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An existence proof for the stationary compressible
Stokes problem

A. FETTaAH(") | T. GALLOUET®) | H. LAKEHAL(®)

ABSTRACT. — In this paper, we prove the existence of a solution for a
quite general stationary compressible Stokes problem including, in par-
ticular, gravity effects. The Equation Of State gives the pressure as an
increasing superlinear function of the density. This existence result is ob-
tained by passing to the limit on the solution of a viscous approximation
of the continuity equation.

RESUME. — Dans cet article, nous prouvons ’existence d’une solution
pour le probleme de Stokes compressible stationnaire en tenant compte,
en particulier, des effets gravitaires. L’équation d’état donne la pression
comme une fonction strictement croissante superlinéaire de la densité.
L’existence de solution est obtenue en passant a la limite sur une approx-
imation visqueuse de I’équation de continuité.
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1. Introduction

We consider the following problem:

—Au+ Vp = f(z,p) in Q, (1.1a)
u =0 on 09, (1.1b)
div(p(p)u) = 0in Q, (1.1c)
p>=0in Q, (1.1d)
/ pdr = M, (1.1e)

Q
p=mn(p) in Q. (1.1f)

This problem is classical in fluid mechanics. In this case, u is a vector
valued function and stands for the velocity of the fluid. The functions p
and p stand for the pressure and the density of the fluid (then p > 0 is
necessary). Equation (1.1a) is the momentum equation, it is completed with
the natural Dirichlet boundary condition (1.1b). The function f represent a
forcing term, including gravity effect, a main example is f(x, p) = f(x)+gp,
where ¢ is the gravity constant. Equation (1.1c) is generally written with
©(p) = p and corresponds to the mass conservation (or continuity equation).
The total mass of the fluid is given by (1.1e). Finally (1.1f) is the Equation
Of State (generally denoted as EOS). A main example is n(p) = p? with
v =5/3 or 7/5, or, more generally, v > 1 (the case v = 1 has also some
interest and can be treated if f does not depend on p, see for instance
[11], in this case it is simpler). The Stokes equations and, more generally,
the Navier-Stokes equation, in the evolution case and in the steady state
case, are extensively used for a long time as models for fluid mechanics in
the incompressible case (that is the case where p is a constant) and in the
compressible case. For the compressible case, a very well known paper is, for
instance, [12], see also [19] or [1]. For the mathematical point de view, the
existence of a weak solution for the incompressible evolution Navier-Stokes
equations is due to J. Leray in the pioneering paper [15]. In the compressible
case, the first result is due to P. L. Lions [16] (for p = p”, v > 9/5).

Notations: For a,b € R, a - b denotes the usual scalar product of a and
bin RY and |a|?> = a-a. For a = (ay,...,ayx) and b= (by,...,by) with a;,
b; € RN (forie {1,...,N}), we set a:szf\;lai-bi and |a|?> =a: a.

The set  is a connected bounded open set of RN, N = 2 or 3, with
a Lipschitz continuous boundary. The real M is positive. The function f :
Q x R = RY satisfies the following hypothesis:
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f(z, s) is measurable with respect to z € 2 for all s € R
and is continuous with respect to s € R for a.e. z € Q.
There exists B > 0 and H € L?(Q) such that,

for a.e. z € Q and all s € R, |f(x,s)| < B(H(z) + |s|).

(1.2)

The first part of Condition (1.2) (before the bound on f) is also called the
Caratheodory condition and a function f(z,s) satisfying this condition is
usually called a Caratheodory function.

The function 7 satisfies:

ne C(Ry,Ry), n(0) =0, n is increasing, (1.3a)
lir_}n_&nfn(s)/s = 4o0. (1.3b)

The function ¢ is an increasing Lipschitz continuous function from R to R
and ¢(0) = 0. Then, there exists a constant L > 0 such that

( is increasing, (1.4a)
©(0) = 0 and, for all s1,s2 € R, |p(s1) — p(s2)| < L|s1 — s2. (1.4b)

Remark 1.1. — The hypothesis 1(0) = 0 is not a restriction since p can
be replaced by (p — n(0)) in the momemtum equation (Equation (1.1a)),
and the EOS (Equation (1.1f)) can be written as p—n(0) = n(p) —n(0). On
the contrary, the hypothesis ¢(0) = 0 is important. In fact, this hypothesis
allow us to prove that any solution p (for u given) of a regularized version
(by adding some viscosity) of the mass equation (1.1c) has a constant sign
(and then is positive if (1.1e) is satisfied with M > 0). This is related to the
fact that p = 0 is solution of (1.1¢c) which is not true if ¢(0) # 0 (since, in
general u is not divergence free), see Section 2. Passing to the limit as the
added viscosity tends to 0 leads to a nonnegative weak solution p of (1.1c)
(and (1.1d) is true).

DEFINITION 1.2. — Let M > 0 and 2 be a connected bounded open set
of RN (N = 2 or 3) with a Lipschitz continuous boundary. Assume that
(1.2), (1.3) and (1.4) are fulfilled. A weak solution of Problem (1.1) is a
function (u,p, p) € HF(Q)N x L2(Q) x L2(Q) satisfying:
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/Vu:Vde—/pdiV(v)dx:/f(x7p)~vdx for all v € HY(Q)Y,
Q Q Q

(1.5a)
/Lp(p)u -Vipdr =0 for all p € WH*(Q)N, (1.5b)
p =0 ae. inQ, /dex:M, p=n(p) a.e. in Q. (1.5¢)

The main objective of this paper is to prove the existence of a weak solu-
tion of Problem (1.1) (in the sense of Definition 1.2), namely the following
theorem:

THEOREM 1.3. — Let M > 0 and Q be a connected bounded open set
of RV (N > 1) with a Lipschitz continuous boundary. Assume that (1.2),
(1.8) and (1.4) are fulfilled. Then (1.5) has at least one solution.

The proof of Theorem 1.3 mainly uses the tools recently developed for
the Navier Stokes in the books [16], [6] and [17]. It will be obtained by
passing to the limit on the solution of a regularized problem (the existence
of the solution of the regularized problem is also proved). In particular,
the idea to add a viscosity to the continuity equation in order to obtain
an approximate solution is already in the book of P. L. Lions [16]. On the
contrary, it seems to us that the way for proving the strong convergence of
the pressure and the density by proving (4.22) (where we pass to the limit
on the product of two weak convergences) is quite original and does not use
the renormalized continuity equation (even if it is implicitly hidden in the
proof), a tool in the theory of P. L. Lions. Indeed, the main interest of the
(quite simple) proof given in this paper is probably that it can be adapted
in order to prove the same result but by passing to the limit on the solution
given by a numerical scheme (in particular using numerical schemes used in
an industrial context). Such an existence proof of a weak solution of Problem
(1.1) (by passing to the limit on the solution given by a numerical scheme)
is done, for instance, in [7] for the particular case f(x,p) = f(x)+g(x)p(z),
with f € L?(Q) and g € L>®(Q), and ¢(p) = p. In this particular case
(f(z,p) = f(z)+ g(x)p(z) and ¢(p) = p), the hypothesis “n is increasing”
can be replaced by the weaker hypothesis “n is nondecreasing” and Theorem
1.3 is still true (see Theorem 4.2). Since, in general, no uniqueness result
is available for the weak solution of Problem (1.1), the convergence of a
sequence of approximate solutions is obtained only up to a subsequence.
Recent works were developed for the compressible stationary Navier-Stokes
equations with 7(p) = p7. The first papers [3] and [18] are devoted to the
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case v > 3/2 with a periodic boundary condition. The papers [9] [8], [20]
deal with v > 4/3 and [14] deals with v > 1, also in the case of a periodic
boundary condition. The paper [13] is devoted to the case ¥ = 1 and another
boundary condition, namely the Navier condition.

This paper is organized as follows. In Section 2, we present an existence
and uniqueness result to a convection-diffusion equation with the Neumann
boundary condition. This existence and uniqueness result is a main tool for
proving, in Section 3, the existence of a weak solution for the Problem (1.1)
regularized by adding a viscous term in the mass conservation (equation
(1.1¢)) and with a truncation of f and 7. Then, in Section 4, we prove
Therorem 1.3 (namely the existence of a solution to (1.5)) passing to the
limit on a sequence of approximate solutions. Finally, in Section 5, we collect
some useful lemmas.

2. Convection-diffusion with the Neumann Boundary condition

In this section we consider here the following equation
—Ap + div(p(p)u) =0 in £, (2.1)

with the natural boundary condition which reads, if 2, v and p are regular
enough, —Vp-n+ ¢(p)u-n =0 (where n is the exterior normal vector to
the boundary of ().

Under the hypothesis u € LP(Q)" for some p > N, the weak formulation
of this problem is

p € HY(Q),
Jo Vo(z) - Vo(z)de — [, ¢(p(z))u(z) - Vo(z) de = 0 for all v € H'(Q).
(2.2)

The weak formulation (2.2) is meaningfull, at least if Q2 is a bounded open set
with a Lipschitz continuous boundary. Indeed, for N > 1 (the case N = 1 is
easier), for p € H(Q), one has p € L4(Q) for all ¢ < 2N/(N —2) (and even
g =2N/(N —2) if N > 2) and then, thanks to (1.4b), ¢(p) € LI(Q2), for the
same values of g. Then, for u € LP(Q)" and p > N, one has p(p)u € L%(Q)V
and ¢(p)u - Vv € LY(Q) if v € HY(Q).

We give in Theorem 2.1 an existence and uniqueness result for (2.2) along
with some useful properties. A similar result (in the linear case, ¢(p) = p)
is given in [4].

THEOREM 2.1. — Let Q be a connected bounded open set of RN (N =2
or 3) with a Lipschitz continuous boundary. Letp > N, u € LP(Q)N, M >0
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and ¢ be a function from R to R satisfying (1.4b). Then, there exist a unique
solution to problem (2.2) satisfying the additional condition [, p(x)dz = M.
Furthermore one has the two following properties:

1. p>0ae onQif M >0 (and p=0 a.e. on Q if M =0).

2. For any A > 0, there exists C' only depending on A, p, M, ¢ and Q)
such that, if p is the solution of (2.2) with [, p(x)dx = M, one has

[ ul ||LP(Q) <A= ||p||H1(Q) < C.

Remark 2.2. — Before giving the proof, we remark that the hypothesis
“p increasing” (Hypothesis (1.4a)) is unuseful in Theorem 2.1. On the con-
trary, the hypothesis ¢(0) = 0 is crucial (in order to have the positivity of

p)-
Proof. — The proof is divided in 3 steps.

Step 1 proves the a priori positivity of p. Namely, if p satisfy (2.2) with
Jo p(x)dz = M, then p > 0 a.e. in Qif M >0 and p =0 a.e. in Q if M = 0.
Using similar arguments, we prove in this step the uniqueness (but not the
existence) for all M given, of the solution of (2.2) with [, p(z)dz = M.
Step 2 gives an a priori estimate on the solutions of (2.2) with [, p(z)dz =
M. Indeed, it gives the second property of Theorem 2.1 (but not yet the
existence result). Step 3 gives the desired existence result, using the Leray-
Schauder topological degree.

Step 1, a priori positivity and uniqueness.— Let p be a solution of (2.2)
with [, p(x)dz = M. In order to prove that p > 0 a.e. if M > 0, we argue by
contradiction. We set w = {p < 0} and we assume that Ay (w) > 0 (where
Ay is the Lebesgue measure on RY).

For n € N* we define T}, from R to R by T, (s) = min{, max{s, 0}}. It
is well known that the function T},(p) belongs to H'(Q) and that

VTa(p) = 1locpc1 Vp ace. in Q.

Then, taking v = T;,(p) in (2.2) leads to

[ 9 tar = [ oo vra(oan < 22 [ VE()Pd)’, 23)

with

1

an = (/0<p<L |u|2dx) ’ (2.4)
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Since u € L2(Q)N and lim,, oo AN ({0 < p < %}) =0, one has lim,, .o, a, =
0. Using the fact that ||z[|11 ) < [|2]|z2(0)An (22)/2, we have

an
HYTa(o)l @) < HVTu(p)l llz2@) A ()2 < LWAN(Q)“?

We now remark that T,,(p) = 0 a.e. on w. Since Ay(w) > 0, Lemma 5.1
(which uses the connexity of ) gives the existence of C, only depending on
Q and w such that

1T (P)llzr ) < CIHIVTL ()] 1)

Since

S|

1
ITa(P) @) = ~An({p = —}),

we then have i
An({p =~} < LCan Ay ()2

Passing to the limit as n — oo leads to Ay ({p > 0}) = 0, that is p < 0 a.e..

If M > 0, it is impossible since fQ pdx = M > 0. Then, we conclude
that Ay (w) = 0, which gives p > 0 a.e. in Q.

If M =0, one has fQ pdr = M = 0 and then from p < 0 a.e. we conlude
that p =0 a.e. in Q.

By a similar argument, we now prove the uniqueness of the solution
of (2.2) with [, pdz = M. Let p; and ps be two solutions of (2.2) with
Joprdx = [, podx = M. We set p = p; — ps. Taking the difference of the
equations satisfied by p1 and ps, with v = T,,(p) as test function, we obtain
(2.3) with (2.4). Since [, p(z)dx = 0, we conclude (as in the preceding
proof) that p = 0 a.e.. This gives the uniqueness of the solution of (2.2)
with fQ pdx = M.

Actually, it is interesting to notice that the present step consists essen-
tially to prove that any solution of (2.2) has a constant sign.

Step 2, a priori estimate. — Let A > 0 and assume that || [u] || Lrq) < A.
Let p be a solution of (2.2) with [, pdz = M. Taking v = p in (2.2) and
2p

using Holder Inequality with ¢ = =] (which gives % + % = %) leads to

11Vl 122 () = /Q IVolPde < L |ul @) loll Loy | Vol 22 (0)- (2:5)

We choose ¢ such that ¢ < § < 400 if N =2 and ¢ = 6 if N = 3 (which
gives ¢ < q). By Sobolev Inequality, there exists Cs > 0 only depending on
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) such that
||P||Lq(9) Cs HPHHl(Q)

By Holder Inequality, we also have, with § = q(_(j—ql) € (0,1) (which only

depends on p and N),

loll oy < Nl lIol 5oty
This gives

pllzog) < MPC3 ol tq)s
and, with (2.5),

1Vl L2y < LAMPCI|Ipll (2.6)

(DN

We now use the Poincaré-Wirtinger Inequality. It gives the existence of
Cp > 0 only depending on 2 such that

lp = MAN(Q) ™ 220) < Cpll Vol 220

(the connexity of € is used once again here).

Then we have

ol z2(@) < lp=MAa() ™ 2@+ MAa(R) ™2 < Cpll [Vl |12y +MAa(2)

This gives
1

ol ) < (Cp + DI [VplllL2(0) + MAa(2)72. (2.7)
Finally, with (2.6) and (2.7), we obtain the existence of C; and Cs only
depending on A, M, p, L, and €2 such that

ol o) < Cl||p||H1?Q) + Cs.

Since 6 > 0, this gives the existence of C' only depending on A, M, p, L and
Q such that ||p|| g1 (o) < C and concludes this step.

Step 3, existence.— For u and M given, we have to prove the existence
of a solution to (2.2) with [, pde = M. Let t € [0,1] and ¢ = ]%. We
now define a continuous and compact map from [0,1] x L2(2) in L(2).
For t € [0,1] and p € L%(Q), since up(p) € L%(Q)Y, it is well known that
there exists a unique weak solution of the following problem (which is the
classical Neumann problem):

p€ HY(Q), /Q pdz =0, (2.8a)

/ Vp-Vu(z)dr = t/ wp(p) - Vo(x)dx for all v € H*(Q). (2.8b)
Q Q
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Since HY(Q2) C L9(Q), we can define the map F from [0,1] x L(Q) in
L2(Q) by setting

F(t,p) =t(p+ .

(t:p) =tr+ 3Ty
One has [, F(t, p)dx = tM. Then, if p = F(1, p), the function p is a solution
of (2.2) with [, pdx = M. We prove below the existence of such a function p
using the invariance by homotopy of the Leray-Schauder topological degree.

We first prove that F' is continuous. Let (¢, pn)nen be a sequence of
[0,1] x L(2) such that ¢, — ¢ (in R) and p,, — pin L%(Q2) as n — oo. Since
¢ is Lipschitz continuous (hypothesis (1.4b)) one also has ¢(p,) — ©(p)
in L9(2) as n — oo (the continuity in L7 of the map p — ¢(p), when ¢ is
Lipschitz continuous is well known, see, for instance, [10]). Let p, be the
solution of (2.8) with ¢,, and p, instead of ¢ and p. The sequence (pp,),eN
is bounded in H'(Q). Then, up a subsequence, there exists p € H'(£2) such
that p, — p weakly in H'(Q). Then, passing to the limit (as n — co) in
the equations satisfied by p,, we prove that p is solution of (2.8). Since
this solution is unique, we obtain that p, — p weakly in H'(Q) without
extraction of a sequence. Indeed, it is even possible to prove that p, — p
in H'(Q) since taking u, as test function in the equation satisfied by u,,
one obtains lim, . || [Vun||[z2() = || [Vul || z2(q). Finally, since the space
H(Q) is continuously embedded in L9(Q) (this is the Sobolev Embedding
Theorem since ¢ < 2N/(N — 2)), one has p, — p in L(€2) and this proves
that F is continuous from [0,1] x LI(©2) to L1(Q).

Furthermore, since H'(f2) is compactly embedded in L7(€) (once again
since ¢ < 2N/(N — 2)), the function F' is compact from [0, 1] x L(Q2) to
L1(Q).

Now, we remark that

(t€[0,1], p € LI(Q), p= F(t,p)) = p is solution of (2.2) With/ p=tM.
Q

A quick look on Step 2 gives an H' estimate on p, namely,
(t€0,1], p€ LYQ), p= F(t,p)) = IC > Osuch that ||p| g1 () < C.
Then, there exists R > 0 such that
(te[0.1], pe LUQ), p=F(t.p)) = lpllLi) <R

Let Bpg be the ball of radius R and center 0 in L9(£2). The topological degree
of Id—F(t,-) (where Id is the map p — p) on By associated to point 0 is well
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to point 0 is well defined and is independant of ¢ € [0, 1]. This gives d(Id —
F(1,-),Bgr,0) =d(Id—F(0,-), Bg,0). But, since F(0,-) = 0, we have d(Id—
F(0,-),Bgr,0) = 1. Thend(Id—F(1,-), Br,0) = 1. This proves the existence
of p € Bg such that p = F(1,p) and concludes the proof of the Theorem
2.1. (|

3. The regularized problem

In this section, we prove the existence of a solution for Problem 1.1
regularized by adding a diffusion term in (1.1¢) and replacing f and n by
truncated functions.

For n € N, one defines the function 7;, from R to R by setting
T, (s) = min{max{s, —n},n}.

For s = (s1,...,8n) € RV, one sets T,,(s) = (T,,(s1),...,Tn(sn)). Then,
the regularized problem reads, for n,l,m € N*,

we HYQ)N, pe HI(9), pe IX(9), (3.1a)
/ Vu:Voudr — / p div(v) dz = / fiz, p) -vdx, Yo € HY(Q)N, (3.1b)
Q Q Q
/ o(p)u - Vipdr — %/ Vo(x) - Vp(x) dr = 0 for all op € H'(Q), (3.1c)
Q Q
p>0ae. in Q, /pdx:M, » = nm(p) a.e. in £, (3.1d)
Q

where fi(z,s) =Ti(f(z,s)) and N, (s) = Tin(n(s)) for x € Q and s € R.

PROPOSITION 3.1. — Let M > 0 and Q) be a connected bounded open set
of RN (N > 1) with a Lipschitz continuous boundary. Assume that (1.2),
(1.8) and (1.4b) are fulfilled. Let I, m, n € N*. Then (3.1) has at least one
solution.

Proof. — We will apply the Brouwer Fixed Point Theorem to a conve-
nient application T' from L?(2) to L?(Q2).

Let p € L?(Q2). We set p = 0,,(p"). Knowing p and p, The classical Lax-
Milgram lemma gives existence and uniqueness of u solution of the following
problem:

ueHYO)Y,
Vu:Vudr = / p div(v) dx +/ filx, p) -vda, Yo € HE(Q)N.
Q Q
(3.2)

Q
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Knowing u, Therorem 2.1 gives existence and uniqueness of p solution of
the following problem:

pe Hl(Q),/ p(x) de = M,
Q
1
- /Q Vp(z) - Vip(x)dx — /Q o(p(x))u(z) - Vo(r)dz = 0, Vip € H(Q).
(3.3)

Then, we set T'(p) = p. We now prove that the function T" is continuous
and compact (from L?(2) to L?(Q2)) and that there exists R > 0 such that
Im(T) C Bpg, where B = {p € L*(Q); ||pll2(0) < R} (and we conclude
with the Brouwer theorem).

e Continuity of T'

This is the tricky part of the proof of Proposition 3.1. Let (px)ren @
sequence in L2(£2). We suppose that g, converges to p in L%(2) and we will
prove that pp = T(px) — T(p) in L?(Q) as k — +oc.

We first remark that, as k — 400, pr — p and pr = Do) —
P = nm(pT) in L2(Q) and f,(-, pr) — fi(-,p) in L?(Q) (this can be proven
arguing by contradiction and using the a.e. convergence or directly with
the convergence in measure as in Theorem 4.45 in [10] for L'). Let u be the
solution of (3.2) and, for k € N, uy, be the solution of (3.2) with pj, and gy, in
the right hand side. A classical result for an elliptic equation with Dirichlet
boundary condition gives that u; — u in Hg(£2), as k — +o0. Furthermore,
taking v = uy, as test function in the equation satisfied by uy, we obtain the
existence of Cy only depending on m, [ and €2 such that

[kl g2~ < Ch. (3.4)

Then, Sobolev embedding gives the existence of C5 only depending on m, {
and Q and p for p € [1,+00) if N =2 and p = 6 for N = 3, such that, for
all k € N,

lullLe )y < Co (3.5)

Let now py be the solution of (3.3) with u = uy, namely the solution of the
following problem:

pr € H'(), /QPkZM,

%/ Vi (z) - Vo(z)de — / o(pr(2))ug(z) - Vo(z)de =0, Yo € H(Q).
? N (3.6)
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Theorem 2.1 and inequality (3.5) gives the existence of C3 only depending
onn, m, l, ¢, M, and € such that

x|l ) < Cs (3.7)
and then, there exists p € H'(2) such that, up to a subsequence,
pr — p in L*(Q) and weakly in H'(Q).

Passing to the limit (as k — +00) in (3.6) gives that p is solution of (3.3).
Thanks to the uniqueness of the solution of (3.3), this give (arguing by con-
tradiction) that pr — p (in L2(Q2) and weakly in H'(f2)), as k — oo, without
extraction of a sequence. Since p = T(p), we have proven the continuity of
T from L?(Q) in L?(Q).

e Compactness of T and existence of R.

This part is a consequence of the estimate (3.7). Actually, this estimate
gives that Im(7") is bounded in H'(£2) and then is compact in L?(Q2), thanks
to Rellich Theorem. This gives the compactness of T' and the existence of
R > 0 such that Im(7T") C Br. We then conclude, using the Brouwer Fixed
Point Theorem, that there exists p € L?({2) such that T(p) = p which gives
that p is a solution of problem (3.1) (in particular, we recall that Theorem
2.1 gives that p > 0 a.e. in Q). O

4. Proof of Theorem 1.3

In this section we pass to the limit on the regularized problem in order
to prove the existence of a solution to (1.5). We assume that the hypotheses
of Theorem 1.3 are satisfied. Thanks to the previous section, we know that
the regularized problem has a solution. This regularized problem is defined
with three parameters which are m, [, and n. We will first let m — +oo
(Step 1), then I — 400 (Step 2) and finally n — 400 (Step 3).

Step 1, m — +oo.— In this step [ and n are fixed in N* and we prove
the existence of a solution to (3.1) with n instead of 7,,, namely a solution
to (4.1).

we BV, pe HY(Q), pe I2(©), (4.1a)

/ Vu:Voudr — / p div(v) dz = / fiz, p) - vdx, Yo € Hy(Q)N, (4.1b)
Q Q Q

/ w(p)u- Vipdr — l/ Vo(x) - Vp(x) de = 0 for all op € H'(Q), (4.1c)
Q nJa

p>0ae. in Q, / pdx =M, p=mn(p) a.e. in Q. (4.1d)
Q
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Let (um,Pm,pm) be a solution of (3.1). Taking u,, as test function in
(3.1b) yields (where Hu||Hé(Q)N = [ IVul||2(0))

H“W”?{&(Q)N _/pmdiv(um)d9€=/fz(x,pm)'umdx.
Q Q

which gives, since py, = 9 (Pm),

i By = [ o) @ivtum) o = [ fe )t

We now use Lemma 5.2. It gives, thanks to the fact that (pm,,un,) satisfy
Equation (3.1¢), [q 7m(pm) div(up)dz < 0 (this Lemma uses hypothesis
(1.4b) on ¢ and the fact that ¢(s) > 0 for s > 0). Then, we have

2y < [ Fiapm) -
Q

Using Poincaré and Hoélder inequalities, we obtain the existence of Cy only
depending on [ and €2 such that

HumHHé(Q)N < (. (4.2)

Using (4.2) and theorem 2.1, there exists Cy only depending on I, Q, M, ¢
and n such that

lom (@) < Ca. (4.3)

In order to obtain a bound for p,, in L?(Q2), we now choose v given by
Lemma 5.3 with ¢ = p,,, — m(pm), where m(p,,) is the mean value of p,,.
Taking v in (3.1b) and using [, div(v) dz = 0 give

/ (pm — m(pm))2 dz = /(fl(x,pm) v — Vuy, : Vo) d.
Q Q

Then, since [|v]| g1y < Ca [pm — m(pm)llLz(q) (Ca given by Lemma 5.3)
and |[um g3 @)y < C1, the preceding inequality leads to an estimate on the

L2-norm of (p,, — m(pm)), i-e. the existence of C3, only depending on
and [ , such that

Hpm - m(pm)||L2(Q) < Cs. (4~4)

We now use the fact that [, p,, dz = M to deduce an estimate on ||py, || L2(q).-
The function 7 is a one-to-one function from R, onto R,. We denote by
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7 its reciprocal function (that is 7(n(s)) = n(7j(s)) = s for all s € Ry). we
thus get

Ltvade = [ anaton)ds < [ atnion)) do= [ o do=ar

and then, using (4.4) and Lemma 5.4 | there exists Cy, only depending on
the , I, n and M, such that:

[PmllLz@) < Ci. (4.5)

Remark 4.1. — The fact that 7 is increasing is not necessary here. If n
is only nondecreasing, the estimate on p is obtained using the reciprocal
function of s — n(s) + s (instead of the reciprocal function of 7). This is
useful for Theorem 4.2.

Thanks to the estimates (4.2), (4.3) and (4.5), we have, up to a subse-
quence, as m — +00,

Uy, — u weakly in HL(Q)V,
pm — pa.e., in L*(Q) and weakly in H'(Q),
Pm — p weakly in L2(Q).

Then, passing to the limit (as m — 4o00) in the equations satisfied by
(U, Py Pm) gives that (u,p,p) is solution of (4.1). In particular, since
Nm(pm) — 1(p) a.e and (9 (pPm))men is bounded in L?(Q2), one has 1, (pm) —
n(p) in LI(Q) for all ¢ < 2. Since 1y (pm) = pm — p weakly in L?(2), we
then conclude that p = n(p). We recall also that the fact that p > 0 a.e. in
Q is given by Theorem 2.1. This concludes the proof of Step 1.

Step 2, | — 400.— In this step n is fixed in N* and we prove the
existence of a solution to (4.1) with f instead of f;, namely a solution to
(4.6).

we HQV, pe H(Q), pe L3(Q), (4.6a)
/ Vu:Voudz — / p div(v) dx = / f(x,p)-vdz, Yo € HY(Q)N, (4.6b)
Q Q Q
1
/ w(p)u- Vipdr — ﬁ/ Vo(x) - Vp(x) dz = 0 for all o» € H'(Q), (4.6¢)
Q Q

p>0ae. in Q, / pdx =M, p=mn(p) a.e. in Q. (4.6d)
Q
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Let (ug, pi, p1) be a solution of (4.1). The main additionnal difficulty with
respect to Step 1 is to obtain the HJ(f2) estimate on w;. Taking u; as test
function in (4.1b) yields

il oy = [ mivtu)de = [ o) ws,

which gives, since p; = n(p;),

gy = [ o) div(an)do = [ fiGo.p) - do.

Thanks to the fact that (p;,w;) satisfy Equation (4.1c) and using Lemma
5.2 one has [, n(p) div(u;) dz < 0. Then, we have

||ul||§{5(mzv < /Qfl(ﬂﬁ,pl) -uy dx.

Using Poincaré and Cauchy-Schwarz inequalities, we obtain the existence of
C only depending on f and €2 such that

el gy ey < Calllorllzcay + 1). (4.7)

Using (1.3b) and p; = n(p;), for all € > 0 there exists C. only depending on
€,n and 2 such that:

lpllz2(0) < Ce + ellprllL2()- (4.8)

Then, with (4.7), for all € > 0, there exists 6’; only depending on €, f, and
), such that

il gy < Ce+ ellpillL2(@)- (4.9)

We now choose (as in Step 1) v given by Lemma 5.3 with ¢ = p; —
m(p;), where m(p;) is the mean value of p;. Taking v in (4.1b) and using
Jo div(v) dz = 0 give

[ = mip)* do = [ (itop) -0 = Vs Vo) da. (4.10)
Q Q

Since [[v]|g2v < Callpm — m(Pm)|L2) (Ca given by Lemma 5.3), In-
equalities (4.10) and (4.9) (and Poincaré Inequality) give the existence of

C. only depending on €, f, n and (2, such that

o = m(p)ll 20 < €llpllrz) + Ce.
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As in Step 1, we now use [, pm dz = M (and the fonction 7). Taking € < 1
gives, by Lemma 5.4 , the existence of C5, only depending on the Q, f, n
and M, such that

[Pz < Co. (4.11)

As in Remark 4.1, this estimate holds also if 7 is nondecreasing (instead of
increasing).

With (4.11), turning back to (4.9) and (4.8), there exists Cs, only de-
pending on €2, f, n and M, such that

w2y < Cs and ||prll 2y < Cs. (4.12)

Since n is fixed, we also obtain an H!(Q) estimate on p;. Actually, Theorem
2.1 gives the existence of Cy only depending on the Q, f, n, M, ¢ and n
such that

il 1) < Ca (4.13)

Thanks to the estimates obtained in this Step 2, it is possible to assume (up
to a subsequence) that, as | — +o0:

e u; — uin L2(Q)Y and weakly in H} (Q)V,
e o, — p ae, in L2(Q) and weakly in H(Q),
e p; — p weakly in L2(Q).

Then, passing to the limit (as | — +4o00) in the equations satisfied by
(ug, p1,p1) gives that (u,p, p) is solution of (4.6). In particular, as in Step
1, since n(p)) — n(p) a.e and ((p;))men is bounded in L?(Q), one has
n(p1) = n(p) in LY(Q) for all ¢ < 2. Since n(p;) = p; — p weakly in L?(Q),
we then conclude that p = n(p). Here also, we recall that the fact that p > 0
a.e. in  is given by Theorem 2.1. This concludes the proof of Step 2.

Step 3, n — +oo.— Step 2 gives, for all n € N* the existence of
(Umpn,pn) such that

u, € HY(Q)N, p, € HY(Q), p, € L*(Q), (4.14a)
/Vun : Vvdx—/pn div(v) dx = / f(x, pp) - vda, Yo € Hy(Q)N,
? ? ? (4.14b)
/an(pn)un -Vipdr — % /Q Von(x) - Vip(x)dx = 0 for all ¢ € H*(Q),
(4.14c)
pn >0 a.e in Q, /Qpn de =M, p, =n(pn) a.e. in Q. (4.144d)
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In order to obtain a solution of (1.5), we have to pass to the limit in these
equations as n — +o0.

As in Step 2, we obtain an H} () estimate on u,, and an L?({2) estimate
on p, and p, (the proof is the same as in Step 2, replacing f; by f). Namely,
there exists C7 only depending on 2, f, n and M, such that

[unllmg@)vs lonllzz@)s Pallez@) < Cr (4.15)

Thanks to these estimates, it is possible to assume (up to a subsequence)
that, as n — +o0,

e u, — uin L2(Q)Y and weakly in HL(Q)",

e p, — p weakly in L?(Q),
e p, — p weakly in L?(Q).

But, we do not have an H!(Q2) estimate on p,, (this estimate in Step 2 was
depending on n). So, we need some additional tricks to prove the conver-

gence of f(-,pn), p(pn) and n(pn) to f(-, p), ¢(p) and n(p).

We first remark that the weak convergence of p, in L?(Q) gives p > 0
a.e. and [, pdx = M.

We now try to pass to the limit in (4.14b) and (4.14c). For n € N*, we
set h, = f(-,pn) and ¢, = @(pn). Thanks to Hypothesis (1.2) on f and
Hypothesis (1.4b) on ¢, the sequences (hy,),en+ and (¢n)pen+ are bounded
in L2(Q)Y and L?(€2). Then, it is possible to assume (up to a subsequence)
that, as n — 400,

e h, — h weakly in L?(Q)V,
e g, — q weakly in L?(9).

Thanks to the convergence of u,, p, and h,, it is quite easy to pass to the
limit, as n — oo, in (4.14b). We obtain

/ Vu:Vudr — / p div(v)dz = / h-vdz, Yo € Hy(Q)N. (4.16)
Q Q Q
We prove now that
/ qu - Vi dz =0 for all 1p € WH>(Q), (4.17)
Q

Let € > 0 and n € N*. We take ¢ = In(p,, + €) in (4.14¢) (this is possible
since p, > 0 a.e. and then v € H*(£2)). We obtain

Vpu(x)

1 [ [Vpul)P |
pn(:Z:) +e

nJo pn(x) +€

1
m:EAvavwmm=Aw%mmm
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We define ¢ by ¢(s) = [, “ggfé)dé“ for s > 0. Thanks to (1.4b), one has
|¢(s)] < Ls (and |¢(s)| < Ls) for all s > 0. Since p, € H(Q) and p,, > 0

a.e., one has ¢(p,) € H*(Q) and the previous equality gives

L[ 190l

n o pn(x) +€

z = / u(@) - V(p()) di = / H(pn () div (u(2)) da.
Q Q

Then, thanks to (4.15), there exists Cy only depending on €, f, n and M,

such that

1 2
L9, o
nJo pn(x) +€

When € — 0, this inequality gives, with the theorem of Monotone Conver-
gence, for all n € N*

L[ V@),
n/Q @) dz < Cs. (4.18)

Inequality (4.18) allows us to prove (4.17). Indeed, let ¢» € W1>°(Q). Thanks
to the convergence of u,, to u in L?(2) and to the weak convergence of (p,,)
to ¢ in L?(Q2), one has, as n — oo,

/ (on)tn - Vi d — / qu- Vi de,
Q Q

and Inequality (4.18) gives
1 1
E / V() - Vi) de| < /O V4 ||l (e — O.
n Q \/ﬁ

Then, passing to the limit in (4.14c¢) (with ¢ € WH°(Q)) leads to (4.17).

The main difficulty now is that we do not know if h = f(-,p) and ¢ =
¢(p) (except in the very interesting case where f(z,p) = f(x) + g(x)p(z),
with f € L?(Q) and g € L*°(£2)) and we do not know if p = n(p) (at least,

up to a subsequence). In order to prove these results, we will first show that

lim inf / N / pqdz.
n—oo Jq Q

Since the sequence (g, ),en is bounded in L?(2), Lemma 5.5 gives the exis-
tence of a bounded sequence (v, ),cn in HY(Q)Y such that div(v,) = g, and
curl(vy,) = 0. It is possible to assume (up to a subsequence) that v, — v
in L2(Q)N and weakly in H'(2)"V. Passing to the limit as n — oo gives
div(v) = g and curl(v) = 0.
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Let ¢ € C°(Q) (so that v,y € Hy(Q)Y). Taking v = v, in (4.14b)
leads to

/ Vu, : V(v,9) dz — / P div(v,t)) do = / hy - (vp1)) dex.

Q Q Q

Since uy,, va € HYH(Q)YN one has

/ Vuy, : Voo de = / curl(uy,) - curl(v,v) dx —|—/ div(u,) div(v,) de.
Q Q Q

Thus,

/ div(uy,) div(v,) dx —|—/ curl(uy, ) - curl(v,v) dx
Q Q
— / pp div(vpt) do = / hy - (vp0) d.
Q Q

The choice of v,, gives div(v,¥) = ¢, + v, - Vi and curl(v,v) = L(¢)vy,
where L(t)) is a matrix with entries involving the first order derivatives of
1. Then, the previous equality yields

/ (div(un) - pn) Gn Y dx + / div(uy) vy, - Voo dx
Q Q
+ /curl(un) - L(Y) vy dx — /Qpnvn -Vipdr = /th (vp) dx.

Thanks to the weak convergence of u,, in Hj ()% to u, the weak convergence
of p, in L%(Q) to p, the weak convergence of h, in L2(Q)) to h and the
convergence of v, in L2(Q)" to v, we obtain:

lim (div(un) — pn) qn ¥ dx = /

h - (vy) dx — / div(u)v - Vi dz
Q
- / curl(u) - L(y) vdx + / pv-Vipde. (4.19)
Q Q
But, thanks to (4.16), (u,p) satisfies:
/QVU : V(vy) dx — /Qp div(vy) da = /Q h - (vy) dx,

or equivalently:

/Qdiv(u) div(ve)) dw—l—/chrl(u)-curl(m/J) dx—/deiV(m/J) dx:/h~(v¢) dx,

Q
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which gives (using div(v) = ¢ and curl(v) = 0)
/ (div(u) — p) gy dz + / div(u) v - Vi dz + / curl(u) - L(¢) vdx
Q Q Q
—/pv-Vz/Jd:E = / h-(v)dx.
Q Q
Then, with (4.19), we obtain:

lim [ (pn — div(u,)) ¢u ¥ do = /Q(p — div(u)) gt dz. (4.20)

n—o0 Q

In (4.20), the function ¢ is an arbitrary element of C°(Q2). We are going to
prove now that it is possible to take ¢ = 1 in this relation.

Let a > 0. Thanks to (1.4b) and (1.3b), there exists b > 0 such, a.e. on

Q,
agqn = a@(pn) < n(pn) +b=pn+b,
so that 9 9
2p 2b
2 n
WSz T

If C' is a bound for the L?-norm of p,, (we already have such a bound), one
obtains for any borelian subset A of €2,

20% 2p?
/ @dr < — + —14].
A a a
Let € > 0, we then take a? = 202 /e which yields:

262
/ prdr < e+ — |A].
A a
, ca?
and then, with § = —,
2b2

|A] <5¢/qidz§25.
A

This proves the equi-integrability of the sequence (q2),cn. Since the se-
quence ((divy, w, — pn))nen is bounded in L2(9), we then easily conclude
(with the Cauchy-Schwarz inequality) that the sequence ((diva, n—Dn)Gn)neN
is equi-integrable. Thus Lemma 5.7 yields the conclusion, namely (4.20) is
true for ¢ =1 a.e. on {2

lim [ (div(un) — pn) gn dz = / (div(u) — p) g da. (4.21)
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We now use the fact that ¢ is continuous and nondecreasing. It gives, by
Lemma 5.3 with ¢ = ¢, that

/ gndiv(u,)dz = / o(pn)div(uy,)dx <0
Q Q
and then
/ PnGn dx = / (pnfdiv(un)) qn dx+/ div(uy,) gn dx < / (pnfdiv(un)) qn dx.
Q Q Q Q
With (4.21) it yields
lim sup/ DPndn dr < / (p — div(u)) qdz.
Q Q

n— oo

We now recall that (g, u) satisfy (4.17). One has u € H}(Q), ¢ € L*(Q) and
g > 0 a.e. (since ¢ is nondecreasing and then g, = ¢(p,) = 0 a.e.). Then,
Lemma 5.8 gives [, qdiv(u)dz = 0 which gives

limsup/pnqn dxg/pqu
n—00 0 Q

and, up to a subsequence, we can assume

lim [ ppqndr < / pqdz. (4.22)
Q Q

n—oo

We now use the fact that ¢ and 7 are increasing. The function 7 is a one-
to-one function from R onto R. We denote by 7 the reciprocal function of
7 (that is 7(n(s)) = n(f(s)) = s for all s € Ry). Thanks to (1.3b), there
exists b € R such that 0 < 7j(s) < s +b for all s € Ry. Then 7(p) € L*(Q)
(since p € LA(R)). We set p = 7(p) (so that 5(p) = p) and G = ((pn) —
©0(p))(n(pn) —n(p)) so that G, € LY(Q), G,, > 0 a.e. and

0</Gndwz/qnpndx—/qnpdx—/w(ﬁ)pnder/w(ﬁ)pdx.
Q Q Q Q Q

Thanks to (4.22) and to the L?(£2) weak convergences of ¢, and p, to p and
q, passing to the limit, as n — oo, in the previous inequality leads to

0< lim Gndarz/g(q—w(ﬁ))(p—p)dw=0-

n—oo Q
This gives G,, — 0 in L*(2) and then, up to a subsequence,

Gn = (p(pn) = (P))(n(pn) —n(p)) = 0 a.e. in Q. (4.23)
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Thanks to the fact that ¢ and 7 are increasing, a classical argument by
contradiction gives, from (4.23), that p, — p a.e. in Q as n — oo (see,
for instance [5]). Since the sequence (p,),en is bounded in L?(12), we then
conclude that p, — p in LI(Q) for all ¢ < 2. But, we already know that
pn — p weakly in L?(Q) (and therefore weakly in LI(£2) for ¢ < 2). Then,
the uniqueness of the weak limit gives p = p a.e.. Therefore, we also obtain
that ¢ = ¢(p) a.e., h = f(-,p) a.e. and p = n(p) a.e. and this proves that
(u, p,p) is solution of (1.5). This concludes the proof of Theorem 1.3. O

The following theorem (Theorem 4.2) is devoted to the important case
where f(z,p) = f(x) + g(z)p(x) and ¢(p) = p). In this case, the hypothesis
“n is increasing” can be replaced by the weaker hypothesis “n is nondecreas-
ing”.

THEOREM 4.2. — Let M > 0 and € be a connected bounded open set of
RN (N > 1) with a Lipschitz continuous boundary. Assume that f(x,p) =
f(x) + g(@)p(x), with f € L2 Q)N and g € L=(Q)N. Assume that n satisfy
(1.8) but with n nondecreasing instead of n increasing. Then (1.5) has at
least one solution.

Proof.— In order to prove this theorem, there are some minor changes
to do in the proof of Theorem 1.3.

In Step 1 of the proof of Theorem 1.3, we have to change the definition
of 7 in order to have the estimate on p,,. We take, for 7, the reciprocal
function of the function s — n(s) + s (which is one-to-one from R, onto
R,), as it is explained in remark 4.1.

In Step 3, since p, — p weakly in L?(£2), as n — oo, the hypotheses on
¢ and f give ¢ = p and h = f(,p). Then it remains only to prove that

p=n(p)

Thanks to fact that 7 is nondecreasing, we now use the Minty-trick. In
order to have 7 defined on the whole R, we set n(s) = s for s < 0. Let
p € L*(Q) such that n(p) € L?(Q). Since pn, p, n(pn), n(p) € L*() one
has, for all n € N*,

0< /Q (Pn — P)(0ow) — 1(p)) dax = / (Pn— P)pn — () dz.  (4.24)

Q

Thanks to (4.22) and to the L?(Q2) weak convergences of p,, and p,, to p and
p, passing to the limit, as n — oo, in the previous inequality leads to

0</Q(p—/3)(p—77(ﬁ))d$-
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which gives also
0< [ o=+ =)~ ) (4.25)

Let 77 be the reciprocal function of the function s — n(s) + s (which is a
one-to-one function from R onto R). Let p € L?(€). Since 0 < 7j(s) < s for
all s € Ry, one has 7(p) € L*(Q) and we can take p = 7(p) in (4.25), it
yields

0< /Q (p— 1) (p + p— p) da. (4.26)

Let ¢ € C°(2) and € > 0. Taking p = p+ p+e€yp in (4.26) and letting e — 0
leads to, with the Dominated Convergence Theorem,

o<~ [0+ pvin

Since 1) is arbitrary in C2°(2), we then conclude that p = 7j(p+ p) a.e. and,
finally, p = n(p) a.e.. This concludes Theorem 4.2. |

5. Some lemmas

LEMMA 5.1. — Let Q be a connected bounded open set of RN (N > 1)
with a Lipschitz continuous boundary. Let w C € be a measurable set with
positive Lebesgue measure. We define the set W, by:

W, = {u € WHH(Q) such that u =0 a.e. in w}.

Then there exist C' only depending on Q and w such that

N
N-1
(5.1

llull ey < C VUl || 1y for all uw € W, and for all 1 < p <

)

Proof. — Since € is bounded, we only have to prove (5.1) for p = 1* =
N/(N —1). With the Sobolev Embedding Theorem, we already know that
there exist C only depending on Q such that [ul| L1+ (o) < C1llullwr.1 (o) for
all uw € WH(Q). Then we only have to show that on W, the W!l-norm of
u is equivalent to the L'-norm of the gradient of u, that is that there exists
C5 only depending on €2 and w such that

||u||L1(Q) < 02” |V’LL| ||L1(Q) for all u € W,. (5.2)
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In order to prove the existence of Cy such that (5.2) holds, we argue by
contradiction. We assume the existence of a sequence (uy,),en+ in W, such
that

lunllLr(@) = 0l [Vun| |11 (@) for all n € N*.

Replacing u, by un/||tunl/11(q), We can assume that |[u,||z1q) = 1. Then,
(tn)pen+ is bounded in WH1(Q) and it is relatively compact in L(Q) (by
Rellich’ Theorem). Therefore, we can assume (up to a subsequence) that
Uy, — u in L1(Q) and a.e..

Furthermore, since
1
11V un| @) < o
one has Vu = 0 a.e. in ) and, since {2 is connected, u is a constant function.
Then, the fact that u, = 0 a.e. in w gives that u = 0 a.e. in w. Therefore u =
0 a.e. in €. But, this is impossible since u,, — u in L*(Q) and llwn |l 21 () =1
This concludes the proof of Lemma 5.1.

N.B. It is also possible to prove Lemma 5.1 using the “mean-value”
Sobolev Inequality (or also using the Poincaré-Wirtinger Inequality). Actu-
ally, there exists Cs only depending on © such that for all u € W11(Q) one
has, with mAn(Q) = [, u(z)dz,

|u —m| g1 ) < Csll [Vl [ L1

Then, for v € W, since gives
Sl el A () < OVl o

Then, we have |m| < W” |Vul||£1(q), and we conclude by using

. An ()3 1/1*
1+ <|Ju—m|| s g N 1(q)-
ol @ < fa=rml @ Hm A (@ <G (L (F05) )11Vl ooy

O

LEMMA 5.2. — Let Q be a connected bounded open set of RN (N =2 or
3) with a Lipschitz continuous boundary. Let ¢ be a function from R to R
satisfying (1.4b) and such that p(s) > 0 if s > 0. Letn € N*, M > 0, u €
H{(Q)N and p € HY(Q) a solution of the following problem:
1
[ eouta)- Vo - 1 [ Vo) o)z =0 vp e 1 (@),
) )
plx)de = M.
(5.3)
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Then, p > 0 and for ® € C°(RT,R) nondecreasing such that ®(0) = 0
and ®(p) € L*(2),

O (p)div(u) dz <0 (5.4)
Q

Proof.— The positivity of the solution p of (5.3) results from theorem
2.1.
We now give the proof of (5.4) which is composed of four steps.

Step 1.— Let o, 3,7 € R%, 8 < . We suppose in this case that &
satisfies the following properties:

® € C(R), nondecreasing,
®=0on]— 0,0,
® = aonly, +o0l.

dt.

S P(t

Let U defined by ¥(s) = / ®)
0 (1)

Taking ¢ = W o p € H(Q) in equation (5.3), that is

1
/QSD(P)U'V@Z’dQ?*ﬁ/QVP'Vl/Jd:E—O,

we obtain

Y I_l 2(1)/(0) T =
/Qu ' (p)Vpd n/Q|Vp| 200) dr =0

Using the fact that the function ® is nondecreasing and p > 0, we get

/ ud'(p)Vpdr >0
Q

and then since u € H} ()4,

/ D (p)div(u) dz < 0.
)

Step 2.— In this step, we also have o, 8,7 € R}, < a and we take ®
satisfying
® € C°(R), nondecreasing,
®=0on]— 0,4,
® = aonly, oo

- 871 —



A. Fettah, T. Gallouét, H. Lakehal

Let (am)mens € CP(R) be a sequence of mollifiers, that is a,,(s) =
ma(ms) (for s € R, m € N*), a € C®(R,Ry), a(s) = 01if |s] > 1 and
Jgodz =1.

Let ®@,,, = ® * a,,. We then get by Step 1, if 1/m <

/ D, (p)div(u)dz <0
Q
and then using the fact that

P, > PaeinR

and
[P lLoe <[[@f|Loelm |z = [| @] Lo

we thus get applying the Dominated Convergence Theorem, as m — +o00,

/ O (p)div(u) dz < 0.
Q

Step 3.— In this step we take o, v € R} and ® satisfying
® € C°(R), nondecreasing,

® =0on|— o0,0]
® = qon|a, +00l.

Let 8 > 0 and ®g defined by ®s(z) = ®(x — 5) so that &g = Oon]| —
00, B]. Then by Step 2 we get

/Qfl)n(p)div(u) de <0

Finally, applying the Dominated Convergence Theorem, we get as 8 — 0

/Qfl)(p)div(u) dx <0 (5.5)

Step 4.— In this step we take ® satisfying
® € C°(R), nondecreasing,
®(0) =0,
®(p) € L*(Q).

- 872 -



Viscous approximation for compressible Stokes problem

Let n € N* we define ®,, by ®,(s) = min(n, ®(s7)) where s = max(0, s).
By Step 3 we have

/ ., (p)div(u)dr < 0.
Q

Since p > 0 and ®(p) € L%(Q), applying the Dominated Convergence The-
orem we pass to the limit as n — 400 and we get

/ D (p)div(u) dz < 0.
Q

O

The following lemma is well-known. A simple proof of this result is given
in [2].

LEMMA 5.3. — Let Q be a bounded open subset of RN (N > 1) with a
Lipschitz continuous boundary. Let ¢ € L2(2) such that fQ qdx = 0. Then,
there exists w € HY(Q)N such that div(w) = q a.e. in Q and [wl zp oy~ <
Callqllz2(q) where Cy only depends on .

LEMMA 5.4. — Let Q be a bounded set of RN(N > 1) and p € L*(Q),
p =0 a.e.. We assume that there exist 0 < a <1 and b € R such that

lp — m|r2) = allpll2@) + b,

where m is the mean value of p. Furthermore, we assume that there exist
A € R and a continuous function 0 from R™ to R such that fQ O(p)dx < A
and limg_, 4 o0 0(s) = +00. Then, there exists C only depending on Q,a,b, A
and 0 such that

pllz2) < C.

The proof of Lemma 5.4 is in [7].

LEMMA 5.5. — Let Q be a bounded open set of RN and q € L2(S2). Then,
there exists v € HY(Q)N such that div(v) = q a.e. in Q, curl(v) =0 a.e. in
Q and ||[v|lgr @)y < CllqllL2() where C only depends on Q.

Proof. — This lemma is very classical. For instance, it is possible to take
v = Vw where w € H}(Q) is the weak solution of Aw = ¢ in a ball B
containing § (see, for instance, [5]). O

DEFINITION 5.6. — Let Q be a subset of RN. A sequence (Fy,),en C
LY(Q) is said equi-integrable if

lim / |Fy| dz = 0, uniformly with respect to n € N,
AN(A)=0 S 4
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where An(A) denotes the N—dimensional Lebesgue measure of the Borelian
subset A C €.

LEMMA 5.7. — Let Q be a bounded open subset of RN. Let (F,),en C
LY(Q) be an equi-integrable sequence, and F be a function of L1(Q). We
assume that:

lim | Fh,pdr= [ Fedx for all o € C°(Q). (5.6)
Q

Then

n—oo

lim F, dx = / Fdzx.
Q Q

Lemma 5.7 is well-known. A proof is given, for instance, in [5].

LEMMA 5.8. — Let Q be a bounded open subset of RN, Let q € L*(Q),
q>0 ae inQ and u € HY(Q)N. Assume that (q,u) satisfies:

/ qu - Vpdr = 0 for all 1y € WH>(Q). (5.7)
Q

Then,
/ gdiv(u)dz = 0. (5.8)
Q

See [5] for a proof of Lemma 5.8.
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