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On arithmetic Fuchsian groups and their
characterizations

Slavyana Geninska(1)

ABSTRACT. — This is a small survey paper about connections between
the arithmetic and geometric properties in the case of arithmetic Fuchsian
groups.

RÉSUMÉ. — Ceci est un petit papier de synthèse sur les connections en-
tre les propriétés arithmétiques et géométriques dans le cas de groupes
fuchsiens arithmétiques.

0. Introduction

In this small survey paper we discuss the connections between the arith-
metic and geometric properties in the case of arithmetic Fuchsian groups.
The paper is based on the works of the author [7] (with Enrico Leuziger),
[8] and [9].

This paper in not meant to be a general introduction to lattices and
in particular arithmetic lattices. Since they are classical objects, there are
some very good introductory books on the field. See for example “Fuch-
sian Groups” by Svetlana Katok [13], “The Arithmetic of Hyperbolic 3-
Manifolds” by Colin Maclachlan and Alan Reid [16], “The geometry of
discrete groups” by Alan Beardon for Fuchsian and Kleinian groups and
“Introduction to Arithmetic Groups” by Dave Witte Morris [18] for lattices
in Lie groups in all dimensions.

(1) Institut de Mathématiques de Toulouse, Université Toulouse 3, 118 route de Nar-
bonne, 31062 Toulouse, France
geninska@math.univ-toulouse.fr
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The paper is organized as follows. First we give some general infor-
mation about arithmetic lattices. In the second section we concentrate on
characterizations of arithmetic Fuchsian groups. Further, in the third and
last section, we discuss the limit sets of subgroups of irreducible arithmetic
lattices in PSL(2,R)r with r � 2.

The author thanks the anonymous referee for the valuable suggestions.

1. Some facts about arithmetic lattices

Let G be a connected linear real semisimple Lie group with finite center.
For simplicity, we assume that G has no compact factors.

A subgroup Γ of G is an arithmetic lattice if and only if there exist

• a closed connected semisimple subgroup G′ of some SL(l,R) such that
G′ is defined over Q,

• an isomorphism f : G→ G′ up to a compact factor,

such that f(Γ) is commensurable with the subgroup of integer points G′Z =
G′ ∩ SL(l,Z) of G′.

A more precise formulation of this definition of arithmetic lattices can
be found in the book of Dave Witte Morris [18] (Definition 5.16).

As the next theorem shows, arithmetic lattices are very important be-
cause in many Lie groups the only irreducible lattices are arithmetic. This
was proven by Margulis (see for example [17], Theorem A, p. 298) for semi-
simple Lie groups with R-rank at least two. For R-rank one, semi-simple
Lie groups, Corlette [4] and Gromov and Schoen [11] proved that this also
holds for lattices in Sp(n, 1) and F−20

4 . Combining these results, we have
the following theorem.

Theorem 1.1 ([17], [4], [11]). — If G is different from SO(1, n) and
SU(1, n) up to finite covers and Γ is an irreducible lattice in G, then Γ is
arithmetic.

It is still an open question if there are nonarithmetic lattices in SU(1, n)
for n � 4. Nonarithmetic lattices in SO(1, n) were constructed by Gro-
mov and Piatetski-Shapiro [10] for each n, whereas nonarithmetic lattices
in SU(1, n) were constructed only for n � 3: the first examples were con-
structed by Mostow [19] for n = 2 and the list was expanded by Deligne
and Mostow in [6] for n � 3.
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Arithmetic lattices have characteristic properties that become especially
interesting in the cases where there are also nonarithmetic lattices. The
following commensurability criterion for arithmeticity is due to Margulis
(see for example [17]).

Theorem 1.2 ([17]). — Let Γ be an irreducible lattice in G. Then Γ is
arithmetic if and only if

CommG(Γ) := {g ∈ G | g−1Γg and Γ are commensurable}

is dense in G.

Recently Kapovich [12] proved the following characterization of arith-
metic lattices.

Theorem 1.3 ([12]). — Let Γ be an irreducible lattice in G. Then Γ is
arithmetic if and only if Γ admits an irreducible faithful self-similar action
on a regular rooted tree (of finite valency).

In the next section, we concentrate on the characterizations of arithmetic
lattices in PSL(2,R).

2. Characterizations of arithmetic Fuchsian groups

Let Γ be a cofinite Fuchsian group, i.e. a discrete subgroup of PSL(2,R)
of finite covolume. Such a Γ acts properly discontinuously and isometrically
on the hyperbolic plane H and M = Γ\H is a Riemann surface. The trace
set of Γ is defined to be

Tr(Γ) := {tr(g) | g ∈ Γ}

and encodes in a natural way the set of lengths of closed geodesics on M .
Specifically, (see for instance the book of Maclachlan and Reid [16], p. 384)

2 cosh

(
	(cg)

2

)
= ±tr(g),

where 	(cg) is the length of the unique closed geodesic cg associated to the
Γ-conjugacy class of a hyperbolic element g.

It is a general question if certain classes of Fuchsian groups can be char-
acterized by means of their trace set. There is a classical characterization
of arithmetic Fuchsian groups due to Takeuchi which is based on number
theoretical properties of their trace sets [24].
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Theorem 2.1 ([24]). — Let Γ be a cofinite Fuchsian group. Then Γ is
arithmetic if and only if Γ satisfies the following two conditions:

(i) K := Q(Tr(Γ)) is an algebraic number field of finite degree and Tr(Γ)
is contained in the ring of integers OK of K.

(ii) Let K2 be the field Q(tr(g)2 | g ∈ Γ). For any embedding ϕ of K into
C, which is not the identity if restricted to K2, the set ϕ(Tr(Γ)) is
bounded in C.

Luo and Sarnak pointed out large scale properties of the behaviour of
the trace set of arithmetic Fuchsian groups. We say that the trace set of Γ
satisfies the bounded clustering or B-C property if there exists a constant
B(Γ) such that for all integers n the set Tr(Γ)∩ [n, n+1] has less than B(Γ)
elements.

In [15] (Lemma 2.1) Luo and Sarnak made a first step towards a new
geometric characterization of arithmetic Fuchsian groups by proving the
following result:

Theorem 2.2 ([15]). — If Γ is arithmetic, then Tr(Γ) satisfies the B-C
property.

Sarnak conjectured that the converse of this theorem also holds.

Conjecture 2.3 (Sarnak [20]). — If Tr(Γ) satisfies the B-C prop-
erty, then Γ is arithmetic.

In [21] Schmutz makes an even stronger conjecture using the linear
growth of a trace set instead of the B-C property.

Conjecture 2.4 (Schmutz [21]). — If Tr(Γ) has linear growth, then
Γ is arithmetic.

In [21] Schmutz proposed a proof of Conjecture 2.4 in the case when Γ
contains at least one parabolic element. But unfortunately the proof con-
tains a gap as we point out in [7]. In [7] we prove Sarnak’s conjecture in the
case when Γ contains a parabolic element.

Sarnak’s conjecture is still open in the cocompact case. It is also unknown
if Schmutz’s conjecture holds even in the case when Γ contains a parabolic
element. There are also other natural open questions related to the growth
rate of the trace set, e.g. if there are Fuchsian groups whose trace set grows
more quickly than linearly but more slowly than quadratic.
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Now we give a sketch of the proof in [7] of Sarnak’s conjecture in the
case with parabolic elements.

Sketch of the proof in [7]. — This proof is based on the proof proposed
by Schmutz in [21].

First we note that in order to show that Γ is arithmetic in the case
with parabolic elements, it is enough to show that tr(g)2 are integers for
all g ∈ Γ. Indeed, the fact that Γ contains parabolic elements means that

without loss of generality we can assume that P =

(
1 1
0 1

)
is an element of

Γ. For any element

(
a b
c d

)
of Γ with c �= 0 (such an element exists because

Γ is nonelementary), we consider the product

gn :=

(
a b
c d

) (
1 n
0 1

)
=

(
a an + b
c cn + d

)
.

Hence for any embedding ϕ of K := Q(Tr(Γ)) into C, we have that ϕ(tr(gn))
goes to infinity when n goes to infinity.

By the characterization of Takeuchi (Theorem 2.1), Γ is arithmetic if
and only if

(ii) all embeddings ϕ of K into C are the identity if restricted to {tr(g)2 |
g ∈ Γ}, i.e. {tr(g)2 | g ∈ Γ} ⊂ Q, and

(i) Tr(Γ) is contained in the ring of integers of K.

Hence Γ is arithmetic if and only if {tr(g)2 | g ∈ Γ} ⊂ Z. This is equivalent
to the well known fact that all non-cocompact arithmetic Fuchsian lattices
are commensurable with PSL(2,Z).

So our new objective is to prove that if Tr(Γ) satisfies the B-C property,
then {tr(g)2 | g ∈ Γ} ⊂ Z.

The idea of Schmutz is to consider the free subgroups of 2 generators
of Γ, where at least one of the generators is a parabolic isometry. The
corresponding surface is a Y-piece (i.e. topologically a sphere with 3 holes)
with a least one cusp. Remark that if Tr(Γ) satisfies the B-C property, then
the trace set of every subgroup of Γ satisfies the B-C property.

For each nonparabolic g ∈ Γ, there is a power n such that the group
〈g, Pn〉 generated by g and Pn is free. Hence it is enough to prove that if
Tr(〈g, Pn〉) satisfies the B-C property, then tr(g)2 is an integer.
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By using the proof of Proposition 4 in [21], we reduce the problem to
proving the following key lemma:

Lemma 2.5. — Let T =

(
1 0
t 1

)
with t � 2 and P =

(
1 1
0 1

)
. Then the

trace set Tr(〈T, P 〉) satisfies the B-C property if and only if t is an integer.

If t is an integer, then Tr(〈T, P 〉) clearly satisfies the B-C property.

If t is not rational, all the elements

tr(TPmT−n) = mnt2 − 2(m− n)t− 2, for m,n ∈ N,
are different and we show that the number of elements in the corresponding
set A grows at rate O(N logN) and therefore A and hence Tr(〈T, P 〉) does
not satisfy the B-C property.

If t is a rational number, not all of the above elements are different and
it is easy to see that the corresponding set A satisfies the B-C property. So
in order to show that if t ∈ Q\Z, then Tr(〈T, P 〉) does not satisfy the B-C
property, we need to consider more elements than the elements in A.

In [7] we show that the set B := {mt2
k−2 | m, k ∈ N}, which is a subset

of Tr(〈T, P 〉), does not satisfy the B-C property. �

Remark 2.6. — In his paper [21] Schmutz tries to prove a stronger ver-
sion of Lemma 2.5, namely that the trace set Tr(〈T, P 〉) has linear growth
if and only if t is an integer. For this, he considers an even bigger set of
traces than B but we show in [7] that in many cases this set has only linear
growth. So maybe we need to consider almost all elements in Tr(〈T, P 〉) in
order to prove Schmutz’s conjecture.

Concerning Sarnak’s conjecture, it seems very difficult to use similar
elementary methods for the cocompact case. As also Schmutz indicates in his
survey paper [22], in this case we do not have the very convenient parabolic
element P .

A corollary of the above proof is the following characterization of arith-
metic Fuchsian groups. It was formulated by Schmutz in [21] but formally
proven in [7].

Theorem 2.7. — A cofinite Fuchsian group Γ containing parabolic el-
ements is arithmetic if and only if every subgroup of Γ generated by two
parabolic elements with different fixed points is conjugated to a group gen-

erated by P =

(
1 1
0 1

)
and T =

(
1 0
t 1

)
with t an integer.
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3. Fuchsian groups embedded in irreducible lattices in PSL(2,R)r

The so called semi-arithmetic Fuchsian groups constitute a specific class
of Fuchsian groups which can be embedded up to commensurability in arith-
metic subgroups of PSL(2,R)r (see Schmutz Schaller and Wolfart [23]).
These embeddings are of infinite covolume in PSL(2,R)r if r � 2. A trivial
example is the group PSL(2,Z) that can be embedded diagonally in any
Hilbert modular group. Further examples are the other arithmetic Fuchsian
groups and the triangle Fuchsian groups. It is an interesting question if the
semi-arithmetic Fuchsian groups can be characterized by geometric means,
for example by their trace set.

An example of a semi-arithmetic Fuchsian group

A Hecke group is a triangle group of type (2,m,∞). The Hecke groups
are strictly semi-arithmetic (i.e. not arithmetic) except for m = 3, 4, 6. A

Hecke group S of type (2,m,∞) is generated (in PSL(2,R)) by

(
0 1
−1 0

)

and

(
1 2 cos(π/m)
0 1

)
, see Katok [13]. Hence all elements in S have entries

that are algebraic integers in Q(cos(π/m)). Therefore S is a subgroup of
PSL(2,OF ) where OF is the ring of integers in F := Q(cos(π/m)).

The field F is totally real. Let φ1, . . . , φr with φ1 = id be all the em-
beddings of F into R. The natural extensions of these embeddings to the
matrices in PSL(2, F ) give us the group

∆ := {(φ1(g), . . . , φr(g)) | g ∈ PSL(2,OF )}.

This group is an example of a Hilbert modular group and it is a cofinite
(but not cocompact) irreducible lattice in PSL(2,R)r.

So we see that the group

Γ := {(φ1(s), . . . , φr(s)) | s ∈ S}

is a subgroup of ∆ and that the projection of Γ to the first factor is S.

“Small” limit sets of subgroups of lattices in PSL(2,R)r

The semi-arithmetic Fuchsian groups give rise to discrete subgroups of in-
finite covolume of arithmetic groups in PSL(2,R)r. While lattices are fairly
well understood, little is known about discrete subgroups of infinite co-
volume of semi-simple Lie groups. The main goal of [8] is to connect the
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arithmetic and the geometric properties of subgroups of irreducible lattices
in PSL(2,C)q × PSL(2,R)r, r + q � 2. We are in particular interested in
those groups whose projection to one of the factors is (a subgroup of) an
arithmetic Fuchsian (or Kleinian) group. We prove that these are exactly
the nonelementary groups with the “smallest” possible limit set. In order
to explain this, first we need several definitions.

The geometric boundary of (H2)r is the set of equivalence classes of
asymptotic geodesic rays. The regular geometric boundary of (H2)r con-
sists of the equivalence classes of regular geodesic rays, i.e. geodesic rays
whose projections to all factors are nonconstant geodesic rays. The regular
geometric boundary has a natural structure as the product of the Fursten-
berg boundary (∂H2)r and the projective part RPr−1

>0 .

The limit set is the part of the orbit closure Γ(x) in the geometric bound-
ary where x is an arbitrary point in (H2)r. A natural structure theorem for
the regular limit set LregΓ of discrete nonelementary groups Γ due to Link
([14], Theorem 4.15) is the following: LregΓ is the product of the Furstenberg
limit set FΓ and the projective limit set PΓ.

The next result is a compilation of results in [8]. It is an example of a
connection between the geometric properties of a group with its arithmetic
ones.

Theorem 3.1. — Let Γ be a finitely generated nonelementary subgroup
of an irreducible lattice of PSL(2,R)r with r � 2. Then the following are
equivalent:

(i) The projective limit set PΓ consists of exactly one point.

(ii) Γ is a conjugate by an element in GL(2,R)r of

Diag(S) := {(s, . . . , s) | s ∈ S},
where S is a subgroup of PSL(2,R).

(iii) There exists j ∈ {1, . . . , r} such that the projection pj(Γ) is contained
in an arithmetic Fuchsian group.

(iv) The limit set LΓ is embedded homeomorphically in a circle.

(v) There is a totally geodesic embedding of H2 in (H2)r that is left in-
variant by the action of Γ.

The main ingredients of the proof are the characterization of cofinite
arithmetic Fuchsian groups by Takeuchi [24] , the criterion for Zariski den-
sity of Dal’Bo and Kim [5] and a theorem of Benoist [2] stating that for

– 1100 –



On arithmetic Fuchsian groups and their characterizations

Zariski dense subgroups of PSL(2,R)r the projective limit cone has nonempty
interior.

“Big” limit sets of subgroups of lattices in PSL(2,R)r

In [8], it was shown that a nonelementary finitely generated subgroup
of arithmetic groups in PSL(2,R)r with r � 2 has the smallest possible
limit set if and only if its projection to one factor is a subgroup of an
arithmetic Fuchsian group. One could ask the question if all embeddings of
semi-arithmetic Fuchsian groups have relatively small limit sets. The answer
is “no” as shown in [9].

A cofinite Fuchsian group S that is commensurable to a subgroup of
the projection to the first factor of an irreducible arithmetic group ∆ in
PSL(2,R)r is said to have a modular embedding if for the natural embedding
f : S → ∆ there exists a holomorphic embedding F : H2 → (H2)r with

F (Tz) = f(T )F (z), for all T ∈ S and all z ∈ H2.

Examples of semi-arithmetic groups admitting modular embeddings are
Fuchsian triangle groups (see Cohen and Wolfart [3]).

Theorem 3.2 ([9]). — Let Γ be a subgroup of an irreducible arithmetic
group in PSL(2,R)r with r � 2 such that pj(Γ) is a semi-arithmetic Fuch-
sian group admitting a modular embedding and r is the smallest power for
which pj(Γ) has a modular embedding in an irreducible arithmetic subgroup
of PSL(2,R)r. Then

(i) the Furstenberg limit set FΓ is the whole Furstenberg boundary (∂H2)r,

(ii) the limit set LΓ contains an open subset of the geometric boundary
of (H2)r.
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