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Levels of Distribution and the Affine Sieve

Alex Kontorovich(1)

ABSTRACT. — We discuss the notion of a “Level of Distribution” in two
settings. The first deals with primes in progressions, and the role this
plays in Yitang Zhang’s theorem on bounded gaps between primes. The
second concerns the Affine Sieve and its applications.

RÉSUMÉ. — Nous discutons de la notion de ”Niveau de Distribution”
dans deux contextes. Le premier concerne les nombres premiers en pro-
gression, et le rôle qu’elle joue dans le théorème de Yitang Zhang sur les
écarts bornés entre nombres premiers. Le second concerne le Crible Affine
et ses applications.
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1. Introduction

This article is an expanded version of the author’s lecture in the Basic
Notions Seminar at Harvard, September 2013. Our goal is a brief and in-
troductory exposition of aspects of two topics in sieve theory which have
received attention recently: (1) the spectacular work of Yitang Zhang, un-
der the title “Level of Distribution,” and (2) the so-called “Affine Sieve,”
introduced by Bourgain-Gamburd-Sarnak.

2. Level of Distribution for the Primes

Let pn be the nth prime number. We begin with the infamous

Twin Prime Conjecture:

lim inf
n→∞

(pn+1 − pn) = 2.

A slight weakening of this problem is called the

Bounded Gaps Conjecture:

lim inf
n→∞

(pn+1 − pn) < ∞.

A tremendous shock ran through the mathematical community in April
2013 when Yitang Zhang [104] proved

Zhang’s Theorem (2013). — The Bounded Gaps Conjecture is true.
In particular,

lim inf
n→∞

(pn+1 − pn) < 7× 107.

Our goal in this section is to explain what is meant by a “level of distri-
bution” for the primes, and give some hints of the role it plays in the proof
of Zhang’s theorem.
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2.1. The Distribution of Primes

First we recall the Prime Number Theorem (PNT), proved independently
and simultaneously by Hadamard [49] and de la Vallée Poussin [24] in 1896,
following the strategy introduced in Riemann’s 1859 epoch-making memoir
[85]. It is often stated as:

π(x) :=
∑

p<x

1 ∼ x

log x
, x→∞,

where, as throughout, log is to base e, and p denotes a prime. The first
Basic Notion is that this is the “wrong” formula, not in the sense of being
untrue, but in the sense that

π(x) =
x

log x
+ Ω

(
x

log2 x

)
, (2.1)

the error term being unnecessarily large. (Here Ω is the negation of little-oh.)
A more precise statement of PNT, not far from the best currently known,
is the following.

Prime Number Theorem. — For any A > 1,

π(x) = Li(x) + OA

(
x

logA x

)
, as x→∞. (2.2)

Here the subscript A in the big-Oh means that the implied constant
depends on A, and Li is the “logarithmic integral” function

Li(x) :=

∫ x

2

dt

log t
.

By an exercise in partial integration, we have that

Li(x) =
x

log x
+

x

log2 x
+ O

(
x

log3 x

)
,

which together with (2.2) implies (2.1). On the other hand, the Riemann
Hypothesis (RH) predicts that

π(x) = Li(x) + O(
√
x log x),

epitomizing the “square-root cancellation” phenomenon. If true, this esti-
mate would be best possible (up to log factors), as Littlewood proved in
1914 that

π(x) = Li(x) + Ω

(√
x

log log log x

log x

)
.
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In fact, he showed that the difference π(x) − Li(x) infinitely-often attains
both positive and negative values of this order of magnitude.

2.2. Primes in Progressions

The next most basic question is: How are the primes distributed in arith-
metic progressions? Given an integer q � 1, often called the “level” in this
context, and a coprime number (a, q) = 1, let

π(x; a, q) :=
∑

p<x
p≡a(modq)

1

denote the number of primes up to x in the progression a(modq). A relatively
minor modification to the proof of (2.2) gives

PNT in Progressions. — For any A > 1,

π(x; a, q) =
Li(x)

φ(q)
+ OA,q

(
x

logA x

)
, x→∞. (2.3)

Meanwhile, the Generalized Riemann Hypothesis (GRH) predicts

π(x; a, q) =
Li(x)

φ(q)
+ Oε

(
x1/2+ε

)
, (2.4)

for any ε > 0. These estimates confirm our intuition that primes should not
favor one primitive (meaning a and q are coprime) arithmetic progression
modq over others, there being φ(q) = |(Z/qZ)×| of them total.

In applications, it is often important to be able to use formulae like (2.3)
while allowing q to vary with x. For example, it does not seem unreasonable
that we should be able to use (2.3) to estimate, say, the number of primes
up to e100 which are 1 mod 1003, or primes up to e1000 which are 1 mod
10003, or more generally, primes up to x = e
 which are 1mod�3. In these
examples, we have taken a level of size q = �3 = log3 x which, it turns out,
is growing too rapidly relative to x to obtain a meaningful asymptotic from
present methods; the error terms in all of these questions might swamp the
main terms, giving no estimate at all.

To address this issue of uniformity in the level q, there is a famous
estimate proved by Walfisz [103] in 1936 by adapting work of Siegel [99].

Siegel-Walfisz Theorem. — Given any positive constants A and B,
any q < logB x, and any (a, q) = 1, we have

π(x; a, q) =
Li(x)

φ(q)
+ OA,B

(
x

logA x

)
. (2.5)
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It may appear that the uniformity issue in the range q < logB x has been
completely resolved, but there’s a catch: the implied constant in (2.5) coming
from the proof is “ineffective.” This means that, once the parameters A and
B are supplied, there is no known procedure to determine the constant. Thus
we still have no way of verifying that Li(e
)/φ(�3) is an accurate estimate for
π(e
; 1, �3). This so-called “Siegel zero” phenomenon is the sense in which
we do not know the PNT in progressions.

The danger of an ineffective constant is beautifully illustrated by Iwaniec’s
(facetious)

Theorem. — There exists a constant C > 0 such that, if RH holds up
to height C (meaning ζ(σ + it) �= 0 for all 1

2 < σ < 1, |t| < C), then RH
holds everywhere.

This fantastic result seems to reduce RH to a finite computation; before
we get too excited, let’s have a look at the

Proof. — There are two cases.

Case 1: Assume RH is true. Set C = 1, and RH holds.

Case 2: Assume RH is false, that is, ζ(σ + it) = 0 for some 1
2 < σ < 1

and some t > 0. Set C = t + 1. The statement is vacuously true. �

As an aside, we briefly recall that a similar phenomenon occurs in the
study of Gauss’s Class Number Problem. Let −d < 0 be the discriminant
of an imaginary quadratic field and let h(−d) be the corresponding class
number (see wikipedia for definitions, which will not be needed for our
discussion). In 1935, Siegel and Landau [66] (based on work of Hecke [65],
Deuring [23], Mordell [78], and Heilbronn [51]) independently proved that

h(−d) 	ε d1/2−ε, (2.6)

for any ε > 0. Again this implied constant is ineffective, and thus does not
allow one to, e.g., tabulate all d with h(−d) = 1 (the Class Number One
Problem). Much later, Goldfeld [39, 40] (1976) together with Gross-Zagier
[48] (1985) managed to circumvent the ineffectivity, proving

h(−d) >
1

55
log d, (2.7)

whenever d is prime (we make this restriction only to give the simplest
formula). Thanks to (2.7) (and much other work), we now have complete
tables of all d with class number up to 100. The point of this aside is
that, just because one proof gives an ineffective constant, there might be a
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completely different proof for which the constants are absolute. Resolving
this “Siegel zero” issue is one of the main outstanding problems in analytic
number theory.

2.3. Primes in Progressions on Average

In many applications, what is needed is not uniformity for a single level
q, but over a range of q. This is the heart of what is meant by a “level of
distribution,” as explained below.

Assuming GRH, we see from (2.4) that

∑

q<Q

max
(a,q)=1

∣∣∣∣π(x; a, q)− Li(x)

φ(q)

∣∣∣∣ 
ε

∑

q<Q

x1/2+ε < Qx1/2+ε. (2.8)

So if we take Q = x1/2−2ε, say, then the error terms add up to at most
x1−ε, while there are about x/ log x primes up to x. That is, all of these
errors summed together still do not exceed the total number of primes. This
immediately leads us to the

Definition: Level of Distribution (for primes in progressions). — We
will say that the primes have a level of distribution Q if, for all A <∞,

∑

q<Q

max
(a,q)=1

∣∣∣∣π(x; a, q)− Li(x)

φ(q)

∣∣∣∣ = OA

(
x

logA x

)
. (2.9)

When Q can be taken as large as xϑ−ε for some ϑ > 0, we call ϑ an exponent
of distribution for the primes.

Note that level of distribution is not a quantity inherent to the sequence
of primes, but is instead a function of what one can prove about the primes.
While GRH implies the level Q = x1/2−ε (or exponent ϑ = 1/2), the uncon-
ditional Siegel-Walfisz estimate (2.5) gives only a level of size Q = logA x,
which is not even a positive exponent ϑ.

It was a dramatic breakthrough when Bombieri [16] and A. I. Vinogradov
[102] (based on earlier work of Linnik [67], Renyi [83], Roth [86], and Barban
[1]) independently and simultaneously proved the

Bombieri-Vinogradov Theorem (1965). — The primes have expo-
nent of distribution ϑ = 1/2. More precisely, for any constant A > 1, there
exists a constant B > 1 so that

∑

q< x1/2

logB x

max
(a,q)=1

∣∣∣∣π(x; a, q)− Li(x)

φ(q)

∣∣∣∣ 
A
x

logA x
.
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The Bombieri-Vinogradov theorem (B-V) is thus an unconditional sub-
stitute for GRH on average, since both produce the same exponent of distri-
bution ϑ = 1/2! (The implied constant is still ineffective, as the proof uses
Siegel-Walfisz; we have not escaped the “Siegel zero” problem.)

Being even more ambitious, one may ask for variation in the size of the
error term; after all, we crudely imported the worst possible error from (2.4)
into (2.8). Applying a “square-root cancellation” philosophy yet again, one
might boldly posit that the term Qx1/2 on the right side of (2.8) can be
replaced by Q1/2x1/2, in which case Q can be taken as large as x1−ε. This
is the

Elliott-Halberstam Conjecture [25] (1968). — The primes have
exponent of distribution ϑ = 1. That is, for any ε > 0 and A <∞,

∑

q<x1−ε

max
(a,q)=1

∣∣∣∣π(x; a, q)− Li(x)

φ(q)

∣∣∣∣ = OA,ε

(
x

logA x

)
. (2.10)

The Elliott-Halberstam Conjecture (E-H), if true, goes far beyond any
RH-type statement, as far as we are aware. As long as we are already dream-
ing, we may as well suppose that this further square-root cancellation hap-
pens not only on average, as E-H claims, but individually; by this we mean
the following. Returning to (2.4), the “main” term is very roughly of size
x/q, so might not the error be of square-root the main term, not just square-
root of x? This is

Montgomery’s Conjecture [77] (1971). — For all ε > 0,

π(x; a, q) =
Li(x)

φ(q)
+ Oε

(
x1/2+ε

q1/2

)
.

Montgomery’s Conjecture immediately implies E-H, but we emphasize
again that both of these assertions are not, as far as we know, consequences
of any RH-type statement.

Nothing beyond B-V has ever been proved towards the pure level of
distribution defined in (2.9). But if one drops the absolute values, fixes one
non-zero integer a, and weights the errors at level q by a function λ(q) which
is “well-factorable” (the precise meaning of which we shall not give here),
then one can go a bit into the E-H range. Building on work by Fouvry-
Iwaniec [28, 35], we have the
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Bombieri-Friedlander-Iwaniec Theorem [5] (1986). — Fix any
a �= 0 and let λ(q) be a “well-factorable” function. Then for any A > 1 and
ε > 0,

∑

q<x4/7−ε

λ(q)

(
π(x; a, q)− Li(x)

φ(q)

)

a,A,ε

x

logA x
. (2.11)

Thus in the weighted sense above, the Bombieri-Friedlander-Iwaniec
Theorem (BFI) gives a weighted exponent of distribution

ϑ = 4/7 > 1/2,

giving some partial evidence towards E-H. But before we get too optimistic
about the full E-H, let us point out just how delicate the conjecture is.
Building on work of Maier [72], Friedlander and Granville [27] showed that
the level x1−ε in (2.10) cannot be replaced by x(log x)−A. More precisely,
we have the following

Friedlander-Granville Theorem (1989). — For any A > 0, there
exist arbitrarily large values of a and x for which

∑

q<x(log x)−A
(q,a)=1

∣∣∣∣π(x; a, q)− Li(x)

φ(q)

∣∣∣∣ 	A
x

log x
.

In particular, the asymptotic formula π(x; a, q) ∼ Li(x)/φ(q) can be false
for q as large as x/ logA x.

2.4. Small Gaps Between Primes

Let us return to the Bounded Gaps Conjecture (now Zhang’s Theorem).
Recall that pn is the nth prime. Before studying absolute gaps, what can
we say about gaps relative to the average? PNT tells us that pn ∼ n log n,
so the average gap pn+1 − pn is of size about log pn. Hence

∆ := lim inf
n→∞

pn+1 − pn
log pn

� 1. (2.12)

Here is a very abbreviated history on reducing the number on the right side
of (2.12).
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Hardy-Littlewood [84] (1926): ∆ � 2/3, assuming GRH.
Erdös [26] (1940): ∆ < 1, unconditional; by sieving.

Bombieri-Davenport [4] (1966): ∆ � 1/2,
unconditional; by refining
Hardy-Littlewood and
replacing GRH by B-V.

Maier [56, 73] (1988): ∆ < 1/4,
unconditional; using a
radically different method

Goldston [41] (1992): ∆ = 0,
assuming E-H and another
E-H type conjecture.

Goldston-Pintz-Yıldırım [43] (2005): ∆ = 0, unconditional.

In fact, Goldston-Pintz-Yıldırım (GPY) were able to push their method
even further to show unconditionally [44] that

lim inf
n→∞

pn+1 − pn
(log pn)1/2(log log pn)2

< ∞.

So consecutive primes infinitely often differ by about square-root of the
average gap. Moreover, assuming the primes have any level of distribution
ϑ > 1/2, that is, any level in the E-H range (going beyond B-V), the GPY
method gives a conditional proof of the Bounded Gaps Conjecture.

The GPY method has been explained in great detail in a number of
beautiful expositions (e.g. [100, 42]) so we will not repeat the discussion
here, contenting ourselves with just a few words on Zhang’s advances. Once
GPY was understood by the community, the big open question, in light
of BFI, was whether the “weights” λ(q) from (2.11) could somehow be
incorporated into the GPY method, so that in the resulting error analysis,
B-V could be replaced by BFI. There was even a meeting at the American
Institute of Mathematics in November 2005, at which one working group
was devoted to exactly this problem. At the time, at least to some, it did
not seem promising.

Yitang Zhang’s accomplishment, then, was threefold. He first changed
the GPY weighting functions in a clever way (in fact a similar change had
been observed independently by Motohashi-Pintz [79] and others), then he
proved an analogue of the GPY sieving theorem with his new weights (as
Motohashi-Pintz had also done), and finally (and most spectacularly!), he
proved a more flexible1 analogue of BFI which incorporates his new weights.
In this technical tour-de-force, he was able to break the ϑ = 1/2 barrier in
the weighted level of distribution of the primes, and complete the program
initiated by Goldston in [41].

(1) The most important aspect of Zhang’s version is that the shift variable a is allowed
to vary, as opposed to (2.11) where it must be fixed.
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Here is one final Basic Notion on this topic: Zhang’s Theorem, at least as
it currently stands, is ineffective! What he actually proves is a twin-prime
analogue of Bertrand’s Postulate (that for any x > 1, there is a prime
between x and 2x).

Zhang’s Theorem, Again. — For every x sufficiently large, there is a
pair of primes with difference at most 7× 107 in the range [x, 2x].

How large is sufficiently large? It depends on whether or not GRH is
true! Like most others, Zhang too relies at some early stage on the ineffective
Siegel-Walfisz Theorem, and for this reason cannot escape Siegel zeros. (On
the other hand, Heath-Brown [50] has famously shown that if GRH fails
and there is a particularly “bad” sequence of Siegel zeros, then the Twin
Prime Conjecture would follow!)

For further reading, we recommend any number of excellent texts, e.g.
[22, 57, 31], and of course the original papers.

Added in proof. — It is very fortunate for the author that he chose to
focus this survey on the “level of distribution” aspect of Zhang’s work.
In November 2013, James Maynard [74] (and independently, Terry Tao),
developing an earlier attempted version of a method by Goldston-Yıldırım,
succeeded in proving the even more shocking result:

Maynard’s Theorem. — For any � � 1,

lim inf
n→∞

(pn+
 − pn) <∞.

That is, one can find not only prime pairs which differ by a bounded
amount, but also prime triples, quadruples, etc. Most remarkably, Maynard
only needs the primes to have any exponent of distribution ϑ > 0 for his
method to work (so now not even B-V is needed)! Nevertheless, Zhang’s
spectacular achievement in going beyond the Riemann hypothesis in giving
a flexible (weighted) exponent of distribution beyond θ = 1/2 will stand
the test of time, and will surely find other applications. For a beautiful
exposition of this aspect of Zhang’s work, see the recent arXiv posting by
Friedlander-Iwaniec [32].

3. The Affine Sieve

The goal of the Affine Sieve, initiated by Bourgain-Gamburd-Sarnak and
completed by Salehi Golsefidy-Sarnak, is to extend to the greatest generality
possible the mechanism of the Brun sieve. We will first discuss the latter
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in §3.1 before turning our attention to the former. In §3.2 we motivate
the general theory with an elementary problem, before presenting (some
aspects of) the general theory in §3.3. This will again not be a rigorous
or comprehensive survey (for which we refer the reader to any number of
expositions, e.g. [91, 92, 46, 64, 96], in addition to the original papers [7, 8,
97]), but rather (we hope) a gentle introduction for the beginner. We apply
the general theory to a few more illustrative examples in §§3.4–3.5, where
we also give a discussion of Thin Orbits, see in particular §3.5.

While the general theory is in principle “complete,” in that the Brun
sieve can now be executed on matrix orbits, the whole program is far from
finished, if one wishes to produce actual primes or almost-primes with very
few factors in specific settings. We wish to highlight here some instances in
which one can go beyond the capabilities of the general theory. In certain
special settings, one can now produce actual primes in Affine Sieve-type
problems by applying a variety of methods, each completely different from
the general framework; we review some of these in §3.6. Finally, we discuss in
§3.7 other special settings in which, though primes cannot yet be produced,
novel techniques have nevertheless given improved levels of distribution, in
the end coming quite close to producing primes. We hope these give the
reader some sense of the present landscape.

3.1. The Brun Sieve

As throughout, we give only the most basic ideas. The first sieving pro-
cedure for producing tables of primes is credited to the ancient Eratosthenes
(∼200 BCE), whose method exposes a simple but important observation:
if n < x and n has no prime factors below

√
x, then n is prime. Thus to

make a table of the primes up to 100, one needs only to strike out (sieve)
numbers divisible by 2, 3, 5, and 7 (the primes below 10 =

√
100). A very

slight generalization of the above is that: if n < x has no prime factors
below x1/(R+1), then n is a product of at most R primes. We call such a
number R-almost-prime, and let PR denote the set of R-almost-primes.

As a warmup, let us try (and fail) to prove the PNT by sieving. To
count the primes up to x, we first take the integers up to x (there are x
of them), throw out those divisible by 2 (there are roughly x/2 of them),
then 3 (there are roughly x/3 of them), and so on for all primes up to

√
x.

But then we have twice thrown out multiplies of 2 × 3 = 6, so should add
them back in (there are roughly x/6 of them), and so on goes the familiar
inclusion-exclusion principle:

π(x)
?≈ x− x

2
− x

3
− · · ·+ x

2× 3
+

x

2× 5
+ · · · − x

2× 3× 5
− · · ·
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The problem with this approach is two-fold. First of all, the word “roughly”
above is very dangerous; it hides the error rq = rq(x) in

#{n < x : n ≡ 0(modq)} =
x

q
+ rq, |rq| < 1. (3.1)

These remainder terms rq, when added together with absolute values in the
inclusion-exclusion procedure, very quickly swamp the main term. Perhaps
we are simply too crude and a better estimation of these errors can make
the above rigorous? Alas, were this the case, an elementary analysis (see,
e.g., [45]) will predict that

π(x) ∼ 2e−γ
x

log x
,

where γ is the Euler-Mascheroni constant,

γ := lim
n→∞

(
1 +

1

2
+

1

3
+

1

4
+ · · ·+ 1

n
− log n

)
≈ 0.577.

Since 2e−γ ≈ 1.12, we would be off by a constant from the truth. So these
error terms must be at least of the same order as the main term. This simple
sieving procedure cannot by itself prove the PNT.

It was a technical tour-de-force when Brun [?] managed to push argu-
ments of the above flavor, together with a heavy dose of combinatorics and
other estimates, to prove a different type of approximation to the Twin
Prime Conjecture, in some sense orthogonal to Zhang’s Theorem.

Brun’s Theorem (1919). — There are infinitely many integers n so
that both n and n + 2 have at most nine prime factors.

That is, infinitely often n and n+2 are simultaneously in PR with R = 9.
After much work by many people, the sieve was finally pushed to its limit2

in [20]:

Chen’s Theorem (1973). — There are infinitely many primes p so
that p + 2 is either prime or the product of two primes.

It was realized long ago that this sieving procedure applies to much more
general problems. Suppose we have an infinite set of natural numbers

S ⊂ N (3.2)

and wish to prove the existence and abundance of primes or R-almost-
primes in S. Roughly speaking, all that is needed is an appropriate analogue

(2) See the discussion of the “parity problem” in, e.g., [29].
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of (3.1). In particular, suppose that S is fairly well distributed on average
among multiples of q, in the sense that3

#{n ∈ S ∩ [1, x] : n ≡ 0(q)} =
1

q
#{S ∩ [1, x]}+ rq, (3.3)

(or perhaps with 1/q in (3.3) replaced by some analytically similar function
like 1/φ(q)), where the errors are controlled by

∑

q<Q

|rq| = o (#{S ∩ [1, x]}) , (3.4)

for some Q. Such an expression should look familiar; it is in some sense the
generalization of (2.9), and Q is likewise called a level of distribution for
S. Then the sieve technology (again very roughly) tells us that if Q can be
taken as large as a power of x, say

Q = xϑ−ε (3.5)

for some exponent of distribution ϑ > 0, then S contains R-almost-primes,
with

R =

⌈
1

ϑ
+ ε

⌉
. (3.6)

For example, if S is the set of shifted primes, S = {p + 2 : p prime},
then the Bombieri-Vinogradov Theorem gives us an exponent of distribution
ϑ = 1/2, which gives R-almost-primes in S with R = �2+ ε� = 3. To obtain
[thm:Chen]Chen’s Theorem is much much harder.

3.2. Affine Sieve Warmup: Pythagorean Areas

Arguably the oldest “Affine Sieve” problem is the following. Let (x, y, z)
be a Pythagorean triple, that is, an integer solution to the equation x2+y2 =
z2. What can one say about the number of prime factors of the area 1

2xy of
a Pythagorean triple?

It was known to the ancients that Pythagorean triples x = (x, y, z)
with coprime entries and x odd are parametrized by coprime pairs (c, d) of
opposite parity with

x = c2 − d2, y = 2cd, z = c2 + d2. (3.7)

(3) There are various ways the assumption (3.3) can (and should) be relaxed and
generalized further, but for the purposes of our discussion, we will ignore all technicalities
and stick with this simple-minded version.
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In fact, it is easy to see that the area is always divisible by 6, so we can
further remove unwanted prime factors by studying the function f(x) =
1
12xy. Observe that in the parametrization (3.7), we have

f(x) =
1

12
xy =

1

6
cd(c + d)(c− d). (3.8)

When does f(x) have few prime factors? That is, for which R and triples x
is f(x) ∈ PR?

One can easily check that there are only finitely many pairs (c, d) so that
(3.8) is the product of two primes. The largest such pair is (c, d) = (7, 6),
which corresponds to the triple x = (13, 84, 85) of one-sixth area f(x) =
1
1213× 84 = 91 = 7× 13.

Allowing R = 3 primes, we could set, say, d = 2; then from (3.8), we are
asking for many c’s so that 1

3c(c−2)(c+2) is the product of three primes (a
type of “triplet prime” problem). As the reader may surmise, it is expected
that infinitely many such c’s exist, but this seems far outside the range of
what can be proved today. Nevertheless, it should be clear that for f(x) to
have three prime factors, x must be of some “special” form, so either c or d
(or their sum or difference) must be “small”; see Figure 1.

Figure 1. — A piece of the cone V in (3.9) with markings at the primitive Pythagorean
triples x. Points x are marked according to whether the “area” f(x) = 1

12
xy is in PR

with R � 3 ( ), R = 4 ( ), or R � 5 ( ).

A better way of saying this is to use the Zariski topology. The ambient
variety on which all Pythagorean triples live is the cone V given by

V : F (x) = 0, (3.9)

where F is the quadratic form

F (x) = x2 + y2 − z2. (3.10)
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Let XR denote the set of integer Pythagorean triples x with f(x) ∈ PR.
Then a restatement of the “smallness” of points in X3 is that is a proper
subvariety of V . That is, points in X3 have extra algebraic relations.

This “smallness” somehow fundamentally changes the nature of the
problem; e.g. setting d = 2 as above, one is asking for a “triplet prime”
type statement, rather than the original area problem. It seems natural,
then, to exclude such small solutions. That is, we shall insist on finding an
R so that the set XR is Zariski dense in V ; this means that any polynomial
which vanishes on all of XR must also vanish on V .

If we now allow R = 4 prime factors, then we see in Figure 1 that such
points seem to spread out all over the cone. In fact, it was observed in
[8] that Green-Tao’s revolutionary work [47] on linear equations in primes
rigorously establishes the Zariski density of X4 in V . This is because f(x)
in (3.8) is the product of four linear factors in two variables, which in the
Green-Tao nomenclature is a system of “finite complexity” (we refer the
reader to their paper for the definition, which is not needed here). Thus the
problem of Pythagorean areas, at least if one insists on Zariski density, is
completely solved.

3.2.1. Reformulation

What does this simple problem have to do with orbits? Let

G = SOF (R) = SO2,1(R)

be the real special orthogonal group preserving the quadratic form F in
(3.10); that is,

G = {g ∈ SL3(R) : F (g · x) = F (x), ∀x}. (3.11)

This is a nice algebraic (defined by polynomial equations) Lie group, and
its integer subgroup

Γ := SOF (Z) (3.12)

is a nice arithmetic (the set of integer points on an algebraic group) discrete
group.

To make these groups slightly less mysterious, it is a well-known fact (see,
e.g., the discussion in [63, §4]) that they can be parametrized, as follows. It
can be checked that whenever

(
a b
c d

)
∈ SL2(R),
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the matrix

g :=




1
2

(
a2 − b2 − c2 + d2

)
ac− bd 1

2

(
a2 − b2 + c2 − d2

)

ab− cd bc + ad ab + cd
1
2

(
a2 + b2 − c2 − d2

)
ac + bd 1

2

(
a2 + b2 + c2 + d2

)


 (3.13)

is in G. Likewise, Γ is essentially the image under the above morphism of
the more familiar discrete group SL2(Z).

The set of all primitive Pythagorean triples (up to symmetry) is then
given by the orbit:

O := Γ · x0, (3.14)

where x0 is any primitive base point x0 ∈ V (Z), e.g.

x0 = (3, 4, 5).

To study the area, we again consider the function f(x) = 1
12xy, and ask for

an R so that the set XR of x ∈ O with f(x) ∈ PR is Zariski dense in the
cone V in (3.9), which is the Zariski closure of O.

3.3. The General Procedure

We have taken a very simple problem and made it look very complicated.
But now we have seen almost all of the essential features of the general

Affine Sieve: One takes

(1) a finitely generated subgroup Γ of GLn(Q) (later we will want to
relax this to allow semigroups),

(2) some base point x0 ∈ Qn, which then forms the orbit O as in (3.14),
and

(3) a polynomial function f which takes integer values on O.

With this data, one asks for an (or the smallest) integer R <∞ so that the
set

XR = XR(O, f) := {x ∈ O : f(x) ∈ PR}
is Zariski dense in the Zariski closure of O. In practice, the Zariski den-
sity is not hard to establish, so we will simply say that f(O) contains R-
almost-primes (or that we have produced R-almost-primes) to mean the
more precise statement.

Let us see now how the general Affine Sieve method proceeds. In the
notation of (3.2), we wish to sift for R-almost-primes in the set

S := f(O).
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As in (3.3), we must understand the distribution of S ∩ [1, x] among the
multiples of q up to some level Q. Roughly speaking, if γ ∈ Γ is of size ‖γ‖
about T , then so is the size of ‖x‖, where x = γ · x0, since the base point
x0 is fixed.4 If f is a polynomial of degree d, then generically f(x) is of size
T d for such an x. Hence restricting S to f(x) < x is roughly the same as
restricting ‖γ‖ < T with T = x1/d. The left hand side of (3.3) may then be
captured in essence by

∑

γ∈Γ

‖γ‖<x1/d

1{f(γ·x0)≡0(q)}. (3.15)

We should first determine what happens if q = 1, that is, when the congru-
ence condition is dropped. Say the group Γ has exponent of growth

δ > 0, (3.16)

which means roughly that the number of points in Γ of norm at most T is
about T δ, or ∑

γ∈Γ

‖γ‖<x1/d

1 = xδ/d+o(1). (3.17)

Note that for general q, the condition f(γ · x0) ≡ 0(q) is only a restriction
on γ mod q, so we can decompose the sum above into residue classes as

∑

γ0∈Γ(modq)

1{f(γ0·x0)≡0(q)}




∑

γ∈Γ

‖γ‖<x1/d

1{γ≡γ0(q)}


 . (3.18)

The bracketed term above is the key to the whole game. What do we expect?
If the euclidean ball in Γ of size x1/d is equidistributed among the possible
residue classes mod q, then the bracketed term should be “roughly” equal
to

1

|Γ(modq)|
∑

γ∈Γ

‖γ‖<x1/d

1.

In reality, one can prove today in some generality thanks to the work of
many people (e.g. [94, 68, 69, 58, 2, 19, 21, 101, 37, 6, 8, 9, 52, 10, 82, 98])

(4) For simplicity, take all norms here to be Euclidean, though in many settings it is
advantageous (or even necessary, since we do not yet know how to count with archimedean
norms in full generality!) to use other norms, e.g., the wordlength metric in the generators
of Γ.
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an estimate of the form

∑

γ∈Γ

‖γ‖<x1/d

1{γ≡γ0(q)} =
1

|Γ(modq)|
∑

γ∈Γ

‖γ‖<x1/d

1 + O


qC




∑

γ∈Γ

‖γ‖<x1/d

1




1−Θ

 .

(3.19)
Here C <∞ and Θ � 0 are some constants, and if

Θ > 0, (3.20)

then Θ is often referred to as a “spectral gap” for Γ.

Results of this type follow (with quite a bit of work in many separate
cases) from theorems (or partial results towards conjectures) going under
various guises; some of these “buzzwords” are: the Selberg 1/4-Conjecture,
the generalized Ramanujan conjectures, mixing rates for homogeneous flows,
temperedness of representations, resonance-free regions for transfer opera-
tors, expander graphs, among many others; see, e.g. [87, 88, 89, 54, 71, 3].

Now inserting (3.19) into (3.18), using (3.17), and assuming that the
proportion of γ0 in Γ(modq) with

f(γ0 · x0) ≡ 0(q)

is about 1/q (for example, f should not be identically zero ), we obtain an
estimate for (3.15) roughly of the form (3.3), with

|rq| 
 qCxδ(1−Θ)/d. (3.21)

(The value of the constant C may change from line to line.) Again using
(3.17) as an approximation for #S ∩ [1, x], we obtain that (3.4) holds with

Q = XδΘ/(Cd)−ε,

say, for any ε > 0. Thus the set S has exponent of distribution

ϑ =
δΘ

Cd
, (3.22)

and hence contains R-almost-primes with

R =

⌈
Cd

δΘ
+ ε

⌉
. (3.23)

So as long as C < ∞, that is, the dependence on q in the error term of
(3.19) is at worst polynomial, and as long as the “spectral gap” Θ is strictly
positive, this general sieving procedure produces R-almost-prime values in
S for some R <∞.
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3.4. Applying the General Procedure

3.4.1. Fibonacci Composites

Again it is instructive to first see how the general method can fail to
work. Let Γ be the semigroup generated by the square of the matrix

(
0 1
1 1

)
,

set x0 = (0, 1), with orbit O = Γ ·x0, and consider the function f(x, y) = x.
It is elementary to check that here

S = f(O) = {f2n}

is just the set of even-indexed Fibonacci numbers, f2n. This set is much too
thin for the above methods to apply, since the number of Fibonacci numbers
up to x is about log x; that is, the group Γ has exponent of growth δ in (3.16)
equal to zero. In particular, a counting result of the type (3.19) is simply
impossible, and one cannot establish a positive exponent of distribution ϑ
as in (3.22).

In fact, there seems to be good reason for the sieve to fail in this con-
text. While it is believed that infinitely many Fibonacci numbers are prime,
there is some heuristic evidence that if n is composite, then the nth Fi-
bonacci number fn has at least on the order of n prime factors. Assuming
this heuristic, there should not exist a finite R for this setting; that is, the
sieve does not work here because it must not. (Note that the Zariski closure
of the group Γ here is a torus, C×; as Sarnak likes to say, for the Affine
Sieve, “the torus is the enemy!”)

3.4.2. Back to Pythagorean Areas

What does the above procedure give for Pythagorean areas? The function
f(x) = 1

12xy is quadratic, so d = 2. It is not hard to see that Γ has growth
exponent δ in (3.16) equal to 1. Selberg’s 1/4-Conjecture, if true, would
imply an estimate (in smooth form) for (3.19) with “spectral gap” Θ = 1/2;
this is again a square-root cancellation type phenomenon. Unconditionally,
the best-known bound (due to Kim-Sarnak) proves (3.19) with Θ = 1

2 − 7
64 .

The value for C coming from (a slight variant of) the above procedure can
be whittled down to 2. One small technicality is that our f in (3.8) is now
the product of four irreducible factors, so the fraction 1/q on the right hand
side of (3.3) should be replaced by 4/q (giving a sieve of “dimension” 4);
the sieve still works in the same way, just with a worse dependence of R in
(3.6) on the level of distribution in (3.5).

The above technicalities aside, all this machinery will in the end produce
an exponent of distribution ϑ of about 1/10, and about
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R = 30 (3.24)

primes, falling far short of Green-Tao’s optimal result R = 4. Of course the
orbit O here is very simply described, making its study amenable to other
means. In the following subsection, we give a sampling of problems in which
more elementary descriptions do not seem advantageous (or even possible),
yet where the Affine Sieve applies as just indicated. We hope these serve to
illustrate some of the power and robustness of the Affine Sieve.

3.5. More Examples: Anisotropic and Thin Orbits

3.5.1. Anisotropic “Areas”

Keeping a nearly identical setup, let us change ever so slightly the
quadratic form F from (3.10) to

F (x) = x2 + y2 − 3z2.

The salient features of this form are that, like (3.10), it is rational (the ratios
of its coefficients are in Q) and indefinite (it takes positive and negative
values), but unlike (3.10), it is anisotropic over Q. This means that it has
no non-zero rational points on the cone F = 0. (Exercise.) So to have an
integral orbit, we can change our variety V from (3.9) to, say,

V : F (x) = 1,

which over R is a one-sheeted hyperboloid containing the integer base point
x0 = (1, 0, 0). Let G = SOF (R) now be the real special orthogonal group
preserving this new form, and let Γ = SOF (Z) be the arithmetic group of
integer matrices in G. Taking the orbit O = Γ · x0 and function

f(x) =
1

2
xy

as an analogue of “area,” one can compute (see [62]) that S = f(O) is
essentially the set of all values of

(a2 − b2 + 3c2 − 3d2)(ab + 3cd), (3.25)

where a, b, c, d range over all integers satisfying

a2 + b2 − 3c2 − 3d2 = 1. (3.26)

(In fancier language, the spin group of Γ is isomorphic to the norm one
elements of a particular quaternion division algebra.)
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Needless to say, the Green-Tao technology of linear equations is not
designed to handle this new set S, while the Affine Sieve works in exactly
the same way as previously described (in this setting, it was executed by
Liu-Sarnak [70]), producing R-almost-primes5 with R = 16.

3.5.1. A Thin Group

While the group Γ in §3.5 was more complicated, it was still arithmetic; in
particular, any solution in the integers to the polynomial equation (3.26)
gave (by a simple formula) an element in Γ. The situation is even more del-
icate if the group Γ is restricted to some infinite index subgroup of SOF (Z).
Here is a quintessential “thin” (see below for the definition) group.

Let us return again to the Pythagorean setting of (3.10) and the cone
(3.9) with base point x0 = (3, 4, 5) and the “area” function f(x) in (3.8). For
the sake of being explicit, let Γ be the group generated by the two matrices

M1 :=




−7 −4 −8
4 1 4
8 4 9


 and M2 :=




−1 2 2
−2 1 2
−2 2 3


 , (3.27)

which one can check are the images under the morphism (3.13) of
(

1 4
0 1

)
and(

1 0
2 1

)
, respectively. The orbit

O = Γ · x0 (3.28)

of x0 under this group Γ is illustrated in Figure 2; this is the picture one
may keep in mind when thinking of thin orbits.

Figure 2. — A piece of the thin Pythagorean orbit O in (3.28). Points x ∈ O are again
marked according to whether the “area” f(x) = 1

12
xy is in PR with R � 3 ( ),

R = 4 ( ), or R � 5 ( ).

(5) For the experts, this number is about half of that in (3.24), due to (3.25) be-
ing a two-dimensional sieve problem instead of (3.8) which is four-dimensional. In the
anisotropic case, there are no “extra” parametrizations like (3.7), so the “area” is only a
product of two irreducible factors, not four.
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Note that, unlike Figure 1, there now seem to be only finitely many
x ∈ O with f(x) having R � 3 prime factors; these are invisible at the
scale drawn in Figure 2. The (presumably infinite number of) points of
“special” form visible in Figure 1 seem to disappear for this thin orbit,
again reinforcing our suggestion that Zariski density is the “right” demand
for the general setting.

What do we mean by “thin”? There are a number of competing defini-
tions of this word, and we will need to give a new one to suit our purposes.
The meaning of thin typically involved in the Affine Sieve refers to “thin
matrix groups” (not to be confused with “thin sets,” as defined by Serre [95,
§3.1]), which are finitely generated groups Γ < GLn(Z) which have infinite
index in the group of integer points of their Zariski closure. That is, let

G = Zcl(Γ) < GLn

be the Zariski closure of Γ, and G(Z) its integer points; then Γ is called a
thin matrix group if the index

[G(Z) : Γ] = ∞.

For our purposes, we will want to allow Γ to be a finitely generated
semi-group of GLn(Z), but not necessarily a group. In this case, we cannot
speak of index, and need a different condition to characterize what should
be considered thin. Moreover, we will want the flexibility to apply the ad-
jective thin to either the (semi-)group Γ, or the resulting orbit O, or the
resulting set of integers S = F (O). Our characterization will simply be by
an archimedean degeneracy in the algebro-geometric closure, as follows.

Definition: Thin Integer Set. — Let Z ⊂ Zn be a set of integer
vectors, let Zcl(Z) be the Zariski closure of Z, and let Bx be a ball of radius
x > 0 (with respect to any fixed archimedean norm) about the origin in Rn.
We will call Z a thin integer set if

#(Z ∩Bx) = o
(
#(Zcl(Z) ∩ Zn ∩Bx)

)
, as x→∞.

That is, Z has zero “density” inside the integer points of its Zariski closure.

It is an easy fact 6 that when Γ < GLn(Z) is group, then it is a thin

matrix group if and only if it is a thin integer set in Zn×n ∼= Zn2

. (Thanks

(6) A sketch for the experts: the trivial representation does not weakly occur in the
regular action ofG = Zcl(Γ) on L2(Γ\G) if and only if vol(Γ\G) =∞, in which case Howe-
Moore gives the decay of matrix coefficients. On the other hand, the count for arithmetic
groups is known already by methods of Duke-Rudnick-Sarnak and Eskin-McMullen.
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to Peter Sarnak for insisting that we make our definition so that the two
definitions would agree on their intersection.)

Our group Γ = 〈M1,M2〉 from (3.27) has infinite index in SOF (Z), so is
thin. Its exponent of growth can be estimated as

δ ≈ 0.59 · · · ,

which, it turns out, is also the Hausdorff dimension of the limit set of Γ. The
latter is roughly speaking the Cantor-like fractal set seen at the boundary
at infinity in Figure 2; that is, the set of directions in which the orbit O
grows.

Now there is certainly no hope of a more direct approach to studying
S = f(O), as we cannot even determine, given a matrix M ∈ SOF (Z),
whether it is in the group Γ. Unlike the arithmetic group case, it is not
enough to check whether the entries of M satisfy some polynomial equations;
instead one must determine whether M can be realized as some word in
the generators (3.27). As the general membership problem in a group is
undecidable [80], we had better avoid this issue. Luckily, the standard Affine
Sieve procedure works just as described in §3.3. (In this setting, the details
were worked out by the author [60, 61], and the author with Oh [59]).

A good question to ask at this point might be: Why would anyone care
about these strange thin groups? Here are just two motivations: (1) thin
groups are in some sense “generic” (see, e.g., [34, 36, 93], for a discussion into
which we will not delve here), and (2) many naturally-arising and interesting
problems require their study. Let us postpone our discussion of these natural
problems for a moment, turning now to another topic.

3.6. The Affine Sieve Captures Primes

We have described the general procedure and explained how it works in
a number of sample settings, but it is clear that without further ingredients,
producing primes seems hopeless. Yet, as we have already seen in the case
of Pythagorean areas, the Green-Tao theorem, using completely different
tools, goes far beyond the present capabilities of the Affine Sieve. We give
here but a sampling of four more settings in which other technologies prove
more successful, producing a minimal number of prime factors.

3.6.1. Matrix Ensembles with Prime Entries

Now that we appreciate the utility of posing problems in terms of matrix
orbits, why not ask the following even simpler Affine Sieve-type question:
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Among the set of all n×n integer matrices of, say, fixed determinant D � 1,
are there infinitely many with all entries prime? For example, here is a prime
3× 3 matrix of determinant D = 4:

det




3 5 7
11 13 17
5 13 19


 = 4. (3.29)

How is this an Affine Sieve problem? Let Vn,D(Z) be the set in question
of all n×n integer matrices of determinant D. The full7 group SLn(Z) acts
on Vn,D(Z) on the left (determinant is preserved), and a theorem of Borel
and Harish-Chandra tells us that Vn,D(Z) breaks up into finitely many such

orbits. Thus we may as well just take one fixed matrix M0 ∈ Vn,D(Z) ⊂ Zn2

and consider the orbit
O = SLn(Z) ·M0.

For an n × n integer matrix M = (mij) ∈ O, our function f is now the
product of all coordinates,

f(M) =
∏

i,j

mij ,

which, being a product of n2 terms, we would like to make R-almost-prime
with R = n2.

First let us consider the case n = 2, that is, for a given D, we want
primes a, b, c, d with

ad− bc = D. (3.30)

The set of solutions in which at least one of the entries is the even prime 2
is again of “special form,” and may be discarded without affecting Zariski
density. Thus restricting to odd primes, we see immediately that there is a
local obstruction to solving (3.30), namely D had better be even. (In fact,
it is not hard to convince oneself that in the n × n case, there is again a
local obstruction unless D ≡ 0(mod2n−1), which is why we chose D = 4 in
(3.29).)

But now (3.30) looks like a “twin prime” type question: When can an
even number D be written as the difference, not of two primes, but two
E2’s? (An “E2” is a number which is the product of exactly two primes.)
Miraculously, the GPY technology, extended to this setting by Goldston-
Graham-Pintz-Yıldırım [38], is able to settle the “Bounded Gaps for E2’s

(7) We will sometimes use “full” as the negation of “thin.”
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Problem,” proving that E2’s differ by at most 6 infinitely often. Thus there
are many solutions to (3.30) in the primes for at least one value of D in
{2, 4, 6}, but we do not know which!

Turning now to the higher rank setting of n � 3, the following clever
observation was made by Nevo-Sarnak [81]. One can first populate all but
the last row with primes, writing

M =




∗ · · · ∗ ∗
... ∗ ∗ ∗
∗ ∗ ∗ ∗

mn,1 · · · mn,n−1 mn,n


 ,

say, where each ∗ is a prime and the mn,j ’s are variables. Then the equation
detM = D is a linear equation to be solved in n � 3 prime unknowns. For
example, we found (3.29) by setting D = 4 and finding the solution

(a, b, c) = (5, 13, 19)

to

4 = det




3 5 7
11 13 17
a b c


 = −6a + 26b− 16c.

It goes back to I. M. Vinogradov (1937) that linear equations in at least three
unknowns can be solved in primes, and thus (overcoming many technicalities
to get this simple description to actually work) Nevo-Sarnak are able to
completely resolve the higher rank problem.

3.6.2. Prime Norms in SL2(Z)

Here is another problem of Affine Sieve type: Instead of restricting the
entries to be prime as above, let us look at the full group SL2(Z), say, and
consider its set of square-norms. That is, consider the set S of values of

a2 + b2 + c2 + d2,

where ad− bc = 1. Does the set S contain an infinitude of primes?

Again one can apply the general Affine Sieve procedure, but Friedlander-
Iwaniec [30] found a more profitable approach. After a linear change of
variables, the problem can be converted into solving the system

{
x2 + y2 = p + 2

z2 + w2 = p− 2
(3.31)
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for primes p and integers x, y, z, w; that is, we must write both p + 2 and
p−2 as sums of two squares. Using a “half-dimensional” sieve and assuming
the Elliott-Halberstam Conjecture, Friedlander-Iwaniec are able to solve the
system (3.31), thereby (conditionally) resolving the problem in this setting.

3.6.2. Pseudorandom Primes

The oldest (and arguably simplest) pseudorandom number generator is
the map

x  → gx(modp),

where p is a prime and g is a primitive root mod p, that is, a generator of
(Z/pZ)×. For optimal equidistribution (and many other applications; see,
e.g., the discussion in [63, §2]), one needs the continued fraction expansion

g

p
= [a1, a2, . . . , ak] =

1

a1 +
1

a2 +
.. .

(3.32)

to have only “small” partial quotients, aj � A, say, for some constant A > 0.
Does there exist an absolute constant A > 0 so that infinitely many such
fractions g/p can be found with partial quotients bounded by A?

To turn this into an Affine Sieve problem, observe that (3.32) is equiva-
lent to

(
0 1
1 a1

) (
0 1
1 a2

)
· · ·

(
0 1
1 ak

)
=

(
∗ g
∗ p

)
.

Hence to find such pairs (g, p), one should look at the set of second columns
in the semi-group

Γ :=

〈(
0 1
1 a

)
: a � A

〉+

∩ SL2. (3.33)

For A � 2, this semigroup is Zariski dense in SL2, but it is known to be
thin (and it is here that we wish to extend the definition of thinness beyond
the realm of groups ). Instead of using the Affine Sieve, Bourgain and the
author [11, 15] developed a version of the Hardy-Littlewood circle method
to attack this problem, giving an affirmative answer to the above question:
There are infinitely many primes p and primitive roots g(modp) so that
g/p has all partial quotients bounded by A = 51.8 In fact, they proved a

(8) Added in print: Shinnyih Huang [55] has recently reduced this number to A = 7,
using refinements due to Frolenkov-Kan [33].
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“density” version of Zaremba’s Conjecture: Almost every natural number
occurs in the set S of bottom right entries of a matrices in Γ (see [15] or
[63, §2] for a precise statement). Thus while Γ is thin, the set S is not, and
no sifting is needed to produce primes in S.

3.6.7. Prime Apollonian Curvatures

It seems these days no discourse on thin groups is complete without
mention of Apollonian gaskets. Lest we bore the reader, we will not yet
again repeat the definitions and pictures, which are readily available else-
where, e.g., [63, §3]. Nevertheless, the following question is quintessential
Affine Sieve: Given a primitive Apollonian gasket G, which primes arise as
curvatures in G ?

It was proved by Sarnak [90] that infinitely many prime curvatures
arise, by finding primitive values of shifted binary quadratic quadratic forms
among the curvatures and applying Iwaniec’s “half-dimensional” sieve. In
this way, he proved that the number of primes up to x which are curvatures
in G is at least of order x(log x)−3/2. Bourgain [17] sharpened the lower
bound to x(log x)−1, that is, a positive proportion of the primes arise. Fi-
nally, Bourgain and the author [12], again using the circle method instead
of the Affine Sieve, obtained an asymptotic formula for this number.

As in §3.6, this is an easy consequence of the stronger theorem that
an asymptotic “local-global” principle holds for such curvatures (see [12]
and [63, §3] for details). So while the group and orbit in this context are
again thin, the set of all curvatures is not, and the primes are obtained as
a byproduct.

3.7. Improving Levels of Distribution in the Affine Sieve

We conclude our discussion with two final examples in which one can go
beyond the general theory. In these, one is currently not able to produce
primes, but instead can improve on the exponent of distribution over that in
(3.22), without making new progress on spectral gaps as in (3.19). The idea
is to avoid putting the individual estimate (3.21) into the sum (3.4), and
instead to try to exploit cancellation from the sum on q up to Q, in some
analogy with the Elliott-Halberstam Conjecture. It is not known how to do
this in the general Affine Sieve, but for the specific examples below, such
estimates have recently been obtained by Bourgain and the author [14, 13].
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3.7.1. McMullen’s Arithmetic Chaos Conjecture

We will not describe the origins and implications of McMullen’s (Clas-
sical) Arithmetic Chaos Conjecture, referring the reader to his fascinating
paper [75] and online lecture notes [76]. The conjecture is implied by an
analogue of Zaremba’s Conjecture, that, for some A > 1, every sufficiently
large integer arises (with the “right” multiplicity) in the set S of traces of
matrices in the semigroup Γ in (3.33). At the moment, even a “density”
version of this statement, as in §3.6, seems out of reach, but one can ask
instead if infinitely many primes appear in S. Not surprisingly, the standard
Affine Sieve procedure applies here just as well (now requiring the work of
Bourgain-Gamburd-Sarnak [9] to prove a statement functionally as strong
as (3.19)). But, if applied directly, this produces a terribly poor exponent of
distribution ϑ in (3.22), owing to the terribly poor “spectral gap” Θ. Using
different tools in this setting , Bourgain and the author [13] have produced
in this context an unconditional exponent of distribution ϑ = 1/4, thus
showing that S contains R-almost-primes with R = 5.

3.7.2. Thin Pythagorean Hypotenuses

Finally, let us return again to the Pythagorean setting of the quadratic
form F in (3.10), the cone F = 0, the base point x0 = (3, 4, 5), and a thin
group Γ as in §3.5. Instead of studying areas, let us now take as our function
f the “hypotenuse,” f(x) = z. Do infinitely many primes arise in S = f(O)?

If O were the full orbit of all Pythagorean triples, then, through the
parametrization (3.7), we would essentially asking whether primes can be
represented as sums of two squares. As is very well-known, Fermat answered
in the affirmative almost 400 years ago, namely all primes ≡ 1(mod4) are
hypotenuses.

But in the thin setting, it seems quite difficult to produce primes at this
time. One new difficulty here is that, unlike other problems described above,
we now have not only a thin orbit O, but the set S of hypotenuses is itself
thin! The number of integers in S up to x, even with multiplicity, is about
xδ, where δ < 1 is the growth exponent of Γ as in (3.16).

What does the Affine Sieve process give? Returning to the exponent of
distribution ϑ in (3.22), we see that the degree of the hypotenuse function
is d = 1, and the value of C can be whittled down to 2 as in §3.4. Moreover,
to try to optimize ϑ, we can restrict our attention to thin groups Γ whose
growth exponent δ is almost as large as possible, δ = 1 − ε. Then, even
assuming a “square-root” version of (3.19), that is, assuming the “spectral
gap” can be set to Θ = 1/2, we obtain a (very conditional) exponent of

– 960 –



Levels of Distribution and the Affine Sieve

distribution ϑ = 1/4 − ε, producing R-almost-primes in S with R = 5. In
[14], Bourgain and the author obtained, again for Γ having growth exponent
δ sufficiently close to 1, the exponent of distribution ϑ = 7/24− ε uncondi-
tionally, thereby producing R-almost-primes with R = 4 in this thin setting.
The methods (bilinear forms, exponential sums, and dispersion) are outside
the scope of this survey.

Added in proof. — The explicit values of R in §§3.4–3.5 are now outdated;
recent work of the author and Jiuzu Hong [53] gives an improvement on the
general Affine Sieve procedure which differs slightly from that given here
(we will not go into the technicalities). Still, the problem of going beyond
these values in specific cases remains, and in these settings (that is, in §3.7),
the reported R values are still the best known.
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nombers premiers. Ann. Soc. Sci. Bruxelles, 20, p. 183-256 (1896).

[25] Elliott (P.D.T.A.) and Halberstam (H.). — A conjecture in prime number the-
ory. Symp. Math. IV (Rome 1968/69), p. 59-72 (1968).

[26] Erdös (P.). — The difference between consecutive primes. Duke Math J., 6,
p. 438-441 (1940).

[27] Friedlander (J.) and Granville (A.). — Limitations to the equidistribution of
primes. I. Ann. of Math. (2), 129(2), p. 363-382 (1989).

[28] Fouvry (E.) and Iwaniec (H.). — Primes in arithmetic progressions. Acta Arith.,
42, p. 197-218 (1983).

[29] Friedlander (J.) and Iwaniec (H.). — What is ... the parity phenomenon? No-
tices Amer. Math. Soc., 56(7), p. 817-818 (2009).

[30] Friedlander (J.) and Iwaniec (H.). — Hyperbolic prime number theorem. Acta
Math., 202(1), p. 1-19 (2009).

[31] Friedlander (J.) and Iwaniec (H.). — Opera de cribro, volume 57 of American
Mathematical Society Colloquium Publications. American Mathematical Society,
Providence, RI (2010).

[32] Friedlander (J.) and Iwaniec (H.). — Close encounters among the primes
(2014). arXiv:1312.2926.

[33] Frolenkov (D.) and Kan (I. D.). — A reinforcement of the Bourgain-
Kontorovich’s theorem by elementary methods II (2013). Preprint,
arXiv:1303.3968.

– 962 –



Levels of Distribution and the Affine Sieve

[34] Fuchs (E.), Meiri (C.), and Sarnak (P.). — Hyperbolic monodromy groups for
the hypergeometric equation and Cartan involutions, 2012. To appear, JEMS.
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