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Monomial ideals with 3-linear resolutions

Marcel Morales(2), Abbas Nasrollah Nejad(1),
Ali Akbar Yazdan Pour(1,2), Rashid Zaare-Nahandi(1)

ABSTRACT. — In this paper, we study the Castelnuovo-Mumford regu-
larity of square-free monomial ideals generated in degree 3. We define
some operations on the clutters associated to such ideals and prove that
the regularity is preserved under these operations. We apply these oper-
ations to introduce some classes of ideals with linear resolutions and also
show that any clutter corresponding to a triangulation of the sphere does
not have linear resolution while any proper subclutter of it has a linear
resolution.

RÉSUMÉ. — Dans cet article nous étudions la régularité de Castelnuovo-
Mumford des idéaux engendrés par des monômes libres de carré et de
degré trois. Nous définissons des opérations sur l’ensemble des clutters
associés à ces idéaux et démontrons que la régularité de Castelnuovo-
Mumford est conservée par ces opérations. Ces opérations nous permet-
tent d’introduire certaines classes d’idéaux ayant une résolution linéaire.
En particulier nous démontrons qu’aucun clutter correspondant à une tri-
angulation de la sphère a une résolution linéaire, mais par contre que tout
subclutter propre a une résolution linéaire.
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1. Introduction

Let S = K[x1, . . . , xn] be the polynomial ring over a field K, with
standard grading, and I be a homogeneous ideal of S. Computing the
Castelnuovo-Mumford regularity of I or even proving that the ideal I has
a linear resolution is difficult in general. It is known that a monomial ideal
has a d-linear resolution if and only if its polarization, which is a square-
free monomial ideal, has a d-linear resolution. Therefore, classification of
monomial ideals with linear resolution is equivalent to the classification
of square-free monomial ideals with this property. In this subject, one of
the fundamental results is the Eagon-Reiner theorem, which says that the
Stanley-Reisner ideal of a simplicial complex has a linear resolution if and
only if its Alexander dual is Cohen-Macaulay.

The problem of classifying 2-linear resolutions was completely solved by
Fröberg [7] (See also [8]). An ideal of S generated by square-free monomials
of degree 2 can be viewed as an edge ideal of a graph. Fröberg proved that
the edge ideal of a finite simple graph G has linear resolution if and only if
the complementary graph Ḡ of G is chordal, i.e., every induced cycle in G
has length three. Another approach using the same ideas as in this paper is
given in [9]. Also, Connon and Faridi in [3] give a necessary and sufficient
combinatorial condition for a monomial ideal to have a linear resolution
over fields of characteristic 2.

Clutters, a special class of hypergraphs, is another combinatorial object
that can be associated to square-free monomial ideals. Let [n] = {1, . . . , n}.
A clutter C on a vertex set [n] is a set of subsets of [n] (called circuits of
C) such that if e1 and e2 are distinct circuits, then e1 � e2. A d-circuit is
a circuit with d vertices, and a clutter is called d-uniform if every circuit is
a d-circuit. To any subset T = {i1, . . . , it} ⊂ [n] is associated a monomial
xT = xi1 · · ·xit ∈ K[x1, ..., xn]. Given a clutter C with circuits {e1, . . . , em},
the ideal generated by xej for all j = 1, . . . ,m is called the circuit ideal of
C and denoted by I(C). One says that a d-uniform clutter C has a linear
resolution if the circuit ideal of the complementary clutter C̄ has d-linear
resolution. Trying to generalize Fröberg’s result to d-uniform clutters (d >
2), several mathematicians including E. Emtander [6] and R. Woodroofe [13]
have defined the notion of chordal clutters and proved that any d-uniform
chordal clutter has a linear resolution. These results are one-sided. That is,
there are non-chordal d-uniform clutters with a linear resolution.

In the present paper, we introduce some reduction processes on 3-uniform
clutters which do not change the regularity of the ideal associated to this
clutter. Then a class of 3-uniform clutters which have a linear resolution
and a class of 3-uniform clutters which do not have a linear resolution are
constructed.
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Some of the results of this paper have been conjectured after explicit
computations performed by the computer algebra systems Singular [10]
and CoCoA [2].

2. Preliminaries

Let K be a field, let S = K[x1, . . . , xn] be the polynomial ring over K
with the standard grading, and let m = (x1, . . . , xn) be the unique maximal
graded ideal of S.

We quote the following well-known results that will be used in this paper.

Theorem 2.1 (Grothendieck, [11, Theorem 6.3]). — LetM be a finitely
generated S-module. Let t = depth (M) and d = dim(M). Then Hi

m(M) �= 0
for i = t and i = d, and Hi

m(M) = 0 for i < t and i > d.

Corollary 2.2. — LetM be a finitely generated S-module.M is Cohen-
Macaulay if and only if Hi

m(M) = 0 for i < dimM .

Lemma 2.3. — Let S = K[x1, . . . , xn, y1, . . . , ym] be the polynomial ring
and I be an ideal in K[y1, . . . , ym]. Then,

depth
S

(x1 · · ·xn) I
= depth

S

I
.

Definition 2.4 (Alexander duality). — For a square-free monomial ideal
I = (M1, . . . ,Mq) ⊂ K[x1, . . . , xn], the Alexander dual of I, denoted I∨, is
defined to be

I∨ = PM1
∩ · · · ∩ PMq

where PMi is prime ideal generated by {xj : xj |Mi}.

Definition 2.5. — Let I be a non-zero homogeneous ideal of S. For
every i ∈ N one defines

tSi (I) = max{j : βSi,j(I) �= 0}

where βSi,j(I) is the i, j-th graded Betti number of I as an S-module. The
Castelnuovo-Mumford regularity of I, is given by

reg (I) = sup{tSi (I)− i : i ∈ Z}.

We say that the ideal I has a d-linear resolution if I is generated by homo-
geneous polynomials of degree d and βSi,j(I) = 0 for all j �= i+ d and i � 0.
For an ideal which has a d-linear resolution, the Castelnuovo-Mumford reg-
ularity would be d.
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Theorem 2.6 (Eagon-Reiner [4, Theorem 3]). — Let I be a square-free
monomial ideal in S = K[x1, . . . , xn]. I has a q-linear resolution if and only
if S/I∨ is Cohen-Macaulay of dimension n− q.

Theorem 2.7 ([12, Theorem 2.1]). — Let I be a square-free monomial
ideal in S = K[x1, . . . , xn] with dimS/I � n− 2. Then,

dim
S

I∨
− depth

S

I∨
= reg (I)− indeg(I),

where indeg(I) denotes the minimum degree of generators of I.

Remark 2.8. — Let I, J be square-free monomial ideals generated by el-
ements of degree d � 2 in S = K[x1, . . . , xn]. By Theorem 2.7, we have

reg (I) = n− depth
S

I∨
, reg (J) = n− depth

S

J∨
.

Therefore, reg (I) = reg (J) if and only if depthS/I∨ = depthS/J∨.

Definition 2.9 (Clutter). — Let [n] = {1, . . . , n}. A clutter C on a ver-
tex set [n] is a set of subsets of [n] (called circuits of C) such that if e1 and
e2 are distinct circuits of C then e1 � e2. A d-circuit is a circuit consisting
of exactly d vertices, and a clutter is d-uniform if every circuit has exactly
d vertices. To any subset T = {i1, . . . , it} ⊂ [n] is associated a monomial
xT = xi1 · · ·xit ∈ K[x1, ..., xn].

For a non-empty clutter C on vertex set [n], we define the ideal I(C), as
follows:

I(C) = (xF : F ∈ C)
and we define I(∅) = 0.

Let n, d be positive integers and d � n. We define Cn,d, the maximal
d-uniform clutter on [n] as follows:

Cn,d = {F ⊂ [n] : |F | = d}.

If C is a d-uniform clutter on [n], we define C̄, the complement of C, to be

C̄ = Cn,d \ C = {F ⊂ [n] : |F | = d, F /∈ C}.

Frequently in this paper, we take a d-uniform clutter C and we consider the
square-free ideal I = I(C̄) in the polynomial ring S = K[x1, . . . , xn]. The
ideal I is called the circuit ideal.

– 880 –



Monomial ideals with 3-linear resolutions

Definition 2.10 (Clique). — Let C be a d-uniform clutter on [n]. A
subset G ⊂ [n] is called a clique in C, if all d-subset of G belongs to C.

Remark 2.11. — Let C be a d-uniform clutter on [n] and I = I(C̄) be the
circuit ideal. If G is a clique in C and F ∈ C̄, then ([n] \ G) ∩ F �= ∅. So
that x[n]\G ∈ PF . Hence

x[n]\G ∈
⋂

F∈C̄
PF = I∨.

Example 2.12. — It is well known that I(Cn,d) has linear resolution. One
way to prove it, is to show that the Alexander dual of I(Cn,d) is Cohen-
Macaulay by using [1, Exercise 5.1.23]. For a detailed proof we refer the
reader to [5, Theorem 3.1].

Definition 2.13 (Simplicial submaximal circuit). — Let C be a d-uni-
form clutter on [n]. A (d−1)-subset e ⊂ [n] is called a submaximal circuit of
C if there exists F ∈ C such that e ⊂ F . The set of all submaximal circuits
of C is denoted by E(C). For e ∈ E(C), let N [e] = e ∪

{
c ∈ [n] : e ∪ {c} ∈

C
}
⊂ [n]. We say that e is a simplicial submaximal circuit if N [e] is a clique

in C. In case of 3-uniform clutters, E(C) is called the edge set and we say
simplicial edge instead of simplicial submaximal circuit.

3. Operations on Clutters

In this section we introduce some operations for a clutter C, such as
changing or removing circuits, which do no change the regularity of the
circuit ideal. We begin this section with the following well-known results.

Lemma 3.1. — Let M be an R-module. For any submodules A,B,C of
M such that B ⊂ C, one has

(A+B) ∩ C = (A ∩ C) +B. (3.1)

Theorem 3.2 (Mayer-Vietoris sequence). — For any two ideals I1, I2
in the commutative Noetherian local ring (R,m), the short exact sequence

0 −→ R

I1 ∩ I2
−→ R

I1
⊕ R
I2
−→ R

I1 + I2
−→ 0

gives rise to the long exact sequence

· · · → Hi−1
m

(
R

I1+I2

)
→ Hi

m

(
R

I1∩I2

)
−→ Hi

m

(
R
I1

)
⊕Hi

m

(
R
I2

)
−→ Hi

m

(
R

I1+I2

)
→

→ Hi+1
m

(
R

I1+I2

)
→ · · · .
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Lemma 3.3. — Let I1, I2 be ideals in a commutative Noetherian local
ring (R,m) such that

depth R
I1
� depth R

I2
> depth R

I1+I2
.

Then, depth R
I1∩I2 = 1 + depth R

I1+I2
.

Proof. — Let r := 1 + depthR/(I1 + I2). Then, for all i < r,

Hi−1
m

(
R

I1+I2

)
= Hi

m

(
R
I1

)
= Hi

m

(
R
I2

)
= 0.

Hence by the Mayer-Vietoris exact sequence,

· · · → Hi−1
m

(
R
I1

)
⊕Hi−1

m

(
R
I2

)
→ Hi−1

m

(
R

I1+I2

)
→ Hi

m

(
R

I1∩I2

)

→ Hi
m

(
R
I1

)
⊕Hi

m

(
R
I2

)
→ · · ·

we have Hi
m

(
R

I1∩I2

)
= 0 for all i < r, and Hr

m

(
R

I1∩I2

)
�= 0. So that

depth
R

I1 ∩ I2
= r = 1 + depth

R

I1 + I2
.

Lemma 3.4. — Let I, I1, I2 be ideals in a commutative Noetherian local
ring (R,m) such that I = I1 + I2 and

r := depth
R

I1 ∩ I2
� depth

R

I2
.

Then, for all i < r − 1 one has

Hi
m

(
R

I1

)
∼= Hi

m

(
R

I

)
.

Proof. — For i < r − 1, our assumption implies that

Hi
m

(
R

I1∩I2

)
= Hi

m

(
R
I2

)
= Hi+1

m

(
R

I1∩I2

)
= 0.

Hence, from the Mayer-Vietoris exact sequence

· · · −→ Hi
m

(
R

I1∩I2

)
−→ Hi

m

(
R
I1

)
⊕Hi

m

(
R
I2

)
−→ Hi

m (RI ) −→ Hi+1
m

(
R

I1∩I2

)
−→ · · · .

we have

Hi
m

(
R

I1

)
∼= Hi

m

(
R

I

)
, for all i < r − 1,

as desired.
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Notation. — For n > 3, let T1,n, T
′
1,n ⊂ S = K[x1, . . . , xn] denote the

ideals

T1,n =
⋂

2�i<j�n
(x1, xi, xj), T ′1,n =

⋂

2�i<j�n
(xi, xj).

Proposition 3.5. — For n � 3, let S = K[x1, . . . , xn] be the polynomial
ring. Then

(i) T ′1,n =

( ∏
2�i�n
i �=2

xi, . . . ,
∏

2�i�n
i �=n

xi

)
and T1,n =

(
x1,

∏
2�i�n
i �=2

xi, . . . ,
∏

2�i�n
i �=n

xi

)
.

(ii)
S

T ′1,n
(res.

S

T1,n
) is Cohen-Macaulay of dimension n− 2 (res. n− 3).

Proof. — The assertion is well-known but one can find a direct proof
for the primary decomposition of the Alexander dual of T ′1,n in [8, Example
7].

Let C be a 3-uniform clutter on the vertex set [n]. It is clear that one
can also consider C as a 3-uniform clutter on [m] for any m � n. However,
C̄ (and hence I(C̄)) will be changed when we consider C either on [n] or on
[m]. To be more precise, when we pass from [n] to [n + 1], then the new
generators {xn+1xixj : 1 � i < j � n} will be added to I(C̄). Below, we will
show that the regularity does not change when we pass from [n] to [m].

Lemma 3.6. — Let I ⊂ K[x1, . . . , xn] be a square-free monomial ideal
generated in degree 3 such that x1xixj ∈ I for all 1 < i < j � n. If
J = I ∩K[x2, . . . , xn], then reg (I) = reg (J).

Proof. — By our assumption, J is an ideal of K[x2, . . . , xn] and

I = J + (x1xixj : 1 < i < j � n).

It follows that I∨ = J∨
⋂
T1,n. By Remark 2.8, it is enough to show that

depthS/I∨ = depthS/J∨.

The ideal J∨ is intersection of some primes P , such that the set of
generators of P is a subset of {x2, . . . , xn}. So that for all j,

∏
1<i�n−1
i �=j

xi ∈ J∨.

Hence J∨ + T1,n = (x1, J
∨) by Proposition 3.5(i). In particular

depth
S

J∨ + T1,n
= depth

S

J∨
− 1. (3.2)
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By Proposition 3.5 and (3.2), depth S
T1,n

� depth S
J∨ > depth S

J∨+T1,n
.

Hence by Lemma 3.3 and (3.2), we have

depth
S

I∨
= 1 + depth

S

J∨ + T1,n
= depth

S

J∨
.

Sometimes in this paper, where we mention depth of an ideal, we mean
the depth of the quotient ring over the ideal.

Theorem 3.7. — Let C �= Cn,d be a d-uniform clutter on [n] and e be a
simplicial submaximal circuit. Let

C′ = C \ e =
{
F ∈ C : e � F

}

and I = I(C̄), J = I(C̄′). Then, reg (I) = reg (J).

Proof. — By Remark 2.8, it is enough to show that depthS/I∨ =
depthS/J∨. Without loss of generality, we may assume that e = {1, . . . , d−
1} and N [e] = {1, . . . , r}.

Since e = {1, . . . , d − 1} is a simplicial submaximal circuit, by Re-
mark 2.11 and Lemma 3.1, we have:

I∨ = (x1, . . . , xd−1, xr+1 · · ·xn) ∩
( ⋂

F∈C̄
{1,...,d−1}�F

PF

)

=

[
(x1, . . . , xd−1) ∩

( ⋂

F∈C̄
{1,...,d−1}�F

PF
)]

+ (xr+1 · · ·xn),

J∨ = (x1, . . . , xd−1, xd · · ·xn) ∩
( ⋂

F∈C̄
{1,...,d−1}�F

PF

)

=

[
(x1, . . . , xd−1) ∩

( ⋂

F∈C̄
{1,...,d−1}�F

PF
)]

+ (xd · · ·xn).

Since

(x1, . . . , xd−1) ∩
( ⋂

F∈C̄
{1,...,d−1}�F

PF

)
∩ (xr+1 · · ·xn)

= (x1xr+1 · · ·xn, . . . , xd−1xr+1 · · ·xn),

(x1, . . . , xd−1) ∩
( ⋂

F∈C̄
{1,...,d−1}�F

PF

)
∩ (xd · · ·xn) = (x1xd · · ·xn, . . . , xd−1xd · · ·xn)
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have depth equal to n− (d− 1), by Lemma 3.4 we have:

Hi
m

(
S

I∨

)
∼= Hi

m

(
S

(x1, . . . , xd−1) ∩
( ⋂

F∈C̄
{1,...,d−1}�F

PF
)
)
∼= Hi

m

(
S

J∨

)
(3.3)

for all i < n− d.
Since dimS/I∨ = dimS/J∨ = n − d, the above equation implies that
depthS/I∨ = depthS/J∨.

For a d-uniform clutter C, if there exist only one circuit F ∈ C which
contains the submaximal circuit e ∈ E(C), then clearly e is a simplicial
submaximal circuit. Hence we have the following result.

Corollary 3.8. — Let C be a d-uniform clutter on [n] and I = I(C̄) be
the circuit ideal. If F is the only circuit containing the submaximal circuit
e, then reg (I) = reg (I + xF ).

Let C be 3-uniform clutter on [n] such that {1, 2, 3}, {1, 2, 4}, {1, 3, 4},
{2, 3, 4} ∈ C. If there exist no other circuit which contains e = {1, 2}, then e
is a simplicial edge. Hence by Theorem 3.7 we have the following corollary.

Theorem 3.9. — Let C be 3-uniform clutter on [n] and I = I(C̄) be the
circuit ideal of C̄. Assume that {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4} ∈ C and
there exist no other circuit which contains {1, 2}. If J = I+(x1x2x3, x1x2x4),
then reg (I) = reg (J).

E. Emtander in [6] has introduced a generalized chordal clutter to be a
d-uniform clutter, obtained inductively as follows:

• Cn,d is a generalized chordal clutter.

• If G is generalized chordal clutter, then so is C = G ∪Ci,d Cn,d for all
0 � i < n.

• If G is a generalized chordal clutter and V ⊂ V (G) is a finite set with
|V | = d and at least one element of {F ⊂ V : |F | = d − 1} is not a
subset of any element of G, then G ∪ V is generalized chordal.

Also R. Woodroofe in [13] has defined a simplicial vertex in a d-uniform
clutter to be a vertex v such that if it belongs to two circuits e1, e2, then,
there is another circuit in (e1 ∪ e2) \ {v}. He calls a clutter chordal if any
minor of the clutter has a simplicial vertex.
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Remark 3.10. — LetC be the class of 3-uniforms clutters which can be
transformed to the empty set after a sequence of deletions of simplicial
edges. Using Theorem 3.7, it is clear that if C ∈C , then the ideal I(C̄)
has a linear resolution over any field K. It is easy to see that generalized
3-uniform chordal clutters are contained in this class, so they have linear
resolution over any field K. This generalizes Theorem 5.1 of [6]. It is worth
mentioning thatC strictly contains the set of generalized chordal clutters.
For example, C = {123, 124, 134, 234, 125, 126, 156, 256} is in C but it is
not a generalized chordal clutter. Also it is easy to see that any 3-uniform
clutter which is chordal in the sense of [13] has simplicial edges.

Definition 3.11 (Flip). — Let C be 3-uniform clutter on [n]. Assume
that {1, 2, 3}, {1, 2, 4} ∈ C are the only circuits containing {1, 2} and there
is no circuit in C containing {3, 4}. Let C′ = C ∪

{
{1, 3, 4}, {2, 3, 4}

}
\{

{1, 2, 3}, {1, 2, 4}
}
. Then C′ is called a flip of C. Clearly, if C′ is a flip

of C, then C is a flip of C′ too (see the following illustration).

Corollary 3.12. — Let C be 3-uniform clutter on [n] and C′ be a flip
of C. Then, reg I(C̄) = reg I(C̄′).

Proof. — With the same notation as in the above definition, let C′′ = C∪{
{1, 3, 4}, {2, 3, 4}

}
. Theorem 3.9 applied to {3, 4}, shows that reg I(C̄′′) =

reg I(C̄′). Using Theorem 3.9 again applied to {1, 2}, we conclude that
reg I(C̄′′) = reg I(C̄). So that reg I(C̄) = reg I(C̄′), as desired.

For our next theorem, we use the following lemmas.

Lemma 3.13. — Let n � 4, S = K[x1, . . . , xn] be the polynomial ring
and Tn be the ideal

Tn = (x4 · · ·xn, x1x2x3 x̂4 · · ·xn, . . . , x1x2x3 x4 · · · x̂n).

Then, we have:

(i) Tn = (Tn−1 ∩ (xn)) + (x1x2x3 x4 · · · x̂n).

(ii) depth
S

Tn
= n− 2.
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Proof. — (i) This is an easy computation.

(ii) The proof is by induction on n. For n = 4, every thing is clear. Let
n > 4 and suppose (ii) is true for n− 1.
Clearly, (Tn−1 ∩ (xn)) ∩ (x1x2x3 x4 · · · x̂n) = (x1x2x3 x4 · · ·xn), and the
ring S/(x1x2x3 x4 · · ·xn) has depth n − 1. So by Lemma 3.4, 2.3 and the
induction hypothesis, we have:

depth
S

Tn
= depth

S

Tn−1
= n− 2.

Lemma 3.14 Let C be a 3-uniform clutter on [n] such that F = {1, 2, 3} ∈
C and for all r > 3,

{
{1, 2, r}, {1, 3, r}, {2, 3, r}

}
� C. (3.4)

Let C1 = C \ F and I = I(C̄), I1 = I(C̄1). Then,

(i) depth
S

I∨ + (x1, x2, x3)
� depth

S

I∨
− 1.

(ii) depth
S

I∨1
� depth

S

I∨
.

Proof. — Let t := depthS/I∨ � dimS/I∨ = n− 3.
(i) One can easily check that condition (3.4), is equivalent to saying that:

for all r > 3, there exists F ∈ C̄ such that PF ⊂ (x1, x2, x3, xr).

So that

I∨ =
⋂

F∈C̄
PF =


 ⋂

F∈C̄
PF


 ∩ ((x1, x2, x3, x4) ∩ · · · ∩ (x1, x2, x3, xn))

=


 ⋂

F∈C̄
PF


∩(x1, x2, x3, x4 · · ·xn) = I∨ ∩ (x1, x2, x3, x4 · · ·xn).

Clearly, x4 · · ·xn ∈ I∨. So, from the Mayer-Vietoris long exact sequence

· · · → Hi−1
m ( S

I∨ )⊕Hi−1
m

(
S

(x1,x2,x3,x4···xn)

)
→ Hi−1

m

(
S

I∨+(x1,x2,x3)

)
→ Hi

m ( S
I∨ )→ · · ·
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we have:

Hi−1
m

(
S

I∨ + (x1, x2, x3)

)
= 0, for all i < t � n− 3. (3.5)

This proves inequality (i).
(ii) Clearly, I∨1 = I∨ ∩ (x1, x2, x3). So from Mayer-Vietoris long exact se-
quence

· · · → Hi−1
m

(
S

I∨+(x1,x2,x3)

)
→ Hi

m

(
S
I∨1

)
→ Hi

m ( S
I∨ )⊕Hi

m

(
S

(x1,x2,x3)

)
→ · · ·

and (3.5), we have:

Hi
m

(
S

I∨1

)
= 0, for all i < t � n− 3.

Theorem 3.15. — Let C be a 3-uniform clutter on [n] such that F =
{1, 2, 3} ∈ C and for all r > 3,

{
{1, 2, r}, {1, 3, r}, {2, 3, r}

}
� C. Let C1 =

C \F , C′ = C1 ∪
{
{0, 1, 2}, {0, 1, 3}, {0, 2, 3}

}
and I = I(C̄), J = I(C̄′) be the

circuit ideals in the polynomial ring S = K[x0, x1, . . . , xn]. Then, reg (I) =
reg (J).

Proof. — By Remark 2.8, it is enough to show that depthS/I∨ =
depthS/J∨.

Let I1 = I(C̄1). Clearly, I∨1 = (x1, x2, x3) ∩ I∨ and

J∨ = I∨1 ∩
(

n⋂

i=4

(x0, x1, xi)

)
∩

(
n⋂

i=4

(x0, x2, xi)

)
∩


 ⋂

3�i<j�n
(x0, xi, xj)




= (x0, x4 · · ·xn, x1x2x3 x̂4 · · ·xn, . . . , x1x2x3 x4 · · · x̂n) ∩ I∨1 .

Let T be the ideal T = (x0, x4 · · ·xn, x1x2x3 x̂4 · · ·xn, . . . , x1x2x3 x4 · · · x̂n).
Then, J∨ = I∨1 ∩ T and by Lemma 3.13, depth S

T = n − 2. Moreover,
our assumption implies that for all i > 4, there exists F ∈ C̄ such that
PF ⊂ (x1, x2, x3, xr). So that
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I∨1 + T = (x0, x4 · · ·xn, I∨1 )

= (x0) +


x4 · · ·xn,


(x1, x2, x3) ∩


 ⋂

F∈C̄
PF










= (x0) +


(x1, x2, x3, x4) ∩ · · · ∩ (x1, x2, x3, xn) ∩


 ⋂

F∈C̄
PF







= (x0) +


 ⋂

F∈C̄
PF


 = (x0, I

∨). (3.6)

Hence, by Lemma 3.14(ii), depth S
I∨1 +T = depth S

I∨ − 1 � depth S
I∨1
− 1.

Thus, depth S
T � depth S

I∨1
> depth S

I∨1 +T . Using Lemma 3.3 and (3.6),

depth S
J∨ = 1 + depth S

I∨1 +T = depth S
I∨ .

Lemma 3.16. — Let T be a hexahedron. Then, the circuit ideal of T
does not have linear resolution. If T′ be the hexahedron without one or more
circuits, then the circuit ideal of T′ has a linear resolution.

Proof. — Let I = I(T̄). We know that T̄ = {145, 245, 345, 123}. So that

I∨ = (x1x2x3, x4, x5) ∩ (x1, x2, x3) ⊂ S := K[x1, . . . , x5].

It follows from Theorem 3.2 that H1
m

(
S
I∨

)
�= 0. Since dimS/I∨ = 5−3 = 2,

we conclude that S/I∨ is not Cohen-Macaulay. So that the ideal I does not
have linear resolution by Theorem 2.6.
The second part of the theorem, is a direct conclusion of Theorem 3.8.

Let S2 be a sphere in R3. A triangulation of S2 is a finite simple graph
embedded on S2 such that each face is triangular and any two faces share at
most one edge. Note that if C is a triangulation of a surface, then C defines
a 3-uniform clutter which we denote this again by C. Moreover, any proper
subclutter C′ ⊂ C has an edge e ∈ E(C′) such that e is contained in only
one circuit of C′.
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Corollary 3.17 Let S = K[x1, . . . , xn]. Let Pn be the clutter defined
by a triangulation of the sphere with n � 5 vertices, and let I ⊂ S be the
circuit ideal of Pn. Then,

(i) For any proper subclutter C1 ⊂ Pn, the ideal I(C̄1) has a linear reso-
lution.

(ii) S/I does not have linear resolution.

Proof. — (i) If C1 is a proper subclutter of Pn, then C1 has an edge e
such that e is contained in only one circuit of C1 and can be deleted without
changing the regularity by Corollary 3.8. Continuing this process proves the
assertion.

(ii) The proof is by induction on n, the number of vertices. First step
of induction is Lemma 3.16. Let n > 5. If there is a vertex of degree 3 (the
number of edges passing through the vertex is 3), then by Theorem 3.15, we
can remove the vertex and three circuits containing it and add a new circuit
instead. Then, we have a clutter with fewer vertices and by the induction
hypothesis, S/I does not have linear resolution. Now, assume that there
are no vertices of degree three, and take a vertex u of degree > 3 and all
circuits containing u (see the following illustrations). Using several flips and
Corollary 3.12, we can reduce our triangulation to another one such that
there are only 3 circuits containing u. Now, using Theorem 3.15, we get a
triangulation of the sphere with n − 1 vertices which does not have linear
resolution by the induction hypothesis.
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Remark 3.18. — Let Pn be the 3-uniform clutter as in Corollary 3.17.
Let I be the circuit ideal of P̄n and ∆ be a simplicial complex such that the
Stanley-Reisner ideal of ∆ is I. In this case, ∆∨, the Alexander dual of ∆, is
a pure simplicial complex of dimension n− 4 which is not Cohen-Macaulay,
but adding any new facet to ∆∨ makes it Cohen-Macaulay.
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