ANNALES DE LA FACULTÉ DES SCIENCES TOULOUSE Mathématiques

YASUHIRO FUJITA A supplementary proof of L^p -logarithmic Sobolev inequality

Tome XXIV, nº 1 (2015), p. 119-132.

<http://afst.cedram.org/item?id=AFST_2015_6_24_1_119_0>

© Université Paul Sabatier, Toulouse, 2015, tous droits réservés.

L'accès aux articles de la revue « Annales de la faculté des sciences de Toulouse Mathématiques » (http://afst.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://afst.cedram. org/legal/). Toute reproduction en tout ou partie de cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/

A supplementary proof of L^p -logarithmic Sobolev inequality

Yasuhiro Fujita⁽¹⁾

ABSTRACT. — In this paper, we bridge a gap in the proof of the L^{p} -logarithmic Sobolev inequality obtained by Gentil [8, Theorem 1.1], and provide a supplementary proof. Our proof is based on a Hamilton–Jacobi equation and several approximations of functions in $W^{1,p}(\mathbb{R}^n)$.

RÉSUMÉ. — Dans cet article, nous complétons la preuve de l'inégalité de Sobolev logarithmique L^p obtenue par Gentil dans [8] et donnons aussi une preuve supplémentaire. Notre approche est basée sur une équation de Hamilton-Jacobi et sur plusieurs approximations de fonctions dans $W^{1,p}(\mathbb{R}^n)$.

1. Introduction

Let $n \in \mathbb{N}$. For a smooth enough function $f \ge 0$ on \mathbb{R}^n , we define the entropy of f with respect to the Lebesgue measure by

$$\operatorname{Ent}(f) = \int f(x) \log f(x) dx - \int f(x) dx \, \log \int f(x) dx.$$

In this paper, the integral without its domain is always understood as the one over \mathbb{R}^n , and we interpret that $0 \log 0 = 0$.

^(*) Reçu le 25/06/2014, accepté le 10/09/2014

 $^{^{(1)}}$ Department of Mathematics, University of Toyama, Toyama 930-8555, Japan yfujita@sci.u-toyama.ac.jp

The author was supported in part by JSPS KAKENHI # 24540165

Article proposé par Franck Barthe.

Let $p \ge 1$. We denote by $W^{1,p}(\mathbb{R}^n)$ the space of all weakly differentiable functions f on \mathbb{R}^n such that f and |Df| (the Euclidean length of the gradient Df of f) are in $L^p(\mathbb{R}^n)$. For $f \in W^{1,p}(\mathbb{R}^n)$, the following L^p -logarithmic Sobolev inequality was shown for p = 2 by [10], p = 1 by [9], and 1by [6]:

$$\operatorname{Ent}(|f|^p) \leq \frac{n}{p} \int |f(x)|^p dx \, \log\left(L_p \frac{\int |Df(x)|^p \, dx}{\int |f(x)|^p \, dx}\right). \tag{1.1}$$

Here,

$$L_{p} = \begin{cases} \frac{p}{n} \left(\frac{p-1}{e}\right)^{p-1} \pi^{-p/2} \left(\frac{\Gamma\left(\frac{n}{2}+1\right)}{\Gamma\left(n\frac{p-1}{p}+1\right)}\right)^{p/n}, & p > 1, \\ \frac{1}{n} \pi^{-1/2} \left[\Gamma\left(\frac{n}{2}+1\right)\right]^{1/n}, & p = 1. \end{cases}$$
(1.2)

This is the best possible constant satisfying (1.1) for $1 \leq p < n$ (cf. [1, 6]).

For a general p > 1, with a deep insight, Gentil [8, Theorem 1.1] tried to give inequality (1.1) in the following way: First, he gave a hypercontractivity inequality for the unique viscosity solution to the Cauchy problem of the Hamilton-Jacobi equation

$$u_t(x,t) + \frac{1}{p} |Du(x,t)|^p = 0 \quad \text{in } \mathbb{R}^n \times (0,\infty),$$
 (1.3)

$$u(\cdot, 0) = \phi \qquad \qquad \text{in } \mathbb{R}^n. \tag{1.4}$$

Here, $\phi \in \operatorname{Lip}(\mathbb{R}^n)$. He showed that if there is a constant $\alpha > 0$ such that $e^{\phi} \in L^{\alpha}(\mathbb{R}^n)$, then $e^{u(\cdot,t)} \in L^{\beta}(\mathbb{R}^n)$ for any $\beta > \alpha$ and t > 0 and

$$\|e^{u(\cdot,t)}\|_{\beta} \leqslant \|e^{\phi}\|_{\alpha} \left(\frac{nL_{p}e^{p-1}(\beta-\alpha)}{p^{p}t}\right)^{\frac{n}{p}\frac{\beta-\alpha}{\alpha\beta}} \frac{\alpha^{\frac{n}{\alpha\beta}\left(\frac{\alpha}{p}+\frac{(p-1)\beta}{p}\right)}}{\beta^{\frac{n}{\alpha\beta}\left(\frac{\beta}{p}+\frac{(p-1)\alpha}{p}\right)}}, \qquad (1.5)$$

where L_p is the constant of (1.2) and

$$||f||_{\gamma} = \left(\int |f(x)|^{\gamma} dx\right)^{1/\gamma}, \quad \gamma > 0.$$

For completeness, we prove (1.5) in Section 2 for $\alpha = 1$ and $\beta > 1$; this case is sufficient to prove (1.1). Gentil [8, Theorem 1.1] tried to derive inequality (1.1) from inequality (1.5). However, his proof for inequality (1.1) seems to be valid only when $f \in W^{1,p}(\mathbb{R}^n)$ has the form $f = e^{\frac{1}{p}\phi}$ for $\phi \in \operatorname{Lip}(\mathbb{R}^n)$ of (1.4) with

$$\liminf_{s \to 0+} \frac{1}{s} \int [e^{(ks+1)u(x,s)} - e^{(ks+1)\phi(x)}] dx \ge -\frac{1}{p} \int e^{\phi(x)} |D\phi(x)|^p dx \quad (1.6)$$

for any k > 0, where u is a viscosity solution to Cauchy problem (1.3) with (1.4). So, his paper proves (1.1) for a special class of functions $f \in W^{1,p}(\mathbb{R}^n)$.

Our aim in this paper is to bridge this gap in the proof of [8, Theorem 1.1] and provide a supplementary proof of inequality (1.1) for all $f \in W^{1,p}(\mathbb{R}^n)$ and p > 1. The strategy of our proof is the following: First, we show (1.1) for $f \in W^{1,p}(\mathbb{R}^n)$ such that

$$f \in C^1(\mathbb{R}^n), 0 < f \leq 1 \text{ in } \mathbb{R}^n, \text{ and } D(\log f) \text{ is bounded on } \mathbb{R}^n.$$
 (1.7)

The point is that, under (1.7) for $f \in W^{1,p}(\mathbb{R}^n)$, inequality (1.6) is fulfilled for letting $\phi(\cdot) = p \log f(\cdot)$ (see the proof of Lemma 3.1 below). Such an argument was used in [3].

Second, we approximate $f \in W^{1,p}(\mathbb{R}^n)$ by a sequence of functions satisfying (1.7) by several steps. This is the key point to derive (1.1) from (1.5) (see Theorem 3.3 below). An important estimate is the following Fatou-type inequality: if a family $\{f_{\epsilon}\}_{0 < \epsilon < 1}$ of nonnegative and measurable functions on \mathbb{R}^n approximates a function f in some sense, then

$$\liminf_{\epsilon \to 0+} \int f_{\epsilon}(x)^{p} \log f_{\epsilon}(x) dx \ge \int f(x)^{p} \log f(x) dx.$$
(1.8)

We provide a sufficient condition on $\{f_{\epsilon}\}_{0 < \epsilon < 1}$ for (1.8) (see Lemmas 2.2 and 2.3 below). From this result, we provide a stability condition such that if f_{ϵ} satisfies (1.1), so does f.

Finally, by using these approximations, we show that L^p -logarithmic Sobolev inequality (1.1) holds true for all $f \in W^{1,p}(\mathbb{R}^n)$ and p > 1. This bridges a gap of the proof of [8, Theorem 1.1] for L^p -logarithmic Sobolev inequality (1.1) with p > 1.

The content of this paper is organized as follows: In Section 2, we provide preliminaries. In Section 3, we provide a supplementary proof of inequality (1.1) for all $f \in W^{1,p}(\mathbb{R}^n)$ and p > 1.

I express my hearty appreciation to Ivan Gentil for his encouragement.

2. Preliminaries

In this section, we provide preliminaries to the next section. In the following, we assume p > 1. Set q = p/(p-1). We assume that

$$\phi \in \operatorname{Lip}(\mathbb{R}^n), \, \phi \leq 0 \text{ in } \mathbb{R}^n \text{ and } e^\phi \in L^1(\mathbb{R}^n).$$
 (2.1)

We put

$$L := \|D\phi\|_{\infty}.\tag{2.2}$$

Here, $\|\cdot\|_{\infty}$ is the $L^{\infty}(\mathbb{R}^n;\mathbb{R}^n)$ -norm. Under (2.1), Cauchy problem (1.3) with (1.4) admits the unique viscosity solution $u \in C(\mathbb{R}^n \times [0,\infty))$ with the following properties:

$$u(x,t) = \inf_{y \in \mathbb{R}^n} \left[\phi(y) + \frac{1}{qt^{q-1}} |x-y|^q \right], \quad x \in \mathbb{R}^n, \ t > 0.$$
(2.3)

$$|u(x,t) - u(y,t)| \leq L|x-y|, \quad x,y \in \mathbb{R}^n, \ t \ge 0.$$

$$(2.4)$$

$$|u(x,t) - \phi(x)| \leqslant Mt, \quad x \in \mathbb{R}^n, \ t \ge 0$$
(2.5)

for some constant
$$M > 0$$
.

Hopf-Lax formula (2.3) is well-known for a viscosity solution to Cauchy problem (1.3) with (1.4). For inequalities (2.4) and (2.5), see [4, Theorem 1.3.2].

Next, under (2.1), we derive inequality (1.5) for completeness. Here, in (1.5), we take $\alpha = 1$ for simplicity, since this case is sufficient to prove (1.1). Following the idea due to Gentil [7, 8], we prove (1.5) by Prékopa–Leindler inequality. Note that we do not use (1.1) in this proof of (1.5).

Recall Prékopa-Leindler inequality (cf. [5, Theorem 2]): Let h_0, h_1 : $\mathbb{R}^n \to \mathbb{R}$ be Borel measurable and nonnegative functions, and $\theta \in (0, 1)$ a constant. Assume that $h : \mathbb{R}^n \to \mathbb{R}$ is a Borel measurable and nonnegative function such that

$$h_0(x_0)^{1-\theta}h_1(x_1)^{\theta} \leq h((1-\theta)x_0+\theta x_1), \quad x_0, x_1 \in \mathbb{R}^n.$$
 (2.6)

If $h_0, h_1, h \in L^1(\mathbb{R}^n)$, then

$$\left(\int h_0(x)dx\right)^{1-\theta} \left(\int h_1(x)dx\right)^{\theta} \leqslant \int h(x)dx.$$
(2.7)

Now, let $\beta > 1$ and t > 0. Under (2.1), we consider the functions h_0, h_1, h defined by

$$h_0(x) = \exp\{\beta u(x,t)\},\$$

$$h_1(x) = \exp\{-\beta (\beta - 1)^{q-1} \frac{|x|^q}{qt^{q-1}}\},\$$

$$h(x) = \exp\{\phi(\beta x)\}.$$

– 122 –

A supplementary proof of L^p -logarithmic Sobolev inequality

Since $u(x,t) \leq \phi(x) \leq 0$ for $(x,t) \in \mathbb{R}^n \times [0,\infty)$ by (2.3), we have

$$\beta u(x,t) \leq \beta \phi(x) \leq \phi(x), \quad (x,t) \in \mathbb{R}^n \times [0,\infty),$$
 (2.8)

so that $h_0 \in L^1(\mathbb{R}^n)$ by (2.1). It is clear that $h_1 \in L^1(\mathbb{R}^n)$. Since $e^{\phi} \in L^1(\mathbb{R}^n)$, we have $h \in L^1(\mathbb{R}^n)$. Furthermore, let $\theta = (\beta - 1)/\beta \in (0, 1)$. By (2.3), we have, for $x_0, x_1 \in \mathbb{R}^n$,

$$h_0(x_0)^{1-\theta} h_1(x_1)^{\theta} = \exp\left\{u(x_0, t) - \frac{1}{qt^{q-1}} \left|(\beta - 1)x_1\right|^q\right\}$$

$$\leqslant \quad \exp\left\{\phi\left(\beta[(1-\theta)x_0 + \theta x_1]\right)\right\} = h((1-\theta)x_0 + \theta x_1).$$

Thus, (2.6) holds for these h_0, h_1, h . Note that

$$\left(\int h_0(x)dx\right)^{1-\theta} = \|e^{u(\cdot,t)}\|_{\beta}, \quad \int h(x)dx = \frac{\|e^{\phi}\|_1}{\beta^n}.$$

By (1.2) and a slightly long calculation, we have

$$\int h_1(x)dx = \int e^{-C|x|^q} dx \quad \left(C = \frac{\beta(\beta-1)^{q-1}}{qt^{q-1}}\right)$$
$$= \frac{\sigma_{n-1}}{qC^{\frac{n}{q}}} \Gamma(n/q) \quad (\sigma_{n-1} = \text{the surface area of the unit ball of } \mathbb{R}^n)$$
$$= \left[\beta^{p-1} \frac{nL_p e^{p-1}(\beta-1)}{p^p t}\right]^{-\frac{n}{p}}.$$

Thus, by (2.7), we conclude (1.5) for $\alpha = 1$, $\beta > 1$ and t > 0.

We prepare three lemmas for the next section.

LEMMA 2.1. — Assume that $\phi \in C^1(\mathbb{R}^n)$ and $D\phi$ is bounded on \mathbb{R}^n . Let $u \in C(\mathbb{R}^n \times [0, \infty))$ be the unique viscosity solution to the Cauchy problem (1.3) with (1.4). Then, we have

$$u(x,s) - \phi(x) \ge -\frac{s}{p} \left[\max_{|z-x| \le Cs} |D\phi(z)| \right]^p, \ (x,s) \in \mathbb{R}^n \times (0,\infty),$$

where $C = (qL)^{\frac{1}{q-1}}$ and L is the constant of (2.2).

Proof.— Fix $(x,s) \in \mathbb{R}^n \times (0,\infty)$ arbitrarily. Let $\hat{y} \in \mathbb{R}^n$ be a minimizer of the Hopf-Lax formula

$$u(x,s) = \inf_{y \in \mathbb{R}^n} \left[\phi(x-y) + \frac{|y|^q}{qs^{q-1}} \right] = \phi(x-\hat{y}) + \frac{|\hat{y}|^q}{qs^{q-1}}.$$

- 123 -

Such a \hat{y} surely exists, since q > 1 and $D\phi$ is bounded on \mathbb{R}^n . Since $u(x, s) \leq \phi(x)$ by (2.3), we have

$$\frac{|\hat{y}|^q}{qs^{q-1}} \leqslant \phi(x) - \phi(x - \hat{y}) \leqslant L|\hat{y}|,$$

so that $|\hat{y}| \leq Cs$. Note that, when $|y| \leq Cs$, we have

$$\begin{split} \phi(x-y) - \phi(x) &= \int_0^1 \frac{d}{d\theta} \phi(x-\theta y) d\theta = \int_0^1 D\phi(x-\theta y) \cdot (-y) d\theta \\ \geqslant & -|y| \max_{|z-x| \leqslant Cs} |D\phi(z)|. \end{split}$$

Thus,

$$\begin{split} u(x,s) - \phi(x) &= \inf_{|y| \leqslant Cs} \left[\phi(x-y) - \phi(x) + \frac{|y|^q}{qs^{q-1}} \right] \\ \geqslant &\inf_{|y| \leqslant Cs} \left[-|y| \max_{|z-x| \leqslant Cs} |D\phi(z)| + \frac{|y|^q}{qs^{q-1}} \right] \\ \geqslant &\inf_{y \in \mathbb{R}^n} \left[-|y| \max_{|z-x| \leqslant Cs} |D\phi(z)| + \frac{|y|^q}{qs^{q-1}} \right] \\ &= -\frac{s}{p} \left[\max_{|z-x| \leqslant Cs} |D\phi(z)| \right]^p. \end{split}$$

LEMMA 2.2. — Let $\{f_{\epsilon}\}_{0 < \epsilon < 1}$ be a family of nonnegative and measurable functions on \mathbb{R}^n such that $f := \lim_{\epsilon \to 0+} f_{\epsilon}$ exists a.e. on \mathbb{R}^n . Assume that there exists a constant $\delta \in (0, p)$ such that $f_{\epsilon}, f \in L^{p-\delta}(\mathbb{R}^n)$ and

$$\lim_{\epsilon \to 0+} \int f_{\epsilon}(x)^{p-\delta} dx = \int f(x)^{p-\delta} dx.$$
(2.9)

Then, we have (1.8).

Proof. — Note that the inequality

$$t^{\delta}\log t + \frac{1}{\delta e} \ge 0, \quad t \ge 0, \ \delta > 0$$

holds. Thus, applying the Fatou's lemma to

$$\int \left(f_{\epsilon}^{p} \log f_{\epsilon} + \frac{1}{\delta e} f_{\epsilon}^{p-\delta} \right) dx = \int f_{\epsilon}^{p-\delta} \left(f_{\epsilon}^{\delta} \log f_{\epsilon} + \frac{1}{\delta e} \right) dx,$$
$$- 124 -$$

A supplementary proof of L^p -logarithmic Sobolev inequality

we have

$$\liminf_{\epsilon \to 0+} \int \left(f_{\epsilon}^p \log f_{\epsilon} + \frac{1}{\delta e} f_{\epsilon}^{p-\delta} \right) dx \ge \int f^{p-\delta} \left(f^{\delta} \log f + \frac{1}{\delta e} \right) dx.$$

By our assumption, the left-hand side of this inequality is equal to

$$\liminf_{\epsilon \to 0+} \int f_{\epsilon}^{p} \log f_{\epsilon} dx + \frac{1}{\delta e} \lim_{\epsilon \to 0+} \int f_{\epsilon}^{p-\delta} dx.$$

Therefore, we conclude (1.8) by (2.9).

Lemma 2.3. — For $0 \leq f \in L^p(\mathbb{R}^n)$, let

$$f_{\epsilon}(x) = \lambda(\epsilon x) f(x), \quad x \in \mathbb{R}^n, \ 0 < \epsilon < 1,$$

where λ is a $C(\mathbb{R}^n)$ -function such that $\lambda(0) = 1$ and $0 \leq \lambda \leq 1$ on \mathbb{R}^n . Then, we have (1.8).

Proof. — We have

$$\begin{split} \liminf_{\epsilon \to 0+} \int f_{\epsilon}^{p} \log f_{\epsilon} dx \\ = & \liminf_{\epsilon \to 0+} \left[\int \lambda(\epsilon \cdot)^{p} f^{p} \log \lambda(\epsilon \cdot) dx + \int_{\{f \ge 1\}} \lambda(\epsilon \cdot)^{p} f^{p} \log f dx \\ & + \int_{\{f < 1\}} \lambda(\epsilon \cdot)^{p} f^{p} \log f dx \right] \\ \geqslant & \liminf_{\epsilon \to 0+} \int \lambda(\epsilon \cdot)^{p} f^{p} \log \lambda(\epsilon \cdot) dx + \liminf_{\epsilon \to 0+} \int_{\{f \ge 1\}} \lambda(\epsilon \cdot)^{p} f^{p} \log f dx \\ & + \liminf_{\epsilon \to 0+} \int_{\{f < 1\}} \lambda(\epsilon \cdot)^{p} f^{p} \log f dx \\ & = I + J + K. \end{split}$$

Since $f \in L^p(\mathbb{R}^n)$, we have I = 0 by Lebesgue's dominated convergence theorem. By Fatou's lemma, we have

$$J \ge \int_{\{f \ge 1\}} f^p \log f dx.$$

Since $0 \leq \lambda \leq 1$ on \mathbb{R}^n , we have

$$K \ge \int_{\{f < 1\}} f^p \log f dx,$$
$$-125 -$$

so that

$$I + J + K \ge \int f^p \log f dx.$$

Therefore, we conclude (1.8).

3. Proof of inequality (1.1)

In this section, we provide a complete proof of inequality (1.1) for all $f \in W^{1,p}(\mathbb{R}^n)$ and p > 1. First, we show (1.1) for $f \in W^{1,p}(\mathbb{R}^n)$ satisfying (1.7). We put $\phi := p \log f$. Then, ϕ fulfills

$$\phi \in C^1(\mathbb{R}^n), \ \phi \leq 0 \ \text{in } \mathbb{R}^n, \ e^{\phi} \in L^1(\mathbb{R}^n), \ \text{and}$$
(3.1)
$$D\phi \ \text{is bounded on } \mathbb{R}^n.$$

Further, note that (3.1) implies (2.1). Thus, if $f \in W^{1,p}(\mathbb{R}^n)$ fulfills (1.7), Cauchy problem (1.3) with (1.4) for $\phi := p \log f$ admits the unique viscosity solution $u \in C(\mathbb{R}^n \times [0, \infty))$.

LEMMA 3.1. — Let p > 1 and k > 0. Assume that $f \in W^{1,p}(\mathbb{R}^n)$ fulfills (1.7). Let $u \in C(\mathbb{R}^n \times [0,\infty))$ be the unique viscosity solution of Cauchy problem (1.3) with (1.4) for $\phi = p \log f$. We define the function F on $[0,\infty)$ by

$$F(s) = \int e^{(ks+1)u(x,s)} dx, \quad s \ge 0.$$

If $\operatorname{Ent}(e^{\phi}) > -\infty$, then we have

$$\liminf_{s \to 0+} \frac{F(s) - F(0)}{s} \ge -\frac{1}{p} \int e^{\phi(x)} |D\phi(x)|^p \, dx + k \int \phi(x) e^{\phi(x)} \, dx. \tag{3.2}$$

Proof.— 1. Since $\phi \leq 0$ in \mathbb{R}^n , we have, by (2.8),

$$e^{(ks+1)u(x,s)} \leqslant e^{(ks+1)\phi(x)} \leqslant e^{\phi(x)} \in L^1(\mathbb{R}^n), \quad s \ge 0.$$
(3.3)

Thus, F is well–defined. Furthermore, note that

$$0 \leqslant -\int \phi(x)e^{\phi(x)}dx < \infty, \tag{3.4}$$

since $\operatorname{Ent}(e^{\phi}) > -\infty$. Thus, by (2.5), (3.3) and (3.4), we have, for $(x, s) \in \mathbb{R}^n \times (0, \infty)$,

$$0 \leq (ks+1)|u(x,s)|e^{(ks+1)u(x,s)} \leq (ks+1)(|\phi(x)| + Ms)e^{\phi(x)} \in L^1(\mathbb{R}^n).$$

A supplementary proof of $L^p\operatorname{-logarithmic}$ Sobolev inequality

2. We show that

$$F(s) - F(0) \ge -\frac{s}{p}(ks+1) \int e^{(ks+1)\phi(x)} \left[\max_{|z-x| \le Cs} |D\phi(z)|^p\right] dx(3.5)$$
$$+ \int \int_0^s k\phi(x) e^{(k\theta+1)\phi(x)} d\theta dx$$

(note that all terms in (3.5) are well-defined by the arguments above). In order to show (3.5), we see that

$$F(s) - F(0) = \int [e^{(ks+1)u(x,s)} - e^{(ks+1)\phi(x)}]dx + \int [e^{(ks+1)\phi(x)} - e^{\phi(x)}]dx =: I + J.$$

Using the inequalities $u(x,s) \leq \phi(x)$ and

$$|e^{b} - e^{a}| = \left| \int_{a}^{b} e^{t} dt \right| \leq \max\{e^{a}, e^{b}\}|b - a|, \quad a, b \in \mathbb{R},$$

we have

$$\begin{aligned} 0 &\leqslant -[e^{(ks+1)u(x,s)} - e^{(ks+1)\phi(x)}] = |e^{(ks+1)u(x,s)} - e^{(ks+1)\phi(x)}| \\ &\leqslant \quad (ks+1)\max\{e^{(ks+1)u(x,s)}, e^{(ks+1)\phi(x)}\}|u(x,s) - \phi(x)| \\ &\leqslant \quad (ks+1)e^{(ks+1)\phi(x)}[\phi(x) - u(x,s)], \end{aligned}$$

so that, by Lemma 2.1,

$$\begin{split} & e^{(ks+1)u(x,s)} - e^{(ks+1)\phi(x)} \geqslant (ks+1)e^{(ks+1)\phi(x)}[u(x,s) - \phi(x)] \\ \geqslant & -\frac{s}{p}(ks+1)e^{(ks+1)\phi(x)} \left[\max_{|z-x|\leqslant Cs} |D\phi(z)| \right]^p. \end{split}$$

This implies that

$$I \ge -\frac{s}{p}(ks+1) \int e^{(ks+1)\phi(x)} \left[\max_{|z-x| \le Cs} |D\phi(z)|^p \right] dx.$$

On the other hand, we have

$$J = \int [e^{(ks+1)\phi(x)} - e^{\phi(x)}] dx = \int \int_0^s \frac{d}{d\theta} e^{(k\theta+1)\phi(x)} d\theta dx$$
$$= \int \int_0^s k\phi(x) e^{(k\theta+1)\phi(x)} d\theta dx.$$

Thus, we have obtained (3.5). Then, by Lebesgue's dominated convergence theorem, we conclude (3.2). $\hfill \Box$

PROPOSITION 3.2. — Let p > 1. Then, inequality (1.1) holds true for all $f \in W^{1,p}(\mathbb{R}^n)$ satisfying (1.7).

Proof. — By (1.7), we put $\phi(x) = p \log f(x)$. When $\operatorname{Ent}(f^p) = -\infty$, (1.1) is trivial. So, we may assume that $\operatorname{Ent}(e^{\phi}) = \operatorname{Ent}(f^p) > -\infty$.

For any k > 0, we consider the functions F of Lemma 3.1 and

$$B(s) = \left(\frac{nL_p e^{p-1}k}{p^p}\right)^{\frac{nks}{p}} (ks+1)^{-\frac{n(ks+p)}{p}}, \quad s \ge 0.$$

Note that (1.5) with $\alpha = 1$ and $\beta = ks + 1$ can be rewritten as

$$F(s) \leqslant F(0)^{ks+1}B(s).$$

Since B(0) = 1, we have

$$\liminf_{s \to 0+} \frac{F(s) - F(0)}{s} \leqslant F(0) \liminf_{s \to 0+} \frac{F(0)^{ks} B(s) - B(0)}{s}$$

Note that

$$\liminf_{s \to 0+} \frac{F(0)^{ks} B(s) - B(0)}{s} = \frac{d}{ds} \left[F(0)^{ks} B(s) \right] \Big|_{s=0}$$
$$= k \log \left(\int e^{\phi(x)} dx \right) + \frac{nk}{p} \log \left(\frac{nL_p k}{p^p e} \right).$$

Therefore, by Lemma 3.1, we obtain

$$-\frac{1}{p}\int e^{\phi(x)} |D\phi(x)|^p dx + k \int \phi(x)e^{\phi(x)} dx$$
$$\leqslant \int e^{\phi(x)} dx \left[k \log\left(\int e^{\phi(x)} dx\right) + \frac{nk}{p} \log\left(\frac{nL_pk}{p^p e}\right)\right],$$

so that

$$k\mathrm{Ent}(e^{\phi}) \leqslant \frac{1}{p} \int e^{\phi(x)} |D\phi(x)|^p \, dx + \int e^{\phi(x)} dx \, \frac{nk}{p} \log\left(\frac{nL_pk}{p^p e}\right).$$

Since $e^{\phi(x)} = f(x)^p$ and $e^{\phi(x)}|D\phi(x)|^p = p^p|Df(x)|^p$ in \mathbb{R}^n , we have obtained

$$\operatorname{Ent}(f^p) \leqslant \frac{p^{p-1}}{k} \int |Df(x)|^p dx + \frac{n}{p} \int f(x)^p dx \, \log\left(\frac{nL_pk}{p^p e}\right).$$

Minimizing the right-hand side with respect to k > 0 over $(0, \infty)$, we obtain (1.1) for $f \in W^{1,p}(\mathbb{R}^n)$ satisfying (1.7).

A supplementary proof of L^p -logarithmic Sobolev inequality

Now, we state the theorem of this paper.

THEOREM 3.3. — Let p > 1. Inequality (1.1) holds true for all $f \in W^{1,p}(\mathbb{R}^n)$.

Proof. — We divide the proof of Theorem 3.3 into six steps as follows:

(i) We show (1.1) for
$$f \in W^{1,p}(\mathbb{R}^n)$$
 satisfying
 $f \in C^1(\mathbb{R}^n), 0 < f \text{ in } \mathbb{R}^n, \text{ and } D(\log f) \text{ is bounded on } \mathbb{R}^n.$ (3.6)

- (ii) We show (1.1) for $0 \leq f \in C_0^1(\mathbb{R}^n)$, where $C_0^1(\mathbb{R}^n)$ is the set of all $C^1(\mathbb{R}^n)$ -functions with compact supports in \mathbb{R}^n .
- (iii) We show (1.1) for $0 \leq f \in W^{1,p}(\mathbb{R}^n) \cap C^1(\mathbb{R}^n)$.
- (iv) We show (1.1) for $0 \leq f \in W^{1,p}(\mathbb{R}^n) \bigcap L^{p-\delta}(\mathbb{R}^n)$ with some $\delta \in (0, p-1)$.
- (v) We show (1.1) for $0 \leq f \in W^{1,p}(\mathbb{R}^n)$.
- (vi) We show (1.1) for $f \in W^{1,p}(\mathbb{R}^n)$.

Here, in (iv) and (v), $f \ge 0$ means that $f \ge 0$ a.e. in \mathbb{R}^n . In (iv), we consider a constant $\delta \in (0, p-1)$, although we considered the case $\delta \in (0, p)$ in Lemma 2.2.

(i) Let $f \in W^{1,p}(\mathbb{R}^n)$ be a function satisfying (3.6). We denote by L_0 the Lipschitz constant of $\log f$. Note that there exists a constant M > 0such that $\log f(x) \leq M$ on \mathbb{R}^n . If not, we find a sequence $\{x_j\}$ of \mathbb{R}^n such that $\log f(x_j) \geq j + 1$ for each $j \in \mathbb{N}$. Fix $j \in \mathbb{N}$ arbitrarily. Since $\log f$ is Lipschitz continuous on \mathbb{R}^n , we have

$$\log f(x_j) - \log f(x) \leqslant L_0 |x - x_j| \leqslant 1, \quad |x - x_j| \leqslant \frac{1}{L_0}, \ j \in \mathbb{N},$$

so that $j \leq \log f(x)$ on $\{|x - x_j| \leq 1/L_0\}$. Thus,

$$\infty > \int f(x)^p dx = \int e^{p\log f(x)} dx \ge \int_{\{|x-x_j| \le 1/L_0\}} e^{p\log f(x)} dx \ge e^{pj} \omega_n \left(\frac{1}{L_0}\right)^n,$$

where ω_n is the volume of the unit ball of \mathbb{R}^n . Since $j \in \mathbb{N}$ is arbitrary, this is a contradiction. Hence, there exists a constant M > 0 such that $\log f(x) \leq M$ on \mathbb{R}^n . Set

$$f_M(x) = f(x)e^{-M} = e^{\log f(x) - M}, \quad x \in \mathbb{R}^n$$

It is easy to see that $f_M \in W^{1,p}(\mathbb{R}^n)$ fulfills (1.7). Thus, we have, by Proposition 3.2,

$$\operatorname{Ent}(f_M^p) \leqslant \frac{n}{p} \int f_M(x)^p dx \, \log\left(L_p \frac{\int |Df_M(x)|^p \, dx}{\int f_M(x)^p \, dx}\right).$$

Since $\operatorname{Ent}(f_M^p) = e^{-pM} \operatorname{Ent}(f^p)$, we have shown (1.1) for $f \in W^{1,p}(\mathbb{R}^n)$ satisfying (3.6).

(ii) Let $0 \leq f \in C_0^1(\mathbb{R}^n)$. We set $f_{\epsilon}(x) = \left[f(x)^p + \epsilon e^{-\langle x \rangle}\right]^{1/p}, \quad x \in \mathbb{R}^n, \ 0 < \epsilon < 1,$

where $\langle x \rangle = (1 + |x|^2)^{1/2}$. Then, $0 < f_{\epsilon} \in W^{1,p}(\mathbb{R}^n) \bigcap C^1(\mathbb{R}^n)$. Since f has a compact support in \mathbb{R}^n , $D(\log f_{\epsilon})$ is bounded on \mathbb{R}^n . Thus, f_{ϵ} belongs to $W^{1,p}(\mathbb{R}^n)$ and fulfills (3.6). By (i), we see that f_{ϵ} satisfies

$$\int f_{\epsilon}^{p} dx \, \log \int f_{\epsilon}^{p} dx + \frac{n}{p} \int f_{\epsilon}^{p} dx \, \log \left(L_{p} \frac{\int |Df_{\epsilon}|^{p} dx}{\int f_{\epsilon}^{p} dx} \right) \quad (3.7)$$

$$\geqslant \quad \int f_{\epsilon}^{p} \log f_{\epsilon}^{p} dx.$$

Let $\delta \in (0, p-1)$. Using the inequality

$$(a+b)^{\kappa} \leqslant a^{\kappa} + b^{\kappa} \quad a,b \geqslant 0, \ 0 < \kappa < 1,$$

we have

$$|f_{\epsilon}(x)|^{p-\delta} \leq f(x)^{p-\delta} + e^{-\frac{p-\delta}{p}\langle x \rangle}.$$

Thus, $f_{\epsilon}, f \in L^{p-\delta}(\mathbb{R}^n)$. By Lemma 2.2, we see that (1.8) holds for this $\{f_{\epsilon}\}$ and f. Since $f_{\epsilon}, f \in W^{1,p}(\mathbb{R}^n)$ fulfill

$$\lim_{\epsilon \to 0+} \int f_{\epsilon}(x)^{p} dx = \int f(x)^{p} dx, \quad \lim_{\epsilon \to 0+} \int |Df_{\epsilon}(x)|^{p} dx = \int |Df(x)|^{p} dx,$$
(3.8)

we have shown (1.1) for $0 \leq f \in C_0^1(\mathbb{R}^n)$ by letting ϵ to 0+ in (3.7).

(iii) Let $0 \leq f \in W^{1,p}(\mathbb{R}^n) \bigcap C^1(\mathbb{R}^n)$. Let ρ be a $C_0^1(\mathbb{R}^n)$ -function with $\rho(0) = 1$ and $0 \leq \rho \leq 1$ on \mathbb{R}^n . We set

$$f_{\epsilon}(x) = \rho(\epsilon x)f(x), \quad x \in \mathbb{R}^n, \ 0 < \epsilon < 1.$$

Then, $0 \leq f_{\epsilon} \in C_0^1(\mathbb{R}^n)$. Thus, by (ii), we see that (3.7) holds for this function f_{ϵ} . Since f_{ϵ} and f satisfy (3.8), we conclude (1.1) for $0 \leq f \in W^{1,p}(\mathbb{R}^n) \cap C^1(\mathbb{R}^n)$ by using Lemma 2.3 and letting ϵ to 0+ in (3.7).

(iv) Let $0 \leq f \in W^{1,p}(\mathbb{R}^n) \cap L^{p-\delta}(\mathbb{R}^n)$ with some $\delta \in (0, p-1)$. Let $\eta \in C_0^{\infty}(\mathbb{R}^n)$ be a nonnegative function such that $\int \eta(x) dx = 1$. For a sufficiently small $\epsilon > 0$, we define f_{ϵ} by

$$f_{\epsilon}(x) = \frac{1}{\epsilon^n} \int f(y) \eta\left(\frac{x-y}{\epsilon}\right) dy, \quad x \in \mathbb{R}^n.$$

Then, $0 \leq f_{\epsilon} \in W^{1,p}(\mathbb{R}^n) \cap C^1(\mathbb{R}^n) \cap L^{p-\delta}(\mathbb{R}^n)$ with some $\delta \in (0, p-1)$, since $p-\delta > 1$. Thus, by (iii), we see that (3.7) holds for this function f_{ϵ} .

Next, since $f_{\epsilon} \to f$ in $L^{p-\delta}(\mathbb{R}^n)$, we find a sequence $\{\epsilon_j\} \subset (0,1)$ such that $\epsilon_j \to 0$ as $j \to \infty$ and $f_{\epsilon_j} \to f$ a.e. on \mathbb{R}^n . Thus, by Lemma 2.2, we have

$$\liminf_{j \to \infty} \int f_{\epsilon_j}(x)^p \log f_{\epsilon_j}(x) dx \ge \int f(x)^p \log f(x) dx.$$

Since (3.8) is fulfilled, we have shown (1.1) for $0 \leq f \in W^{1,p}(\mathbb{R}^n) \cap L^{p-\delta}(\mathbb{R}^n)$ with some $\delta \in (0, p-1)$ by using Lemma 2.2 and letting ϵ to 0+ in (3.7).

(v) Let
$$0 \leq f \in W^{1,p}(\mathbb{R}^n)$$
. Set
 $f_{\epsilon}(x) = \rho(\epsilon x)f(x), \quad x \in \mathbb{R}^n, \ 0 < \epsilon < 1.$

Here, ρ is a $C_0^1(\mathbb{R}^n)$ -function with $\rho(0) = 1$ and $0 \leq \rho \leq 1$ on \mathbb{R}^n . Then, it is easy to see that $0 \leq f_{\epsilon} \in W^{1,p}(\mathbb{R}^n) \cap L^{p-\delta}(\mathbb{R}^n)$ for all $\delta \in (0, p-1)$. Thus, by (iv), (3.7) holds for this function f_{ϵ} . By the same arguments as those of (iii), we conclude (1.1) for $0 \leq f \in W^{1,p}(\mathbb{R}^n)$.

(vi) We show (1.1) for $f \in W^{1,p}(\mathbb{R}^n)$. Note that if $f \in W^{1,p}(\mathbb{R}^n)$ then $|f| \in W^{1,p}(\mathbb{R}^n)$. Hence, by (v) and the fact that $|D|f|| \leq |Df|$ a.e. in \mathbb{R}^n , we conclude (1.1) for $f \in W^{1,p}(\mathbb{R}^n)$.

Bibliography

- BECKNER (W.). Geometric asymptotics and the logarithmic Sobolev inequality, Forum Math. 11, p. 105-137 (1999).
- [2] BOBKOV (S. G.), GENTIL (I.) and LEDOUX (M.). Hypercontractivity of Hamilton-Jacobi equations, J. Math. Pures Appl. 80, p. 669-696 (2001).
- [3] BOBKOV (S. G.) and LEDOUX (M.). From Brunn-Minkowski to sharp Sobolev inequalities, Annali di Matematica Pura ed Applicata. Series IV 187, p. 369-384 (2008).
- [4] CANNARSA (P.) and SINESTRARI (C.). Semiconcave functions, Hamilton-Jacobi equations, and optimal control, Progress in Nonlinear Differential Equations and their Applications, 58. Birkhäuser Boston, Inc., Boston, 2004.
- [5] DAS GUPTA (S.). Brunn-Minkowski inequality and its aftermath J. Multivariate Anal. 10, p. 296-318 (1980).
- [6] DEL PINO (M.) and DOLBEAULT (J.). The optimal Euclidean L^p-Sobolev logarithmic inequality, J. Funct. Anal. 197, p. 151-161 (2003).
- [7] GENTIL (I.). Ultracontractive bounds on Hamilton-Jacobi equations, Bull. Sci. Math. 126, p. 507-524 (2002).
- [8] GENTIL (I.). The general optimal L^p-Euclidean logarithmic Sobolev inequality by Hamilton-Jacobi equations, J. Funct. Anal. 202, p. 591-599 (2003).
- [9] LEDOUX (M.). Isoperimetry and Gaussian analysis, Lectures on Probability Theory and Statistics (Saint-Flour, 1994), Lecture Notes in Mathematics, Vol. 1648, Springer, Berlin, p.165-294 (1996).
- [10] WEISSLER (F.). Logarithmic Sobolev inequalities for the heat-diffusion semigroup Trans. Amer. Math. Soc. 237, p. 255-269 (1978).