(a) deg(DK) = 0 and D is nef.

(b) deg(DK) = 0, D is pseudo-effective and d̂eg(D
2
) = 0.

Proof. — (1) First we assume that d̂eg(D
2
) = 0. By [15, Theorem 2.2.3,

Remark 2.2.4], there are φ ∈ Rat(X)×R and an F∞-invariant locally constant

real valued function η on X(C) such that D = (̂φ)R + (0, η). Let K(C)
be the set of all embeddings σ : K ↪→ C. For each σ ∈ K(C), we set
Xσ = X ×σ

Spec(OK) Spec(C), where ×σ
Spec(OK) means the fiber product with

respect to σ : K ↪→ C. Note that {Xσ}σ∈K(C) gives rise to all connected
components of X(C). Let ησ be the value of η on Xσ. We set

λ =
1

[K : Q]

∑

σ∈K(C)

ησ and ξ = η − λ.

Then ξσ̄ = ξσ for all σ ∈ K(C) and
∑

σ∈K(C) ξσ = 0. Thus, by Dirichlet’s

unit theorem, there is u ∈ O×K ⊗ R such that (̂u)R = (0, ξ). Therefore, we
have

D = (̂φu)R + (0, λ).

The converse is obvious. We assume that d̂eg(D
2
) = 0 and D is pseudo-

effective. Then D = (̂ψ)R + (0, λ) for some ψ ∈ Rat(X)×R and λ ∈ R. Let A
be an ample arithmetic Cartier divisor of C∞-type. Then,

0 � d̂eg(A ·D) =
λ[K : Q] deg(AK)

2
,

and hence λ � 0, as required.

(2) (a) =⇒ (b) follows from the non-negativity of d̂eg(D
2
) ([13, Propo-

sition 6.4.2], [15, SubSection 2.1]) and the Hodge index theorem ([15, The-

orem 2.2.3]). Let us show that (b) =⇒ (a). By (1), D = (̂ψ)R + (0, λ) for
some ψ ∈ Rat(X)×R and λ ∈ R�0. Thus the assertion is obvious. �
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Lemma 4.2. — In this lemma, X is not necessarily an arithmetic sur-
face, that is, X is a (d + 1)-dimensional, generically smooth, normal and
projective arithmetic variety. Let D be an arithmetic R-Cartier divisor of
C0-type on X. Then,

v̂ol(D) � v̂ol(D + (0, ε)) � v̂ol(D) +
ε(d+ 1)[K : Q]vol(DK)

2

for ε ∈ R�0.

Proof. — The first inequality is obvious. Note that ‖ · ‖m(D+(0,ε)) =

e−
mε
2 ‖ · ‖mD for all m � 0. Thus, by using [12, (3) in Proposition 2.1], there

is a constant C such that

log #Ĥ0(X,m(D + (0, ε)))

md+1/(d+ 1)!
� log #Ĥ0(X,mD)

md+1/(d+ 1)!

+
ε(d+ 1)[K : Q]

2

dimK H
0(XK ,mDK)

md/d!
+ C

logm

m

holds for m� 1. Thus the second inequality follows. �

The following theorem is the main result of this paper.

Theorem 4.3. — Let D be an integrable arithmetic R-Cartier divisor of

C0-type on X with deg(DK) > 0. Then d̂eg(D
2
) = v̂ol(D) if and only if D

is nef.

Proof. — Let ν : X ′ → X be a desingularization of X (cf. [11]). Then

d̂eg(ν∗(D)2) = d̂eg(D
2
) and v̂ol(ν∗(D)) = v̂ol(D). Moreover, ν∗(D) is nef

if and only if D is nef. Therefore, we may assume that X is regular.

By [12, Corollary 5.5] and [13, Proposition-Definition 6.4.1], if D is nef,

then d̂eg(D
2
) = v̂ol(D), so that we need to show that if d̂eg(D

2
) = v̂ol(D),

then D is nef.

First we assume that D is big. Note that

d̂eg(D
2
) � v̂olχ(D) � v̂ol(D).

Thus, by Theorem 2.1 and Corollary 3.8, D is relatively nef and µR,ξ(D) =

0 for ξ ∈ XK . By [13, Theorem 9.2.1], there is a greatest element P of
Υ(D) (cf. Conventions and terminology 4). If we set N := D − P , then
D = P +N is a Zariski decomposition of D (cf. Proposition B.1). Then, by
[13, Claim 9.3.5.1] or [16, Theorem 4.1.1],

multξ(N) = µR,ξ(D) = 0
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for all ξ ∈ XK , which implies that N is vertical. In particular, d̂eg(D
∣∣
C

) � 0
for all horizontal reduced and irreducible 1-dimensional closed subschemes
C on X, and hence D is nef because D is relatively nef.

Next we assume that D is not big. Then d̂eg(D
2
) = v̂ol(D) = 0. Thus,

for ε ∈ R>0,

ε[K : Q] deg(DK) = d̂eg((D+(0, ε))2) � v̂ol(D+(0, ε)) � ε[K : Q] deg(DK)

by the generalized Hodge index theorem (cf. Theorem 2.1) and Lemma 4.2,

and hence D+(0, ε) is big and d̂eg((D+(0, ε))2) = v̂ol(D+(0, ε)). Therefore,
by the previous observation, D + (0, ε) is nef for all ε ∈ R>0, which means
that D is nef. �

As a corollary of the above theorem, we have the following:

Corollary 4.4. — Let D be an integrable arithmetic R-Cartier divisor
of C0-type on X. Then D is nef if and only if D is pseudo-effective and

d̂eg(D
2
) = v̂ol(D).

Proof. — We need to show that if D is pseudo-effective and d̂eg(D
2
) =

v̂ol(D), then D is nef. Clearly deg(DK) � 0. If deg(DK) > 0, then the
nefness of D follows from Theorem 4.3. Moreover, if deg(DK) = 0, then (2)
in Lemma 4.3 implies the assertion. �

5. Negative part of Zariski decomposition

We assume that d = 1. As an application of Theorem 4.3, let us see that
the self-intersection number of the negative part of a Zariski decomposition
is negative.

Theorem 5.1. — Let D be an integrable arithmetic R-Cartier divisor
of C0-type on X such that deg(DK) � 0. Let D = P + N be a Zariski

decomposition of D (cf. Conventions and terminology 4). Then d̂eg(N
2
) < 0

if and only if D is not nef.

Proof. — First of all, note that D is pseudo-effective. As d̂eg(P ·N) = 0
by the following Lemma 5.2,

v̂ol(D)− d̂eg(D
2
) = v̂ol(P )− d̂eg(D

2
) = d̂eg(P

2
)− d̂eg(D

2
) = −d̂eg(N

2
).

In addition, by Corollary 4.4, D is not nef if and only if v̂ol(D) > d̂eg(D
2
).

Thus the assertion follows. �
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Lemma 5.2. — Let D be an integrable arithmetic R-Cartier divisor of

C0-type on X. If D = P +N is a Zariski decomposition of D, then d̂eg(P ·
N) = 0 and d̂eg(N

2
) � 0.

Proof. — For 0 < ε � 1, we set Dε = P + εN . Then Dε is integrable

and v̂ol(P ) = v̂ol(Dε) because

v̂ol(P ) � v̂ol(Dε) � v̂ol(D) = v̂ol(P ).

Thus, by the generalized Hodge index theorem (cf. Theorem 2.1),

d̂eg((P + εN)2) = d̂eg(D
2

ε) � v̂ol(Dε) = v̂ol(P ) = d̂eg(P
2
),

and hence
2d̂eg(P ·N) + εd̂eg(N

2
) � 0.

In particular, d̂eg(P · N) � 0. On the other hand, as P is nef and N is

effective, d̂eg(P ·N) � 0. Thus d̂eg(P ·N) = 0 and d̂eg(N
2
) � 0. �

Remark 5.3. — If D is big, then the Zariski decomposition D = P +N is
uniquely determined by [16, Theorem 4.2.1]. Otherwise, it is not necessarily
unique.

As a consequence of the above theorem, we have the following numer-
ical characterization of the greatest element of Υ(D) (cf. Conventions and
terminology 4).

Corollary 5.4. — We assume that X is regular. Let D and P be arith-
metic R-Cartier divisors of C0-type on X. Then the following are equivalent:

(1) P is the greatest element of Υ(D), that is, P ∈ Υ(D) and M � P
for all M ∈ Υ(D).

(2) P is an element of Υ(D) with the following property:

d̂eg(P ·B) = 0 and d̂eg(B
2
) < 0

for all integrable arithmetic R-Cartier divisors B of C0-type with
(0, 0) � B � D − P .

Proof. — (1) =⇒ (2) : By Proposition B.1, v̂ol(D) = v̂ol(P ), so that
P +B is a Zariski decomposition because

v̂ol(P ) � v̂ol(P +B) � v̂ol(D).
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Thus d̂eg(P · B) = 0 by Lemma 5.2. As B � (0, 0) and P is the greatest

element of Υ(D), P +B is not nef, so that d̂eg(B
2
) < 0 by Theorem 5.1.

(2) =⇒ (1) : Let M be an element of Υ(D). If we set A = max{P ,M}
(cf. Conventions and terminology 6) and B = A − P , then B is effective,
A � D and A is nef by [13, Lemma 9.1.2]. Moreover,

B = A− P � D − P .

If we assume B � (0, 0), then, by the property, d̂eg(P ·B) = 0 and d̂eg(B
2
) <

0. On the other hand, as A is nef and B is effective,

0 � d̂eg(A ·B) = d̂eg(P +B ·B) = d̂eg(B
2
),

which is a contradiction, so that B = (0, 0), that is, P = A, which means
that M � P , as required. �

Corollary 5.5. — We assume that X is regular. Let D be an arith-
metic R-Cartier divisor of C0-type on X such that Υ(D) �= ∅. Let P be the
greatest element of Υ(D) (cf. [13, Theorem 9.2.1]) and let N := D − P .
We assume that N �= 0. Let N = c1C1 + · · · + clCl be the decomposition
such that c1, . . . , cl ∈ R>0 and C1, . . . , Cl are distinct reduced and irre-
ducible 1-dimensional closed subschemes on X. Let C1 = (C1, h1), . . . , Cl =
(Cl, hl) be effective arithmetic Cartier divisors of C0-type such that such
that c1(C1), . . . , c1(Cl) are positive currents and

c1C1 + · · ·+ clCl � N.

Then
d̂eg(P · C1) = · · · = d̂eg(P · Cl) = 0

and the (l × l) symmetric matrix given by
(
d̂eg(Ci · Cj)

)
1�i�l
1�j�l

is negative definite.

Proof. — For x = (x1, . . . , xl) ∈ Rl, we set Bx = x1C1 + · · ·+ xlCl and
Dx = P + Bx. If 0 � xi � ci for all i = 1, . . . , l, then Bx is integrable and
(0, 0) � Bx � N . Thus, by Corollary 5.4,

0 = d̂eg(P ·B(c1,...,cl)) = c1d̂eg(P · C1) + · · ·+ cld̂eg(P · Cl).

Note that d̂eg(P · Ci) � 0 for all i = 1, . . . , l. Therefore,

d̂eg(P · C1) = · · · = d̂eg(P · Cl) = 0

Here we claim the following:
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Claim 5.6. — If x ∈ (R�0)
l \ {0}, then d̂eg(B

2

x) < 0.

Proof. — Note that Btx = tBx and that we can find a positive number
t with txi � ci (∀i). Thus we may assume that xi � ci (∀i), and hence the
assertion follows by Corollary 5.4. �

We need to see that if x ∈ Rl \ {0}, then d̂eg(B
2

x) < 0. We can choose

y = (y1, . . . , yl), z = (z1, . . . , zl) ∈ (R�0)
l

such that x = y − z and {i | yi �= 0} ∩ {j | zj �= 0} = ∅. Note that either

y �= 0 or z �= 0. Moreover, d̂eg(By ·Bz) � 0 because By � (0, 0), Bz � (0, 0),
c1(By) and c1(Bz) are positive currents, and By and Bz have no common
reduced and irreducible 1-dimensional closed subschemes. Thus, by using
the above claim,

d̂eg(B
2

x) = d̂eg((By −Bz)
2) = d̂eg(B

2

y) + d̂eg(B
2

z)− 2d̂eg(By ·Bz) < 0.

�

Remark 5.7. — By [13, Theorem 9.3.4, (4.1)], we can find effective arith-
metic Cartier divisors C1, . . . , Cl of C0-type such that c1(C1), . . . , c1(Cl) are
positive currents and c1C1 + · · ·+ clCl � N .

Example 5.8. — Let P1
Z = Proj(Z[T0, T1]) andHi = {Ti = 0} for i = 0, 1.

We fix positive numbers a0, a1 such that a0 < 1, a1 < 1 and a0 + a1 � 1.
Let us consider an arithmetic Cartier divisor D of C∞-type given by

D := (H0, log(a0 + a1|z|2)),
where z = T1/T0. Note that c1(D) is a positive form. Moreover,D is pseudo-
effective and not nef (cf. [14, Theorem 2.3]). In [14, Theorem 4.1], we give
the greatest element of Υ(D) as follows: Let ϕ be a continuous function on
the interval [0, 1] given by

ϕ(x) = −(1− x) log(1− x)− x log(x) + (1− x) log(a0) + x log(a1),

and let ϑ = min{x ∈ [0, 1] | ϕ(x) � 0} and θ = max{x ∈ [0, 1] | ϕ(x) � 0}.
We set

P := (θH0−ϑH1, p(z)), N1 := (ϑH1, n1(z)) and N2 := ((1−θ)H0, n2(z)),

where p(z), n1(z) and n2(z) are Green functions given by

p(z) :=





ϑ log |z|2 if |z| �
√

a0ϑ
a1(1−ϑ) ,

log(a0 + a1|z|2) if
√

a0ϑ
a1(1−ϑ) � |z| �

√
a0θ

a1(1−θ) ,

θ log |z|2 if |z| �
√

a0θ
a1(1−θ) .
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n1(z) :=





log(a0 + a1|z|2)− ϑ log |z|2 if |z| �
√

a0ϑ
a1(1−ϑ) ,

0 if |z| �
√

a0ϑ
a1(1−ϑ) .

n2(z) :=





0 if |z| �
√

a0θ
a1(1−θ) ,

log(a1 + a0|z|−2) + (1− θ) log |z|2 if |z| �
√

a0θ
a1(1−θ) .

Then P gives the greatest element of Υ(D) and D = P + (N1 +N2). It is
easy to see that

d̂eg(P ·N1) = d̂eg(P ·N2) = 0 and d̂eg(N1 ·N2) = 0.

Moreover,

d̂eg(N1 ·N1) = d̂eg(N1 · (N1 − ϑ(̂z))) = d̂eg(N1 · (ϑH0, n1(z) + ϑ log |z|2))

= ϑd̂eg(N1

∣∣
H0

) +
1

2

∫

P1(C)

c1(N1)(n1(z) + ϑ log |z|2)

=
1

2

∫

|z|�
√

a0ϑ

a1(1−ϑ)

ddc(log(a0 + a1|z|2)) log(a0 + a1|z|2)

=
(1− ϑ) log(1− ϑ) + (log(a0) + 1)ϑ

2
.

In the same way,

d̂eg(N2 ·N2) =
θ log(θ) + (log(a1) + 1)(1− θ)

2
.

Thus the negative definite symmetric matrix (d̂eg(N i ·N j))i,j=1,2 is

( (1−ϑ) log(1−ϑ)+(log(a0)+1)ϑ
2 0

0 θ log(θ)+(log(a1)+1)(1−θ)
2

)
.

Appendix A. Relative Zariski decomposition
and pseudo-effectivity

We assume that X is regular and d = 1. Let D = (D, g) be an arith-
metic R-Cartier divisor of C0-type on X. In this appendix, we would like
to investigate the pseudo-effectivity of the relative Zariski decomposition.

Proposition A.1. — We assume that deg(DK) � 0. Let Q be the great-
est element of Υrel(D) (cf. Section 1). Then D is pseudo-effective if and
only if Q is pseudo-effective.
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Proof. — It is obvious that if Q is pseudo-effective, then D is also
pseudo-effective, so that we assume that D is pseudo-effective.

First we consider the case where deg(DK) > 0. Then, by [13, Proposi-
tion 6.3.3], D + (0, ε) is big for any ε ∈ R>0. By the property (d) in The-
orem 1.1, the natural inclusion map H0(X,nQ) → H0(X,nD) is bijective
and ‖ · ‖nQ = ‖ · ‖nD for each n � 0. Moreover, as

‖ · ‖n(Q+(0,ε)) = e−nε/2‖ · ‖nQ and ‖ · ‖n(D+(0,ε)) = e−nε/2‖ · ‖nD,

we have ‖ · ‖n(Q+(0,ε)) = ‖ · ‖n(D+(0,ε)), and hence Q + (0, ε) is big for all

ε ∈ R>0. Thus the assertion follows.

Next we assume that deg(DK) = 0. By [15, Theorem 2.3.3], there are
φ ∈ Rat(X)×R , a vertical effective R-Cartier divisor E on X and an F∞-

invariant continuous function η on X(C) such that D = (̂φ)R + (E, η) and
π−1(P )red �⊆ Supp(E) for all P ∈ Spec(OK). For each embedding σ : K ↪→
C, let Xσ = X ×σ

Spec(OK) Spec(C) and let λσ = minx∈Xσ{η(x)}. Note that

λσ̄ = λσ for all σ. Let λ : X(C) → R be the local constant function such
that the value of λ on Xσ is λσ.

Here let us see that Q = (̂φ)R+(0, λ) is the greatest element of Υrel(D).
Otherwise, there is an integrable arithmetic R-Cartier divisor B = (B, b) of
C0-type such that (0, 0) � B � D−Q = (E, η− λ) and Q+B is relatively
nef. Since b is continuous and

ddc([b]) = c1(B) = c1(Q+B)

is a positive current, b is plurisubharmonic on X(C), that is, b is a locally
constant function. Let bσ be the value of b on Xσ. If we choose xσ ∈ Xσ

with λσ = η(xσ), then

0 � bσ � η(xσ)− λσ = 0,

and hence b = 0, so that, as Q+B is relatively nef,

0 � d̂eg(Q+B ·B) = d̂eg((B, 0)2).

On the other hand, by Zariski’s lemma, d̂eg((B, 0)2) < 0. This is a contra-
diction.

By [15, Lemma 2.3.4 and Lemma 2.3.5], (E, λ) is pseudo-effective. On
the other hand, by the following Lemma A.2, there is a nef arithmetic R-

Cartier divisor L of C∞-type such that deg(LK) > 0 and d̂eg(L·(E, 0)) = 0.
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Thus,

0 � d̂eg(L · (E, λ)) =
∑

σ

deg(LK)λσ
2

,

and hence
∑

σ λσ � 0. We set λ′ = (1/[K : Q])
∑

σ λσ and ξ = λ−λ′. Then
λ′ � 0,

∑
σ ξσ = 0 and ξσ̄ = ξσ for all σ, where ξσ is the value of ξ on

Xσ. Thus, by Dirichlet’s unit theorem, (0, ξ) = (̂u)R for some u ∈ O×K ⊗ R.
Therefore,

Q = (̂φu)R + (0, λ′),

which is pseudo-effective. �

Lemma A.2. — Let C1, . . . , Cr be vertical reduced and irreducible 1-
dimensional closed subschemes on X such that π−1(P )red �⊆ C1 ∪ · · · ∪ Cr

for all P ∈ Spec(OK). Then there is a nef arithmetic R-Cartier divisor L of

C∞-type such that deg(LK) > 0 and d̂eg(L · (Ci, 0)) = 0 for all i = 1, . . . , r.

Proof. — Let A be an ample arithmetic Cartier divisor of C∞-type. By
using Zariski’s lemma, we can find a vertical effective R-Cartier divisor E
such that

d̂eg((E, 0) · (Ci, 0)) = −deg(A · (Ci, 0))

for all i = 1, . . . , r and that d̂eg((E, 0) · (C, 0)) � 0 for all vertical reduced
and irreducible 1-dimensional closed subschemes C with C �∈ {C1, . . . , Cr}.
Thus, if we set L := A+(E, 0), then L is a nef arithmetic R-Cartier divisor

of C∞-type, deg(LK) > 0 and d̂eg(L · (Ci, 0)) = 0 for all i = 1, . . . , r. �

As an corollary, we can give a simpler proof of the main result of [15]
in the case where X is a generically smooth, normal projective arithmetic
surface.

Corollary A.3. — Let X be a generically smooth, normal projective
arithmetic surface and let D be an arithmetic R-Cartier divisor of C0-type
on X. If deg(DK) = 0 and D is pseudo-effective, then there is φ ∈ Rat(X)×R
such that D + (̂φ)R � (0, 0).

Proof. — Clearly we may assume that X is regular. By Proposition A.1,
we may also assume thatD is relatively nef. By the Hodge index theorem (cf.

[15, Theorem 2.2.3]), d̂eg(D
2
) � 0. We assume that d̂eg(D

2
) < 0. Let A be

an ample arithmetic Cartier divisor of C∞-type on X. As d̂eg(D
2
) < 0, we

can find a sufficiently small positive number ε with d̂eg((D + εA) ·D) < 0.
Moreover, since D + εA is ample, there is a positive number c such that
D + εA+ (0, c) is nef. In particular,

d̂eg((D + εA+ (0, c)) ·D) � 0.
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On the other hand,

d̂eg((D + εA+ (0, c)) ·D) = d̂eg((D + εA) ·D) +
c[K : Q]

2
deg(DK) < 0,

which is a contradiction, so that d̂eg(D
2
) = 0. Therefore, by Lemma 4.1,

there is ψ ∈ Rat(X)×R and λ ∈ R�0 such that D = (̂ψ)R + (0, λ), and hence

D + ̂(ψ−1)R = (0, λ) � (0, 0).

�
Appendix B. Small sections of arithmetic R-divisors

Let D be an arithmetic R-Cartier divisor of C0-type on X. In this ap-
pendix, let us consider a generalization of [13, Proposition 9.3.3]. Its proof
is much simpler than one of [13, Proposition 9.3.3].

Proposition B.1. — Let P be the greatest element of Υ(D) (cf. Con-

ventions and terminology 4). Then, for φ ∈ Rat(X)×R , D+ (̂φ)R is effective

if and only if P +(̂φ)R is effective. In particular, the natural inclusion maps

Ĥ0(X,nP ) ↪→ Ĥ0(X,nD), Ĥ0
Q(X,P ) ↪→ Ĥ0

Q(X,D)

and Ĥ0
R(X,P ) ↪→ Ĥ0

R(X,D)

are bijective for each n � 0.

Proof. — We assume that D + (̂φ)R is effective. Then −(̂φ)R ∈ Υ(D),

and hence −(̂φ)R � P , that is, P + (̂φ)R is effective. The converse is
obvious. �

As a corollary of the above proposition, we have the following.

Corollary B.2. — We assume that d = 1. Let D = P+N be a Zariski
decomposition of D (Conventions and terminology 4). If D is big, then the
natural inclusion maps

Ĥ0(X,nP ) ↪→ Ĥ0(X,nD), Ĥ0
Q(X,P ) ↪→ Ĥ0

Q(X,D)

and Ĥ0
R(X,P ) ↪→ Ĥ0

R(X,D)

are bijective for each n � 0.
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Proof. — Let µ : X ′ → X be a desingularization of X (cf. [11]). Then

µ∗(D) = µ∗(P ) + µ∗(N)

is a Zariski decomposition of µ∗(D). Thus, by [16, Theorem 4.2.1], µ∗(P )
gives the greatest element of Υ(µ∗(D)). Therefore, by Proposition B.1,

Ĥ0(X ′, nµ∗(P )) = Ĥ0(X ′, nµ∗(D)) and Ĥ0
K(X ′, µ∗(P )) = Ĥ0

K(X ′, µ∗(D))

for each n � 0, where K is either Q or R. Let us consider the following
commutative diagrams:

Note that each horizontal arrow is bijective. Thus the assertions follows. �

Appendix C. A result on subsemigroups of Rd
�0 × Z�0

Let d be a positive integer. Let v : Rd+1 → Rd and h : Rd+1 → R be the
projections given by

v(x1, . . . , xd, xd+1) = (x1, . . . , xd) and h(x1, . . . , xd, xd+1) = xd+1.

Let Γ be a sub-semigroup of Rd
�0 × Z�0. For a non-negative integer m, we

set
Γm = v(Γ ∩ (Rd × {m})) = v({γ ∈ Γ | h(γ) = m}).

More generally, for a subset X of Rd+1 and t ∈ R, Xt is given by

Xt = v(X ∩ (Rd × {t})) = v({x ∈ X | h(x) = t}).
We define Σ(Γ) and ∆(Γ) to be

Σ(Γ) = Cone(Γ) and ∆(Γ) = Conv

( ⋃

m>0

1

m
Γm

)
,

where Cone(Γ) and Conv
(⋃

m>0
1
mΓm

)
is the topological closures of the

cone generated by Γ and the convex hull of
⋃

m>0
1
mΓm, respectively. For

θ ∈ Rd
�0, we define Γθ to be

Γθ := {(x+ θm,m) | (x,m) ∈ Γ}.
Note that Γθ is a sub-semigroup of Rd

�0 × Z�0. For simplicity, we denote
Σ(Γ), ∆(Γ), Σ(Γθ) and ∆(Γθ) by Σ, ∆, Σθ and ∆θ, respectively.
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Theorem C.1. — We assume that there is θ ∈ Rd
�0 such that Γθ ⊆ Zd+1

�0

and Γθ generates Zd+1 as a group, then the following are equivalent:

(1) There is a constant M such that #(Γm) �Mmd for all m � 1.

(2) ∆ is bounded.

Moreover, under the above equivalent conditions, we have

lim
m→∞

#(Γm)

md
= vol(∆) > 0.

Proof. — Note that Γθ
m = Γm+mθ and ∆θ = ∆+θ. Therefore, in order

to prove the assertion, we may assume that θ = 0, that is, Γ ⊆ Zd+1
�0 and Γ

generates Zd+1. Let us begin with the following claim:

Claim C.2. —

(a) t∆ ⊆ Σt for all t > 0.

(b) ∆ has an interior point.

(c) Γm ⊆ m∆ ∩ Zd for all m � 1. In particular, if ∆ is bounded, then

lim sup
m→∞

#(Γm)

md
� vold(∆).

(d) If #(Γm) <∞ for all m � 1, then

lim inf
m→∞

#(Γm)

md
� vold(∆).

Proof. — (a) As (1/m)Γm ⊆ Σ1 for m � 1, we have ∆ ⊆ Σ1. Thus, for
t > 0, t∆ ⊆ tΣ1 ⊆ Σt.

(b) We assume that ∆ has no interior point. Then there is a hyperplane
H in Rd such that ∆ ⊆ H. Let W be a subspace of Rd+1 generated by
H × {1}. Note that dimRW = d.

Here let us see that Γ ⊆ W . Let (x,m) ∈ Γ. If m > 0, then x/m ∈ ∆,
so that (x,m) = m(x/m, 1) ∈ W . Otherwise, we choose (y, n) ∈ Γ with
n > 0. Then, as (x+y, n) = (x, 0)+(y, n) ∈ Γ, by the previous observation,
(y, n), (x+ y, n) ∈W , and hence (x, 0) = (x+ y, n)− (y, n) ∈W .

By our assumption, 〈Γ〉R = Rd+1, which contradicts to the observation
Γ ⊆W .
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(c) This is a obvious.

(d) First we assume that Γ is finitely generated, that is, there is γ1, . . . , γn ∈
Γ such that Γ = Z�0γ1 + · · ·+Z�0γn. By [10, Proposition 3] (note that the
constant C in [10, Proposition 1] can be taken as a positive integer), there
is γ ∈ Γ such that

Σ ∩ Zd+1 + γ ⊆ Γ,

which implies that m∆ ∩ Zd + v(γ) ⊆ Γm+h(γ). Indeed, for x ∈ m∆ ∩ Zd,
by (a), x ∈ Σm ∩ Zd, and hence

x+ v(γ) ∈ (Σ ∩ Zd+1 + γ)m+h(γ) ⊆ Γm+h(γ).

In particular, #(m∆∩Zd) � #(Γm+h(γ)), which yields (d) in the case where
Γ is finitely generated.

In general, let Γ(1) ⊆ Γ(2) ⊆ · · · ⊆ Γ be a sequence of sub-semigroups
of Γ with the following properties:

(i) Γ(i) is finitely generated for all i.

(ii) Γ(i) generates Zd+1 as a group for all i.

(iii)
⋃

i Γ(i) = Γ.

By the previous observation,

lim inf
m→∞

#(Γm)

md
� lim inf

m→∞
#(Γ(i)m)

md
� vold(∆(i)),

where ∆(i) = ∆(Γ(i)). Note that limi→∞ vol(∆(i)) = vol(∆) because ∆ is
the closure of

⋃
i ∆(i). Hence we obtain the assertion. �

Let us go back to the proof of the theorem. First we assume (1). Then,
by (d), vol(∆) < ∞ and ∆ has an interior point by (b). Therefore, ∆ is
bounded by Lemma C.3 as described below. Next assume (2). Then (1)
follows from (c).

Finally we assume the equivalent conditions (1) and (2). Then, by (c)
and (d),

lim sup
m→∞

#(Γm)

md
� vold(∆) � lim inf

m→∞
#(Γm)

md
,

and hence

lim
m→∞

#(Γm)

md
= vold(∆) > 0

by (b). �
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Lemma C.3. — Let K be a convex set in V such that K has an interior
point. Then the following are equivalent:

(1) K is bounded.

(2) vol(K) <∞.

Proof. — Clearly (1) implies (2). We assume that vol(K) < ∞ and K
is not bounded. Let a be an interior point of K. Considering the translation
given by x �→ x− a, we may assume a = 0. Then there is a positive number
r such that B ⊆ K, where B := {x ∈ V | 〈x, x〉 � r2}. As K is not
bounded, for any M > 0, there is x ∈ K such that 〈x, x〉 � M2. Let
Hx = {y ∈ V | 〈x, y〉 = 0} and let C be the convex hull generated by
B ∩Hx and x. Clearly C ⊆ K. Moreover, as C is a cone over B ∩Hx, we
can see that

vol(C) =
vol(B ∩Hx)

√
〈x, x〉

d
,

and hence

vol(K) � vol(C) � vol(B ∩Hx)M

d
.

This is a contradiction because vol(K) <∞. �
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