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A supplementary proof of Lp–logarithmic Sobolev
inequality

Yasuhiro Fujita(1)

ABSTRACT. — In this paper, we bridge a gap in the proof of the Lp–
logarithmic Sobolev inequality obtained by Gentil [8, Theorem 1.1], and
provide a supplementary proof. Our proof is based on a Hamilton–Jacobi
equation and several approximations of functions in W 1,p(Rn).

RÉSUMÉ. — Dans cet article, nous complétons la preuve de l’inégalité de
Sobolev logarithmique Lp obtenue par Gentil dans [8] et donnons aussi
une preuve supplémentaire. Notre approche est basée sur une équation
de Hamilton–Jacobi et sur plusieurs approximations de fonctions dans
W 1,p(Rn).

1. Introduction

Let n ∈ N. For a smooth enough function f � 0 on Rn, we define the
entropy of f with respect to the Lebesgue measure by

Ent(f) =

∫
f(x) log f(x)dx−

∫
f(x)dx log

∫
f(x)dx.

In this paper, the integral without its domain is always understood as the
one over Rn, and we interpret that 0 log 0 = 0.
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Let p � 1. We denote by W 1,p(Rn) the space of all weakly differentiable
functions f on Rn such that f and |Df | (the Euclidean length of the gradient
Df of f) are in Lp(Rn). For f ∈ W 1,p(Rn), the following Lp–logarithmic
Sobolev inequality was shown for p = 2 by [10], p = 1 by [9], and 1 < p < n
by [6]:

Ent(|f |p) � n

p

∫
|f(x)|pdx log


Lp

∫
|Df(x)|p dx

∫
|f(x)|p dx


 . (1.1)

Here,

Lp =





p

n

(
p− 1

e

)p−1

π−p/2


 Γ

(
n
2 + 1

)

Γ
(
n p−1

p + 1
)



p/n

, p > 1,

1

n
π−1/2

[
Γ

(n

2
+ 1

)]1/n

, p = 1.

(1.2)

This is the best possible constant satisfying (1.1) for 1 � p < n (cf. [1, 6]).

For a general p > 1, with a deep insight, Gentil [8, Theorem 1.1] tried to
give inequality (1.1) in the following way: First, he gave a hypercontractivity
inequality for the unique viscosity solution to the Cauchy problem of the
Hamilton-Jacobi equation

ut(x, t) +
1

p
|Du(x, t)|p = 0 in Rn × (0,∞), (1.3)

u(·, 0) = φ in Rn. (1.4)

Here, φ ∈ Lip(Rn). He showed that if there is a constant α > 0 such that
eφ ∈ Lα(Rn), then eu(·,t) ∈ Lβ(Rn) for any β > α and t > 0 and

‖eu(·,t)‖β � ‖eφ‖α
(
nLpe

p−1(β − α)

ppt

)n
p
β−α
αβ α

n
αβ (αp+

(p−1)β
p )

β
n
αβ ( βp+

(p−1)α
p )

, (1.5)

where Lp is the constant of (1.2) and

‖f‖γ =

(∫
|f(x)|γdx

)1/γ

, γ > 0.

For completeness, we prove (1.5) in Section 2 for α = 1 and β > 1; this case
is sufficient to prove (1.1). Gentil [8, Theorem 1.1] tried to derive inequality
(1.1) from inequality (1.5).
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However, his proof for inequality (1.1) seems to be valid only when f ∈
W 1,p(Rn) has the form f = e

1
pφ for φ ∈ Lip(Rn) of (1.4) with

lim inf
s→0+

1

s

∫
[e(ks+1)u(x,s) − e(ks+1)φ(x)]dx � −1

p

∫
eφ(x)|Dφ(x)|pdx (1.6)

for any k > 0, where u is a viscosity solution to Cauchy problem (1.3) with
(1.4). So, his paper proves (1.1) for a special class of functions f ∈W 1,p(Rn).

Our aim in this paper is to bridge this gap in the proof of [8, Theorem 1.1]
and provide a supplementary proof of inequality (1.1) for all f ∈W 1,p(Rn)
and p > 1. The strategy of our proof is the following: First, we show (1.1)
for f ∈W 1,p(Rn) such that

f ∈ C1(Rn), 0 < f � 1 in Rn, and D(log f) is bounded on Rn. (1.7)

The point is that, under (1.7) for f ∈W 1,p(Rn), inequality (1.6) is fulfilled
for letting φ(·) = p log f(·) (see the proof of Lemma 3.1 below). Such an
argument was used in [3].

Second, we approximate f ∈W 1,p(Rn) by a sequence of functions satis-
fying (1.7) by several steps. This is the key point to derive (1.1) from (1.5)
(see Theorem 3.3 below). An important estimate is the following Fatou–type
inequality: if a family {fε}0<ε<1 of nonnegative and measurable functions
on Rn approximates a function f in some sense, then

lim inf
ε→0+

∫
fε(x)p log fε(x)dx �

∫
f(x)p log f(x)dx. (1.8)

We provide a sufficient condition on {fε}0<ε<1 for (1.8) (see Lemmas 2.2
and 2.3 below). From this result, we provide a stability condition such that
if fε satisfies (1.1), so does f .

Finally, by using these approximations, we show that Lp–logarithmic
Sobolev inequality (1.1) holds true for all f ∈ W 1,p(Rn) and p > 1. This
bridges a gap of the proof of [8, Theorem 1.1] for Lp–logarithmic Sobolev
inequality (1.1) with p > 1.

The content of this paper is organized as follows: In Section 2, we provide
preliminaries. In Section 3, we provide a supplementary proof of inequality
(1.1) for all f ∈W 1,p(Rn) and p > 1.

I express my hearty appreciation to Ivan Gentil for his encouragement.
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2. Preliminaries

In this section, we provide preliminaries to the next section. In the fol-
lowing, we assume p > 1. Set q = p/(p− 1). We assume that

φ ∈ Lip(Rn), φ � 0 in Rn and eφ ∈ L1(Rn). (2.1)

We put
L := ‖Dφ‖∞. (2.2)

Here, ‖ · ‖∞ is the L∞(Rn;Rn)–norm. Under (2.1), Cauchy problem (1.3)
with (1.4) admits the unique viscosity solution u ∈ C(Rn× [0,∞)) with the
following properties:

u(x, t) = inf
y∈Rn

[
φ(y) +

1

qtq−1
|x− y|q

]
, x ∈ Rn, t > 0. (2.3)

|u(x, t)− u(y, t)| � L|x− y|, x, y ∈ Rn, t � 0. (2.4)

|u(x, t)− φ(x)| �Mt, x ∈ Rn, t � 0 (2.5)

for some constant M > 0.

Hopf-Lax formula (2.3) is well-known for a viscosity solution to Cauchy
problem (1.3) with (1.4). For inequalities (2.4) and (2.5), see [4, Theorem
1.3.2].

Next, under (2.1), we derive inequality (1.5) for completeness. Here, in
(1.5), we take α = 1 for simplicity, since this case is sufficient to prove (1.1).
Following the idea due to Gentil [7, 8], we prove (1.5) by Prékopa–Leindler
inequality. Note that we do not use (1.1) in this proof of (1.5).

Recall Prékopa–Leindler inequality (cf. [5, Theorem 2]): Let h0, h1 :
Rn → R be Borel measurable and nonnegative functions, and θ ∈ (0, 1) a
constant. Assume that h : Rn → R is a Borel measurable and nonnegative
function such that

h0(x0)
1−θh1(x1)

θ � h((1− θ)x0 + θx1), x0, x1 ∈ Rn. (2.6)

If h0, h1, h ∈ L1(Rn), then
(∫

h0(x)dx

)1−θ (∫
h1(x)dx

)θ
�

∫
h(x)dx. (2.7)

Now, let β > 1 and t > 0. Under (2.1), we consider the functions h0, h1, h
defined by

h0(x) = exp{βu(x, t)},

h1(x) = exp

{
−β (β − 1)

q−1 |x|q
qtq−1

}
,

h(x) = exp {φ(βx)} .
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Since u(x, t) � φ(x) � 0 for (x, t) ∈ Rn × [0,∞) by (2.3), we have

βu(x, t) � βφ(x) � φ(x), (x, t) ∈ Rn × [0,∞), (2.8)

so that h0 ∈ L1(Rn) by (2.1). It is clear that h1 ∈ L1(Rn). Since eφ ∈
L1(Rn), we have h ∈ L1(Rn). Furthermore, let θ = (β − 1)/β ∈ (0, 1). By
(2.3), we have, for x0, x1 ∈ Rn,

h0(x0)
1−θh1(x1)

θ = exp

{
u(x0, t)−

1

qtq−1
|(β − 1)x1|q

}

� exp {φ (β[(1− θ)x0 + θx1])} = h((1− θ)x0 + θx1).

Thus, (2.6) holds for these h0, h1, h. Note that

(∫
h0(x)dx

)1−θ
= ‖eu(·,t)‖β ,

∫
h(x)dx =

‖eφ‖1
βn

.

By (1.2) and a slightly long calculation, we have

∫
h1(x)dx =

∫
e−C|x|

q

dx

(
C =

β(β − 1)q−1

qtq−1

)

=
σn−1

q C
n
q

Γ(n/q) (σn−1 = the surface area of the unit ball of Rn)

=

[
βp−1 nLpe

p−1(β − 1)

ppt

]−np
.

Thus, by (2.7), we conclude (1.5) for α = 1, β > 1 and t > 0.

We prepare three lemmas for the next section.

Lemma 2.1.— Assume that φ ∈ C1(Rn) and Dφ is bounded on Rn. Let
u ∈ C(Rn × [0,∞)) be the unique viscosity solution to the Cauchy problem
(1.3) with (1.4). Then, we have

u(x, s)− φ(x) � −s

p

[
max

|z−x|�Cs
|Dφ(z)|

]p
, (x, s) ∈ Rn × (0,∞),

where C = (qL)
1
q−1 and L is the constant of (2.2).

Proof. — Fix (x, s) ∈ Rn × (0,∞) arbitrarily. Let ŷ ∈ Rn be a minimizer of
the Hopf-Lax formula

u(x, s) = inf
y∈Rn

[
φ(x− y) +

|y|q
qsq−1

]
= φ(x− ŷ) +

|ŷ|q
qsq−1

.
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Such a ŷ surely exists, since q > 1 and Dφ is bounded on Rn. Since u(x, s) �
φ(x) by (2.3), we have

|ŷ|q
qsq−1

� φ(x)− φ(x− ŷ) � L|ŷ|,

so that |ŷ| � Cs. Note that, when |y| � Cs, we have

φ(x− y)− φ(x) =

∫ 1

0

d

dθ
φ(x− θy)dθ =

∫ 1

0

Dφ(x− θy) · (−y)dθ

� −|y| max
|z−x|�Cs

|Dφ(z)|.

Thus,

u(x, s)− φ(x) = inf
|y|�Cs

[
φ(x− y)− φ(x) +

|y|q
qsq−1

]

� inf
|y|�Cs

[
−|y| max

|z−x|�Cs
|Dφ(z)| +

|y|q
qsq−1

]

� inf
y∈Rn

[
−|y| max

|z−x|�Cs
|Dφ(z)| +

|y|q
qsq−1

]

= −s

p

[
max

|z−x|�Cs
|Dφ(z)|

]p
.

Lemma 2.2.— Let {fε}0<ε<1 be a family of nonnegative and measurable
functions on Rn such that f := lim

ε→0+
fε exists a.e. on Rn. Assume that there

exists a constant δ ∈ (0, p) such that fε, f ∈ Lp−δ(Rn) and

lim
ε→0+

∫
fε(x)p−δdx =

∫
f(x)p−δdx. (2.9)

Then, we have (1.8).

Proof. — Note that the inequality

tδ log t +
1

δe
� 0, t � 0, δ > 0

holds. Thus, applying the Fatou’s lemma to

∫ (
fpε log fε +

1

δe
fp−δε

)
dx =

∫
fp−δε

(
fδε log fε +

1

δe

)
dx,
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we have

lim inf
ε→0+

∫ (
fpε log fε +

1

δe
fp−δε

)
dx �

∫
fp−δ

(
fδ log f +

1

δe

)
dx.

By our assumption, the left-hand side of this inequality is equal to

lim inf
ε→0+

∫
fpε log fεdx +

1

δe
lim
ε→0+

∫
fp−δε dx.

Therefore, we conclude (1.8) by (2.9).

Lemma 2.3.— For 0 � f ∈ Lp(Rn), let

fε(x) = λ(εx)f(x), x ∈ Rn, 0 < ε < 1,

where λ is a C(Rn)–function such that λ(0) = 1 and 0 � λ � 1 on Rn.
Then, we have (1.8).

Proof. — We have

lim inf
ε→0+

∫
fpε log fεdx

= lim inf
ε→0+

[∫
λ(ε ·)pfp log λ(ε ·)dx +

∫

{f�1}
λ(ε ·)pfp log fdx

+

∫

{f<1}
λ(ε ·)pfp log fdx

]

� lim inf
ε→0+

∫
λ(ε ·)pfp log λ(ε ·)dx + lim inf

ε→0+

∫

{f�1}
λ(ε ·)pfp log fdx

+ lim inf
ε→0+

∫

{f<1}
λ(ε ·)pfp log fdx

≡ I + J + K.

Since f ∈ Lp(Rn), we have I = 0 by Lebesgue’s dominated convergence
theorem. By Fatou’s lemma, we have

J �
∫

{f�1}
fp log fdx.

Since 0 � λ � 1 on Rn, we have

K �
∫

{f<1}
fp log fdx,
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so that

I + J + K �
∫

fp log fdx.

Therefore, we conclude (1.8).

3. Proof of inequality (1.1)

In this section, we provide a complete proof of inequality (1.1) for all
f ∈ W 1,p(Rn) and p > 1. First, we show (1.1) for f ∈ W 1,p(Rn) satisfying
(1.7). We put φ := p log f . Then, φ fulfills

φ ∈ C1(Rn), φ � 0 in Rn, eφ ∈ L1(Rn), and (3.1)

Dφ is bounded on Rn.

Further, note that (3.1) implies (2.1). Thus, if f ∈ W 1,p(Rn) fulfills (1.7),
Cauchy problem (1.3) with (1.4) for φ := p log f admits the unique viscosity
solution u ∈ C(Rn × [0,∞)).

Lemma 3.1.— Let p > 1 and k > 0. Assume that f ∈ W 1,p(Rn) fulfills
(1.7). Let u ∈ C(Rn × [0,∞)) be the unique viscosity solution of Cauchy
problem (1.3) with (1.4) for φ = p log f . We define the function F on [0,∞)
by

F (s) =

∫
e(ks+1)u(x,s)dx, s � 0.

If Ent(eφ) > −∞, then we have

lim inf
s→0+

F (s)− F (0)

s
�−1

p

∫
eφ(x) |Dφ(x)|p dx+k

∫
φ(x)eφ(x)dx. (3.2)

Proof. — 1. Since φ � 0 in Rn, we have, by (2.8),

e(ks+1)u(x,s) � e(ks+1)φ(x) � eφ(x) ∈ L1(Rn), s � 0. (3.3)

Thus, F is well–defined. Furthermore, note that

0 � −
∫

φ(x)eφ(x)dx <∞, (3.4)

since Ent(eφ) > −∞. Thus, by (2.5), (3.3) and (3.4), we have, for (x, s) ∈
Rn × (0,∞),

0 � (ks + 1)|u(x, s)|e(ks+1)u(x,s) � (ks + 1)(|φ(x)|+ Ms)eφ(x) ∈ L1(Rn).
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2. We show that

F (s)− F (0)�−s

p
(ks + 1)

∫
e(ks+1)φ(x)

[
max

|z−x|�Cs
|Dφ(z)|p

]
dx(3.5)

+

∫ ∫ s

0

kφ(x)e(kθ+1)φ(x)dθdx

(note that all terms in (3.5) are well–defined by the arguments above). In
order to show (3.5), we see that

F (s)− F (0)

=

∫
[e(ks+1)u(x,s) − e(ks+1)φ(x)]dx +

∫
[e(ks+1)φ(x) − eφ(x)]dx =: I + J.

Using the inequalities u(x, s) � φ(x) and

|eb − ea| =
∣∣∣∣∣

∫ b

a

etdt

∣∣∣∣∣ � max{ea, eb}|b− a|, a, b ∈ R,

we have

0 � −[e(ks+1)u(x,s) − e(ks+1)φ(x)] = |e(ks+1)u(x,s) − e(ks+1)φ(x)|
� (ks + 1) max{e(ks+1)u(x,s), e(ks+1)φ(x)}|u(x, s)− φ(x)|
� (ks + 1)e(ks+1)φ(x)[φ(x)− u(x, s)],

so that, by Lemma 2.1,

e(ks+1)u(x,s) − e(ks+1)φ(x) � (ks + 1)e(ks+1)φ(x)[u(x, s)− φ(x)]

� −s

p
(ks + 1)e(ks+1)φ(x)

[
max

|z−x|�Cs
|Dφ(z)|

]p
.

This implies that

I � −s

p
(ks + 1)

∫
e(ks+1)φ(x)

[
max

|z−x|�Cs
|Dφ(z)|p

]
dx.

On the other hand, we have

J =

∫
[e(ks+1)φ(x) − eφ(x)]dx =

∫ ∫ s

0

d

dθ
e(kθ+1)φ(x)dθdx

=

∫ ∫ s

0

kφ(x)e(kθ+1)φ(x)dθdx.

Thus, we have obtained (3.5). Then, by Lebesgue’s dominated convergence
theorem, we conclude (3.2).
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Proposition 3.2.— Let p > 1. Then, inequality (1.1) holds true for all
f ∈W 1,p(Rn) satisfying (1.7).

Proof. — By (1.7), we put φ(x) = p log f(x). When Ent(fp) = −∞, (1.1) is
trivial. So, we may assume that Ent(eφ) = Ent(fp) > −∞.

For any k > 0, we consider the functions F of Lemma 3.1 and

B(s) =

(
nLpe

p−1k

pp

)nks
p

(ks + 1)−
n(ks+p)

p , s � 0.

Note that (1.5) with α = 1 and β = ks + 1 can be rewritten as

F (s) � F (0)ks+1B(s).

Since B(0) = 1, we have

lim inf
s→0+

F (s)− F (0)

s
� F (0) lim inf

s→0+

F (0)ksB(s)−B(0)

s
.

Note that

lim inf
s→0+

F (0)ksB(s)−B(0)

s
=

d

ds

[
F (0)ksB(s)

]∣∣
s=0

= k log

(∫
eφ(x)dx

)
+

nk

p
log

(
nLpk

ppe

)
.

Therefore, by Lemma 3.1, we obtain

−1

p

∫
eφ(x) |Dφ(x)|p dx + k

∫
φ(x)eφ(x)dx

�
∫

eφ(x)dx

[
k log

(∫
eφ(x)dx

)
+

nk

p
log

(
nLpk

ppe

)]
,

so that

kEnt(eφ) � 1

p

∫
eφ(x) |Dφ(x)|p dx +

∫
eφ(x)dx

nk

p
log

(
nLpk

ppe

)
.

Since eφ(x) = f(x)p and eφ(x)|Dφ(x)|p = pp|Df(x)|p in Rn, we have ob-
tained

Ent(fp) � pp−1

k

∫
|Df(x)|pdx +

n

p

∫
f(x)pdx log

(
nLpk

ppe

)
.

Minimizing the right-hand side with respect to k > 0 over (0,∞), we obtain
(1.1) for f ∈W 1,p(Rn) satisfying (1.7).
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Now, we state the theorem of this paper.

Theorem 3.3. — Let p > 1. Inequality (1.1) holds true for all f ∈
W 1,p(Rn).

Proof. — We divide the proof of Theorem 3.3 into six steps as follows:

(i) We show (1.1) for f ∈W 1,p(Rn) satisfying

f ∈ C1(Rn), 0 < f in Rn, and D(log f) is bounded on Rn. (3.6)

(ii) We show (1.1) for 0 � f ∈ C1
0 (Rn), where C1

0 (Rn) is the set of all
C1(Rn)–functions with compact supports in Rn.

(iii) We show (1.1) for 0 � f ∈W 1,p(Rn)
⋂

C1(Rn).

(iv) We show (1.1) for 0 � f ∈W 1,p(Rn)
⋂

Lp−δ(Rn) with some δ ∈ (0, p−
1).

(v) We show (1.1) for 0 � f ∈W 1,p(Rn).

(vi) We show (1.1) for f ∈W 1,p(Rn).

Here, in (iv) and (v), f � 0 means that f � 0 a.e. in Rn. In (iv), we
consider a constant δ ∈ (0, p−1), although we considered the case δ ∈ (0, p)
in Lemma 2.2.

(i) Let f ∈ W 1,p(Rn) be a function satisfying (3.6). We denote by L0

the Lipschitz constant of log f . Note that there exists a constant M > 0
such that log f(x) � M on Rn. If not, we find a sequence {xj} of Rn such
that log f(xj) � j + 1 for each j ∈ N. Fix j ∈ N arbitrarily. Since log f is
Lipschitz continuous on Rn, we have

log f(xj)− log f(x) � L0|x− xj | � 1, |x− xj | �
1

L0
, j ∈ N,

so that j � log f(x) on {|x− xj | � 1/L0}. Thus,

∞ >

∫
f(x)pdx =

∫
ep log f(x)dx �

∫

{|x−xj |�1/L0}
ep log f(x)dx � epjωn

(
1

L0

)n
,

where ωn is the volume of the unit ball of Rn. Since j ∈ N is arbitrary,
this is a contradiction. Hence, there exists a constant M > 0 such that
log f(x) �M on Rn. Set

fM (x) = f(x)e−M = elog f(x)−M , x ∈ Rn.
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It is easy to see that fM ∈W 1,p(Rn) fulfills (1.7). Thus, we have, by Propo-
sition 3.2,

Ent(fpM ) � n

p

∫
fM (x)pdx log


Lp

∫
|DfM (x)|p dx

∫
fM (x)p dx


 .

Since Ent(fpM ) = e−pMEnt(fp), we have shown (1.1) for f ∈W 1,p(Rn) sat-
isfying (3.6).

(ii) Let 0 � f ∈ C1
0 (Rn). We set

fε(x) =
[
f(x)p + εe−〈x〉

]1/p

, x ∈ Rn, 0 < ε < 1,

where 〈x〉 = (1 + |x|2)1/2. Then, 0 < fε ∈ W 1,p(Rn)
⋂

C1(Rn). Since f has
a compact support in Rn, D(log fε) is bounded on Rn. Thus, fε belongs to
W 1,p(Rn) and fulfills (3.6). By (i), we see that fε satisfies

∫
fpε dx log

∫
fpε dx +

n

p

∫
fpε dx log


Lp

∫
|Dfε|p dx
∫

fpε dx


 (3.7)

�
∫

fpε log fpε dx.

Let δ ∈ (0, p− 1). Using the inequality

(a + b)κ � aκ + bκ a, b � 0, 0 < κ < 1,

we have
|fε(x)|p−δ � f(x)p−δ + e−

p−δ
p 〈x〉.

Thus, fε, f ∈ Lp−δ(Rn). By Lemma 2.2, we see that (1.8) holds for this {fε}
and f . Since fε, f ∈W 1,p(Rn) fulfill

lim
ε→0+

∫
fε(x)pdx =

∫
f(x)pdx, lim

ε→0+

∫
|Dfε(x)|pdx =

∫
|Df(x)|pdx,

(3.8)
we have shown (1.1) for 0 � f ∈ C1

0 (Rn) by letting ε to 0+ in (3.7).

(iii) Let 0 � f ∈W 1,p(Rn)
⋂

C1(Rn). Let ρ be a C1
0 (Rn)–function with

ρ(0) = 1 and 0 � ρ � 1 on Rn. We set

fε(x) = ρ(εx)f(x), x ∈ Rn, 0 < ε < 1.
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Then, 0 � fε ∈ C1
0 (Rn). Thus, by (ii), we see that (3.7) holds for this

function fε. Since fε and f satisfy (3.8), we conclude (1.1) for 0 � f ∈
W 1,p(Rn)

⋂
C1(Rn) by using Lemma 2.3 and letting ε to 0+ in (3.7).

(iv) Let 0 � f ∈ W 1,p(Rn)
⋂

Lp−δ(Rn) with some δ ∈ (0, p − 1). Let

η ∈ C∞0 (Rn) be a nonnegative function such that

∫
η(x)dx = 1. For a

sufficiently small ε > 0, we define fε by

fε(x) =
1

εn

∫
f(y) η

(
x− y

ε

)
dy, x ∈ Rn.

Then, 0 � fε ∈ W 1,p(Rn)
⋂

C1(Rn)
⋂

Lp−δ(Rn) with some δ ∈ (0, p − 1),
since p− δ > 1. Thus, by (iii), we see that (3.7) holds for this function fε.

Next, since fε → f in Lp−δ(Rn), we find a sequence {εj} ⊂ (0, 1) such
that εj → 0 as j → ∞ and fεj → f a.e. on Rn. Thus, by Lemma 2.2, we
have

lim inf
j→∞

∫
fεj (x)p log fεj (x)dx �

∫
f(x)p log f(x)dx.

Since (3.8) is fulfilled, we have shown (1.1) for 0 � f ∈ W 1,p(Rn)
⋂

Lp−δ(Rn) with some δ ∈ (0, p − 1) by using Lemma 2.2 and letting ε to
0+ in (3.7).

(v) Let 0 � f ∈W 1,p(Rn). Set

fε(x) = ρ(εx)f(x), x ∈ Rn, 0 < ε < 1.

Here, ρ is a C1
0 (Rn)–function with ρ(0) = 1 and 0 � ρ � 1 on Rn. Then,

it is easy to see that 0 � fε ∈ W 1,p(Rn)
⋂

Lp−δ(Rn) for all δ ∈ (0, p − 1).
Thus, by (iv), (3.7) holds for this function fε. By the same arguments as
those of (iii), we conclude (1.1) for 0 � f ∈W 1,p(Rn).

(vi) We show (1.1) for f ∈W 1,p(Rn). Note that if f ∈W 1,p(Rn) then
|f | ∈ W 1,p(Rn). Hence, by (v) and the fact that |D|f || � |Df | a.e. in Rn,
we conclude (1.1) for f ∈W 1,p(Rn).

– 131 –



Yasuhiro Fujita

Bibliography

[1] Beckner (W.). — Geometric asymptotics and the logarithmic Sobolev inequality,
Forum Math. 11, p. 105-137 (1999).

[2] Bobkov (S. G.), Gentil (I.) and Ledoux (M.). — Hypercontractivity of
Hamilton-Jacobi equations, J. Math. Pures Appl. 80, p. 669-696 (2001).

[3] Bobkov (S. G.) and Ledoux (M.). — From Brunn-Minkowski to sharp Sobolev
inequalities, Annali di Matematica Pura ed Applicata. Series IV 187, p. 369-384
(2008).

[4] Cannarsa (P.) and Sinestrari (C.). — Semiconcave functions, Hamilton-Jacobi
equations, and optimal control, Progress in Nonlinear Differential Equations and
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