Mathématiques

ATSUSHI MORIWAKI
 Numerical characterization of nef arithmetic divisors on arithmetic surfaces

Tome XXIII, n ${ }^{\circ} 3$ (2014), p. 717-753.
http://afst.cedram.org/item?id=AFST_2014_6_23_3_717_0
© Université Paul Sabatier, Toulouse, 2014, tous droits réservés.
L'accès aux articles de la revue «Annales de la faculté des sciences de Toulouse Mathématiques» (http://afst.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://afst.cedram. org/legal/). Toute reproduction en tout ou partie de cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques

Numerical characterization of nef arithmetic divisors on arithmetic surfaces

Atsushi Moriwaki ${ }^{(1)}$

Abstract

In this paper, we give a numerical characterization of nef arithmetic \mathbb{R}-Cartier divisors of C^{0}-type on an arithmetic surface. Namely an arithmetic \mathbb{R}-Cartier divisor \bar{D} of C^{0}-type is nef if and only if \bar{D} is pseudo-effective and $\widehat{\operatorname{deg}}\left(\bar{D}^{2}\right)=\widehat{\operatorname{vol}}(\bar{D})$.

Résumé. - Dans le présent article, nous donnons une caractérisation numérique des \mathbb{R}-diviseurs arithmétiques nef et de type C^{0} sur une surface artihmétique. Plus exactement, nous montrons qu'un \mathbb{R}-diviseur de Cartier \bar{D} de type C^{0} est nef si et seulement si \bar{D} est pseudo-effectif et $\widehat{\operatorname{deg}}\left(\bar{D}^{2}\right)=\widehat{\operatorname{vol}(}(\bar{D})$.

Introduction

Let X be a generically smooth, normal and projective arithmetic surface and let $X \rightarrow \operatorname{Spec}\left(O_{K}\right)$ be the Stein factorization of $X \rightarrow \operatorname{Spec}(\mathbb{Z})$, where K is a number field and O_{K} is the ring of integers in K. Let \bar{L} be an arithmetic divisor of C^{∞}-type on X with $\operatorname{deg}\left(L_{K}\right)=0$ (cf. Conventions and terminology 2). Faltings-Hriljac's Hodge index theorem ([6], [8]) says that

$$
\widehat{\operatorname{deg}}\left(\bar{L}^{2}\right) \leqslant 0
$$

and the equality holds if and only if $\bar{L}=\widehat{(\phi)}+(0, \eta)$ for some F_{∞}-invariant locally constant real valued function η on $X(\mathbb{C})$ and $\phi \in \operatorname{Rat}(X)_{\mathbb{Q}}^{\times}:=$ $\operatorname{Rat}(X)^{\times} \otimes_{\mathbb{Z}} \mathbb{Q}$. The inequality part of their Hodge index theorem can be generalized as follows: Let \bar{D} be an integrable arithmetic \mathbb{R}-Cartier divisor

[^0]of C^{0}-type on X, that is, $\bar{D}=\bar{P}-\bar{Q}$ for some nef arithmetic \mathbb{R}-Cartier divisors \bar{P} and \bar{Q} of C^{0}-type (cf. Conventions and terminology 2 and 5). If $\operatorname{deg}\left(D_{K}\right) \geqslant 0$, then
$$
\widehat{\operatorname{deg}}\left(\bar{D}^{2}\right) \leqslant \widehat{\operatorname{vol}}(\bar{D})
$$
(cf. [12, Theorem 6.2], [13, Theorem 6.6.1], Theorem 4.3). This inequality is called the generalized Hodge index theorem. It is very interesting to ask the equality condition of the inequality. It is known that if \bar{D} is nef, then $\widehat{\operatorname{deg}}\left(\bar{D}^{2}\right)=\widehat{\operatorname{vol}}(\bar{D})($ cf. [12, Corollary 5.5], [13, Proposition-Definition 6.4.1]), so that the problem is the converse. In the case where $\operatorname{deg}\left(D_{K}\right)=0$ (and hence $\widehat{\operatorname{vol}}(\bar{D})=0$), it is nothing more than the equality condition of the Hodge index theorem (cf. Lemma 4.1). Thus the following theorem gives an answer to the above question.

Theorem 0.1 (cf. Theorem 4.3). - We assume that $\operatorname{deg}\left(D_{K}\right)>0$. Then \bar{D} is nef if and only if $\widehat{\operatorname{deg}}\left(\bar{D}^{2}\right)=\widehat{\operatorname{vol}}(\bar{D})$.

For the proof of the above theorem, we need the integral formulae of the arithmetic volumes due to Boucksom-Chen [4] and the existence of the Zariski decomposition of big arithmetic divisors [13]. From the point of view of a characterization of nef arithmetic \mathbb{R}-Cartier divisors, the following variant of the above theorem is also significant.

Corollary 0.2 (cf. Corollary 4.4). - \bar{D} is nef if and only if \bar{D} is pseudoeffective and $\widehat{\operatorname{deg}}\left(\bar{D}^{2}\right)=\widehat{\operatorname{vol}}(\bar{D})$.

Let $\Upsilon(\bar{D})$ be the set of all arithmetic \mathbb{R}-Cartier divisors \bar{M} of C^{0}-type on X such that \bar{M} is nef and $\bar{M} \leqslant \bar{D}$. As an application of the above theorem, we have the following numerical characterization of the greatest element of $\Upsilon(\bar{D})$.

Corollary 0.3 (cf. Corollary 5.4). - We assume that X is regular. Let \bar{P} be an arithmetic \mathbb{R}-Cartier divisor of C^{0}-type on X. Then the following are equivalent:
(1) \bar{P} is the greatest element of $\Upsilon(\bar{D})$, that is, $\bar{P} \in \Upsilon(\bar{D})$ and $\bar{M} \leqslant \bar{P}$ for all $\bar{M} \in \Upsilon(\bar{D})$.
(2) \bar{P} is an element of $\Upsilon(\bar{D})$ with the following property:

$$
\widehat{\operatorname{deg}}(\bar{P} \cdot \bar{B})=0 \quad \text { and } \quad \widehat{\operatorname{deg}}\left(\bar{B}^{2}\right)<0
$$

for all integrable arithmetic \mathbb{R}-Cartier divisors \bar{B} of C^{0}-type with $(0,0) \supsetneqq \bar{B} \leqslant \bar{D}-\bar{P}(c f$. Conventions and terminology 5).

Finally I would like to thank Prof. Yuan and Prof. Zhang for their helpful comments. I also express my thanks to the referee for giving me several comments and remarks.

Conventions and terminology

Here we fix several conventions and the terminology of this paper. An arithmetic variety means a quasi-projective and flat integral scheme over \mathbb{Z}. It is said to be generically smooth if the generic fiber over \mathbb{Z} is smooth over \mathbb{Q}. Throughout this paper, X is a $(d+1)$-dimensional, generically smooth, normal and projective arithmetic variety. Let $X \rightarrow \operatorname{Spec}\left(O_{K}\right)$ be the Stein factorization of $X \rightarrow \operatorname{Spec}(\mathbb{Z})$, where K is a number field and O_{K} is the ring of integers in K. For details of the following 2 and 4, see [13] and [15].

1. A pair $(M,\|\cdot\|)$ is called a normed \mathbb{Z}-module if M is a finitely generated \mathbb{Z}-module and $\|\cdot\|$ is a norm of $M_{\mathbb{R}}:=M \otimes_{\mathbb{Z}} \mathbb{R}$. A quantity

$$
\log \left(\frac{\operatorname{vol}\left(\left\{x \in M_{\mathbb{R}} \mid\|x\| \leqslant 1\right\}\right)}{\operatorname{vol}\left(M_{\mathbb{R}} /\left(M / M_{t o r}\right)\right)}\right)+\log \#\left(M_{t o r}\right)
$$

does not depend on the choice of the Haar measure vol on $M_{\mathbb{R}}$, where $M_{\text {tor }}$ is the group of torsion elements of M. We denote the above quantity by $\hat{\chi}(M,\|\cdot\|)$.
2. Let \mathbb{K} be either \mathbb{Q} or \mathbb{R}. Let $\operatorname{Div}(X)$ be the group of Cartier divisors on X and let $\operatorname{Div}(X)_{\mathbb{K}}:=\operatorname{Div}(X) \otimes_{\mathbb{Z}} \mathbb{K}$, whose element is called a \mathbb{K}-Cartier divisor on X. For $D \in \operatorname{Div}(X)_{\mathbb{R}}$, we define $H^{0}(X, D)$ and $H^{0}\left(X_{K}, D_{K}\right)$ to be

$$
\left\{\begin{array}{l}
H^{0}(X, D)=\left\{\phi \in \operatorname{Rat}(X)^{\times} \mid D+(\phi) \geqslant 0\right\} \cup\{0\}, \\
H^{0}\left(X_{K}, D_{K}\right)=\left\{\phi \in \operatorname{Rat}\left(X_{K}\right)^{\times} \mid D_{K}+(\phi)_{K} \geqslant 0 \text { on } X_{K}\right\} \cup\{0\},
\end{array}\right.
$$

where X_{K} is the generic fiber of $X \rightarrow \operatorname{Spec}\left(O_{K}\right)$.
A pair $\bar{D}=(D, g)$ is called an arithmetic \mathbb{K}-Cartier divisor of C^{∞}-type (resp. of C^{0}-type) if the following conditions are satisfied:
(a) D is a \mathbb{K}-Cartier divisor on X, that is, $D=\sum_{i=1}^{r} a_{i} D_{i}$ for some $D_{1}, \ldots, D_{r} \in \operatorname{Div}(X)$ and $a_{1}, \ldots, a_{r} \in \mathbb{K}$.
(b) $g: X(\mathbb{C}) \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ is a locally integrable function and $g \circ F_{\infty}=$ g (a.e.), where $F_{\infty}: X(\mathbb{C}) \rightarrow X(\mathbb{C})$ is the complex conjugation map.
(c) For any point $x \in X(\mathbb{C})$, there exist an open neighborhood U_{x} of x and a C^{∞}-function (resp. continuous function) u_{x} on U_{x} such that

$$
\left.g=u_{x}+\sum_{i=1}^{r}\left(-a_{i}\right) \log \left|f_{i}\right|^{2} \quad \text { (a.e. }\right)
$$

on U_{x}, where f_{i} is a local equation of D_{i} over U_{x} for each i.
The function g is called a D-Green function of C^{∞}-type (resp. of C^{0} type $)$. Note that $d d^{c}\left(\left[u_{x}\right]\right)$ does not depend on the choice of local equations f_{1}, \ldots, f_{r}, so that $d d^{c}\left(\left[u_{x}\right]\right)$ is defined globally on $X(\mathbb{C})$. It is called the first Chern current of \bar{D} and is denoted by $c_{1}(\bar{D})$, that is, $c_{1}(\bar{D})=d d^{c}([g])+\delta_{D}$. Note that, if \bar{D} is of C^{∞}-type, then $c_{1}(\bar{D})$ is represented by a C^{∞}-form, which is called the first Chern form of \bar{D}. Let \mathcal{C} be either C^{∞} or C^{0}. The set of all arithmetic \mathbb{K}-Cartier divisors of \mathcal{C}-type is denoted by $\widehat{\operatorname{Div}}_{\mathcal{C}}(X)_{\mathbb{K}}$. Moreover, the group

$$
\left\{(D, g) \in \widehat{\operatorname{Div}}_{\mathcal{C}}(X)_{\mathbb{Q}} \mid D \in \operatorname{Div}(X)\right\}
$$

is denoted by $\widehat{\operatorname{Div}}_{\mathcal{C}}(X)$. An element of $\widehat{\operatorname{Div}}_{\mathcal{C}}(X)$ is called an arithmetic Cartier divisor of \mathcal{C}-type. For $\bar{D}=(D, g), \bar{E}=(E, h) \in \widehat{\operatorname{Div}}_{C^{0}}(X)_{\mathbb{K}}$, we define relations $\bar{D}=\bar{E}$ and $\bar{D} \geqslant \bar{E}$ as follows:

$$
\begin{aligned}
& \bar{D}=\bar{E} \quad \stackrel{\text { def }}{\Longleftrightarrow} \quad D=E, \quad g=h(\text { a.e. }), \\
& \bar{D} \geqslant \bar{E} \quad \stackrel{\text { def }}{\Longleftrightarrow} \quad D \geqslant E, \quad g \geqslant h \text { (a.e.). }
\end{aligned}
$$

Let $\operatorname{Rat}(X)_{\mathbb{K}}^{\times}:=\operatorname{Rat}(X)^{\times} \otimes_{\mathbb{Z}} \mathbb{K}$, and let

$$
()_{\mathbb{K}}: \operatorname{Rat}(X)_{\mathbb{K}}^{\times} \rightarrow \operatorname{Div}(X)_{\mathbb{K}} \quad \text { and } \quad{\widehat{()_{\mathbb{K}}}}: \operatorname{Rat}(X)_{\mathbb{K}}^{\times} \rightarrow \widehat{\operatorname{Div}}_{C \infty}(X)_{\mathbb{K}}
$$

be the natural extensions of the homomorphisms

$$
\operatorname{Rat}(X)^{\times} \rightarrow \operatorname{Div}(X) \quad \text { and } \quad \operatorname{Rat}(X)^{\times} \rightarrow \widehat{\operatorname{Div}}_{C^{\infty}}(X)
$$

given by $\phi \mapsto(\phi)$ and $\phi \mapsto \widehat{(\phi)}$, respectively. Let \bar{D} be an arithmetic \mathbb{R} Cartier divisor of C^{0}-type. We define $\widehat{\Gamma}^{\times}(X, \bar{D})$ and $\widehat{\Gamma}_{\mathbb{K}}^{\times}(X, \bar{D})$ to be

$$
\left\{\begin{array}{l}
\widehat{\Gamma}^{\times}(X, \bar{D}):=\left\{\phi \in \operatorname{Rat}(X)^{\times} \mid \bar{D}+\widehat{(\phi)} \geqslant(0,0)\right\} \\
\widehat{\Gamma}_{\mathbb{K}}^{\times}(X, \bar{D}):=\left\{\phi \in \operatorname{Rat}(X)_{\mathbb{K}}^{\times} \mid \bar{D}+\widehat{(\phi)}{ }_{\mathbb{K}} \geqslant(0,0)\right\} .
\end{array}\right.
$$

Note that $\widehat{\Gamma}_{\mathbb{Q}}^{\times}(X, \bar{D})=\bigcup_{n=1}^{\infty} \widehat{\Gamma}^{\times}(X, n \bar{D})^{1 / n}$. Moreover, we set

$$
\hat{H}^{0}(X, \bar{D}):=\widehat{\Gamma}^{\times}(X, \bar{D}) \cup\{0\} \quad \text { and } \quad \hat{H}_{\mathbb{K}}^{0}(X, \bar{D}):=\widehat{\Gamma}_{\mathbb{K}}^{\times}(X, \bar{D}) \cup\{0\}
$$

For $\xi \in X$, we define the \mathbb{K}-asymptotic multiplicity of \bar{D} at ξ to be

$$
\mu_{\mathbb{K}, \xi}(\bar{D}):= \begin{cases}\inf \left\{\operatorname{mult}_{\xi}\left(D+(\phi)_{\mathbb{K}}\right) \mid \phi \in \widehat{\Gamma}_{\mathbb{K}}^{\times}(X, \bar{D})\right\} & \text { if } \widehat{\Gamma}_{\mathbb{K}}^{\times}(X, \bar{D}) \neq \emptyset \\ \infty & \text { otherwise }\end{cases}
$$

(for details, see [13, Proposition 6.5.2, Proposition 6.5.3] and [15, Section 2]).
3. Let $\bar{D}=(D, g)$ be an arithmetic \mathbb{R}-Cartier divisor of C^{0}-type on X. Let $\phi \in H^{0}\left(X(\mathbb{C}), D_{\mathbb{C}}\right)$, that is, $\phi \in \operatorname{Rat}(X(\mathbb{C}))^{\times}$and $(\phi)+D_{\mathbb{C}} \geqslant 0$ on $X(\mathbb{C})$. Then $|\phi| \exp (-g / 2)$ is represented by a continuous function $|\phi|_{g}^{c}$ on $X(\mathbb{C})$ (cf. [13, SubSection 2.5]), so that we may consider $\sup \left\{|\phi|_{g}^{c}(x) \mid x \in X(\mathbb{C})\right\}$. We denote it by $\|\phi\|_{\bar{D}}$ or $\|\phi\|_{g}$. Note that, for $\phi \in H^{0}(X, D), \phi \in \hat{H}^{0}(X, \bar{D})$ if and only if $\|\phi\|_{\bar{D}} \leqslant 1$. We define $\widehat{\operatorname{vol}}(\bar{D})$ and $\widehat{\operatorname{vol}_{\chi}}(\bar{D})$ to be

$$
\begin{gathered}
\widehat{\operatorname{vol}(\bar{D})}:=\limsup _{m \rightarrow \infty} \frac{\log \# \hat{H}^{0}(X, m \bar{D})}{m^{d+1} /(d+1)!}, \\
\widehat{\operatorname{vol}_{\chi}}(\bar{D}):=\limsup _{m \rightarrow \infty} \frac{\hat{\chi}\left(H^{0}(X, m D),\|\cdot\|_{m \bar{D}}\right)}{m^{d+1} /(d+1)!} .
\end{gathered}
$$

It is well known that $\widehat{\operatorname{vol}}(\bar{D}) \geqslant \widehat{\operatorname{vol}}_{\chi}(\bar{D})$. More generally, for $\xi_{1}, \ldots, \xi_{l} \in X$ and $\mu_{1}, \ldots, \mu_{l} \in \mathbb{R}_{\geqslant 0}$, we define $\widehat{\operatorname{vol}}\left(\bar{D} ; \mu_{1} \xi_{1}, \ldots, \mu_{l} \xi_{l}\right)$ to be

$$
\begin{aligned}
& \widehat{\operatorname{vol}\left(\bar{D} ; \mu_{1} \xi_{1}, \ldots, \mu_{l} \xi_{l}\right):=} \\
& \quad \limsup _{m \rightarrow \infty} \frac{\log \#\left(\left\{\phi \in \widehat{\Gamma}^{\times}(X, m \bar{D}) \mid \operatorname{mult}_{\xi_{i}}(m D+(\phi)) \geqslant \mu_{i}(\forall i)\right\} \cup\{0\}\right)}{m^{d+1} /(d+1)!} .
\end{aligned}
$$

Note that $\widehat{\operatorname{vol}}(\bar{D} ; \mu \xi)=\widehat{\operatorname{vol}}(\bar{D})$ for $0 \leqslant \mu \leqslant \mu_{\mathbb{Q}, \xi}(\bar{D})$.
4. Let \bar{D} be an arithmetic \mathbb{R}-Cartier divisor of C^{0}-type on X. The effectivity, bigness, pseudo-effectivity and nefness of \bar{D} are defined as follows:

- \bar{D} is effective $\stackrel{\text { def }}{\Longleftrightarrow} \bar{D} \geqslant(0,0)$.
- \bar{D} is big $\stackrel{\text { def }}{\Longleftrightarrow} \widehat{\operatorname{vol}}(\bar{D})>0$.
- \bar{D} is pseudo-effective $\stackrel{\text { def }}{\Longleftrightarrow} \bar{D}+\bar{A}$ is big for any big arithmetic \mathbb{R}-Cartier divisor \bar{A} of C^{0}-type.
- $\bar{D}=(D, g)$ is nef $\quad \stackrel{\text { def }}{\Longleftrightarrow}$
(a) $\widehat{\operatorname{deg}}\left(\left.\bar{D}\right|_{C}\right) \geqslant 0$ for all reduced and irreducible 1-dimensional closed subschemes C of X.
(b) $c_{1}(\bar{D})$ is a positive current.

A decomposition $\bar{D}=\bar{P}+\bar{N}$ is called a Zariski decomposition of \bar{D} if the following properties are satisfied:
(1) \bar{P} and \bar{N} are arithmetic \mathbb{R}-Cartier divisors of C^{0}-type on X.
(2) \bar{P} is nef and \bar{N} is effective.
(3) $\widehat{\operatorname{vol}}(\bar{P})=\widehat{\operatorname{vol}}(\bar{D})$.

We set

$$
\Upsilon(\bar{D}):=\left\{\begin{array}{l|l}
\bar{M} & \begin{array}{l}
\bar{M} \text { is an arithmetic } \mathbb{R} \text {-Cartier divisor of } C^{0} \text {-type } \\
\text { such that } \bar{M} \text { is nef and } \bar{M} \leqslant \bar{D}
\end{array}
\end{array}\right\}
$$

If \bar{P} is the greatest element of $\Upsilon(\bar{D})$ (i.e. $\bar{P} \in \Upsilon(\bar{D})$ and $\bar{M} \leqslant \bar{P}$ for all $\bar{M} \in \Upsilon(\bar{D}))$ and $\bar{N}=\bar{D}-\bar{P}$, then $\bar{D}=\bar{P}+\bar{N}$ is a Zariski decomposition of \bar{D} (cf. Proposition B.1).
5. Let \bar{D} be an arithmetic \mathbb{R}-Cartier divisor of C^{0}-type on X. According to [18], we say \bar{D} is integrable if there are nef arithmetic \mathbb{R}-Cartier divisors \bar{P} and \bar{Q} of C^{0}-type such that $\bar{D}=\bar{P}-\bar{Q}$. Note that if either \bar{D} is of C^{∞}-type, or $c_{1}(\bar{D})$ is a positive current, then \bar{D} is integrable (cf. [13, Proposition 6.4.2]). Moreover, for integrable arithmetic \mathbb{R}-Cartier divisors $\bar{D}_{0}, \ldots, \bar{D}_{d}$ of C^{0}-type on X, the arithmetic intersection number $\widehat{\operatorname{deg}}\left(\bar{D}_{0} \cdots \bar{D}_{d}\right)$ is defined in the natural way (cf. [13, SubSection 6.4], [15, SubSection 2.1]). Note that if $\bar{D}=\bar{P}+\bar{N}$ is a Zariski decomposition and \bar{D} is integrable, then \bar{N} is also integrable.
6. We assume that X is regular and $d=1$. Let D_{1}, \ldots, D_{k} be \mathbb{R}-Cartier divisors on X. We set $D_{i}=\sum_{C} a_{i, C} C$ for each i, where C runs over all reduced and irreducible 1-dimensional closed subschemes on X. We define $\max \left\{D_{1}, \ldots, D_{k}\right\}$ to be

$$
\max \left\{D_{1}, \ldots, D_{k}\right\}:=\sum_{C} \max \left\{a_{1, C}, \ldots, a_{k, C}\right\} C
$$

Let $\bar{D}_{1}=\left(D_{1}, g_{1}\right), \ldots, \bar{D}_{k}=\left(D_{k}, g_{k}\right)$ be arithmetic \mathbb{R}-Cartier divisors of C^{0}-type on X. Then $\max \left\{\bar{D}_{1}, \ldots, \bar{D}_{k}\right\}$ is defined to be

$$
\max \left\{\bar{D}_{1}, \ldots, \bar{D}_{k}\right\}:=\left(\max \left\{D_{1}, \ldots, D_{k}\right\}, \max \left\{g_{1}, \ldots, g_{k}\right\}\right)
$$

Note that $\max \left\{\bar{D}_{1}, \ldots, \bar{D}_{k}\right\}$ is also an arithmetic \mathbb{R}-Cartier divisor of $C^{0}{ }^{-}$ type (cf. [13, Lemma 9.1.2]).

1. Relative Zariski decomposition of arithmetic divisors

We assume that X is regular and $d=1$. The Stein factorization $X \rightarrow$ $\operatorname{Spec}\left(O_{K}\right)$ of $X \rightarrow \operatorname{Spec}(\mathbb{Z})$ is denoted by π. Let $\bar{D}=(D, g)$ be an arithmetic \mathbb{R}-Cartier divisor of C^{0}-type on X. We say \bar{D} is relatively nef if $c_{1}(\bar{D})$ is a positive current and $\widehat{\operatorname{deg}}\left(\left.\bar{D}\right|_{C}\right) \geqslant 0$ for all vertical reduced and irreducible 1-dimensional closed subschemes C on X. We set

$$
\Upsilon_{r e l}(\bar{D}):=\left\{\begin{array}{l|l}
\bar{M} & \begin{array}{l}
\bar{M} \text { is an arithmetic } \mathbb{R} \text {-Cartier divisor of } C^{0} \text {-type } \\
\text { such that } \bar{M} \text { is relatively nef and } \bar{M} \leqslant \bar{D}
\end{array}
\end{array}\right\}
$$

Theorem 1.1 (Relative Zariski decomposition). - If $\operatorname{deg}\left(D_{K}\right) \geqslant 0$, then there is the greatest element \bar{Q} of $\Upsilon_{\text {rel }}(\bar{D})$, that is, $\bar{Q} \in \Upsilon_{\text {rel }}(\bar{D})$ and $\underline{\bar{M}} \leqslant \bar{Q}$ for all $\bar{M} \in \Upsilon_{r e l}(\bar{D})$. Moreover, if we set $\bar{N}:=\bar{D}-\bar{Q}$, then \bar{Q} and \bar{N} satisfy the following properties:
(a) N is vertical.
(b) $\widehat{\operatorname{deg}}(\bar{Q} \cdot \bar{N})=0$.
(c) For any $P \in \operatorname{Spec}\left(O_{K}\right), \pi^{-1}(P)_{\text {red }} \nsubseteq \operatorname{Supp}(N)$.
(d) The natural homomorphism $H^{0}(X, n Q) \rightarrow H^{0}(X, n D)$ is bijective and $\|\cdot\|_{n \bar{D}}=\|\cdot\|_{n \bar{Q}}$ for each $n \geqslant 0$.
(e) $\widehat{\operatorname{vol}}_{\chi}(\bar{Q})=\widehat{\operatorname{vol}}_{\chi}(\bar{D})$.

Before staring the proof of Theorem 1.1, we need several preparations. Let D be an \mathbb{R}-Cartier divisor on X. We say D is $\pi-n e f$ if $\operatorname{deg}\left(\left.D\right|_{C}\right) \geqslant 0$ for all vertical reduced and irreducible 1-dimensional closed subschemes C on X. First let us consider the relative Zariski decomposition on finite places.

Lemma 1.2. - Let D be an \mathbb{R}-Cartier divisor on X and let $\Sigma(D)$ be the set of all \mathbb{R}-Cartier divisors M on X such that M is π-nef and $M \leqslant D$. If $\operatorname{deg}\left(D_{K}\right) \geqslant 0$, then there is the greatest element Q of $\Sigma(D)$, that is, $Q \in \Sigma(D)$ and $M \leqslant Q$ for all $M \in \Sigma(D)$. Moreover, if we set $N:=D-Q$, then Q and N satisfy the following properties:
(a) N is vertical.
(b) $\operatorname{deg}\left(\left.Q\right|_{C}\right)=0$ for all reduced and irreducible 1-dimensional closed subschemes C in $\operatorname{Supp}(N)$.
(c) For any $P \in \operatorname{Spec}\left(O_{K}\right), \pi^{-1}(P)_{\text {red }} \nsubseteq \operatorname{Supp}(N)$.
(d) The natural homomorphism $H^{0}(X, n Q) \rightarrow H^{0}(X, n D)$ is bijective for each $n \geqslant 0$.

Proof. - Let us begin with following claim:
Claim 1.3. $-\Sigma(D) \neq \emptyset$.
Proof. - First we assume that $\operatorname{deg}\left(D_{K}\right)=0$. Then, by using Zariski's lemma (cf. [15, Lemma 1.1.4]), we can find a vertical and effective \mathbb{R}-Cartier divisor E such that $\operatorname{deg}\left(\left.(D-E)\right|_{C}\right)=0$ for all vertical reduced and irreducible 1-dimensional closed subschemes C on X, and hence $\Sigma(D) \neq \emptyset$.

Next we assume that $\operatorname{deg}\left(D_{K}\right)>0$. Let A be an ample Cartier divisor on X. As $\operatorname{deg}\left(D_{K}\right)>0, H^{0}\left(X_{K}, m D_{K}-A_{K}\right) \neq\{0\}$ for some positive integer m, and hence $H^{0}(X, m D-A) \neq\{0\}$. Thus, there is $\phi \in \operatorname{Rat}(X)^{\times}$such that $m D-A+(\phi) \geqslant 0$, that is, $D \geqslant(1 / m)(A-(\phi))$, as required.

Claim 1.4. - If L_{1}, \ldots, L_{k} are π-nef \mathbb{R}-Cartier divisors, then $\max \left\{L_{1}, \ldots, L_{k}\right\}$ is also π-nef (cf. Conventions and terminology 6).

Proof. - We set $L_{i}^{\prime}:=\max \left\{L_{1}, \ldots, L_{k}\right\}-L_{i}$ for each i. Let C be a vertical reduced and irreducible 1-dimensional closed subscheme on X. Then there is i such that $C \nsubseteq \operatorname{Supp}\left(L_{i}^{\prime}\right)$. As L_{i}^{\prime} is effective, we have $\operatorname{deg}\left(\left.L_{i}^{\prime}\right|_{C}\right) \geqslant 0$, so that

$$
\operatorname{deg}\left(\left.\max \left\{L_{1}, \ldots, L_{k}\right\}\right|_{C}\right)=\operatorname{deg}\left(\left.L_{i}\right|_{C}\right)+\operatorname{deg}\left(\left.L_{i}^{\prime}\right|_{C}\right) \geqslant 0
$$

For a reduced and irreducible 1-dimensional closed subscheme C on X, we set

$$
q_{C}:=\sup \left\{\operatorname{mult}_{C}(M) \mid M \in \Sigma(D)\right\},
$$

which exists in \mathbb{R} because $\operatorname{mult}_{C}(M) \leqslant \operatorname{mult}_{C}(D)$ for all $M \in \Sigma(D)$. We fix $M_{0} \in \Sigma(D)$.

Claim 1.5. - There is a sequence $\left\{M_{n}\right\}_{n=1}^{\infty}$ of \mathbb{R}-Cartier divisors in $\Sigma(D)$ such that $M_{0} \leqslant M_{n}$ for all $n \geqslant 1$ and $\lim _{n \rightarrow \infty} \operatorname{mult}_{C}\left(M_{n}\right)=q_{C}$ for all reduced and irreducible 1-dimensional closed subschemes C in $\operatorname{Supp}(D) \cup$ $\operatorname{Supp}\left(M_{0}\right)$.

Proof. - For each reduced and irreducible 1-dimensional closed subscheme C in $\operatorname{Supp}(D) \cup \operatorname{Supp}\left(M_{0}\right)$, there is a sequence $\left\{M_{C, n}\right\}_{n=1}^{\infty}$ in $\Sigma(D)$ such that

$$
\lim _{n \rightarrow \infty} \operatorname{mult}_{C}\left(M_{C, n}\right)=q_{C} .
$$

If we set

$$
M_{n}=\max \left(\left\{M_{C, n}\right\}_{C \subseteq \operatorname{Supp}(D) \cup \operatorname{Supp}\left(M_{0}\right)} \cup\left\{M_{0}\right\}\right),
$$

then $M_{0} \leqslant M_{n}$ and $M_{n} \in \Sigma(D)$ by Claim 1.4. Moreover, as

$$
\operatorname{mult}_{C}\left(M_{C, n}\right) \leqslant \operatorname{mult}_{C}\left(M_{n}\right) \leqslant q_{C}
$$

$\lim _{n \rightarrow \infty} \operatorname{mult}_{C}\left(M_{n}\right)=q_{C}$.
Since $\max \left\{M_{0}, M\right\} \in \Sigma(D)$ for all $M \in \Sigma(D)$ by Claim 1.4, we have

$$
\operatorname{mult}_{C}\left(M_{0}\right) \leqslant q_{C} \leqslant \operatorname{mult}_{C}(D)
$$

In particular, if $C \nsubseteq \operatorname{Supp}(D) \cup \operatorname{Supp}\left(M_{0}\right)$, then $q_{C}=0$, so that we can set $Q:=\sum_{C} q_{C} C$.

Claim 1.6. - Q is the greatest element Q in $\Sigma(D)$, that is, $Q \in \Sigma(D)$ and $M \leqslant Q$ for all $M \in \Sigma(D)$.

Proof. - By Claim 1.5, we can see that $Q \in \Sigma(D)$, so that the assertion follows.

We need to check the properties (a) - (d).
(a) We choose effective \mathbb{R}-Cartier divisors N_{1} and N_{2} such that $N=$ $N_{1}+N_{2}, N_{1}$ is horizontal and N_{2} is vertical. If $N_{1} \neq 0$, then $Q \supsetneqq Q+N_{1} \leqslant D$ and $Q+N_{1}$ is π-nef, so that we have $N_{1}=0$, that is, N is vertical.
(b) Let C be a vertical reduced and irreducible 1-dimensional closed subscheme in $\operatorname{Supp}(N)$. If $\operatorname{deg}\left(\left.Q\right|_{C}\right)>0$, then $Q+\epsilon C$ is π-nef and $Q+\epsilon C \leqslant$ D for a sufficiently small $\epsilon>0$, and hence $\operatorname{deg}\left(\left.Q\right|_{C}\right)=0$.
(c) We assume the contrary. Then we can find $\delta>0$ such that $\delta \pi^{-1}(P) \leqslant$ N, so that $Q \nsupseteq Q+\delta \pi^{-1}(P) \leqslant D$ and $Q+\delta \pi^{-1}(P)$ is π-nef. This is a contradiction.
(d) It is sufficient to see that if $\phi \in \Gamma^{\times}(X, n D)$, then $\phi \in \Gamma^{\times}(X, n Q)$. Since $(-1 / n)(\phi) \in \Sigma(D)$, we have $(-1 / n)(\phi) \leqslant Q$, that is, $n Q+(\phi) \geqslant 0$. Therefore $\phi \in \Gamma^{\times}(X, n Q)$.

Moreover, we need the following lemma.
Lemma 1.7. - Let S be a connected compact Riemann surface and let D be an \mathbb{R}-divisor on S with $\operatorname{deg}(D) \geqslant 0$. Let g be a D-Green function of C^{0}-type on S and let $G(D, g)$ be the set of all D-Green functions h of
C^{0}-type on S such that $c_{1}(D, h)$ is a positive current and $h \leqslant g$ (a.e.). Then there is the greatest element q of $G(D, g)$, that is, $q \in G(D, g)$ and $h \leqslant q$ (a.e.) for all $h \in G(D, g)$. Moreover, q has the following property:
(1) $\|\phi\|_{n g}=\|\phi\|_{n q}$ for all $\phi \in H^{0}(S, n D)$ and $n \geqslant 0$.
(2) $\int_{S}(g-q) c_{1}(D, q)=0$.

Proof. - The existence of q follows from [3, Theorem 1.4] or [13, Theorem 4.6]. We need to check the properties (1) and (2).
(1) Clearly $\|\phi\|_{n q} \geqslant\|\phi\|_{n g}$ because $q \leqslant g$ (a.e.). Let us consider the converse inequality. We may assume that $\phi \neq 0$. We set

$$
q^{\prime}:=\max \left\{q, \frac{1}{n} \log \left(|\phi|^{2} /\|\phi\|_{n g}^{2}\right)\right\} .
$$

Since $D \geqslant(-1 / n)(\phi)$ and $(1 / n) \log \left(|\phi|^{2} /\|\phi\|_{n g}^{2}\right)$ is a $(-1 / n)(\phi)$-Green function of C^{∞}-type with the first Chern form zero, by [13, Lemma 9.1.1], q^{\prime} is a D-Green function of C^{0}-type such that $c_{1}\left(D, q^{\prime}\right)$ is a positive current. Note that $\|\phi\|_{n g}^{2} \geqslant|\phi|^{2} \exp (-n g)$ (a.e.), that is,

$$
g \geqslant(1 / n) \log \left(|\phi|^{2} /\|\phi\|_{n g}^{2}\right) \text { (a.e.) }
$$

and hence $q^{\prime} \in G(D, g)$. Therefore, as $q^{\prime} \geqslant q$ (a.e.), we have $q=q^{\prime}$ (a.e.), so that $q \geqslant(1 / n) \log \left(|\phi|^{2} /\|\phi\|_{n g}^{2}\right)$ (a.e.), that is, $\|\phi\|_{n g}^{2} \geqslant|\phi|^{2} \exp (-n q)$ (a.e.), which implies $\|\phi\|_{n g} \geqslant\|\phi\|_{n q}$.
(2) If $\operatorname{deg}(D)=0$, then the assertion is obvious because $c_{1}(D, q)=0$, so that we assume that $\operatorname{deg}(D)>0$. First we consider the case where g is of C^{∞}-type. We set $\alpha:=c_{1}(D, g)$ and
$\varphi:=\sup \{\psi \mid \psi$ is an α-plurisubharmonic function on S and $\psi \leqslant 0\}$
(cf. [3]). Then, by [13, Proposition 4.3], $q=g+\varphi$ (a.e.). In particular, φ is continuous because g and q are of C^{0}-type. If we set $D=\{x \in S \mid \varphi(x)=$ $0\}$, then, by [3, Corollary 2.5], $c_{1}(D, q)=\mathbf{1}_{D} \alpha$, where $\mathbf{1}_{D}$ is the indicator function of D. Thus

$$
\int_{S}(g-q) c_{1}(D, q)=0
$$

Next we consider a general case. Let g^{\prime} be a D-Green function of C^{∞} type. We set $g=g^{\prime}+u$ (a.e.) for some continuous function u on S. By
using the Stone-Weierstrass theorem, we can find a sequence $\left\{u_{n}\right\}$ of $C^{\infty_{-}}$ functions on S such that $\lim _{n \rightarrow \infty}\left\|u_{n}-u\right\|_{\text {sup }}=0$. We set $g_{n}:=g^{\prime}+u_{n}$. Let q_{n} be the greatest element of $G\left(D, g_{n}\right)$. As

$$
g-\left\|u_{n}-u\right\|_{\text {sup }} \leqslant g_{n} \leqslant g+\left\|u_{n}-u\right\|_{\text {sup }} \text { (a.e.) }
$$

we can see $q-\left\|u_{n}-u\right\|_{\text {sup }} \leqslant q_{n} \leqslant q+\left\|u_{n}-u\right\|_{\text {sup }}$ (a.e.). Thus, if we set $q_{n}=g^{\prime}+v_{n}$ (a.e.) and $q=g^{\prime}+v$ (a.e.) for some continuous functions v_{n} and v on S, then $\lim _{n \rightarrow \infty}\left\|v_{n}-v\right\|_{\text {sup }}=0$. Moreover, by using the previous observation,

$$
0=\int_{S}\left(g_{n}-q_{n}\right) c_{1}\left(D, q_{n}\right)=\int_{S}\left(u_{n}-v_{n}\right) c_{1}\left(D, q_{n}\right)
$$

Since $c_{1}\left(D, q_{n}\right)=c_{1}\left(D, g^{\prime}\right)+d d^{c}\left(\left[v_{n}\right]\right) \geqslant 0$, by using [5, Corollary 3.6] or [15, Lemma 1.2.1], we can see that $c_{1}\left(D, q_{n}\right)$ converges weakly to $c_{1}(D, q)$ as functionals on $C^{0}(S)$. In particular, there is a constant C such that $\int_{S} c_{1}\left(D, q_{n}\right) \leqslant C$ for all n. Thus

$$
\begin{aligned}
& \left|\int_{S}\left(u_{n}-v_{n}\right) c_{1}\left(D, q_{n}\right)-\int_{S}(u-v) c_{1}(D, q)\right| \\
& \quad \leqslant\left|\int_{S}\left(u_{n}-v_{n}\right) c_{1}\left(D, q_{n}\right)-\int_{S}(u-v) c_{1}\left(D, q_{n}\right)\right| \\
& \quad+\left|\int_{S}(u-v) c_{1}\left(D, q_{n}\right)-\int_{S}(u-v) c_{1}(D, q)\right| \\
& \leqslant\left\|(u-v)-\left(u_{n}-v_{n}\right)\right\|_{\text {sup }} C+\left|\int_{S}(u-v) c_{1}\left(D, q_{n}\right)-\int_{S}(u-v) c_{1}(D, q)\right| .
\end{aligned}
$$

Therefore,

$$
\lim _{n \rightarrow \infty} \int_{S}\left(u_{n}-v_{n}\right) c_{1}\left(D, q_{n}\right)=\int_{S}(u-v) c_{1}(D, q)
$$

and hence the assertion follows.
Proof of Theorem 1.1. - Let us start the proof of Theorem 1.1. First we consider the existence of the greatest element of $\Upsilon_{r e l}(\bar{D})$. By Lemma 1.2, there is the greatest element Q of $\Sigma(D)$. Note that $D-Q$ is vertical. On the other hand, let $G(\bar{D})$ be the set of all D-Green functions h of C^{0}-type such that $c_{1}(D, h)$ is a positive current and $h \leqslant g$ (a.e.). By Lemma 1.7, there is the greatest element q of $G(\bar{D})$, that is, $q \in G(\bar{D})$ and $h \leqslant q$ (a.e.) for all $h \in G(\bar{D})$. Let us see that q is F_{∞}-invariant. For this purpose, it is sufficient to see that $F_{\infty}^{*}(q) \in G(\bar{D})$ and $h \leqslant F_{\infty}^{*}(q)$ (a.e.) for all $h \in G(\bar{D})$. The first assertion follows from [13, Lemma 5.1.2]. Let us see the second assertion. Since $F_{\infty}^{*}(h) \in G(\bar{D})$ by [13, Lemma 5.1.2], $F_{\infty}^{*}(h) \leqslant$
q (a.e.), and hence $h \leqslant F_{\infty}^{*}(q)$ (a.e.). Here we set $\bar{Q}:=(Q, q)$. Clearly $\bar{Q} \in$ $\Upsilon_{r e l}(\bar{D})$. Moreover, for $\bar{M} \in \Upsilon_{r e l}(\bar{D}),\left(M^{\prime}, h^{\prime}\right):=\max \{\bar{Q}, \bar{M}\} \in \Upsilon_{r e l}(\bar{D})$ by Claim 1.4 and [13, Lemma 9.1.1] (for the definition of $\max \{\bar{Q}, \bar{M}\}$, see Conventions and terminology 6). In particular, $M^{\prime} \in \Sigma(D)$ and $h^{\prime} \in G(\bar{D})$, and hence $\left(M^{\prime}, h^{\prime}\right)=\bar{Q}$, that is, $\bar{M} \leqslant \bar{Q}$, as required.

Finally let us see (a) - (e). As Q is the greatest element of $\Sigma(D)$, (a), (c) and the first assertion of (d) follow from Lemma 1.2. The second assertion of (d) follows from (1) in Lemma 1.7. The property (e) is a consequence of (d). Finally we consider (b). If we set $\bar{N}=(N, k)$, then $\widehat{\operatorname{deg}}(\bar{Q} \cdot(N, 0))=0$ by (b) in Lemma 1.2, and $\widehat{\operatorname{deg}}(\bar{Q} \cdot(0, k))=0$ by (2) in Lemma 1.7, and hence $\widehat{\operatorname{deg}}(\bar{Q} \cdot \bar{N})=0$.

2. Generalized Hodge index theorem for $\widehat{\operatorname{vol}}_{\chi}$

In this section, we consider a refinement of the generalized Hodge index theorem on an arithmetic surface, that is, the case where $d=1$. As in Conventions and terminology 5, an arithmetic \mathbb{R}-Cartier divisor \bar{D} of C^{0} type on X is said to be integrable if $\bar{D}=\bar{P}-\bar{Q}$ for some nef arithmetic \mathbb{R}-Cartier divisors \bar{P} and \bar{Q} of C^{0}-type.

Theorem 2.1. - Let \bar{D} be an integrable arithmetic \mathbb{R}-Cartier divisor of C^{0}-type on X such that $\operatorname{deg}\left(D_{K}\right) \geqslant 0$. Then $\widehat{\operatorname{deg}}\left(\bar{D}^{2}\right) \leqslant \widehat{\operatorname{vol}}_{\chi}(\bar{D})$ and the equality holds if and only if \bar{D} is relatively nef. In particular, $\widehat{\operatorname{deg}}\left(\bar{D}^{2}\right) \leqslant$ $\widehat{\operatorname{vol}}(\bar{D})$.

Proof. - Let $\mu: X^{\prime} \rightarrow X$ be a desingularization of X (cf. [11]). Then $\widehat{\operatorname{deg}}\left(\bar{D}^{2}\right)=\widehat{\operatorname{deg}}\left(\mu^{*}(\bar{D})^{2}\right)$ and $\widehat{\operatorname{vol}}_{\chi}(\bar{D})=\widehat{\operatorname{vol}}_{\chi}\left(\mu^{*}(\bar{D})\right)$. Moreover, \bar{D} is relatively nef if and only if $\mu^{*}(\bar{D})$ is relatively nef. Therefore we may assume that X is regular.

CLAim 2.2. - If \bar{D} is relatively nef, then $\widehat{\operatorname{deg}}\left(\bar{D}^{2}\right)=\widehat{\operatorname{vol}_{\chi}}(\bar{D})$.
Proof. - We divide the proof into five steps:
Step 1 (the case where \bar{D} is an arithmetic \mathbb{Q}-Cartier divisor of C^{∞}-type and $c_{1}(\bar{D})$ is a semi-positive form) : In this case, the assertion follows from Ikoma [9, Theorem 3.5.1].

Step 2 (the case where \bar{D} is of C^{∞}-type, $c_{1}(\bar{D})$ is a positive form and $\widehat{\operatorname{deg}}\left(\left.\bar{D}\right|_{C}\right)>0$ for all vertical reduced and irreducible 1-dimensional closed
subschemes C): We choose arithmetic Cartier divisors $\bar{D}_{1}, \ldots, \bar{D}_{l}$ of $C^{\infty_{-}}$ type and real numbers a_{1}, \ldots, a_{l} such that $\bar{D}=a_{1} \bar{D}_{1}+\cdots+a_{l} \bar{D}_{l}$. Then there is a positive number δ_{0} such that $c_{1}\left(b_{1} \bar{D}_{1}+\cdots+b_{l} \bar{D}_{l}\right)$ is a positive form for all $b_{1}, \ldots, b_{l} \in \mathbb{Q}$ with $\left|b_{i}-a_{i}\right| \leqslant \delta_{0}(\forall i=1, \ldots, l)$. Let C be a smooth fiber of $X \rightarrow \operatorname{Spec}\left(O_{K}\right)$ over P. Then, for $b_{1}, \ldots, b_{l} \in \mathbb{Q}$ with $\left|b_{i}-a_{i}\right| \leqslant \delta_{0}(\forall i=1, \ldots, l)$,
$\widehat{\operatorname{deg}}\left(\left.\left(b_{1} \bar{D}_{1}+\cdots+b_{l} \bar{D}_{l}\right)\right|_{C}\right)=\operatorname{deg}\left(\left(b_{1} D_{1}+\cdots+b_{l} D_{l}\right)_{K}\right) \log \#\left(O_{K} / P\right)>0$.
Let C_{1}, \ldots, C_{r} be all irreducible components of singular fibers of $X \rightarrow$ $\operatorname{Spec}\left(O_{K}\right)$. Then, for each $j=1, \ldots, r$, there is a positive number δ_{j} such that

$$
\widehat{\operatorname{deg}}\left(\left.\left(b_{1} \bar{D}_{1}+\cdots+b_{l} \bar{D}_{l}\right)\right|_{C_{j}}\right)>0
$$

for all $b_{1}, \ldots, b_{l} \in \mathbb{Q}$ with $\left|b_{i}-a_{i}\right| \leqslant \delta_{j}(\forall i=1, \ldots, l)$. Therefore, if we set $\delta=\min \left\{\delta_{0}, \delta_{1}, \ldots, \delta_{r}\right\}$, then, for $b_{1}, \ldots, b_{l} \in \mathbb{Q}$ with $\left|b_{i}-a_{i}\right| \leqslant \delta(\forall i=$ $1, \ldots, l$),

$$
c_{1}\left(b_{1} \bar{D}_{1}+\cdots+b_{l} \bar{D}_{l}\right)
$$

is a positive form and $\widehat{\operatorname{deg}}\left(\left.\left(b_{1} \bar{D}_{1}+\cdots+b_{l} \bar{D}_{l}\right)\right|_{C}\right)>0$ for all vertical reduced and irreducible 1-dimensional closed subschemes C on X, and hence

$$
\widehat{\operatorname{deg}}\left(\left(b_{1} \bar{D}_{1}+\cdots+b_{l} \bar{D}_{l}\right)^{2}\right)=\widehat{\operatorname{vol}}_{\chi}\left(b_{1} \bar{D}_{1}+\cdots+b_{l} \bar{D}_{l}\right)
$$

by Step 1. Thus the assertion follows by the continuity of $\widehat{\operatorname{vol}}_{\chi}$ due to Ikoma [9, Corollary 3.4.4].

Step 3 (the case where \bar{D} is of C^{∞}-type and $c_{1}(\bar{D})$ is a semi-positive form) : Let \bar{A} be an ample arithmetic Cartier divisor of C^{∞}-type on X. Then, for any positive $\epsilon, c_{1}(\bar{D}+\epsilon \bar{A})$ is a positive form and $\widehat{\operatorname{deg}}\left(\left.(\bar{D}+\epsilon \bar{A})\right|_{C}\right)>$ 0 for all vertical reduced and irreducible 1-dimensional closed subschemes C on X, so that, by Step 2 ,

$$
\widehat{\operatorname{deg}}\left((\bar{D}+\epsilon \bar{A})^{2}\right)=\widehat{\operatorname{vol}_{\chi}}(\bar{D}+\epsilon \bar{A})
$$

Therefore the assertion follows by virtue of the continuity of $\widehat{\text { vol }}_{\chi}$.
Step 4 (the case where $\left.\operatorname{deg}\left(D_{K}\right)>0\right)$: Let h be a D-Green function of C^{∞}-type such that $c_{1}(D, h)$ is a positive form. Then there is a continuous function ϕ on $X(\mathbb{C})$ such that $\bar{D}=(D, h+\phi)$, and hence $c_{1}(D, h)+d d^{c}([\phi]) \geqslant$ 0 . Thus, by [13, Lemma 4.2], there is a sequence $\left\{\phi_{n}\right\}_{n=1}^{\infty}$ of F_{∞}-invariant C^{∞}-functions on $X(\mathbb{C})$ with the following properties:
(a) $\lim _{n \rightarrow \infty}\left\|\phi_{n}-\phi\right\|_{\text {sup }}=0$.
(b) If we set $\bar{D}_{n}=\left(D, h+\phi_{n}\right)$, then $c_{1}\left(\bar{D}_{n}\right)$ is a semipositive form.

Then, by Step 3, $\widehat{\operatorname{deg}}\left(\bar{D}_{n}^{2}\right)=\widehat{\operatorname{vol}}_{\chi}\left(\bar{D}_{n}\right)$ for all n. Note that $\lim _{n \rightarrow \infty} \widehat{\operatorname{vol}}_{\chi}\left(\bar{D}_{n}\right)=$ $\widehat{\operatorname{vol}}_{\chi}(\bar{D})$ by using the continuity of $\widehat{\operatorname{vol}}_{\chi}$. Moreover, by [15, Lemma 1.2.1],

$$
\lim _{n \rightarrow \infty} \widehat{\operatorname{deg}}\left(\bar{D}_{n}^{2}\right)=\widehat{\operatorname{deg}}\left(\bar{D}^{2}\right)
$$

as required.
Step 5 (general case) : Finally we prove the assertion of the claim. As before, let \bar{A} be an ample arithmetic Cartier divisor of C^{∞}-type on X. Then, for any positive number $\epsilon, \operatorname{deg}\left(D_{K}+\epsilon A_{K}\right)>0$. Thus, in the same way as Step 3, the assertion follows from Step 4.

Let us go back to the proof of the theorem. Let \bar{Q} be the greatest element of $\Upsilon_{\text {rel }}(\bar{D})$ (cf. Theorem 1.1) and $\bar{N}:=\bar{D}-\bar{Q}$. Then, by using Claim 2.2 and the properties (b) and (e) in Theorem 1.1, $\widehat{\operatorname{vol}}_{\chi}(\bar{D})-\widehat{\operatorname{deg}}\left(\bar{D}^{2}\right)=\widehat{\operatorname{vol}}_{\chi}(\bar{Q})-\widehat{\operatorname{deg}}\left(\bar{D}^{2}\right)=\widehat{\operatorname{deg}}\left(\bar{Q}^{2}\right)-\widehat{\operatorname{deg}}\left(\bar{D}^{2}\right)=-\widehat{\operatorname{deg}}\left(\bar{N}^{2}\right)$.

On the other hand, if we set $\bar{N}=(N, k)$, then

$$
\widehat{\operatorname{deg}}\left(\bar{N}^{2}\right)=\widehat{\operatorname{deg}}\left((N, 0)^{2}\right)+\frac{1}{2} \int_{X(\mathbb{C})} k d d^{c}(k)
$$

because N is vertical. By (c) in Theorem 1.1 together with Zariski's lemma, $\widehat{\operatorname{deg}}\left((N, 0)^{2}\right) \leqslant 0$ and the equality holds if and only if $N=0$. Moreover, by [15, Proposition 1.2.3 and Proposition 2.1.1],

$$
\int_{X(\mathbb{C})} k d d^{c}(k) \leqslant 0
$$

and the equality holds if and only if k is locally constant. Thus $\widehat{\operatorname{deg}}\left(\bar{N}^{2}\right) \leqslant 0$, that is, $\widehat{\operatorname{vol}_{\chi}}(\bar{D}) \geqslant \widehat{\operatorname{deg}}\left(\bar{D}^{2}\right)$. Moreover, if \bar{D} is relatively nef, then $\widehat{\operatorname{vol}} \chi(\bar{D})=$ $\widehat{\operatorname{deg}}\left(\bar{D}^{2}\right)$ by Claim 2.2. Conversely, if $\widehat{\operatorname{vol}}(\bar{D})=\widehat{\operatorname{deg}}\left(\bar{D}^{2}\right)$, that is, $\widehat{\operatorname{deg}}\left(\bar{N}^{2}\right)=$ 0 , then $N=0$ and k is locally constant, and hence $\bar{D}=\bar{Q}+(0, k)$ is relatively nef.

As a corollary of the above theorem, we have the following:
Corollary 2.3. - We assume that X is regular. The following are equivalent:
(1) \bar{Q} is the greatest element of $\Upsilon_{r e l}(\bar{D})$.
(2) \bar{Q} is an element of $\Upsilon_{\text {rel }}(\bar{D})$ with the following properties:
(i) $D-Q$ is vertical.
(ii) $\widehat{\operatorname{deg}}(\bar{Q} \cdot \bar{B})=0$ and $\widehat{\operatorname{deg}}\left(\bar{B}^{2}\right)<0$ for all integrable arithmetic \mathbb{R}-Cartier divisors \bar{B} of C^{0}-type with $(0,0) \varsubsetneqq \bar{B} \leqslant \bar{D}-\bar{Q}$.

Proof. - First, let us see the following claim:
Claim 2.4. - Let \bar{D}_{1} and \bar{D}_{2} be arithmetic \mathbb{R}-Cartier divisors of C^{0} type on X such that $\bar{D}_{1} \leqslant \bar{D}_{2}$. If the natural map $H^{0}\left(X, n D_{1}\right) \rightarrow H^{0}\left(X, n D_{2}\right)$ is bijective for each $n \geqslant 0$, then $\widehat{\operatorname{vol}}_{\chi}\left(\bar{D}_{1}\right) \leqslant \widehat{\operatorname{vol}}_{\chi}\left(\bar{D}_{2}\right)$,

Proof. - This is obvious because $\|\cdot\|_{n \bar{D}_{1}} \geqslant\|\cdot\|_{n \bar{D}_{2}}$.
$(1) \Longrightarrow(2):$ By the property (a) in Theorem 1.1, $D-Q$ is vertical. For $0<\epsilon \leqslant 1$, we set $\bar{D}_{\epsilon}=\bar{Q}+\epsilon \bar{B}$. Then \bar{D}_{ϵ} is integrable and $\widehat{\operatorname{vol}}_{\chi}\left(\bar{D}_{\epsilon}\right)=$ $\widehat{\operatorname{vol}}_{\chi}(\bar{Q})$ because

$$
\widehat{\operatorname{vol}}_{\chi}(\bar{Q}) \leqslant \widehat{\operatorname{vol}}_{\chi}\left(\bar{D}_{\epsilon}\right) \leqslant \widehat{\operatorname{vol}}_{\chi}(\bar{D}) \quad \text { and } \quad \widehat{\operatorname{vol}}_{\chi}(\bar{Q})=\widehat{\operatorname{vol}}_{\chi}(\bar{D})
$$

by Claim 2.4 and the properties (d) and (e) in Theorem 1.1. Thus, by using Theorem 2.1,

$$
\widehat{\operatorname{deg}}\left(\bar{D}_{\epsilon}^{2}\right) \leqslant \widehat{\operatorname{vol}}_{\chi}\left(\bar{D}_{\epsilon}\right)=\widehat{\operatorname{vol}}_{\chi}(\bar{Q})=\widehat{\operatorname{deg}}\left(\bar{Q}^{2}\right)
$$

which implies $2 \widehat{\operatorname{deg}}(\bar{Q} \cdot \bar{B})+\epsilon \widehat{\operatorname{deg}}\left(\bar{B}^{2}\right) \leqslant 0$. In particular, $\widehat{\operatorname{deg}}(\bar{Q} \cdot \bar{B}) \leqslant 0$. On the other hand, as B is vertical,

$$
\widehat{\operatorname{deg}}(\bar{Q} \cdot \bar{B})=\widehat{\operatorname{deg}}(\bar{Q} \cdot(B, 0))+\frac{1}{2} \int_{X(\mathbb{C})} c_{1}(\bar{Q}) b \geqslant 0
$$

where $\bar{B}=(B, b)$. Therefore, $\widehat{\operatorname{deg}}(\bar{Q} \cdot \bar{B})=0$ and $\widehat{\operatorname{deg}}\left(\bar{B}^{2}\right) \leqslant 0$. Here we assume that $\widehat{\operatorname{deg}}\left(\bar{B}^{2}\right)=0$. Note that

$$
\widehat{\operatorname{deg}}\left(\bar{B}^{2}\right)=\widehat{\operatorname{deg}}\left((B, 0)^{2}\right)+\frac{1}{2} \int_{X(\mathbb{C})} b d d^{c}(b)
$$

Thus, by using the property (c) in Theorem 1.1, Zariski's lemma and [15, Proposition 1.2.3 and Proposition 2.1.1], $B=0$ and b is a locally constant function. In particular, $\bar{Q}+\bar{B}$ is relatively nef and $\bar{Q}+\bar{B} \leqslant \bar{D}$, so that $\bar{B}=0$.
$(2) \Longrightarrow(1):$ Let \bar{M} be an element of $\Upsilon_{r e l}(\bar{D})$. If we set $\bar{A}:=\max \{\bar{Q}, \bar{M}\}$ (cf. Conventions and terminology 6) and $\bar{B}=(B, b):=\bar{A}-\bar{Q}$, then \bar{B} is effective, $\bar{A} \leqslant \bar{D}$ and \bar{A} is relatively nef by Claim 1.4 and [13, Lemma 9.1.2]. Moreover,

$$
\bar{B}=\bar{A}-\bar{Q} \leqslant \bar{D}-\bar{Q} .
$$

If we assume $\bar{B} \nsupseteq(0,0)$, then, by the property (ii), $\widehat{\operatorname{deg}}(\bar{Q} \cdot \bar{B})=0$ and $\widehat{\operatorname{deg}}\left(\bar{B}^{2}\right)<0$. On the other hand, as \bar{A} is relatively nef, \bar{B} is effective and B is vertical by the property (i),
$\widehat{\operatorname{deg}}\left(\bar{B}^{2}\right)=\widehat{\operatorname{deg}}(\bar{Q}+\bar{B} \cdot \bar{B})=\widehat{\operatorname{deg}}(\bar{A} \cdot \bar{B})=\widehat{\operatorname{deg}}(\bar{A} \cdot(B, 0))+\frac{1}{2} \int_{X(\mathbb{C})} c_{1}(\bar{A}) b \geqslant 0$,
which is a contradiction, so that $\bar{B}=(0,0)$, that is, $\bar{Q}=\bar{A}$, which means that $\bar{M} \leqslant \bar{Q}$, as required.

Remark 2.5. - Let \bar{D} be an integrable arithmetic \mathbb{R}-Cartier divisor of C^{0}-type on X with $\operatorname{deg}\left(D_{K}\right)>0$. For a positive number ϵ, we set

$$
\alpha:=\frac{\widehat{\operatorname{deg}}\left(\bar{D}^{2}\right)}{[K: \mathbb{Q}] \operatorname{deg}\left(D_{K}\right)}-2 \epsilon
$$

Then, as $\widehat{\operatorname{deg}}\left((\bar{D}-(0, \alpha))^{2}\right)=2 \epsilon[K: \mathbb{Q}] \operatorname{deg}\left(D_{K}\right)>0$, by Theorem 2.1, there is

$$
\phi \in \hat{H}^{0}(X, n(D-(0, \alpha))) \backslash\{0\}
$$

for some $n>0$. Note that $\|\phi\|_{n(\bar{D}-(0, \alpha))}=\|\phi\|_{n \bar{D}} \exp ((n \alpha) / 2)$, so that

$$
\phi \in H^{0}(X, n D) \backslash\{0\} \quad \text { and } \quad\|\phi\|_{n \bar{D}} \leqslant \exp \left(-\frac{n \widehat{\operatorname{deg}}\left(\bar{D}^{2}\right)}{2[K: \mathbb{Q}] \operatorname{deg}\left(D_{K}\right)}+n \epsilon\right)
$$

which is nothing more than Autissier's result [2, Proposition 3.3.3].
Remark 2.6. - The referee points out that Step 1 of Claim 2.2 can be proved by using Randriambololona's version of the arithmetic HilbertSamuel formula [17].

3. Necessary condition for the equality $\widehat{\operatorname{vol}}=\widehat{\operatorname{vol}}_{\chi}$

This section is devoted to consider a necessary condition for the equality $\widehat{\mathrm{vol}}=\widehat{\mathrm{vol}}_{\chi}$ as an application of the integral formulae due to Boucksom-Chen [4].

First of all, let us review Boucksom-Chen's integral formulae [4] in terms of arithmetic \mathbb{R}-Cartier divisors. For details, see [16, Section 1]. We fix a monomial order \precsim on $\mathbb{Z}_{\geqslant 0}^{d}$, that is, \precsim is a total ordering relation on $\mathbb{Z}_{\geqslant 0}^{d}$ with the following properties:
(a) $(0, \ldots, 0) \precsim A$ for all $A \in \mathbb{Z}_{\geqslant 0}^{d}$.
(b) If $A \precsim B$ for $A, B \in \mathbb{Z}_{\geqslant 0}^{d}$, then $A+C \precsim B+C$ for all $C \in \mathbb{Z}_{\geqslant 0}^{d}$.

The monomial order \precsim on $\mathbb{Z}_{\geqslant 0}^{d}$ extends uniquely to a totally ordering relation \precsim on \mathbb{Z}^{d} such that $A+C \precsim B+C$ for all $A, B, C \in \mathbb{Z}^{d}$ with $A \precsim B$. Indeed, for $A, B \in \mathbb{Z}^{d}$, we define $A \precsim B$ as follows:

$$
\begin{gathered}
A \precsim B \quad \stackrel{\text { def }}{\Longleftrightarrow} \text { there is } C \in \mathbb{Z}_{\geqslant 0}^{d} \text { such that } A+C, B+C \in \mathbb{Z}_{\geqslant 0}^{d} \\
\text { and } A+C \precsim B+C .
\end{gathered}
$$

It is easy to see that this definition is well-defined and it yields the above extension. Uniqueness is also obvious.

As $X \rightarrow \operatorname{Spec}\left(O_{K}\right)$ is the Sten factorization of $X \rightarrow \operatorname{Spec}(\mathbb{Z}), X_{K}$ is geometrically integral over K. Let \bar{K} be an algebraic closure of K and $X_{\bar{K}}:=X \times_{\operatorname{Spec}(K)} \operatorname{Spec}(\bar{K})$. Let $z_{P}=\left(z_{1}, \ldots, z_{d}\right)$ be a local system of parameters of $\mathcal{O}_{X_{\bar{K}}, P}$ for $P \in X(\bar{K})$. Note that the completion $\widehat{\mathcal{O}}_{X_{\bar{K}}, P}$ of $\mathcal{O}_{X_{\bar{K}}, P}$ with respect to the maximal ideal of $\mathcal{O}_{X_{\bar{K}}, P}$ is naturally isomorphic to $\bar{K} \llbracket z_{1}, \ldots, z_{d} \rrbracket$. Thus, for $f \in \mathcal{O}_{X_{\bar{K}}, P}$, we can put

$$
f=\sum_{\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{Z}_{\geqslant 0}^{d}} c_{\left(a_{1}, \ldots, a_{d}\right)} z_{1}^{a_{1}} \cdots z_{d}^{a_{d}}, \quad\left(c_{\left(a_{1}, \ldots, a_{d}\right)} \in \bar{K}\right)
$$

We define $\operatorname{ord}_{z_{P}}^{\precsim}(f)$ to be

$$
\operatorname{ord}_{z_{P}}^{\precsim}(f):= \begin{cases}\min _{\underset{\sim}{x}}\left\{\left(a_{1}, \ldots, a_{d}\right) \mid c_{\left(a_{1}, \ldots, a_{d}\right)} \neq 0\right\} & \text { if } f \neq 0 \\ \text { otherwise }\end{cases}
$$

which gives rise to a rank d valuation, that is, the following properties are satisfied:
(i) $\operatorname{ord}_{z_{P}}^{\precsim}(f g)=\operatorname{ord}_{z_{P}}^{\precsim}(f)+\operatorname{ord}_{{\underset{z}{P}}^{\precsim}}(g)$ for $f, g \in \mathcal{O}_{X_{\bar{K}}, P}$.
(ii) $\min \left\{\operatorname{ord}_{z_{P}}^{\precsim}(f), \operatorname{ord}_{z_{P}}^{\precsim}(g)\right\} \precsim \operatorname{ord}_{z_{P}}^{\precsim}(f+g)$ for $f, g \in \mathcal{O}_{X_{\bar{K}}}, P$.

By the property (i), ord ${\underset{z}{z}}^{\precsim}: \mathcal{O}_{X_{\bar{K}}, P} \backslash\{0\} \rightarrow \mathbb{Z}_{\geqslant 0}^{d}$ has the natural extension

$$
\operatorname{ord}_{\widetilde{z}_{P}}^{\precsim}: \operatorname{Rat}\left(X_{\bar{K}}\right)^{\times} \rightarrow \mathbb{Z}^{d}
$$

given by $\operatorname{ord}_{{\underset{z}{P}}^{\precsim}}(f / g)=\operatorname{ord}_{z_{P}}^{\precsim}(f)-\operatorname{ord}_{z_{P}}^{\precsim}(g)$. Note that this extension also satisfies the same properties (i) and (ii) as before. Since $\operatorname{ord}_{z_{P}}^{\precsim}(u)=(0, \ldots, 0)$ for all $u \in \mathcal{O}_{X_{\bar{K}}, P}^{\times}, \operatorname{ord}_{z_{P}}^{\precsim}$ induces $\operatorname{Rat}\left(X_{\bar{K}}\right)^{\times} / \mathcal{O}_{X_{\bar{K}}, P}^{\times} \rightarrow \mathbb{Z}^{d}$. The composition of homomorphisms

$$
\operatorname{Div}\left(X_{\bar{K}}\right) \xrightarrow{\alpha_{P}} \operatorname{Rat}^{\times}\left(X_{\bar{K}}\right) / \mathcal{O}_{X_{\bar{K}}, P}^{\times} \xrightarrow{\operatorname{ord}_{z}^{\widetilde{z}}} \mathbb{Z}^{d}
$$

is denoted by mult \widetilde{z}_{P}, where $\alpha_{P}: \operatorname{Div}\left(X_{\bar{K}}\right) \rightarrow \operatorname{Rat}\left(X_{\bar{K}}\right)^{\times} / \mathcal{O}_{X_{\bar{K}}, P}^{\times}$is the natural homomorphism. Moreover, the homomorphism mult ${\underset{z}{z_{P}}}^{\Sigma}: \operatorname{Div}\left(X_{\bar{K}}\right) \rightarrow$ \mathbb{Z}^{d} gives rise to the natural extension $\operatorname{Div}\left(X_{\bar{K}}\right) \otimes_{\mathbb{Z}} \mathbb{R} \rightarrow \mathbb{R}^{d}$ over \mathbb{R}. By abuse of notation, the above extension is also denoted by mult ${\underset{z}{z}}^{\precsim}$.

Let $\bar{D}=(D, g)$ be an arithmetic \mathbb{R}-Cartier divisor of C^{0}-type (cf. Conventions and terminology 2). Let $V_{\bullet}=\bigoplus_{m \geqslant 0} V_{m}$ be a graded subalgebra of $R\left(D_{K}\right):=\bigoplus_{m \geqslant 0} H^{0}\left(X_{K}, m D_{K}\right)$ over K. The Okounkov body $\Delta\left(V_{\bullet}\right)$ of V_{\bullet} is defined by the closed convex hull of

$$
\bigcup_{m>0}\left\{\operatorname{mult}_{z_{P}}^{\approx}\left(D_{\bar{K}}+(1 / m)(\phi)\right) \in \mathbb{R}_{\geqslant 0}^{d} \mid \phi \in V_{m} \otimes_{K} \bar{K} \backslash\{0\}\right\}
$$

For $t \in \mathbb{R}$, let V_{\bullet}^{t} be a graded subalgebra of V_{\bullet} given by

$$
V_{\bullet}^{t}:=\bigoplus_{m \geqslant 0}\left\langle V_{m} \cap \hat{H}^{0}(X, m(\bar{D}+(0,-2 t)))\right\rangle_{K},
$$

where $\left\langle V_{m} \cap \hat{H}^{0}(X, m(\bar{D}+(0,-2 t)))\right\rangle_{K}$ means the subspace of V_{m} generated by $V_{m} \cap \hat{H}^{0}(X, m(\bar{D}+(0,-2 t)))$ over K. Let $G_{\left(\bar{D} ; V_{\bullet}\right)}: \Delta\left(V_{\bullet}\right) \rightarrow$ $\mathbb{R} \cup\{-\infty\}$ be a function given by

$$
G_{\left(\bar{D} ; V_{\bullet}\right)}(x):= \begin{cases}\sup \left\{t \in \mathbb{R} \mid x \in \Delta\left(V_{\bullet}^{t}\right)\right\} & \text { if } x \in \Delta\left(V_{\bullet}^{t}\right) \text { for some } t \\ -\infty & \text { otherwise }\end{cases}
$$

Note that $G_{\left(\bar{D} ; V_{0}\right)}$ is an upper semicontinuous concave function (cf. [4, SubSection 1.3]). We define $\widehat{\operatorname{vol}}\left(\bar{D} ; V_{\bullet}\right)$ and $\widehat{\operatorname{vol}}_{\chi}\left(\bar{D} ; V_{\bullet}\right)$ to be

$$
\left\{\begin{array}{l}
\widehat{\operatorname{vol}}\left(\bar{D} ; V_{\bullet}\right):=\limsup _{m \rightarrow \infty} \frac{\# \log \left(V_{m} \cap \hat{H}^{0}(X, m \bar{D})\right)}{m^{d+1} /(d+1)!} \\
\widehat{\operatorname{vol}}_{\chi}\left(\bar{D} ; V_{\bullet}\right):=\limsup _{m \rightarrow \infty} \frac{\hat{\chi}\left(V_{m} \cap H^{0}(X, m D),\|\cdot\|_{m \bar{D}}\right)}{m^{d+1} /(d+1)!}
\end{array}\right.
$$

Moreover, for $\xi \in X_{K}$, we define $\mu_{\mathbb{Q}, \xi}\left(\bar{D} ; V_{\bullet}\right)$ as follows:
$\mu_{\mathbb{Q}, \xi}\left(\bar{D} ; V_{\bullet}\right):=$
$\begin{cases}\inf \left\{\left.\operatorname{mult}_{\xi}\left(D+\frac{1}{m}(\phi)\right) \right\rvert\, m \in \mathbb{Z}_{>0}, \phi \in V_{m} \cap \hat{H}^{0}(X, m \bar{D}) \backslash\{0\}\right\} \\ \infty & \begin{array}{l}\text { if } N\left(\bar{D} ; V_{\mathbf{0}}\right) \neq \emptyset, \\ \text { otherwise, }\end{array}\end{cases}$
where $N\left(\bar{D} ; V_{\bullet}\right)=\left\{m \in \mathbb{Z}_{>0} \mid V_{m} \cap \hat{H}^{0}(X, m \bar{D}) \neq\{0\}\right\}$. Note that $\widehat{\operatorname{vol}}\left(\bar{D} ; V_{\bullet}\right)=\widehat{\operatorname{vol}}(\bar{D}), \widehat{\operatorname{vol}}\left(\bar{D} ; V_{\bullet}\right)=\widehat{\operatorname{vol}}_{\chi}(\bar{D})$ and $\mu_{\mathbb{Q}, \xi}\left(\bar{D} ; V_{\bullet}\right)=\mu_{\mathbb{Q}, \xi}(\bar{D})$
if $V_{m}=H^{0}\left(X_{K}, m D_{K}\right)$ for $m \gg 0$ (cf. Conventions and terminology 2 and $3)$. Let $\Theta\left(\bar{D} ; V_{\bullet}\right)$ be the closure of

$$
\left\{x \in \Delta\left(V_{\mathbf{0}}\right) \mid G_{\left(\bar{D} ; V_{\mathbf{0}}\right)}(x)>0\right\} .
$$

If V_{\bullet} contains an ample series (cf. [16, SubSection 1.1]), then, in the similar way as [4, Theorem 2.8] and [4, Theorem 3.1], we have the following integral formulae:

$$
\begin{equation*}
\widehat{\operatorname{vol}}\left(\bar{D} ; V_{\bullet}\right)=(d+1)![K: \mathbb{Q}] \int_{\Theta\left(\bar{D} ; V_{\bullet}\right)} G_{\left(\bar{D} ; V_{\bullet}\right)}(x) d x \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\widehat{\operatorname{vol}_{\chi}}\left(\bar{D} ; V_{\bullet}\right)=(d+1)![K: \mathbb{Q}] \int_{\Delta\left(V_{\bullet}\right)} G_{\left(\bar{D} ; V_{\bullet}\right)}(x) d x \tag{3.2}
\end{equation*}
$$

Note that the arguments in [4] work for an arbitrary monomial order. The boundedness of the Okounkov body is not obvious for an arbitrary monomial order. It can be checked by Theorem C.1. Let $\nu: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a linear map. If we give the monomial order \prec_{ν} on $\mathbb{Z}_{\geqslant 0}^{d}$ by the following rule:

$$
a \prec_{\nu} b \quad \stackrel{\text { def }}{\Longleftrightarrow} \quad \text { either } \nu(a)<\nu(b) \text {, or } \nu(a)=\nu(b) \text { and } a \prec_{\operatorname{lex}} b,
$$

then $\nu(a) \leqslant \nu(b)$ for all $a, b \in \mathbb{Z}_{\geqslant 0}^{d}$ with $a \precsim \nu b$. Let us begin with the following lemma.
 we have the following:
(1) $\Theta\left(\bar{D} ; V_{\bullet}\right)=\Delta\left(V_{\bullet}^{0}\right)=\left\{x \in \Delta\left(V_{\bullet}\right) \mid G_{\left(\bar{D} ; V_{\bullet}\right)}(x) \geqslant 0\right\}$.
(2) We assume that ν is given by $\nu\left(x_{1}, \ldots, x_{d}\right)=x_{1}+\cdots+x_{r}$, where $1 \leqslant r \leqslant d$. We further assume that the monomial order \precsim satisfies the property: $\nu(a) \leqslant \nu(b)$ for all $a, b \in \mathbb{Z}_{\geqslant 0}^{d}$ with $a \precsim b$. Let B is a reduced and irreducible subvariety of $X_{\bar{K}}$ such that B is given by $z_{1}=\cdots=$ $z_{r}=0$ around P. Then $\mu_{\mathbb{Q}, B}\left(\bar{D} ; V_{\bullet}\right)=\min \left\{\nu(x) \mid x \in \Theta\left(\bar{D} ; V_{\bullet}\right)\right\}$.

Proof. - (1) Note that

$$
\left\{x \in \Delta\left(V_{\bullet}\right) \mid G_{\left(\bar{D} ; V_{\bullet}\right)}(x)>0\right\} \subseteq \Delta\left(V_{\bullet}^{0}\right) \subseteq\left\{x \in \Delta\left(V_{\bullet}\right) \mid G_{\left(\bar{D} ; V_{\bullet}\right)}(x) \geqslant 0\right\}
$$

and $\left\{x \in \Delta\left(V_{\bullet}\right) \mid G_{\left(\bar{D} ; V_{\bullet}\right)}(x) \geqslant 0\right\}$ is closed because $G_{\left(\bar{D} ; V_{\bullet}\right)}$ is upper semicontinuous. Thus it is sufficient to show that $\left\{x \in \Delta\left(V_{\bullet}\right) \mid G_{\left(\bar{D} ; V_{\bullet}\right)}(x) \geqslant 0\right\} \subseteq$
$\Theta\left(\bar{D} ; V_{\bullet}\right)$. Let $x \in \Delta\left(V_{\bullet}\right)$ with $G_{\left(\bar{D} ; V_{\bullet}\right)}(x) \geqslant 0$. As

$$
\widehat{\operatorname{vol}}\left(\bar{D} ; V_{\bullet}\right)=(d+1)![K: \mathbb{Q}] \int_{\Theta\left(\bar{D} ; V_{\bullet}\right)} G_{\left(\bar{D} ; V_{\bullet}\right)}(x) d x>0
$$

by (3.1), we can choose $y \in \Theta\left(\bar{D} ; V_{\bullet}\right)$ with $G_{\left(\bar{D} ; V_{\bullet}\right)}(y)>0$. Then
$G_{\left(\bar{D} ; V_{\mathbf{\bullet}}\right)}((1-t) x+t y) \geqslant(1-t) G_{\left(\bar{D} ; V_{\mathbf{\bullet}}\right)}(x)+t G_{\left(\bar{D} ; V_{\mathbf{\bullet}}\right)}(y) \geqslant t G_{\left(\bar{D} ; V_{\mathbf{\bullet}}\right)}(y)>0$ for all $t \in \mathbb{R}$ with $0<t \leqslant 1$. Thus $x \in \Theta\left(\bar{D} ; V_{\bullet}\right)$.
(2) First let us see the following claim:

CLAIM 3.4. - For $L \in \operatorname{Div}(X)_{\mathbb{R}}, \nu\left(\operatorname{mult}_{\tilde{z}_{P}}^{\precsim}(L)\right)=\operatorname{mult}_{B}(L)$.
Proof. - It is sufficient to see that $\nu\left(\operatorname{ord}_{z_{P}}^{\precsim}(f)\right)=\operatorname{ord}_{B}(f)$ for $f \in$ $\mathcal{O}_{X_{\bar{K}}} \backslash\{0\}$. We set $f=\sum_{\beta \in \mathbb{Z}_{\geqslant 0}^{d}} c_{\beta} z^{\beta}$ and $\alpha=\operatorname{ord}_{z_{P}}^{\precsim}(f)$. Note that $\operatorname{ord}_{B}(f)=$ $\min \left\{\nu(\beta) \mid c_{\beta} \neq 0\right\}$. Thus the assertion follows because $c_{\alpha} \neq 0$ and $\nu(\alpha) \leqslant$ $\nu(\beta)$ for $\beta \in \mathbb{Z}_{\geqslant 0}^{d}$ with $c_{\beta} \neq 0$.

If we set

$$
x_{\phi}=\operatorname{mult}_{z_{P}}(D+(1 / m)(\phi))
$$

for $\phi \in V_{m} \cap \hat{H}^{0}(X, m \bar{D}) \backslash\{0\}$ and $m>0$, then $G_{\left(\bar{D} ; V_{\mathbf{\bullet}}\right)}\left(x_{\phi}\right) \geqslant 0$ by the definition of $G_{\left(\bar{D} ; V_{\bullet}\right)}$, and hence, $x_{\phi} \in \Theta\left(\bar{D} ; V_{\bullet}\right)$ by (1). Therefore, by Claim 3.4,

$$
\min \left\{\nu(x) \mid x \in \Theta\left(\bar{D} ; V_{\bullet}\right)\right\} \leqslant \nu\left(x_{\phi}\right)=\operatorname{mult}_{B}(D+(1 / m)(\phi))
$$

which implies $\min \left\{\nu(x) \mid x \in \Theta\left(\bar{D} ; V_{\bullet}\right)\right\} \leqslant \mu_{\mathbb{Q}, B}\left(\bar{D} ; V_{\bullet}\right)$.
Claim 3.5. -

$$
\mu_{\mathbb{Q}, B}\left(\bar{D} ; V_{\bullet}\right) \leqslant \nu\left(\operatorname{mult}_{z_{\vec{P}}}^{\precsim}\left(D+(1 / m)\left(\sum_{\phi \in V_{m} \cap \hat{H}^{0}(X, m \bar{D}) \backslash\{0\}} c_{\phi} \phi\right)\right)\right),
$$

where $c_{\phi} \in \bar{K}$ and $\sum_{\phi \in V_{m} \cap \hat{H}^{0}(X, m \bar{D}) \backslash\{0\}} c_{\phi} \phi \neq 0$.
Proof. - By the property (ii),

$$
\min _{\phi \in V_{m} \cap \hat{H}^{0}(X, m \bar{D}) \backslash\{0\}}\left\{\operatorname{ord}_{z_{P}}^{\precsim}(\phi)\right\} \precsim \operatorname{ord}_{z_{P}}^{\precsim}\left(\sum_{\phi \in V_{m} \cap \hat{H}^{0}(X, m \bar{D}) \backslash\{0\}} c_{\phi} \phi\right)
$$

on \mathbb{Z}^{d}, which yields
$\min _{\phi \in V_{m} \cap \hat{H}^{0}(X, m \bar{D}) \backslash\{0\}}\left\{\nu\left(\operatorname{ord}_{z_{P}}^{\precsim}(\phi)\right)\right\} \leqslant \nu\left(\operatorname{ord}_{z_{P}}^{\precsim}\left(\sum_{\phi \in V_{m} \cap \hat{H}^{0}(X, m \bar{D}) \backslash\{0\}} c_{\phi} \phi\right)\right)$,
and hence

$$
\begin{aligned}
& \min _{\phi \in V_{m} \cap \hat{H}^{0}(X, m \bar{D}) \backslash\{0\}}\left\{\nu\left(\operatorname{mult}_{z_{P}}^{\precsim}(D+(1 / m)(\phi))\right)\right\} \\
& \leqslant \nu\left(\operatorname{mult}_{\widetilde{z}_{P}}\left(D+(1 / m)\left(\sum_{\phi \in V_{m} \cap \hat{H}^{0}(X, m \bar{D}) \backslash\{0\}} c_{\phi} \phi\right)\right)\right) .
\end{aligned}
$$

Thus the claim follows by Claim 3.4.
By the above claim together with (1),

$$
\Theta\left(\bar{D} ; V_{\bullet}\right)=\Delta\left(V_{\bullet}^{0}\right) \subseteq\left\{x \in \Delta\left(V_{\bullet}\right) \mid \mu_{\mathbb{Q}, B}\left(\bar{D} ; V_{\bullet}\right) \leqslant \nu(x)\right\}
$$

which shows that $\min \left\{\nu(x) \mid x \in \Theta\left(\bar{D} ; V_{\bullet}\right)\right\} \geqslant \mu_{\mathbb{Q}, B}\left(\bar{D} ; V_{\bullet}\right)$, as required.
The following theorem is the main result of this section.
THEOREM 3.6. - If V_{\bullet} contains an ample series, $\widehat{\operatorname{vol}}\left(\bar{D} ; V_{\bullet}\right)=$ $\widehat{\operatorname{vol}}_{\chi}\left(\bar{D} ; V_{\bullet}\right)>0$ and

$$
\inf \left\{\operatorname{mult}_{\xi}(D+(1 / m)(\phi)) \mid m \in \mathbb{Z}_{>0}, \phi \in V_{m} \backslash\{0\}\right\}=0
$$

for $\xi \in X_{K}$, then $\mu_{\mathbb{Q}, \xi}\left(\bar{D} ; V_{\bullet}\right)=0$.
Proof. - First let us consider the following claim:
Claim 3.7. - $\Theta\left(\bar{D} ; V_{\bullet}\right)=\Delta\left(V_{\bullet}\right)$.
Proof. - It is sufficient to see that $\Delta\left(V_{\bullet}\right)^{\circ} \subseteq\left\{x \in \Delta\left(V_{\bullet}\right) \mid G_{\left(\bar{D} ; V_{\bullet}\right)}(x) \geqslant 0\right\}$. We assume the contrary, that is, there is $y \in \Delta\left(V_{\bullet}\right)^{\circ}$ with $G_{\left(\bar{D} ; V_{\mathbf{\bullet}}\right)}(y)<0$. Then, by using the upper semicontinuity of $G_{\left(\bar{D} ; V_{\mathbf{0}}\right)}$, we can find an open neighborhood U of y such that $U \subseteq \Delta\left(V_{\bullet}\right)^{\circ}$ and $G_{\left(\bar{D} ; V_{\mathbf{0}}\right)}(x)<0$ for all $x \in U$. Then, as $\Theta\left(\bar{D} ; V_{\bullet}\right) \subseteq \Delta\left(V_{\bullet}\right) \backslash U$, by the integral formulae of vol and $\widehat{\operatorname{vol}}_{\chi}$ (cf. (3.1), (3.2)) and (1) in Lemma 3.3,

$$
\frac{\widehat{\operatorname{vol}}_{\chi}\left(\bar{D} ; V_{\bullet}\right)}{(d+1)![K: \mathbb{Q}]}=\int_{\Delta\left(V_{\mathbf{0}}\right)} G_{\left(\bar{D} ; V_{\mathbf{0}}\right)}(x) d x
$$

$$
\begin{aligned}
= & \int_{U} G_{\left(\bar{D} ; V_{\bullet}\right)}(x) d x+\int_{\Delta\left(V_{\bullet}\right) \backslash U} G_{\left(\bar{D} ; V_{\bullet}\right)}(x) d x \\
& <\int_{\Delta\left(V_{\bullet}\right) \backslash U} G_{\left(\bar{D} ; V_{\bullet}\right)}(x) d x \leqslant \int_{\Theta\left(\bar{D} ; V_{\bullet}\right)} G_{\left(\bar{D} ; V_{\bullet}\right)}(x) d x \\
= & \frac{\widehat{\operatorname{vol}\left(\bar{D} ; V_{\bullet}\right)}}{(d+1)![K: \mathbb{Q}]} .
\end{aligned}
$$

This is a contradiction.
Let B be the Zariski closure of $\{\xi\}$ in X. We choose $P \in X(\bar{K})$ and a local system of parameters $z_{P}=\left(z_{1}, \ldots, z_{d}\right)$ at P such that P is a regular point of $B_{\bar{K}}$ and $z_{1}=\cdots=z_{r}=0$ is a local equation of $B_{\bar{K}}$ at P. Let $\nu: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be the linear map given by $\nu\left(x_{1}, \ldots, x_{d}\right)=x_{1}+\cdots+x_{r}$. We also choose a monomial order \precsim such that $\nu(a) \leqslant \nu(b)$ for all $a, b \in \mathbb{Z}_{\geqslant 0}^{d}$ with $a \precsim b$. By our assumption,

$$
\inf \left\{\operatorname{mult}_{\xi}(D+(1 / m)(\phi)) \mid m \in \mathbb{Z}_{>0}, \phi \in V_{m} \backslash\{0\}\right\}=0
$$

This means that $\min \left\{\nu(x) \mid x \in \Delta\left(V_{\bullet}\right)\right\}=0$, and hence, by Claim 3.7 and (2) in Lemma 3.3,

$$
\mu_{\mathbb{Q}, \xi}\left(\bar{D} ; V_{\bullet}\right)=\min \left\{\nu(x) \mid x \in \Theta\left(\bar{D} ; V_{\bullet}\right)\right\}=0
$$

Corollary 3.8. - If D_{K} is nef and big on the generic fiber X_{K} and $\widehat{\operatorname{vol}}(\bar{D})=\widehat{\operatorname{vol}}_{\chi}(\bar{D})>0$, then $\mu_{\mathbb{Q}, \xi}(\bar{D})=0$ for all $\xi \in X_{K}$.

Proof. - As D_{K} is nef and big, in the similar way as [13, Proposition 6.5.3], for any $\epsilon>0$, there is $\phi \in \operatorname{Rat}\left(X_{K}\right)_{\mathbb{Q}}^{\times}$such that

$$
D_{K}+(\phi)_{\mathbb{Q}} \geqslant 0 \quad \text { and } \quad \operatorname{mult}_{\xi}\left(D_{K}+(\phi)_{\mathbb{Q}}\right)<\epsilon
$$

which means that

$$
\inf \left\{\operatorname{mult}_{\xi}(D+(1 / m)(\phi)) \mid m \in \mathbb{Z}_{>0}, \phi \in H^{0}\left(X_{K}, m D_{K}\right) \backslash\{0\}\right\}=0
$$

Thus the corollary follows from Theorem 3.6.

4. Equality condition for the generalized Hodge index theorem

Here let us give the proof of the main theorem of this paper. We assume that $d=1$. Let us begin with the following two lemmas.

Lemma 4.1. - We assume that X is regular. For an integrable arithmetic \mathbb{R}-Cartier divisor \bar{D} of C^{0}-type on X (cf. Conventions and terminology 5), we have the following:
(1) We assume that $\operatorname{deg}\left(D_{K}\right)=0$. Then $\widehat{\operatorname{deg}}\left(\bar{D}^{2}\right)=0$ if and only if $\bar{D}=\widehat{(\psi)}_{\mathbb{R}}+(0, \lambda)$ for some $\psi \in \operatorname{Rat}(X)_{\mathbb{R}}^{\times}$and $\lambda \in \mathbb{R}$. Moreover, if $\widehat{\operatorname{deg}}\left(\bar{D}^{2}\right)=0$ and \bar{D} is pseudo-effective, then $\bar{D}=\widehat{(\psi)}_{\mathbb{R}}+(0, \lambda)$ for some $\psi \in \operatorname{Rat}(X)_{\mathbb{R}}^{\times}$and $\lambda \in \mathbb{R}_{\geqslant 0}$.
(2) The following are equivalent:
(a) $\operatorname{deg}\left(D_{K}\right)=0$ and \bar{D} is nef.
(b) $\operatorname{deg}\left(D_{K}\right)=0, \bar{D}$ is pseudo-effective and $\widehat{\operatorname{deg}}\left(\bar{D}^{2}\right)=0$.

Proof. - (1) First we assume that $\widehat{\operatorname{deg}}\left(\bar{D}^{2}\right)=0$. By [15, Theorem 2.2.3, Remark 2.2.4], there are $\phi \in \operatorname{Rat}(X)_{\mathbb{R}}^{\times}$and an F_{∞}-invariant locally constant real valued function η on $X(\mathbb{C})$ such that $\bar{D}=\widehat{(\phi)} \mathbb{R}+(0, \eta)$. Let $K(\mathbb{C})$ be the set of all embeddings $\sigma: K \hookrightarrow \mathbb{C}$. For each $\sigma \in K(\mathbb{C})$, we set $X_{\sigma}=X \times_{\operatorname{Spec}\left(O_{K}\right)}^{\sigma} \operatorname{Spec}(\mathbb{C})$, where $\times_{\operatorname{Spec}\left(O_{K}\right)}^{\sigma}$ means the fiber product with respect to $\sigma: K \hookrightarrow \mathbb{C}$. Note that $\left\{X_{\sigma}\right\}_{\sigma \in K(\mathbb{C})}$ gives rise to all connected components of $X(\mathbb{C})$. Let η_{σ} be the value of η on X_{σ}. We set

$$
\lambda=\frac{1}{[K: \mathbb{Q}]} \sum_{\sigma \in K(\mathbb{C})} \eta_{\sigma} \quad \text { and } \quad \xi=\eta-\lambda .
$$

Then $\xi_{\bar{\sigma}}=\xi_{\sigma}$ for all $\sigma \in K(\mathbb{C})$ and $\sum_{\sigma \in K(\mathbb{C})} \xi_{\sigma}=0$. Thus, by Dirichlet's unit theorem, there is $u \in O_{K}^{\times} \otimes \mathbb{R}$ such that $\widehat{(u)_{\mathbb{R}}}=(0, \xi)$. Therefore, we have

$$
\bar{D}=\widehat{(\phi u})_{\mathbb{R}}+(0, \lambda) .
$$

The converse is obvious. We assume that $\widehat{\operatorname{deg}}\left(\bar{D}^{2}\right)=0$ and \bar{D} is pseudoeffective. Then $\bar{D}=\widehat{(\psi)}_{\mathbb{R}}+(0, \lambda)$ for some $\psi \in \operatorname{Rat}(X)_{\mathbb{R}}^{\times}$and $\lambda \in \mathbb{R}$. Let \bar{A} be an ample arithmetic Cartier divisor of C^{∞}-type. Then,

$$
0 \leqslant \widehat{\operatorname{deg}}(\bar{A} \cdot \bar{D})=\frac{\lambda[K: \mathbb{Q}] \operatorname{deg}\left(A_{K}\right)}{2}
$$

and hence $\lambda \geqslant 0$, as required.
(2) (a) \Longrightarrow (b) follows from the non-negativity of $\widehat{\operatorname{deg}}\left(\bar{D}^{2}\right)$ ([13, Proposition 6.4.2], [15, SubSection 2.1]) and the Hodge index theorem ([15, Theorem 2.2.3]). Let us show that $(\mathrm{b}) \Longrightarrow(\mathrm{a})$. By $(1), \bar{D}=\widehat{(\psi)}_{\mathbb{R}}+(0, \lambda)$ for some $\psi \in \operatorname{Rat}(X)_{\mathbb{R}}^{\times}$and $\lambda \in \mathbb{R}_{\geqslant 0}$. Thus the assertion is obvious.

Lemma 4.2. - In this lemma, X is not necessarily an arithmetic surface, that is, X is a $(d+1)$-dimensional, generically smooth, normal and projective arithmetic variety. Let \bar{D} be an arithmetic \mathbb{R}-Cartier divisor of C^{0}-type on X. Then,

$$
\widehat{\operatorname{vol}}(\bar{D}) \leqslant \widehat{\operatorname{vol}}(\bar{D}+(0, \epsilon)) \leqslant \widehat{\operatorname{vol}}(\bar{D})+\frac{\epsilon(d+1)[K: \mathbb{Q}] \operatorname{vol}\left(D_{K}\right)}{2}
$$

for $\epsilon \in \mathbb{R}_{\geqslant 0}$.
Proof. - The first inequality is obvious. Note that $\|\cdot\|_{m(\bar{D}+(0, \epsilon))}=$ $e^{-\frac{m \epsilon}{2}}\|\cdot\|_{m \bar{D}}$ for all $m \geqslant 0$. Thus, by using [12, (3) in Proposition 2.1], there is a constant C such that

$$
\begin{aligned}
\frac{\log \# \hat{H}^{0}(X, m(\bar{D}+(0, \epsilon)))}{m^{d+1} /(d+1)!} & \leqslant \frac{\log \# \hat{H}^{0}(X, m \bar{D})}{m^{d+1} /(d+1)!} \\
\quad+\frac{\epsilon(d+1)[K: \mathbb{Q}]}{2} & \frac{\operatorname{dim}_{K} H^{0}\left(X_{K}, m D_{K}\right)}{m^{d} / d!}+C \frac{\log m}{m}
\end{aligned}
$$

holds for $m \gg 1$. Thus the second inequality follows.
The following theorem is the main result of this paper.
THEOREM 4.3. - Let \bar{D} be an integrable arithmetic \mathbb{R}-Cartier divisor of C^{0}-type on X with $\operatorname{deg}\left(D_{K}\right)>0$. Then $\widehat{\operatorname{deg}}\left(\bar{D}^{2}\right)=\widehat{\operatorname{vol}}(\bar{D})$ if and only if \bar{D} is nef.

Proof. - Let $\nu: X^{\prime} \rightarrow X$ be a desingularization of X (cf. [11]). Then $\widehat{\operatorname{deg}}\left(\nu^{*}(\bar{D})^{2}\right)=\widehat{\operatorname{deg}}\left(\bar{D}^{2}\right)$ and $\widehat{\operatorname{vol}}\left(\nu^{*}(\bar{D})\right)=\widehat{\operatorname{vol}}(\bar{D})$. Moreover, $\nu^{*}(\bar{D})$ is nef if and only if \bar{D} is nef. Therefore, we may assume that X is regular.

By [12, Corollary 5.5] and [13, Proposition-Definition 6.4.1], if \bar{D} is nef, then $\widehat{\operatorname{deg}}\left(\bar{D}^{2}\right)=\widehat{\operatorname{vol}}(\bar{D})$, so that we need to show that if $\widehat{\operatorname{deg}}\left(\bar{D}^{2}\right)=\widehat{\operatorname{vol}}(\bar{D})$, then \bar{D} is nef.

First we assume that \bar{D} is big. Note that

$$
\widehat{\operatorname{deg}}\left(\bar{D}^{2}\right) \leqslant \widehat{\operatorname{vol}}_{\chi}(\bar{D}) \leqslant \widehat{\operatorname{vol}}(\bar{D})
$$

Thus, by Theorem 2.1 and Corollary $3.8, \bar{D}$ is relatively nef and $\mu_{\mathbb{R}, \xi}(\bar{D})=$ 0 for $\xi \in X_{K}$. By [13, Theorem 9.2.1], there is a greatest element \bar{P} of $\Upsilon(\bar{D})$ (cf. Conventions and terminology 4). If we set $\bar{N}:=\bar{D}-\bar{P}$, then $\bar{D}=\bar{P}+\bar{N}$ is a Zariski decomposition of \bar{D} (cf. Proposition B.1). Then, by [13, Claim 9.3.5.1] or [16, Theorem 4.1.1],

$$
\operatorname{mult}_{\xi}(N)=\mu_{\mathbb{R}, \xi}(\bar{D})=0
$$

for all $\xi \in X_{K}$, which implies that N is vertical. In particular, $\widehat{\operatorname{deg}}\left(\left.\bar{D}\right|_{C}\right) \geqslant 0$ for all horizontal reduced and irreducible 1-dimensional closed subschemes C on X, and hence \bar{D} is nef because \bar{D} is relatively nef.

Next we assume that \bar{D} is not big. Then $\widehat{\operatorname{deg}}\left(\bar{D}^{2}\right)=\widehat{\operatorname{vol}}(\bar{D})=0$. Thus, for $\epsilon \in \mathbb{R}_{>0}$,
$\epsilon[K: \mathbb{Q}] \operatorname{deg}\left(D_{K}\right)=\widehat{\operatorname{deg}}\left((\bar{D}+(0, \epsilon))^{2}\right) \leqslant \widehat{\operatorname{vol}}(\bar{D}+(0, \epsilon)) \leqslant \epsilon[K: \mathbb{Q}] \operatorname{deg}\left(D_{K}\right)$
by the generalized Hodge index theorem (cf. Theorem 2.1) and Lemma 4.2, and hence $\bar{D}+(0, \epsilon)$ is big and $\widehat{\operatorname{deg}}\left((\bar{D}+(0, \epsilon))^{2}\right)=\widehat{\operatorname{vol}}(\bar{D}+(0, \epsilon))$. Therefore, by the previous observation, $\bar{D}+(0, \epsilon)$ is nef for all $\epsilon \in \mathbb{R}_{>0}$, which means that \bar{D} is nef.

As a corollary of the above theorem, we have the following:
Corollary 4.4. - Let \bar{D} be an integrable arithmetic \mathbb{R}-Cartier divisor of C^{0}-type on X. Then \bar{D} is nef if and only if \bar{D} is pseudo-effective and $\widehat{\operatorname{deg}}\left(\bar{D}^{2}\right)=\widehat{\operatorname{vol}}(\bar{D})$.

Proof. - We need to show that if \bar{D} is pseudo-effective and $\widehat{\operatorname{deg}}\left(\bar{D}^{2}\right)=$ $\widehat{\operatorname{vol}}(\bar{D})$, then \bar{D} is nef. Clearly $\operatorname{deg}\left(D_{K}\right) \geqslant 0$. If $\operatorname{deg}\left(D_{K}\right)>0$, then the nefness of \bar{D} follows from Theorem 4.3. Moreover, if $\operatorname{deg}\left(D_{K}\right)=0$, then (2) in Lemma 4.3 implies the assertion.

5. Negative part of Zariski decomposition

We assume that $d=1$. As an application of Theorem 4.3, let us see that the self-intersection number of the negative part of a Zariski decomposition is negative.

Theorem 5.1. - Let \bar{D} be an integrable arithmetic \mathbb{R}-Cartier divisor of C^{0}-type on X such that $\operatorname{deg}\left(D_{K}\right) \geqslant 0$. Let $\bar{D}=\bar{P}+\bar{N}$ be a Zariski decomposition of \bar{D} (cf. Conventions and terminology 4). Then $\widehat{\operatorname{deg}}\left(\bar{N}^{2}\right)<0$ if and only if \bar{D} is not nef.

Proof. - First of all, note that \bar{D} is pseudo-effective. As $\widehat{\operatorname{deg}}(\bar{P} \cdot \bar{N})=0$ by the following Lemma 5.2,

$$
\widehat{\operatorname{vol}}(\bar{D})-\widehat{\operatorname{deg}}\left(\bar{D}^{2}\right)=\widehat{\operatorname{vol}}(\bar{P})-\widehat{\operatorname{deg}}\left(\bar{D}^{2}\right)=\widehat{\operatorname{deg}}\left(\bar{P}^{2}\right)-\widehat{\operatorname{deg}}\left(\bar{D}^{2}\right)=-\widehat{\operatorname{deg}}\left(\bar{N}^{2}\right)
$$

In addition, by Corollary 4.4, \bar{D} is not nef if and only if $\widehat{\operatorname{vol}}(\bar{D})>\widehat{\operatorname{deg}}\left(\bar{D}^{2}\right)$. Thus the assertion follows.

Lemma 5.2. - Let \bar{D} be an integrable arithmetic \mathbb{R}-Cartier divisor of C^{0}-type on X. If $\bar{D}=\bar{P}+\bar{N}$ is a Zariski decomposition of \bar{D}, then $\widehat{\operatorname{deg}}(\bar{P}$. $\bar{N})=0$ and $\widehat{\operatorname{deg}}\left(\bar{N}^{2}\right) \leqslant 0$.

Proof. - For $0<\epsilon \leqslant 1$, we set $\bar{D}_{\epsilon}=\bar{P}+\epsilon \bar{N}$. Then \bar{D}_{ϵ} is integrable and $\widehat{\operatorname{vol}}(\bar{P})=\widehat{\operatorname{vol}}\left(\bar{D}_{\epsilon}\right)$ because

$$
\widehat{\operatorname{vol}}(\bar{P}) \leqslant \widehat{\operatorname{vol}}\left(\bar{D}_{\epsilon}\right) \leqslant \widehat{\operatorname{vol}}(\bar{D})=\widehat{\operatorname{vol}}(\bar{P}) .
$$

Thus, by the generalized Hodge index theorem (cf. Theorem 2.1),

$$
\widehat{\operatorname{deg}}\left((\bar{P}+\epsilon \bar{N})^{2}\right)=\widehat{\operatorname{deg}}\left(\bar{D}_{\epsilon}^{2}\right) \leqslant \widehat{\operatorname{vol}}\left(\bar{D}_{\epsilon}\right)=\widehat{\operatorname{vol}}(\bar{P})=\widehat{\operatorname{deg}}\left(\bar{P}^{2}\right)
$$

and hence

$$
2 \widehat{\operatorname{deg}}(\bar{P} \cdot \bar{N})+\epsilon \widehat{\operatorname{deg}}\left(\bar{N}^{2}\right) \leqslant 0 .
$$

In particular, $\widehat{\operatorname{deg}}(\bar{P} \cdot \bar{N}) \leqslant 0$. On the other hand, as \bar{P} is nef and \bar{N} is effective, $\widehat{\operatorname{deg}}(\bar{P} \cdot \bar{N}) \geqslant 0$. Thus $\widehat{\operatorname{deg}}(\bar{P} \cdot \bar{N})=0$ and $\widehat{\operatorname{deg}}\left(\bar{N}^{2}\right) \leqslant 0$.

Remark 5.3. - If \bar{D} is big, then the Zariski decomposition $\bar{D}=\bar{P}+\bar{N}$ is uniquely determined by [16, Theorem 4.2.1]. Otherwise, it is not necessarily unique.

As a consequence of the above theorem, we have the following numerical characterization of the greatest element of $\Upsilon(\bar{D})$ (cf. Conventions and terminology 4).

Corollary 5.4. - We assume that X is regular. Let \bar{D} and \bar{P} be arithmetic \mathbb{R}-Cartier divisors of C^{0}-type on X. Then the following are equivalent:
(1) \bar{P} is the greatest element of $\Upsilon(\bar{D})$, that is, $\bar{P} \in \Upsilon(\bar{D})$ and $\bar{M} \leqslant \bar{P}$ for all $\bar{M} \in \Upsilon(\bar{D})$.
(2) \bar{P} is an element of $\Upsilon(\bar{D})$ with the following property:

$$
\widehat{\operatorname{deg}}(\bar{P} \cdot \bar{B})=0 \quad \text { and } \quad \widehat{\operatorname{deg}}\left(\bar{B}^{2}\right)<0
$$

for all integrable arithmetic \mathbb{R}-Cartier divisors \bar{B} of C^{0}-type with $(0,0) \supsetneqq \bar{B} \leqslant \bar{D}-\bar{P}$.

Proof. - $(1) \Longrightarrow(2)$: By Proposition B.1, $\widehat{\operatorname{vol}}(\bar{D})=\widehat{\operatorname{vol}}(\bar{P})$, so that $\bar{P}+\bar{B}$ is a Zariski decomposition because

$$
\widehat{\operatorname{vol}}(\bar{P}) \leqslant \widehat{\operatorname{vol}}(\bar{P}+\bar{B}) \leqslant \widehat{\operatorname{vol}}(\bar{D}) .
$$

Thus $\widehat{\operatorname{deg}}(\bar{P} \cdot \bar{B})=0$ by Lemma 5.2. As $\bar{B} \nexists(0,0)$ and \bar{P} is the greatest element of $\Upsilon(\bar{D}), \bar{P}+\bar{B}$ is not nef, so that $\widehat{\operatorname{deg}}\left(\bar{B}^{2}\right)<0$ by Theorem 5.1.
$(2) \Longrightarrow(1):$ Let \bar{M} be an element of $\Upsilon(\bar{D})$. If we set $\bar{A}=\max \{\bar{P}, \bar{M}\}$ (cf. Conventions and terminology 6) and $\bar{B}=\bar{A}-\bar{P}$, then \bar{B} is effective, $\bar{A} \leqslant \bar{D}$ and \bar{A} is nef by [13, Lemma 9.1.2]. Moreover,

$$
\bar{B}=\bar{A}-\bar{P} \leqslant \bar{D}-\bar{P}
$$

If we assume $\bar{B} \supsetneqq(0,0)$, then, by the property, $\widehat{\operatorname{deg}}(\bar{P} \cdot \bar{B})=0$ and $\widehat{\operatorname{deg}}\left(\bar{B}^{2}\right)<$ 0 . On the other hand, as \bar{A} is nef and \bar{B} is effective,

$$
0 \leqslant \widehat{\operatorname{deg}}(\bar{A} \cdot \bar{B})=\widehat{\operatorname{deg}}(\bar{P}+\bar{B} \cdot \bar{B})=\widehat{\operatorname{deg}}\left(\bar{B}^{2}\right)
$$

which is a contradiction, so that $\bar{B}=(0,0)$, that is, $\bar{P}=\bar{A}$, which means that $\bar{M} \leqslant \bar{P}$, as required.

Corollary 5.5. - We assume that X is regular. Let \bar{D} be an arithmetic \mathbb{R}-Cartier divisor of C^{0}-type on X such that $\Upsilon(\bar{D}) \neq \emptyset$. Let \bar{P} be the greatest element of $\Upsilon(\bar{D})(c f$. [13, Theorem 9.2.1]) and let $\bar{N}:=\bar{D}-\bar{P}$. We assume that $N \neq 0$. Let $N=c_{1} C_{1}+\cdots+c_{l} C_{l}$ be the decomposition such that $c_{1}, \ldots, c_{l} \in \mathbb{R}_{>0}$ and C_{1}, \ldots, C_{l} are distinct reduced and irreducible 1-dimensional closed subschemes on X. Let $\bar{C}_{1}=\left(C_{1}, h_{1}\right), \ldots, \bar{C}_{l}=$ $\left(C_{l}, h_{l}\right)$ be effective arithmetic Cartier divisors of C^{0}-type such that such that $c_{1}\left(\bar{C}_{1}\right), \ldots, c_{1}\left(\bar{C}_{l}\right)$ are positive currents and

$$
c_{1} \bar{C}_{1}+\cdots+c_{l} \bar{C}_{l} \leqslant \bar{N} .
$$

Then

$$
\widehat{\operatorname{deg}}\left(\bar{P} \cdot \overline{C_{1}}\right)=\cdots=\widehat{\operatorname{deg}}\left(\bar{P} \cdot \overline{C_{l}}\right)=0
$$

and the $(l \times l)$ symmetric matrix given by

$$
\left(\widehat{\operatorname{deg}}\left(\bar{C}_{i} \cdot \bar{C}_{j}\right)\right)_{\substack{1 \leqslant i \leqslant l \\ 1 \leqslant j \leqslant l}}
$$

is negative definite.
Proof. - For $x=\left(x_{1}, \ldots, x_{l}\right) \in \mathbb{R}^{l}$, we set $\bar{B}_{x}=x_{1} \bar{C}_{1}+\cdots+x_{l} \bar{C}_{l}$ and $\bar{D}_{x}=\bar{P}+\bar{B}_{x}$. If $0 \leqslant x_{i} \leqslant c_{i}$ for all $i=1, \ldots, l$, then \bar{B}_{x} is integrable and $(0,0) \leqslant \bar{B}_{x} \leqslant \bar{N}$. Thus, by Corollary 5.4,

$$
0=\widehat{\operatorname{deg}}\left(\bar{P} \cdot \bar{B}_{\left(c_{1}, \ldots, c_{l}\right)}\right)=c_{1} \widehat{\operatorname{deg}}\left(\bar{P} \cdot \bar{C}_{1}\right)+\cdots+c_{l} \widehat{\operatorname{deg}}\left(\bar{P} \cdot \bar{C}_{l}\right)
$$

Note that $\widehat{\operatorname{deg}}\left(\bar{P} \cdot \bar{C}_{i}\right) \geqslant 0$ for all $i=1, \ldots, l$. Therefore,

$$
\widehat{\operatorname{deg}}\left(\bar{P} \cdot \overline{C_{1}}\right)=\cdots=\widehat{\operatorname{deg}}\left(\bar{P} \cdot \overline{C_{l}}\right)=0
$$

Here we claim the following:

Claim 5.6. - If $x \in\left(\mathbb{R}_{\geqslant 0}\right)^{l} \backslash\{0\}$, then $\widehat{\operatorname{deg}}\left(\bar{B}_{x}^{2}\right)<0$.
Proof. - Note that $\bar{B}_{t x}=t \bar{B}_{x}$ and that we can find a positive number t with $t x_{i} \leqslant c_{i}(\forall i)$. Thus we may assume that $x_{i} \leqslant c_{i}(\forall i)$, and hence the assertion follows by Corollary 5.4.

We need to see that if $x \in \mathbb{R}^{l} \backslash\{0\}$, then $\widehat{\operatorname{deg}}\left(\bar{B}_{x}^{2}\right)<0$. We can choose

$$
y=\left(y_{1}, \ldots, y_{l}\right), z=\left(z_{1}, \ldots, z_{l}\right) \in\left(\mathbb{R}_{\geqslant 0}\right)^{l}
$$

such that $x=y-z$ and $\left\{i \mid y_{i} \neq 0\right\} \cap\left\{j \mid z_{j} \neq 0\right\}=\emptyset$. Note that either $y \neq 0$ or $z \neq 0$. Moreover, $\widehat{\operatorname{deg}}\left(\bar{B}_{y} \cdot \bar{B}_{z}\right) \geqslant 0$ because $\bar{B}_{y} \geqslant(0,0), \bar{B}_{z} \geqslant(0,0)$, $c_{1}\left(\bar{B}_{y}\right)$ and $c_{1}\left(\bar{B}_{z}\right)$ are positive currents, and B_{y} and B_{z} have no common reduced and irreducible 1-dimensional closed subschemes. Thus, by using the above claim,

$$
\widehat{\operatorname{deg}}\left(\bar{B}_{x}^{2}\right)=\widehat{\operatorname{deg}}\left(\left(\bar{B}_{y}-\bar{B}_{z}\right)^{2}\right)=\widehat{\operatorname{deg}}\left(\bar{B}_{y}^{2}\right)+\widehat{\operatorname{deg}}\left(\bar{B}_{z}^{2}\right)-2 \widehat{\operatorname{deg}}\left(\bar{B}_{y} \cdot \bar{B}_{z}\right)<0
$$

Remark 5.7. - By [13, Theorem 9.3.4, (4.1)], we can find effective arithmetic Cartier divisors $\bar{C}_{1}, \ldots, \bar{C}_{l}$ of C^{0}-type such that $c_{1}\left(\bar{C}_{1}\right), \ldots, c_{1}\left(\bar{C}_{l}\right)$ are positive currents and $c_{1} \bar{C}_{1}+\cdots+c_{l} \bar{C}_{l} \leqslant \bar{N}$.

Example 5.8. - Let $\mathbb{P}_{\mathbb{Z}}^{1}=\operatorname{Proj}\left(\mathbb{Z}\left[T_{0}, T_{1}\right]\right)$ and $H_{i}=\left\{T_{i}=0\right\}$ for $i=0,1$. We fix positive numbers a_{0}, a_{1} such that $a_{0}<1, a_{1}<1$ and $a_{0}+a_{1} \geqslant 1$. Let us consider an arithmetic Cartier divisor \bar{D} of C^{∞}-type given by

$$
\bar{D}:=\left(H_{0}, \log \left(a_{0}+a_{1}|z|^{2}\right)\right)
$$

where $z=T_{1} / T_{0}$. Note that $c_{1}(\bar{D})$ is a positive form. Moreover, \bar{D} is pseudoeffective and not nef (cf. [14, Theorem 2.3]). In [14, Theorem 4.1], we give the greatest element of $\Upsilon(\bar{D})$ as follows: Let φ be a continuous function on the interval $[0,1]$ given by

$$
\varphi(x)=-(1-x) \log (1-x)-x \log (x)+(1-x) \log \left(a_{0}\right)+x \log \left(a_{1}\right)
$$

and let $\vartheta=\min \{x \in[0,1] \mid \varphi(x) \geqslant 0\}$ and $\theta=\max \{x \in[0,1] \mid \varphi(x) \geqslant 0\}$. We set
$\bar{P}:=\left(\theta H_{0}-\vartheta H_{1}, p(z)\right), \quad \bar{N}_{1}:=\left(\vartheta H_{1}, n_{1}(z)\right)$ and $\bar{N}_{2}:=\left((1-\theta) H_{0}, n_{2}(z)\right)$, where $p(z), n_{1}(z)$ and $n_{2}(z)$ are Green functions given by

$$
p(z):= \begin{cases}\vartheta \log |z|^{2} & \text { if }|z| \leqslant \sqrt{\frac{a_{0} \vartheta}{a_{1}(1-\vartheta)}}, \\ \log \left(a_{0}+a_{1}|z|^{2}\right) & \text { if } \sqrt{\frac{a_{0} \vartheta}{a_{1}(1-\vartheta)}} \leqslant|z| \leqslant \sqrt{\frac{a_{0} \theta}{a_{1}(1-\theta)}}, \\ \theta \log |z|^{2} & \text { if }|z| \geqslant \sqrt{\frac{a_{0} \theta}{a_{1}(1-\theta)}} .\end{cases}
$$

$n_{1}(z):= \begin{cases}\log \left(a_{0}+a_{1}|z|^{2}\right)-\vartheta \log |z|^{2} & \text { if }|z| \leqslant \sqrt{\frac{a_{0} \vartheta}{a_{1}(1-\vartheta)}}, \\ 0 & \text { if }|z| \geqslant \sqrt{\frac{a_{0} \vartheta}{a_{1}(1-\vartheta)}} .\end{cases}$
$n_{2}(z):= \begin{cases}0 & \text { if }|z| \leqslant \sqrt{\frac{a_{0} \theta}{a_{1}(1-\theta)}}, \\ \log \left(a_{1}+a_{0}|z|^{-2}\right)+(1-\theta) \log |z|^{2} & \text { if }|z| \geqslant \sqrt{\frac{a_{0} \theta}{a_{1}(1-\theta)}} .\end{cases}$
Then \bar{P} gives the greatest element of $\Upsilon(\bar{D})$ and $\bar{D}=\bar{P}+\left(\bar{N}_{1}+\bar{N}_{2}\right)$. It is easy to see that

$$
\widehat{\operatorname{deg}}\left(\bar{P} \cdot \bar{N}_{1}\right)=\widehat{\operatorname{deg}}\left(\bar{P} \cdot \bar{N}_{2}\right)=0 \quad \text { and } \quad \widehat{\operatorname{deg}}\left(\bar{N}_{1} \cdot \bar{N}_{2}\right)=0 .
$$

Moreover,

$$
\begin{aligned}
\widehat{\operatorname{deg}}\left(\bar{N}_{1} \cdot \bar{N}_{1}\right) & =\widehat{\operatorname{deg}}\left(\bar{N}_{1} \cdot\left(\bar{N}_{1}-\vartheta \widehat{(z)}\right)\right)=\widehat{\operatorname{deg}}\left(\bar{N}_{1} \cdot\left(\vartheta H_{0}, n_{1}(z)+\vartheta \log |z|^{2}\right)\right) \\
& =\vartheta \widehat{\operatorname{deg}}\left(\left.\bar{N}_{1}\right|_{H_{0}}\right)+\frac{1}{2} \int_{\mathbb{P}^{1}(\mathbb{C})} c_{1}\left(\bar{N}_{1}\right)\left(n_{1}(z)+\vartheta \log |z|^{2}\right) \\
& =\frac{1}{2} \int_{|z| \leqslant \sqrt{\frac{a_{0} \vartheta}{a_{1}(1-\vartheta)}}} d d^{c}\left(\log \left(a_{0}+a_{1}|z|^{2}\right)\right) \log \left(a_{0}+a_{1}|z|^{2}\right) \\
& =\frac{(1-\vartheta) \log (1-\vartheta)+\left(\log \left(a_{0}\right)+1\right) \vartheta}{2}
\end{aligned}
$$

In the same way,

$$
\widehat{\operatorname{deg}}\left(\bar{N}_{2} \cdot \bar{N}_{2}\right)=\frac{\theta \log (\theta)+\left(\log \left(a_{1}\right)+1\right)(1-\theta)}{2}
$$

Thus the negative definite symmetric matrix $\left(\widehat{\operatorname{deg}}\left(\bar{N}_{i} \cdot \bar{N}_{j}\right)\right)_{i, j=1,2}$ is

$$
\left(\begin{array}{cc}
\frac{(1-\vartheta) \log (1-\vartheta)+\left(\log \left(a_{0}\right)+1\right) \vartheta}{2} & 0 \\
0 & \frac{\theta \log (\theta)+\left(\log \left(a_{1}\right)+1\right)(1-\theta)}{2}
\end{array}\right) .
$$

Appendix A. Relative Zariski decomposition and pseudo-effectivity

We assume that X is regular and $d=1$. Let $\bar{D}=(D, g)$ be an arithmetic \mathbb{R}-Cartier divisor of C^{0}-type on X. In this appendix, we would like to investigate the pseudo-effectivity of the relative Zariski decomposition.

Proposition A.1. - We assume that $\operatorname{deg}\left(D_{K}\right) \geqslant 0$. Let \bar{Q} be the greatest element of $\Upsilon_{\text {rel }}(\bar{D})$ (cf. Section 1). Then \bar{D} is pseudo-effective if and only if \bar{Q} is pseudo-effective.

Proof. - It is obvious that if \bar{Q} is pseudo-effective, then \bar{D} is also pseudo-effective, so that we assume that \bar{D} is pseudo-effective.

First we consider the case where $\operatorname{deg}\left(D_{K}\right)>0$. Then, by [13, Proposition 6.3.3], $\bar{D}+(0, \epsilon)$ is big for any $\epsilon \in \mathbb{R}_{>0}$. By the property (d) in Theorem 1.1, the natural inclusion map $H^{0}(X, n Q) \rightarrow H^{0}(X, n D)$ is bijective and $\|\cdot\|_{n \bar{Q}}=\|\cdot\|_{n \bar{D}}$ for each $n \geqslant 0$. Moreover, as

$$
\|\cdot\|_{n(\bar{Q}+(0, \epsilon))}=e^{-n \epsilon / 2}\|\cdot\|_{n \bar{Q}} \quad \text { and } \quad\|\cdot\|_{n(\bar{D}+(0, \epsilon))}=e^{-n \epsilon / 2}\|\cdot\|_{n \bar{D}}
$$

we have $\|\cdot\|_{n(\bar{Q}+(0, \epsilon))}=\|\cdot\|_{n(\bar{D}+(0, \epsilon))}$, and hence $\bar{Q}+(0, \epsilon)$ is big for all $\epsilon \in \mathbb{R}_{>0}$. Thus the assertion follows.

Next we assume that $\operatorname{deg}\left(D_{K}\right)=0$. By [15, Theorem 2.3.3], there are $\phi \in \operatorname{Rat}(X)_{\mathbb{R}}^{\times}$, a vertical effective \mathbb{R}-Cartier divisor E on X and an $F_{\infty^{-}}$ invariant continuous function η on $X(\mathbb{C})$ such that $\bar{D}=\widehat{(\phi})_{\mathbb{R}}+(E, \eta)$ and $\pi^{-1}(P)_{\text {red }} \nsubseteq \operatorname{Supp}(E)$ for all $P \in \operatorname{Spec}\left(O_{K}\right)$. For each embedding $\sigma: K \hookrightarrow$ \mathbb{C}, let $X_{\sigma}=X \times_{\operatorname{Spec}\left(O_{K}\right)}^{\sigma} \operatorname{Spec}(\mathbb{C})$ and let $\lambda_{\sigma}=\min _{x \in X_{\sigma}}\{\eta(x)\}$. Note that $\lambda_{\bar{\sigma}}=\lambda_{\sigma}$ for all σ. Let $\lambda: X(\mathbb{C}) \rightarrow \mathbb{R}$ be the local constant function such that the value of λ on X_{σ} is λ_{σ}.

Here let us see that $\bar{Q}=\widehat{(\phi)}{ }_{\mathbb{R}}+(0, \lambda)$ is the greatest element of $\Upsilon_{r e l}(\bar{D})$. Otherwise, there is an integrable arithmetic \mathbb{R}-Cartier divisor $\bar{B}=(B, b)$ of C^{0}-type such that $(0,0) \supsetneqq \bar{B} \leqslant \bar{D}-\bar{Q}=(E, \eta-\lambda)$ and $\bar{Q}+\bar{B}$ is relatively nef. Since b is continuous and

$$
d d^{c}([b])=c_{1}(\bar{B})=c_{1}(\bar{Q}+\bar{B})
$$

is a positive current, b is plurisubharmonic on $X(\mathbb{C})$, that is, b is a locally constant function. Let b_{σ} be the value of b on X_{σ}. If we choose $x_{\sigma} \in X_{\sigma}$ with $\lambda_{\sigma}=\eta\left(x_{\sigma}\right)$, then

$$
0 \leqslant b_{\sigma} \leqslant \eta\left(x_{\sigma}\right)-\lambda_{\sigma}=0
$$

and hence $b=0$, so that, as $\bar{Q}+\bar{B}$ is relatively nef,

$$
0 \leqslant \widehat{\operatorname{deg}}(\bar{Q}+\bar{B} \cdot \bar{B})=\widehat{\operatorname{deg}}\left((B, 0)^{2}\right)
$$

On the other hand, by Zariski's lemma, $\widehat{\operatorname{deg}}\left((B, 0)^{2}\right)<0$. This is a contradiction.

By [15, Lemma 2.3.4 and Lemma 2.3.5], (E, λ) is pseudo-effective. On the other hand, by the following Lemma A.2, there is a nef arithmetic \mathbb{R} Cartier divisor \bar{L} of C^{∞}-type such that $\operatorname{deg}\left(L_{K}\right)>0$ and $\widehat{\operatorname{deg}}(\bar{L} \cdot(E, 0))=0$.

Thus,

$$
0 \leqslant \widehat{\operatorname{deg}}(\bar{L} \cdot(E, \lambda))=\sum_{\sigma} \frac{\operatorname{deg}\left(L_{K}\right) \lambda_{\sigma}}{2}
$$

and hence $\sum_{\sigma} \lambda_{\sigma} \geqslant 0$. We set $\lambda^{\prime}=(1 /[K: \mathbb{Q}]) \sum_{\sigma} \lambda_{\sigma}$ and $\xi=\lambda-\lambda^{\prime}$. Then $\lambda^{\prime} \geqslant 0, \sum_{\sigma} \xi_{\sigma}=0$ and $\xi_{\bar{\sigma}}=\xi_{\sigma}$ for all σ, where ξ_{σ} is the value of ξ on X_{σ}. Thus, by Dirichlet's unit theorem, $(0, \xi)=\widehat{(u)}_{\mathbb{R}}$ for some $u \in O_{K}^{\times} \otimes \mathbb{R}$. Therefore,

$$
\bar{Q}=\widehat{(\phi u)_{\mathbb{R}}}+\left(0, \lambda^{\prime}\right)
$$

which is pseudo-effective.
Lemma A.2. - Let C_{1}, \ldots, C_{r} be vertical reduced and irreducible 1dimensional closed subschemes on X such that $\pi^{-1}(P)_{\text {red }} \nsubseteq C_{1} \cup \cdots \cup C_{r}$ for all $P \in \operatorname{Spec}\left(O_{K}\right)$. Then there is a nef arithmetic \mathbb{R}-Cartier divisor \bar{L} of C^{∞}-type such that $\operatorname{deg}\left(L_{K}\right)>0$ and $\widehat{\operatorname{deg}}\left(\bar{L} \cdot\left(C_{i}, 0\right)\right)=0$ for all $i=1, \ldots, r$.

Proof. - Let \bar{A} be an ample arithmetic Cartier divisor of C^{∞}-type. By using Zariski's lemma, we can find a vertical effective \mathbb{R}-Cartier divisor E such that

$$
\widehat{\operatorname{deg}}\left((E, 0) \cdot\left(C_{i}, 0\right)\right)=-\operatorname{deg}\left(\bar{A} \cdot\left(C_{i}, 0\right)\right)
$$

for all $i=1, \ldots, r$ and that $\widehat{\operatorname{deg}}((E, 0) \cdot(C, 0)) \geqslant 0$ for all vertical reduced and irreducible 1-dimensional closed subschemes C with $C \notin\left\{C_{1}, \ldots, C_{r}\right\}$. Thus, if we set $\bar{L}:=\bar{A}+(E, 0)$, then \bar{L} is a nef arithmetic \mathbb{R}-Cartier divisor of C^{∞}-type, $\operatorname{deg}\left(L_{K}\right)>0$ and $\widehat{\operatorname{deg}}\left(\bar{L} \cdot\left(C_{i}, 0\right)\right)=0$ for all $i=1, \ldots, r$.

As an corollary, we can give a simpler proof of the main result of [15] in the case where X is a generically smooth, normal projective arithmetic surface.

Corollary A.3. - Let X be a generically smooth, normal projective arithmetic surface and let \bar{D} be an arithmetic \mathbb{R}-Cartier divisor of C^{0}-type on X. If $\operatorname{deg}\left(D_{K}\right)=0$ and \bar{D} is pseudo-effective, then there is $\phi \in \operatorname{Rat}(X)_{\mathbb{R}}^{\times}$ such that $\bar{D}+\widehat{(\phi)}_{\mathbb{R}} \geqslant(0,0)$.

Proof. - Clearly we may assume that X is regular. By Proposition A.1, we may also assume that \bar{D} is relatively nef. By the Hodge index theorem (cf. [15, Theorem 2.2.3]), $\widehat{\operatorname{deg}}\left(\bar{D}^{2}\right) \leqslant 0$. We assume that $\widehat{\operatorname{deg}}\left(\bar{D}^{2}\right)<0$. Let \bar{A} be an ample arithmetic Cartier divisor of C^{∞}-type on X. As $\widehat{\operatorname{deg}}\left(\bar{D}^{2}\right)<0$, we can find a sufficiently small positive number ϵ with $\widehat{\operatorname{deg}}((\bar{D}+\epsilon \bar{A}) \cdot \bar{D})<0$. Moreover, since $D+\epsilon A$ is ample, there is a positive number c such that $\bar{D}+\epsilon \bar{A}+(0, c)$ is nef. In particular,

$$
\widehat{\operatorname{deg}}((\bar{D}+\epsilon \bar{A}+(0, c)) \cdot \bar{D}) \geqslant 0
$$

On the other hand,

$$
\widehat{\operatorname{deg}}((\bar{D}+\epsilon \bar{A}+(0, c)) \cdot \bar{D})=\widehat{\operatorname{deg}}((\bar{D}+\epsilon \bar{A}) \cdot \bar{D})+\frac{c[K: \mathbb{Q}]}{2} \operatorname{deg}\left(D_{K}\right)<0
$$

which is a contradiction, so that $\widehat{\operatorname{deg}}\left(\bar{D}^{2}\right)=0$. Therefore, by Lemma 4.1, there is $\psi \in \operatorname{Rat}(X)_{\mathbb{R}}^{\times}$and $\lambda \in \mathbb{R}_{\geqslant 0}$ such that $\bar{D}=\widehat{(\psi)}_{\mathbb{R}}+(0, \lambda)$, and hence

$$
\bar{D}+\left(\widehat{\psi^{-1}}\right)_{\mathbb{R}}=(0, \lambda) \geqslant(0,0)
$$

Appendix B. Small sections of arithmetic \mathbb{R}-divisors

Let \bar{D} be an arithmetic \mathbb{R}-Cartier divisor of C^{0}-type on X. In this appendix, let us consider a generalization of [13, Proposition 9.3.3]. Its proof is much simpler than one of [13, Proposition 9.3.3].

Proposition B.1. - Let \bar{P} be the greatest element of $\Upsilon(\bar{D})$ (cf. Conventions and terminology 4). Then, for $\phi \in \operatorname{Rat}(X)_{\mathbb{R}}^{\times}, \bar{D}+\widehat{(\phi)} \mathbb{R}_{\mathbb{R}}$ is effective if and only if $\bar{P}+\widehat{(\phi)} \mathbb{R}_{\mathbb{R}}$ is effective. In particular, the natural inclusion maps

$$
\begin{aligned}
\hat{H}^{0}(X, n \bar{P}) & \hookrightarrow \hat{H}^{0}(X, n \bar{D}), \quad \hat{H}_{\mathbb{Q}}^{0}(X, \bar{P}) \hookrightarrow \hat{H}_{\mathbb{Q}}^{0}(X, \bar{D}) \\
& \text { and } \quad \hat{H}_{\mathbb{R}}^{0}(X, \bar{P}) \hookrightarrow \hat{H}_{\mathbb{R}}^{0}(X, \bar{D})
\end{aligned}
$$

are bijective for each $n \geqslant 0$.
Proof. - We assume that $\bar{D}+\widehat{(\phi)}_{\mathbb{R}}$ is effective. Then $-\widehat{(\phi)_{\mathbb{R}}} \in \Upsilon(\bar{D})$, and hence $-\widehat{(\phi)_{\mathbb{R}}} \leqslant \bar{P}$, that is, $\bar{P}+\widehat{(\phi)_{\mathbb{R}}}$ is effective. The converse is obvious.

As a corollary of the above proposition, we have the following.
Corollary B.2. - We assume that $d=1$. Let $\bar{D}=\bar{P}+\bar{N}$ be a Zariski decomposition of \bar{D} (Conventions and terminology 4). If \bar{D} is big, then the natural inclusion maps

$$
\begin{aligned}
\hat{H}^{0}(X, n \bar{P}) & \hookrightarrow \hat{H}^{0}(X, n \bar{D}), \quad \hat{H}_{\mathbb{Q}}^{0}(X, \bar{P}) \hookrightarrow \hat{H}_{\mathbb{Q}}^{0}(X, \bar{D}) \\
& \text { and } \quad \hat{H}_{\mathbb{R}}^{0}(X, \bar{P}) \hookrightarrow \hat{H}_{\mathbb{R}}^{0}(X, \bar{D})
\end{aligned}
$$

are bijective for each $n \geqslant 0$.

Proof. - Let $\mu: X^{\prime} \rightarrow X$ be a desingularization of X (cf. [11]). Then

$$
\mu^{*}(\bar{D})=\mu^{*}(\bar{P})+\mu^{*}(\bar{N})
$$

is a Zariski decomposition of $\mu^{*}(\bar{D})$. Thus, by [16, Theorem 4.2.1], $\mu^{*}(\bar{P})$ gives the greatest element of $\Upsilon\left(\mu^{*}(\bar{D})\right)$. Therefore, by Proposition B.1, $\hat{H}^{0}\left(X^{\prime}, n \mu^{*}(\bar{P})\right)=\hat{H}^{0}\left(X^{\prime}, n \mu^{*}(\bar{D})\right) \quad$ and $\quad \hat{H}_{\mathbb{K}}^{0}\left(X^{\prime}, \mu^{*}(\bar{P})\right)=\hat{H}_{\mathbb{K}}^{0}\left(X^{\prime}, \mu^{*}(\bar{D})\right)$ for each $n \geqslant 0$, where \mathbb{K} is either \mathbb{Q} or \mathbb{R}. Let us consider the following commutative diagrams:

Note that each horizontal arrow is bijective. Thus the assertions follows.

Appendix C. A result on subsemigroups of $\mathbb{R}_{\geqslant 0}^{d} \times \mathbb{Z}_{\geqslant 0}$

Let d be a positive integer. Let $v: \mathbb{R}^{d+1} \rightarrow \mathbb{R}^{d}$ and $h: \mathbb{R}^{d+1} \rightarrow \mathbb{R}$ be the projections given by

$$
v\left(x_{1}, \ldots, x_{d}, x_{d+1}\right)=\left(x_{1}, \ldots, x_{d}\right) \quad \text { and } \quad h\left(x_{1}, \ldots, x_{d}, x_{d+1}\right)=x_{d+1}
$$

Let Γ be a sub-semigroup of $\mathbb{R}_{\geqslant 0}^{d} \times \mathbb{Z}_{\geqslant 0}$. For a non-negative integer m, we set

$$
\Gamma_{m}=v\left(\Gamma \cap\left(\mathbb{R}^{d} \times\{m\}\right)\right)=v(\{\gamma \in \Gamma \mid h(\gamma)=m\}) .
$$

More generally, for a subset X of \mathbb{R}^{d+1} and $t \in \mathbb{R}, X_{t}$ is given by

$$
X_{t}=v\left(X \cap\left(\mathbb{R}^{d} \times\{t\}\right)\right)=v(\{x \in X \mid h(x)=t\})
$$

We define $\Sigma(\Gamma)$ and $\Delta(\Gamma)$ to be

$$
\Sigma(\Gamma)=\overline{\operatorname{Cone}}(\Gamma) \quad \text { and } \quad \Delta(\Gamma)=\overline{\operatorname{Conv}}\left(\bigcup_{m>0} \frac{1}{m} \Gamma_{m}\right)
$$

where $\overline{\operatorname{Cone}}(\Gamma)$ and $\overline{\operatorname{Conv}}\left(\bigcup_{m>0} \frac{1}{m} \Gamma_{m}\right)$ is the topological closures of the cone generated by Γ and the convex hull of $\bigcup_{m>0} \frac{1}{m} \Gamma_{m}$, respectively. For $\theta \in \mathbb{R}_{\geqslant 0}^{d}$, we define Γ^{θ} to be

$$
\Gamma^{\theta}:=\{(x+\theta m, m) \mid(x, m) \in \Gamma\} .
$$

Note that Γ^{θ} is a sub-semigroup of $\mathbb{R}_{\geqslant 0}^{d} \times \mathbb{Z}_{\geqslant 0}$. For simplicity, we denote $\Sigma(\Gamma), \Delta(\Gamma), \Sigma\left(\Gamma^{\theta}\right)$ and $\Delta\left(\Gamma^{\theta}\right)$ by $\Sigma, \Delta, \Sigma^{\theta}$ and Δ^{θ}, respectively.

Theorem C.1. - We assume that there is $\theta \in \mathbb{R}_{\geqslant 0}^{d}$ such that $\Gamma^{\theta} \subseteq \mathbb{Z}_{\geqslant 0}^{d+1}$ and Γ^{θ} generates \mathbb{Z}^{d+1} as a group, then the following are equivalent:
(1) There is a constant M such that $\#\left(\Gamma_{m}\right) \leqslant M m^{d}$ for all $m \geqslant 1$.
(2) Δ is bounded.

Moreover, under the above equivalent conditions, we have

$$
\lim _{m \rightarrow \infty} \frac{\#\left(\Gamma_{m}\right)}{m^{d}}=\operatorname{vol}(\Delta)>0
$$

Proof. - Note that $\Gamma_{m}^{\theta}=\Gamma_{m}+m \theta$ and $\Delta^{\theta}=\Delta+\theta$. Therefore, in order to prove the assertion, we may assume that $\theta=0$, that is, $\Gamma \subseteq \mathbb{Z}_{\geqslant 0}^{d+1}$ and Γ generates \mathbb{Z}^{d+1}. Let us begin with the following claim:

Claim C.2. -
(a) $t \Delta \subseteq \Sigma_{t}$ for all $t>0$.
(b) Δ has an interior point.
(c) $\Gamma_{m} \subseteq m \Delta \cap \mathbb{Z}^{d}$ for all $m \geqslant 1$. In particular, if Δ is bounded, then

$$
\limsup _{m \rightarrow \infty} \frac{\#\left(\Gamma_{m}\right)}{m^{d}} \leqslant \operatorname{vol}_{d}(\Delta)
$$

(d) If $\#\left(\Gamma_{m}\right)<\infty$ for all $m \geqslant 1$, then

$$
\liminf _{m \rightarrow \infty} \frac{\#\left(\Gamma_{m}\right)}{m^{d}} \geqslant \operatorname{vol}_{d}(\Delta)
$$

Proof. - (a) As $(1 / m) \Gamma_{m} \subseteq \Sigma_{1}$ for $m \geqslant 1$, we have $\Delta \subseteq \Sigma_{1}$. Thus, for $t>0, t \Delta \subseteq t \Sigma_{1} \subseteq \Sigma_{t}$.
(b) We assume that Δ has no interior point. Then there is a hyperplane H in \mathbb{R}^{d} such that $\Delta \subseteq H$. Let W be a subspace of \mathbb{R}^{d+1} generated by $H \times\{1\}$. Note that $\operatorname{dim}_{\mathbb{R}} W=d$.

Here let us see that $\Gamma \subseteq W$. Let $(x, m) \in \Gamma$. If $m>0$, then $x / m \in \Delta$, so that $(x, m)=m(x / m, 1) \in W$. Otherwise, we choose $(y, n) \in \Gamma$ with $n>0$. Then, as $(x+y, n)=(x, 0)+(y, n) \in \Gamma$, by the previous observation, $(y, n),(x+y, n) \in W$, and hence $(x, 0)=(x+y, n)-(y, n) \in W$.

By our assumption, $\langle\Gamma\rangle_{\mathbb{R}}=\mathbb{R}^{d+1}$, which contradicts to the observation $\Gamma \subseteq W$.
(c) This is a obvious.
(d) First we assume that Γ is finitely generated, that is, there is $\gamma_{1}, \ldots, \gamma_{n} \in$ Γ such that $\Gamma=\mathbb{Z}_{\geqslant 0} \gamma_{1}+\cdots+\mathbb{Z}_{\geqslant 0} \gamma_{n}$. By [10, Proposition 3] (note that the constant C in [10, Proposition 1] can be taken as a positive integer), there is $\gamma \in \Gamma$ such that

$$
\Sigma \cap \mathbb{Z}^{d+1}+\gamma \subseteq \Gamma
$$

which implies that $m \Delta \cap \mathbb{Z}^{d}+v(\gamma) \subseteq \Gamma_{m+h(\gamma)}$. Indeed, for $x \in m \Delta \cap \mathbb{Z}^{d}$, by (a), $x \in \Sigma_{m} \cap \mathbb{Z}^{d}$, and hence

$$
x+v(\gamma) \in\left(\Sigma \cap \mathbb{Z}^{d+1}+\gamma\right)_{m+h(\gamma)} \subseteq \Gamma_{m+h(\gamma)}
$$

In particular, $\#\left(m \Delta \cap \mathbb{Z}^{d}\right) \leqslant \#\left(\Gamma_{m+h(\gamma)}\right)$, which yields (d) in the case where Γ is finitely generated.

In general, let $\Gamma(1) \subseteq \Gamma(2) \subseteq \cdots \subseteq \Gamma$ be a sequence of sub-semigroups of Γ with the following properties:
(i) $\Gamma(i)$ is finitely generated for all i.
(ii) $\Gamma(i)$ generates \mathbb{Z}^{d+1} as a group for all i.
(iii) $\bigcup_{i} \Gamma(i)=\Gamma$.

By the previous observation,

$$
\liminf _{m \rightarrow \infty} \frac{\#\left(\Gamma_{m}\right)}{m^{d}} \geqslant \liminf _{m \rightarrow \infty} \frac{\#\left(\Gamma(i)_{m}\right)}{m^{d}} \geqslant \operatorname{vol}_{d}(\Delta(i)),
$$

where $\Delta(i)=\Delta(\Gamma(i))$. Note that $\lim _{i \rightarrow \infty} \operatorname{vol}(\Delta(i))=\operatorname{vol}(\Delta)$ because Δ is the closure of $\bigcup_{i} \Delta(i)$. Hence we obtain the assertion.

Let us go back to the proof of the theorem. First we assume (1). Then, by $(\mathrm{d}), \operatorname{vol}(\Delta)<\infty$ and Δ has an interior point by (b). Therefore, Δ is bounded by Lemma C. 3 as described below. Next assume (2). Then (1) follows from (c).

Finally we assume the equivalent conditions (1) and (2). Then, by (c) and (d),

$$
\limsup _{m \rightarrow \infty} \frac{\#\left(\Gamma_{m}\right)}{m^{d}} \leqslant \operatorname{vol}_{d}(\Delta) \leqslant \liminf _{m \rightarrow \infty} \frac{\#\left(\Gamma_{m}\right)}{m^{d}}
$$

and hence

$$
\lim _{m \rightarrow \infty} \frac{\#\left(\Gamma_{m}\right)}{m^{d}}=\operatorname{vol}_{d}(\Delta)>0
$$

by (b).

Lemma C.3. - Let K be a convex set in V such that K has an interior point. Then the following are equivalent:
(1) K is bounded.
(2) $\operatorname{vol}(K)<\infty$.

Proof. - Clearly (1) implies (2). We assume that $\operatorname{vol}(K)<\infty$ and K is not bounded. Let a be an interior point of K. Considering the translation given by $x \mapsto x-a$, we may assume $a=0$. Then there is a positive number r such that $B \subseteq K$, where $B:=\left\{x \in V \mid\langle x, x\rangle \leqslant r^{2}\right\}$. As K is not bounded, for any $M>0$, there is $x \in K$ such that $\langle x, x\rangle \geqslant M^{2}$. Let $H_{x}=\{y \in V \mid\langle x, y\rangle=0\}$ and let C be the convex hull generated by $B \cap H_{x}$ and x. Clearly $C \subseteq K$. Moreover, as C is a cone over $B \cap H_{x}$, we can see that

$$
\operatorname{vol}(C)=\frac{\operatorname{vol}\left(B \cap H_{x}\right) \sqrt{\langle x, x\rangle}}{d}
$$

and hence

$$
\operatorname{vol}(K) \geqslant \operatorname{vol}(C) \geqslant \frac{\operatorname{vol}\left(B \cap H_{x}\right) M}{d}
$$

This is a contradiction because $\operatorname{vol}(K)<\infty$.

Bibliography

[1] Abbes (A.) and Bouche (T.). - Théorème de Hilbert-Samuel "arithmétique", Ann. Inst. Fourier(Grenoble) 45, 375-401 (1995).
[2] Autissier (P.). - Points entiers sur les surfaces arithmétiques, Journal für die reine und angewandte Mathematik 531, 201-235 (2001).
[3] Berman (R.) and Demailly (J.-P.). - Regularity of plurisubharmonic upper envelopes in big cohomology classes, Perspectives in Analysis, Geometry and Topology: On the Occasion of the 60th Birthday of Oleg Viro, Progress in Mathematics 296, 39-66.
[4] Boucksom (S.) and Chen (H.). - Okounkov bodies of filtered linear series, Compositio Math. 147, 1205-1229 (2011).
[5] Demailly (J.-P.). - Complex Analytic and Differential Geometry.
[6] Faltings (G.). - Calculus on arithmetic surfaces, Ann. of Math. 119, 387-424 (1984).
[7] Gillet (H.) and Soulé (C.). - An arithmetic Riemann-Roch theorem, Invent. Math. 110, 473-543 (1992).
[8] Hriljac (P.). - Height and Arakerov's intersection theory, Amer. J. Math., 107, 23-38 (1985).
[9] Iкoma (H.). - Boundedness of the successive minima on arithmetic varieties, to appear in J. Algebraic Geometry.
[10] KhovanskiI (A.). - Newton polyhedron, Hilbert polynomial and sums of finite sets, Funct. Anal. Appl. 26, 276-281 (1993).
[11] Lipman (J.). - Desingularization of two-dimensional schemes, Ann. of Math., 107, 151-207 (1978).
[12] Moriwaki (A.). - Continuity of volumes on arithmetic varieties, J. of Algebraic Geom. 18, 407-457 (2009).
[13] Moriwaki (A.). - Zariski decompositions on arithmetic surfaces, Publ. Res. Inst. Math. Sci. 48, p. 799-898 (2012).
[14] Moriwaki (A.). - Big arithmetic divisors on $\mathbb{P}_{\mathbb{Z}}^{n}$, Kyoto J. Math. 51, p. 503-534 (2011).
[15] Moriwaki (A.). - Toward Dirichlet's unit theorem on arithmetic varieties, to appear in Kyoto J. of Math. (Memorial issue of Professor Maruyama), see also (arXiv:1010.1599v4 [math.AG]).
[16] Moriwaki (A.). - Arithmetic linear series with base conditions, Math. Z., (DOI) 10.1007/s00209-012-0991-2.
[17] Randriambololona (H.). - Métriques de sous-quotient et théorème de HilbertSamuel arithmétique pour les faiseaux cohérents, J. Reine Angew. Math. 590, p. 6788 (2006).
[18] Zhang (S.). - Small points and adelic metrics, Journal of Algebraic Geometry 4, p. 281-300 (1995).

[^0]: (1) Department of Mathematics, Faculty of Science, Kyoto University, Kyoto, 6068502, Japan moriwaki@math.kyoto-u.ac.jp

