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Arrangements and Frobenius like structures

Alexander Varchenko(1)

ABSTRACT. — We consider a family of generic weighted arrangements of
n hyperplanes in Ck and show that the Gauss-Manin connection for the
associated hypergeometric integrals, the contravariant form on the space
of singular vectors, and the algebra of functions on the critical set of the
master function define a Frobenius like structure on the base of the family.
As a result of this construction we show that the matrix elements of the
linear operators of the Gauss-Manin connection are given by the 2k+1-st
derivatives of a single function on the base of the family, the function
called the potential of second kind, see formula (6.46).

RÉSUMÉ. — On considère une famille d’arrangements pondérés génériques
de n hyperplans dans Ck et montre que la connexion de Gauss - Manin
pour les intégrales hypergéométriques associées, la forme contravariante
sur l’espace des vecteurs singuliers et l’algébre de fonctions sur l’ensemble
des points critiques définissent une structure du type Frobenius sur la base
de la famille. Comme un résultat de cette construction nous montrons que
les éléments matriciels des opérateurs linéaires de la connexion de Gauss
- Manin sont donnés par les (2k+1)-mes dérivées d’une seule fonction sur
la base de la famille, cf. la formule (6.46).
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1. Introduction

There are three places, where a flat connection depending on a parameter
appears:

• KZ equations,

κ
∂I

∂zi
(z) = Ki(z)I(z), z = (z1, . . . , zn), i = 1, . . . , n. (1.1)

Here κ is a parameter, I(z) a V -valued function, where V is a vector space
from representation theory, Ki(z) : V → V are linear operators, depending
on z. The connection is flat for all κ.

• Quantum differential equations,

κ
∂I

∂zi
(z) = pi ∗z I(z), z = (z1, . . . , zn), i = 1, . . . , n. (1.2)

Here p1, . . . , pn are generators of some commutative algebra H with quan-
tum multiplication ∗z depending on z. These equations are part of the Frobe-
nius structure on the quantum cohomology of a variety.
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•Differential equations for hypergeometric integrals associated with a family
of weighted arrangements with parallelly transported hyperplanes,

κ
∂I

∂zi
(z) = Ki(z)I(z), z = (z1, . . . , zn), i = 1, . . . , n. (1.3)

It is well known that KZ equations are closely related with the differential
equations for hypergeometric integrals. According to [22] the KZ equations
can be presented as equations for hypergeometric integrals for suitable ar-
rangements. Thus (1.1) and (1.3) are related. Recently it was realized that
in some cases the KZ equations appear as quantum differential equations,
see [2] and [11], and therefore the KZ equations are related to the Frobenius
structures. On Frobenius structures see, for example, [4, 5, 14]. Hence (1.1)
and (1.2) are related. In this paper I argue how a Frobenius like structure
may appear on the base of a family of weighted arrangements. The goal is
to make equations (1.3) related to Frobenius structures.

The main ingredients of a Frobenius structure are a flat connection de-
pending on a parameter, a constant metric, a multiplication on tangent
spaces. In our case, the connection comes from the differential equations
for the associated hypergeometric integrals, the flat metric comes from the
contravariant form on the space of singular vectors and the multiplication
comes from the multiplication in the algebra of functions on the critical
set of the master function. In this paper I consider the families of generic
weighted arrangements.

The organization of the paper is as follows. In Section 2, objects as-
sociated with a weighted arrangement are recalled (Orlik-Solomon algebra,
space of singular vectors, contravariant form, master function, canonical iso-
morphism of the space of singular vectors and the algebra of functions on the
critical set of the master function). In Section 3, a family of arrangements
with parallelly transported hyperplanes is considered. The construction of a
Frobenius like structure on the base of the family is given. Conjectures 3.7,
3.8, 3.14 are formulated and corollaries of the conjectures are discussed. In
Sections 4 and 5 the conjectures are proved for the family of points on the
line and for a family of generic arrangements of lines on plane. The corre-
sponding Frobenius like structures are described. Here are the corresponding
potential functions of second kind:

P̃ (z1, . . . , zn) =
1

2

∑

1�i<j�n
aiaj (zi − zj)

2 log(zi − zj) (1.4)

for the family of arrangements of n points on line and
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P̃ (z1, . . . , zn) =
1

4!

∑

1�i<j<k�n

aiajak
d2
i,jd

2
j,kd

2
k,i

(zidj,k + zjdk,i + zkdi,j)
4

log(zidj,k + zjdk,i + zkdi,j) (1.5)

for the family of arrangements of n generic lines on plane. The variables
z1, . . . , zn are the parameters of the family, a1, . . . , an are weights, |a| =
a1 + · · · + an, the number dk,	 is the oriented area of the parallelogram
generated by the normal vectors to the k-th and �-th lines, see formulas
(4.36) and (6.44). Note that the potential P̃ from (1.4) appears in [5] for
a1 = · · · = an and in [19] for a1, . . . , an ∈ Z.

In Section 6, the conjectures are proved for a family of generic arrange-
ments of n hyperplanes in Ck for any k. The potential P̃ (z1, . . . , zn) of
second kind is defined by formula (6.44) similar to formulas (1.4) and (1.5).
It is shown that the matrix elements of the operators Ki(z1, . . . , zn) of the
Gauss-Manin connection for associated hypergeometric integrals are given
by the 2k + 1-st derivatives of the potential of second kind, see formula
(6.46).

This fact that the Gauss-Manin differential equations for associated hy-
pergeometric integrals can be described in terms of derivatives of a single
function on the base of the family is an important application of our Frobe-
nius like structure. One may expect that this is a manifestation of a much
more general phenomenon.

It should be stressed that that somewhat technical constructions in Sec-
tion 3 are explained in details in Sections 4, 5, and 6 for the particular
situations discussed there. The reader may decide to read first the easiest
Section 4.

In this paper I followed one of I.M. Gelfand’s rules: for a new subject,
choose the simplest nontrivial example and write down everything explicitly
for this example, see the introduction to [6].

I thank V. Schechtman and V. Tarasov for useful discussions.

2. Arrangements

2.1. Affine arrangement

Let k, n be positive integers, k < n. Denote J = {1, . . . , n}. Let C =
(Hj)j∈J , be an arrangement of n affine hyperplanes in Ck. Denote U =
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Ck − ∪j∈JHj , the complement. An edge Xα ⊂ Ck of C is a nonempty
intersection of some hyperplanes of C. Denote by Jα ⊂ J the subset of
indices of all hyperplanes containing Xα. Denote lα = codimCk Xα.

A subset {j1, . . . , jp} ⊂ J is called independent if the hyperplanes
Hj1 , . . . , Hjp intersect transversally.

We assume that C is essential, that is, C has a vertex. An edge is called
dense if the subarrangement of all hyperplanes containing the edge is irre-
ducible: the hyperplanes cannot be partitioned into nonempty sets so that,
after a change of coordinates, hyperplanes in different sets are in different
coordinates.

2.2. Orlik-Solomon algebra

Define complex vector spaces Ap(C), p = 0, . . . , k. For p = 0 we set
Ap(C) = C. For p � 1, Ap(C) is generated by symbols (Hj1 , ..., Hjp) with
ji ∈ J , such that

(i) (Hj1 , ..., Hjp) = 0 if Hj1 ,...,Hjp are not in general position, that is, if
the intersection Hj1 ∩ ...∩Hjp is empty or has codimension less than
p;

(ii) (Hjσ(1)
, ..., Hjσ(p)

) = (−1)|σ|(Hj1 , ..., Hjp) for any element σ of the
symmetric group Σp;

(iii)
∑p+1

i=1 (−1)i(Hj1 , ..., Ĥji , ..., Hjp+1
) = 0 for any (p + 1)-tuple Hj1 , ...,

Hjp+1 of hyperplanes in C which are not in general position and such
that Hj1 ∩ ... ∩Hjp+1 �= ∅.

The direct sum A(C) = ⊕N
p=1Ap(C) is the (Orlik-Solomon) algebra with

respect to multiplication

(Hj1 , ..., Hjp) · (Hjp+1 , ..., Hjp+q ) = (Hj1 , ..., Hjp , Hjp+1 , ..., Hjp+q ). (2.1)

2.3. Orlik-Solomon algebra as an algebra of differential forms

For j ∈ J , fix a defining equation for the hyperplane Hj , fj = 0, where
fj is a polynomial of degree one on Ck. Consider the logarithmic differential
form ωj = dfj/fj on Ck. Let Ā(C) be the exterior C-algebra of differential
forms generated by 1 and ωj , j ∈ J . The map A(C) → Ā(C), (Hj) �→ ωj , is
an isomorphism. We identify A(C) and Ā(C).
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2.4. Weights

An arrangement C is weighted if a map a : J → C×, j �→ aj , is given; aj
is called the weight of Hj . For an edge Xα, define its weight aα =

∑
j∈Jα aj .

Denote ν(a) =
∑

j∈J aj(Hj) ∈ A1(C). Multiplication by ν(a) defines a

differential d(a) : Ap(C) → Ap+1(C), x �→ ν(a) · x, on A(C).

2.5. Space of flags, see [22]

For an edge Xα of codimension lα = p, a flag starting at Xα is a sequence

Xα0 ⊃ Xα1 ⊃ · · · ⊃ Xαp = Xα (2.2)

of edges such that lαj = j for j = 0, . . . , p. For an edge Xα, we define Fα

as the complex vector space with basis vectors Fα0,...,αp=α labeled by the
elements of the set of all flags starting at Xα.

Define Fα as the quotient of Fα by the subspace generated by all the
vectors of the form

∑

Xβ , Xαj−1
⊃Xβ⊃Xαj+1

Fα0,...,αj−1,β,αj+1,...,αp=α .

Such a vector is determined by j ∈ {1, . . . , p − 1} and an incomplete flag
Xα0 ⊃ ... ⊃ Xαj−1 ⊃ Xαj+1 ⊃ ... ⊃ Xαp = Xα with lαi = i.

Denote by Fα0,...,αp the image in Fα of the basis vector Fα0,...,αp . For
p = 0, . . . , k, we set

Fp(C) = ⊕Xα, lα=p Fα . (2.3)

2.6. Duality, see [22]

The vector spaces Ap(C) and Fp(C) are dual. The pairing Ap(C) ⊗
Fp(C) → C is defined as follows. For Hj1 , ..., Hjp in general position, we set
F (Hj1 , ..., Hjp) = Fα0,...,αp where Xα0 = Ck, Xα1 = Hj1 , . . . , Xαp =

Hj1 ∩ · · · ∩ Hjp . Then we define 〈(Hj1 , ..., Hjp), Fα0,...,αp〉 = (−1)|σ|, if
Fα0,...,αp = F (Hjσ(1)

, ..., Hjσ(p)
) for some σ ∈ Σp, and 〈(Hj1 , ..., Hjp), Fα0,...,αp〉

= 0 otherwise.

Define a map δ(a) : Fp(C) → Fp−1(C) to be the map adjoint to d(a) :
Ap−1(C) → Ap(C). An element v ∈ Fk(C) is called singular if δ(a)v = 0.
Denote by

Sing Fk(C) ⊂ Fk(C) (2.4)

the subspace of all singular vectors.
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2.7. Contravariant map and form, see [22]

Weights (aj)j∈J determine a contravariant map

S(a) : Fp(C) → Ap(C), Fα0,...,αp �→
∑

aj1 · · · ajp (Hj1 , . . . , Hjp) , (2.5)

where the sum is taken over all p-tuples (Hj1 , ..., Hjp) such that

Hj1 ⊃ Xα1 , . . . , Hjp ⊃ Xαp . (2.6)

Identifying Ap(C) with Fp(C)∗, we consider this map as a bilinear form,

S(a) : Fp(C)⊗Fp(C) → C. (2.7)

The bilinear form is called the contravariant form. The contravariant form
is symmetric. For F1, F2 ∈ Fp(C), we have

S(a)(F1, F2) =
∑

{j1,...,jp}⊂J
aj1 · · · ajp 〈(Hj1 , . . . , Hjp), F1〉 〈(Hj1 , . . . , Hjp), F2〉 , (2.8)

where the sum is over all unordered p-element subsets.

2.8. Arrangement with normal crossings

An essential arrangement C is with normal crossings, if exactly k hyper-
planes meet at every vertex of C. Assume that C is an essential arrangement
with normal crossings only. A subset {j1, . . . , jp} ⊂ J is called independent
if the hyperplanes Hj1 , . . . , Hjp intersect transversally.

A basis of Ap(C) is formed by (Hj1 , . . . , Hjp) where {j1 < · · · < jp}
are independent ordered p-element subsets of J . The dual basis of Fp(C) is
formed by the corresponding vectors F (Hj1 , . . . , Hjp). These bases of Ap(C)
and Fp(C) will be called standard.

We have

F (Hj1 , . . . , Hjp) = (−1)|σ|F (Hjσ(1)
, . . . , Hjσ(p)

), σ ∈ Σp. (2.9)

For an independent subset {j1, . . . , jp}, we have

S(a)(F (Hj1 , . . . , Hjp), F (Hj1 , . . . , Hjp)) = aj1 · · · ajp (2.10)

and

S(a)(F (Hj1 , . . . , Hjp), F (Hi1 , . . . , Hik)) = 0 (2.11)

for distinct elements of the standard basis.
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2.9. If the weights of dense edges are nonzero

Theorem 2.1. — Assume that the weights (aj)j∈J are such that the
weights of all dense edges of C are nonzero. Then

(i) the contravariant form is nondegenerate;

(ii) Hp(A∗(C), d(a)) = 0 for p < k and dim Hk(A∗, d(a)) = |χ(U)|, where
χ(U) is the Euler characteristics of U .

In particular, these statements hold if all the weights are positive.

Part (i) is proved in [22]. Part (ii) is a straightforward corollary of results
in [22] as explained in Theorem 2.2 in [28]. Part (ii) is proved in [30], [17].

2.10. Master function

Given weights (aj)j∈J , define the (multivalued) master function Φ : U →
C by the formula:

Φ = ΦC,a =
∑

j∈J
aj log fj . (2.12)

A point t ∈ U is a critical point if dΦ|t = ν(a)|t = 0.

Theorem 2.2 ([25, 16, 20]). — For generic weights (aj)j∈J all the
critical points of Φ are nondegenerate and the number of critical points
equals |χ(U)|.

2.11. If the weights are unbalanced

Let C = (Hj)j∈J be an essential arrangement in Ck with weights (aj)j∈J .
Consider the compactification of the arrangement C in the projective space
Pk. Assign the weight a∞ = −∑

j∈J aj to the hyperplane H∞ = Pk − Ck

and denote by Ĉ the arrangement (Hj)j∈J∪∞ in Pk.

The weights of the arrangement C are called unbalanced if the weights
of all the dense edges of Ĉ are nonzero, see [28]. For example, if all the
weights (aj)j∈J are positive, then the weights are unbalanced. The unbal-
anced weights form a Zarisky open subset in the space of all weight systems
on C.

Theorem 2.3 ([28]).— If the weights a = (aj)j∈J of C are unbalanced,
then all the critical points of the master function of the weighted arrange-
ment (C, a) are isolated and the sum of Milnor numbers of all the critical
points equals |χ(U)|.
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2.12. Hessian and residue bilinear form

Denote C(U) the algebra of rational functions on Ck regular on U and
IΦ = 〈 ∂Φ

∂ti
| i = 1, . . . , k 〉 ⊂ C(U) the ideal generated by first derivatives of

Φ. Let

AΦ = C(U)/IΦ (2.13)

be the algebra of functions on the critical set and [ ] : C(t)U → AΦ, f �→ [f ],
the canonical homomorphism.

If all critical points are isolated, then the critical set is finite and the
algebra AΦ is finite-dimensional. In that case, AΦ is the direct sum of local
algebras corresponding to points p of the critical set,

AΦ = ⊕pAp,Φ . (2.14)

The local algebra Ap,Φ can be defined as the quotient of the algebra of
germs at p of holomorphic functions modulo the ideal Ip,Φ generated by
first derivatives of Φ.

Lemma 2.4 ([28]).— The elements [1/fj ], j ∈ J , generate AΦ.

We fix affine coordinates t1, . . . , tk on Ck. Let

fj = b0j + b1j t1 + · · ·+ bkj tk. (2.15)

Lemma 2.5.— The identity element [1] ∈ AΦ(z) satisfies the equation

[1] =
1

|a|
∑

j∈J
b0j

[aj
fj

]
, (2.16)

where |a| = ∑
j∈J aj.

Proof. — The lemma follows from the equality

k∑

i=1

ti
∂Φ

∂ti
= |a| −

∑

j∈J
b0j

[aj
fj

]
. (2.17)

Surprisingly, formula (2.17) and Lemma 2.4 play central roles in the
constructions of this paper.
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We define the rational function Hess : Ck → C, regular on U , by the
formula

Hess(t) = det
1�i,j�k

( ∂2Φ

∂ti∂tj

)
(t) . (2.18)

The function is called the Hessian of Φ.

Let ρp : Ap,Φ → C, be the Grothendieck residue,

f �→ 1

(2π
√
−1)k

Resp
f

∏k
i=1

∂Φ
∂ti

=
1

(2π
√
−1)k

∫

Γp

f dt1 ∧ · · · ∧ dtk∏k
i=1

∂Φ
∂ti

,

(2.19)
where Γp is the real k cycle in a small neighborhood of p, defined by the
equations | ∂Φ

∂ti
| = εi, i = 1, . . . , k, and oriented by the condition d arg ∂Φ

∂t1
∧

· · · ∧ d arg ∂Φ
∂tk

> 0, here εs are positive numbers sufficiently small with

respect to the size of the neighborhood, see [12, 1].

Let ( , )p be the residue bilinear form on Ap,Φ,

(f, g)p = ρp(fg), (2.20)

for f, g ∈ Ap,Φ. This form is nondegenerate.

Let all the critical points of Φ be isolated and hence, AΦ = ⊕pAp,Φ.
We define the residue bilinear form ( , ) on AΦ as ⊕p( , )p. This form is
nondegenerate and (fg, h) = (f, gh) for all f, g, h ∈ AΦ. In other words, the
pair (AΦ, ( , )) is a Frobenius algebra.

2.13. Canonical isomorphism and algebra structures on SingFk(C)

Let (Fm)m∈M be a basis of Fk(C) and (Hm)m∈M ⊂ Ak(C) the dual
basis. Consider the element

∑
mHm⊗Fm ∈ Ak(C)⊗Fk(C). We have Hm =

fmdt1 ∧ · · · ∧ dtk for some fm ∈ C(U). The element

E =
∑

m∈M
fm ⊗ Fm ∈ C(U)⊗Fk(C) (2.21)

is called the canonical element of C. Denote [E] the image of the canonical
element in AΦ ⊗Fk(C).

Theorem 2.6 ([28]).— We have [E] ∈ AΦ ⊗ SingFk(C).

Assume that all critical points of Φ are isolated. Introduce the linear
map

α : AΦ → SingFk(C), [g] �→ ([g], [E]). (2.22)
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Theorem 2.7 ([28]).— If the weights (aj)j∈J of C are unbalanced, then
the canonical map α is an isomorphism of vector spaces. The isomorphism α
identifies the residue form on AΦ and the contravariant form on SingFk(C)
multiplied by (−1)k, that is,

(f, g) = (−1)kS(a)(α(f), α(g)) for all f, g ∈ AΦ. (2.23)

The map α is called the canonical map or canonical isomorphism.

Corollary 2.8 ([28]). The restriction of the contravariant form S(a)

to the subspace SingFk(C) is nondegenerate.

On the restriction of the contravariant form S(a) to the subspace
SingFk(C) see [7].

If all critical points p of the master function are nondegenerate, then

α : [g] �→
∑

p

∑

m

g(p)fm(p)

Hess(p)
Fm. (2.24)

If the weights (aj)j∈J of C are unbalanced, then the canonical isomor-
phism α : AΦ → SingFk(C) induces a commutative associative algebra
structure on SingFk(C). Together with the contravariant form it is a Frobe-
nius algebra structure.

2.14. Change of variables and canonical isomorphism

Assume that we change coordinates on Cn, ti =
∑k

j=1 ci,jsj with ci,j ∈ C.

Lemma 2.9.— The canonical map (2.22) in coordinates t1, . . . , tk equals
the canonical map (2.22) in coordinates s1, . . . , sk divided by det(ci,j), αt =

1
det(ci,j)

αs.

Proof. — We have Hm = fmdt1 ∧ · · · ∧ dtk = det(ci,j)f
mds1 ∧ · · · ∧ dsk

and Hesst = det2(ci,j)Hesss. Now the lemma follows, for example, from
(2.24).

To make the map (2.22) independent of coordinates one needs to consider
it as a map

AΦ ⊗ dt1 ∧ · · · ∧ dtk → SingFk(C), [g]⊗ dt1 ∧ · · · ∧ dtk �→ ([g], [E]).(2.25)
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3. A family of parallelly transported hyperplanes

This section contains the main constructions of the paper. These con-
structions are explained in details in Sections 4, 5, and 6 for the particular
situations discussed there.

3.1. An arrangement in Cn × Ck

Recall that J = {1, . . . , n}. Consider Ck with coordinates t1, . . . , tk, Cn

with coordinates z1, . . . , zn, the projection Cn × Ck → Cn. Fix n nonzero
linear functions on Ck, gj = b1j t1 + · · · + bkj tk, j ∈ J, where bij ∈ C. Define

n linear functions on Cn × Ck, fj = zj + gj = zj + b1j t1 + · · ·+ bkj tk, j ∈ J.
In Cn × Ck we define the arrangement C̃ = {H̃j | fj = 0, j ∈ J}. Denote

Ũ = Cn × Ck − ∪j∈JH̃j .

For every z = (z1, . . . , zn) the arrangement C̃ induces an arrangement
C(z) in the fiber of the projection over z. We identify every fiber with Ck.
Then C(z) consists of hyperplanes Hj(z), j ∈ J , defined in Ck by the equa-
tions fj = 0. Denote U(C(z)) = Ck − ∪j∈JHj(z), the complement to the
arrangement C(z). We assume that for every z the arrangement C(z) has a
vertex. This happens if and only if C(0) has a vertex.

A point z ∈ Cn is called good if C(z) has normal crossings only. Good
points form the complement in Cn to the union of suitable hyperplanes
called the discriminant.

3.2. Discriminant

The collection (gj)j∈J induces a matroid structure on J . A subset C =
{i1, . . . , ir} ⊂ J is a circuit if (gi)i∈C are linearly dependent but any proper
subset of C gives linearly independent gi’s.

For a circuit C = {i1, . . . , ir}, let (λCi )i∈C be a nonzero collection of
complex numbers such that

∑
i∈C λ

C
i gi = 0. Such a collection is unique up

to multiplication by a nonzero number.

For every circuit C we fix such a collection and denote fC =
∑

i∈C λ
C
i zi.

The equation fC = 0 defines a hyperplane HC in Cn. It is convenient to
assume that λCi = 0 for i ∈ J − C and write fC =

∑
i∈J λ

C
i zi.

For any z ∈ Cn, the hyperplanes (Hi(z))i∈C in Ck have nonempty in-
tersection if and only if z ∈ HC . If z ∈ HC , then the intersection has
codimension r − 1 in Ck.
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Denote by C the set of all circuits in J . Denote ∆ = ∪C∈CHC . The
arrangement C(z) in Ck has normal crossings if and only if z ∈ Cn −∆, see
[28].

For example, if k = 1 and fj = t1 + zj , j ∈ J , then the discriminant
is the union of hyperplanes in Cn defined by the equations zi − zj = 0,
1 � i < j � n.

3.3. Good fibers and combinatorial connection

For any z1, z2 ∈ Cn−∆, the spaces Fp(C(z1)), Fp(C(z2)) are canonically
identified. Namely, a vector F (Hj1(z

1), . . . , Hjp(z
1)) of the first space is

identified with the vector F (Hj1(z
2), . . . , Hjp(z

2)) of the second. In other
words, we identify the standard bases of these spaces.

Assume that nonzero weights (aj)j∈J are given. Then each arrange-
ment C(z) is weighted. The identification of spaces Fp(C(z1)), Fp(C(z2))
for z1, z2 ∈ Cn −∆ identifies the corresponding subspaces SingFk(C(z1)),
SingFk(C(z2)) and contravariant forms.

For a point z ∈ Cn−∆, we denote V = Fk(C(z)), Sing V = SingFk(C(z)).
The triple (V,Sing V, S(a)) does not depend on z ∈ Cn−∆ under the above
identification.

As a result of this reasoning we obtain the canonically trivialized vector
bundle

�z∈Cn−∆ Fk(C(z)) → Cn −∆, (3.1)

with the canonically trivialized subbundle �z∈Cn−∆ SingFk(C(z)) → Cn −
∆ and the constant contravariant form on the fibers. This trivialization
identifies the bundle in (3.1) with

(Cn −∆)× V → Cn −∆ (3.2)

and the subbundle with

(Cn −∆)× (Sing V ) → Cn −∆. (3.3)

The bundle in (3.3) will be called the combinatorial bundle, the flat connec-
tion on it will be called combinatorial.

Lemma 3.1.— If the weights (aj)j∈J are unbalanced for the arrangement
C(z) for some z ∈ Cn−∆, then the weights (aj)j∈J are unbalanced for C(z)
for all z ∈ Cn −∆.
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3.4. Bad fibers

Points of ∆ ⊂ Cn are called bad. Let z0 ∈ ∆ and z ∈ Cn −∆. By defi-
nition, for any p the space Ap(C(z0)) is obtained from Ap(C(z)) by adding
new relations. Hence Ak(C(z0)) is canonically identified with the quotient
space of V ∗ = Ak(C(z)) and Fp(C(z0)) is identified with a subspace of
V = Fp(C(z)).

3.5. Operators Kj(z) : V → V , j ∈ J

For any circuit C = {i1, . . . , ir} ⊂ J , we define the linear operator
LC : V → V as follows.

For m = 1, . . . , r, we define Cm = C − {im}. Let {j1 < · · · < jk} ⊂ J
be an independent ordered subset and F (Hj1 , . . . , Hjk) the corresponding
element of the standard basis. We define LC : F (Hj1 , . . . , Hjk) �→ 0 if
|{j1, . . . , jk} ∩ C| < r − 1. If {j1, . . . , jk} ∩ C = Cm for some 1 � m � r,
then by using the skew-symmetry property (2.9) we can write

F (Hj1 , . . . , Hjk) = ±F (Hi1 , Hi2 , . . . , Ĥim , . . . , Hir−1Hir , Hs1 , . . . , Hsk−r+1
)

(3.4)
with {s1, . . . , sk−r+1} = {j1, . . . , jk} − Cm. We set

LC : F (Hi1 , . . . , Ĥim , . . . , Hir , Hs1 , . . . , Hsk−r+1
) �→ (3.5)

(−1)m
r∑

l=1

(−1)lailF (Hi1 , . . . , Ĥil , . . . , Hir , Hs1 , . . . , Hsk−r+1
).

Consider on Cn×Ck the logarithmic differential one-forms ωC = dfC
fC
, C ∈ C.

Recall that fC =
∑

j∈J λ
C
j zj . We define

Kj(z) =
∑

C∈C

λCj
fC(z)

LC , j ∈ J. (3.6)

The operators Kj(z) are rational functions on Cn regular on Cn −∆ and

∑

C∈C
ωC ⊗ LC =

∑

j∈J
dzj ⊗Kj(z). (3.7)

Theorem 3.2 ([28]).— For any j ∈ J and z ∈ Cn −∆, the operator
Kj(z) preserves the subspace Sing V ⊂ V and is a symmetric operator,
S(a)(Kj(z)v, w) = S(a)(v,Kj(z)w) for all v, w ∈ V .
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3.6. Gauss-Manin connection on (Cn −∆)× (Sing V ) → Cn −∆

Consider the master function

Φ(z, t) =
∑

j∈J
aj log fj(z, t) (3.8)

as a function on Ũ ⊂ Cn×Ck. Let κ ∈ C×. The function eΦ(z,t)/κ defines a
rank one local system Lκ on Ũ whose horizontal sections over open subsets
of Ũ are univalued branches of eΦ(z,t)/κ multiplied by complex numbers, see
for example [22, 24].

The vector bundle

�z∈Cn−∆Hk(U(C(z)),Lκ|U(C(z))) → Cn −∆ (3.9)

will be called the homology bundle. The homology bundle has a canonical
flat Gauss-Manin connection.

For a fixed z, choose any γ ∈ Hk(U(C(z)),Lκ|U(C(z))). The linear map

{γ} : Ak(C(z)) → C, ω �→
∫

γ

eΦ(z,t)/κω, (3.10)

is an element of SingFk(C(z)) by Stokes’ theorem. It is known that for
generic κ any element of SingFk(C(z)) corresponds to a certain γ and in
that case this construction gives an isomorphism

Hk(U(C(z)),Lκ|U(C(z))) → SingFk(C(z)), (3.11)

see [22]. This isomorphism will be called the integration isomorphism. The
precise values of κ for which (3.11) is an isomorphism can be deduced from
the determinant formula in [23].

For generic κ the fiber isomorphisms (3.11) defines an isomorphism of the
homology bundle and the combinatorial bundle. The Gauss-Manin connec-
tion induces a flat connection on the combinatorial bundle. This connection
on the combinatorial bundle will be also called the Gauss-Manin connection.

Thus, there are two connections on the combinatorial bundle: the com-
binatorial connection and the Gauss-Manin connection depending on κ. In
this situation we can consider the differential equations for flat sections of
the Gauss-Manin connection with respect to the combinatorially flat stan-
dard basis. Namely, let γ(z) ∈ Hk(U(C(z)),Lκ|U(C(z))) be a flat section of
the Gauss-Manin connection. Let us write the corresponding section Iγ(z)
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of the bundle Cn× Sing V → Cn in the combinatorially flat standard basis,

Iγ(z) =
∑

independent
{j1<···<jk}⊂J

Ij1,...,jkγ (z)F (Hj1 , . . . , Hjk),

Ij1,...,jkγ (z) =

∫

γ(z)

eΦ(z,t)/κωj1 ∧ · · · ∧ ωjk . (3.12)

For I =
∑
Ij1,...,jkF (Hj1 , . . . , Hjk) and j ∈ J , we denote

∂I

∂zj
=

∑ ∂Ij1,...,jk

∂zj
F (Hj1 , . . . , Hjk). (3.13)

Theorem 3.3 ([24, 28]).— The section Iγ(z) satisfies the differential
equations

κ
∂I

∂zj
(z) = Kj(z)I(z), j ∈ J, (3.14)

where Kj(z) : V → V are the linear operators defined in (3.6).

From this formula we see, in particular, that the combinatorial connec-
tion on the combinatorial bundle is the limit of the Gauss-Manin connection
as κ→∞.

3.7. Bundle of algebras

For z ∈ Cn, denote AΦ(z) the algebra of functions on the critical set of
the master function Φ(z, ·) : U(C(z)) → C. Assume that the weights (aj)j∈J
are unbalanced for all C(z), z ∈ Cn−∆. Then the dimension of AΦ(z) does
not depend on z ∈ Cn −∆ and equals dim Sing V . Denote |a| = ∑

j∈J aj .

Lemma 3.4.— The identity element [1](z) ∈ AΦ(z) satisfies the equation

[1](z) =
1

|a|
∑

j∈J
zj

[aj
fj

]
. (3.15)

Proof. — The lemma follows from Lemma 2.5.

The vector bundle

�z∈Cn−∆AΦ(z) → Cn −∆ (3.16)

will be called the bundle of algebras of functions on the critical set. The
fiber isomorphisms (2.22),

α(z) : AΦ(z) → Sing V,
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establish an isomorphism α of the bundle of algebras and the combinato-
rial bundle. The isomorphism α and the connections on the combinatorial
bundle (combinatorial and Gauss-Manin connections) induce connections
on the bundle of algebras which will be called also the combinatorial and
Gauss-Manin connections on the bundle of algebras.

The canonical isomorphism α(z) induces a Frobenius algebra structure
on Sing V which depends on z. The multiplication ∗z is described by the
following theorem.

Theorem 3.5 ([28]).— The elements α(z)
[
aj
fj

]
∈ Sing V , j ∈ J , gen-

erate the algebra. We have

α(z)
[aj
fj

]
∗z v = Kj(z)v, (3.17)

for all v ∈ Sing V and j ∈ J .

3.8. Quantum integrable model of the arrangement (C(z), a)

For z ∈ Cn −∆, the (commutative) subalgebra B(z) ⊂ End(Sing V )
generated by Kj(z), j ∈ J , is called the algebra of geometric Hamiltonians,
the triple (Sing V , S(a),B(z)) is called the quantum integrable model of the
weighted arrangement (C(z), a), see [28].

The canonical isomorphism α(z) identifies the triple (Sing V , S(a),B(z))
with the triple (AΦ(z), (−1)k( , )z, AΦ(z)), see Theorems 2.7 and 3.5.

Notice that the operators Kj(z) are defined in combinatorial terms, see
Section 3.5, while the algebra AΦ(z) is an analytic object, see (2.13). C.f.
Corollaries 5.28 and 6.21.

3.9. A remark. Asymptotically flat sections

Assume that the weights (aj)j∈J are unbalanced for all C(z), z ∈ Cn−∆.
Let B ⊂ Cn − ∆ be an open real 2n-dimensional ball. Let Ψ : B → C be
a holomorphic function. Let sj , j ∈ Z�0 be holomorphic sections over B of
the bundle of algebras, see (3.16). We say that

s(z, κ) = eΨ(z)/κ
∑

j�0

κjsj(z) (3.18)

is an asymptotically flat section of the Gauss-Manin connection on bundle
of algebras as κ → 0 if s(z, κ) satisfies the flat section equations formally,
see, for example, [18, 27].
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Assume that B is such that for any z ∈ B, all the critical points of
Φ(z, ·) : U(C(z)) → C are nondegenerate. Let us order them: p1(z), . . . , pd(z),
where d = dimAΦ(z) = dim Sing V . We may assume that every pi(z) de-
pends on z holomorphically. Then the function

z �→ Hess(z, pi(z)) = det
1�i,j�k

( ∂2Φ

∂ti∂tj

)
(z, pi(z)) (3.19)

is a nonzero holomorphic function onB. We fix a square root Hess(z, pi(z))
1/2.

We denote wi(z) the element of AΦ(z) which equals Hess(z, pi(z))
1/2 at pi(z)

and equals zero at all other critical points. Let ( , )z be the residue form on
AΦ(z). Then

(wi(z), wj(z))z = δij and wi(z) · wj(z) = δijHess(z, pi(z))
1/2wi(z)

(3.20)
for all i, j.

Theorem 3.6.— For every i, there exists a unique asymptotically flat
section s(z, κ) = eΨ(z)/κ

∑
j�0 κ

jsj(z) of the Gauss-Manin connection on
the bundle of algebras such that

Ψ(z) = Φ(z, pi(z)) and s0(z) = wi(z). (3.21)

Proof. — We first write asymptotically flat sections of the Gauss-Manin con-
nection on the bundle (Cn−∆)×Sing V → (Cn−∆) by using the steepest
descent method as in [18, 27] and then observe that the leading terms of
those sections are nothing else but α(z)

(
eΦ(z,pi(z))/κwi(z)

)
.

3.10. Conformal blocks, period map, potential functions

Denote by

{1}(z) = α(z)([1](z)) (3.22)

the identity element of the algebra structure on Sing V corresponding to
a point z ∈ Cn −∆. An analog of this element was studied in [15] in a
situation related to the geometric Langlands correspondence, see element
v1 in [15, Section 8].

For r < k and m1, . . . ,mr ∈ J , denote

Im1,...,mr (z) =
∂r{1}

∂zm1 . . . ∂zmr

(z). (3.23)
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Conjecture 3.7.— The Sing V -valued function {1}(z) satisfies the Gauss-

Manin differential equations with parameter κ = |a|
k ,

|a|
k

∂{1}
∂zj

(z) = Kj(z){1}(z), j ∈ J, (3.24)

where the derivatives are defined with respect to a combinatorially flat basis
as in (3.13). More generally, for r < k and m1, . . . ,mr ∈ J , the Sing V -
valued function Im1,...,mr

(z) satisfies the Gauss-Manin differential equations

with parameter κ = |a|
k−r ,

|a|
k − r

∂Im1,...,mr

∂zj
(z) = Kj(z)Im1,...,mr

(z), j ∈ J. (3.25)

Conjecture 3.8. — If we write the Sing V -valued function {1}(z) in
coordinates with respect to a combinatorially flat basis, then {1}(z) is a
homogeneous polynomial in z of degree k.

The conjectures describes the interrelations of four objects: the identity
element in AΦ(z), the canonical isomorphism, the integration isomorphism,
and the Gauss-Manin connection on the homology bundle. In the next sec-
tions we will prove this conjecture for families of generic arrangements.

Theorem 3.9.— If Conjecture 3.7 holds, then for r � k and m1, . . . ,mr ∈
J , we have

∂r{1}
∂zm1

. . . ∂zmr

(z) =
k(k − 1) . . . (k − r + 1)

|a|r α(z)
( r∏

i=1

[ami

fmi

])
. (3.26)

Proof. — The proof is by induction on r. For r = 0, the statement is true:
{1} = {1}. Assuming the statement is true for some r, we prove the state-
ment for r + 1. By (3.25) and Theorem 3.5, we have

∂r+1{1}
∂zm1 . . . ∂zmr∂zj

(z) =
k − r

|a| Kj(z)
∂r{1}

∂zm1 . . . ∂zmr

(z) (3.27)

=
k − r

|a| α(z)
([aj
fj

])
∗z

k(k − 1) . . . (k − r + 1)

|a|r α(z)
( r∏

i=1

[ami

fmi

])

=
k(k − 1) . . . (k − r + 1)(k − r)

|a|r+1
α(z)

([aj
fj

] r∏

i=1

[ami

fmi

])
.
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For given r < k, the sections Im1,...,mr
(z), m1, . . . ,mr ∈ J , generate

a subbundle of the combinatorial bundle. We will call it the subbundle of

conformal blocks at level |a|
k−r and denote by CB |a|

k−r
. The subbundle of

conformal blocks at level |a|k−r is invariant with respect to the Gauss-Manin

connection with κ = |a|
k−r . On conformal blocks in conformal field theory

see, for example, [8, 9, 24] and Section 3.6 in [26].

One may show that

CB |a|
k
⊂ CB |a|

k−1
⊂ · · · ⊂ CB |a|

1
. (3.28)

Let us consider Sing V as a complex manifold. At every point of Sing V ,
the tangent space is identified with the vector space Sing V . We will consider
the manifold Sing V with the constant holomorphic metric defined by the
contravariant form S(a). We will denote this metric by the same symbol
S(a).

Define the period map q : Cn −∆ → Sing V by the formula

q : z �→ {1}(z). (3.29)

The period map is a polynomial map. Define the potential function of first
kind P : Cn −∆ → C, by the formula

P (z) = S(a)(q(z), q(z)). (3.30)

The potential function of first kind is a polynomial.

3.11. Tangent bundle and a Frobenius like structure

Let T (Cn − ∆) → Cn − ∆ be the tangent bundle on Cn − ∆. Denote
∂j = ∂

∂zj
for j ∈ J . Consider the morphism β of the tangent bundle to the

bundle of algebras defined by the formula,

β(z) : ∂j ∈ Tz(Cn −∆) �→
[ ∂Φ

∂zj

]
=

[aj
fj

]
∈ AΦ(z). (3.31)

The morphism β will be called the tangent morphism.

The residue form on the bundle of algebras induces a holomorphic bilin-
ear form η on fibers of the tangent bundle,

η(∂i, ∂j)z = (β(z)(∂i), β(z)(∂j))z (3.32)

= (−1)kS(a)(α(z)β(z)(∂i), α(z)β(z)(∂j))

=
([ai
fi

]
,
[aj
fj

])
z

= (−1)kS(a)
(
α(z)

([ai
fi

])
, α(z)

([aj
fj

]))
.
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Theorem 3.10.— If Conjecture 3.7 holds, then the bilinear form η is
induced by the period map q : Cn −∆ → Sing V from the flat metric S(a)

multiplied by (−1)k |a|
2

k2 ,

η(∂i, ∂j)z =
|a|2
k2

(−1)kS(a)(
∂q

∂zi
(z),

∂q

∂zj
(z)). (3.33)

Proof. — By Theorem 3.9, we have |a|k
∂q
∂zj

= α(z)(
[aj
fj

]
). Hence

|a|2
k2

(−1)kS(a)(
∂q

∂zi
,
∂q

∂zj
) = (−1)kS(a)(α(z)

([ai
fi

])
, α(z)

([aj
fj

])
) = η(∂i, ∂j)z.

(3.34)

For r � 2k, introduce the constant Ak,r by the formula

Ak,r =

r∑

i=0

(
r

i

)
(k!)2

(k − i)!(k − r + i)!
, if r � k, (3.35)

Ak,r =

k∑

i=r−k

(
r

i

)
(k!)2

(k − i)!(k − r + i)!
, if r > k.

For example, A2,3 = 24 and Ak,2k = (2k)! .

Theorem 3.11.— If Conjectures 3.7 and 3.8 hold, then for any r � 2k,
we have

(β(z)(∂m1) ∗z · · · ∗z β(z)(∂mr ), [1](z))z =
(−1)k|a|r
Ak,r

∂rP

∂zm1 . . . ∂zmr

(z),

(3.36)
for all m1, . . . ,mr ∈ J . Here ( , )z is the residue bilinear form on AΦ(z).

Proof. — We have

(β(z)(∂m1) ∗z · · · ∗z β(z)(∂mr ), [1](z))z = (

r∏

i=1

[ami

fmi

]
, [1](z))z

= (−1)kS(a)(α(z)
( r∏

i=1

[ami

fmi

])
, {1}(z)). (3.37)
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Consider the example r = 2, k � 2. Then

∂2

∂zi∂zj
S(a)(q(z), q(z)) = S(a)(

∂2q

∂zi∂zj
, q) + S(a)(

∂q

∂zi
,
∂q

∂zj
) (3.38)

+S(a)(
∂q

∂zj
,
∂q

∂zi
) + S(a)(q,

∂2q

∂zi∂zj
) =

k(k − 1)

|a|2 S(a)(α(z)
([ai
fi

][ai
fi

])
, q)

+
k2

|a|2S
(a)(α(z)

([ai
fi

])
, α(z)

([aj
fj

])
) +

k2

|a|2S
(a)(α(z)

([aj
fj

])
, α(z)

([ai
fi

])
)

+
k(k − 1)

|a|2 S(a)(q, α(z)
([ai
fi

][ai
fi

])
) =

Ak,2

|a|2 S
(a)(α(z)

([ai
fi

][ai
fi

])
, q).

Here we used Theorem 3.9 and the fact that S(a) is constant with respect
to the combinatorial connection. This calculation proves the theorem for
r = 2, k � 2. The general case for r � k is proved exactly in the same way.
If r > k, then we need to take into account that q(z) is a polynomial of
degree k.

For v ∈ Sing V , define the differential one-form ψv on Cn −∆ by the
formula

ψv : ∂i ∈ Tz(Cn −∆) �→ S(a)(v, α(z)β(z)(∂i)). (3.39)

Theorem 3.12.— If Conjecture 3.7 holds, then the differential form ψv
is exact,

ψv =
|a|
k
dS(a)(v, q(z)). (3.40)

Proof. — By Theorem 3.9, we have |a|k
∂q
∂zj

= α(z)(
[aj
fj

]
). Hence

ψv(∂i) = S(a)(v, α(z)β(z)(∂i)) = S(a)(v, α(z)
([ai
fi

])
) = S(a)(v,

|a|
k

∂q

∂zj
)

=
|a|
k

∂

∂zj
S(a)(v, q).

For κ ∈ C×, let I(z) ∈ Sing V be a flat (multivalued) section of the
Gauss-Manin connection with parameter κ. Define the (multivalued) differ-
ential one-form ψI on Cn −∆ by the formula

ψI : ∂i ∈ Tz(Cn −∆) �→ S(a)(I(z), α(z)β(z)(∂i)). (3.41)
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Theorem 3.13.— If Conjecture 3.7 holds and κ �= |a|
k , then the differ-

ential form ψI is exact,

ψI =
( 1

κ
+

k

|a|
)−1

dS(a)(I(z), q(z)). (3.42)

Proof. — We have

∂

∂zj
S(a)(I(z), q(z)) = S(a)(

∂

∂zj
I(z), q(z)) + S(a)(I(z),

∂

∂zj
q(z))

= S(a)(
1

κ
Kj(z)I(z), q(z)) + S(a)(I(z),

k

|a|Kj(z)q(z)))

=
( 1

κ
+

k

|a|
)
S(a)

(
I(z), α(z)β(z)

([aj
fj

]))
.

The functions Cn −∆ → C, z �→ S(a)(v, q(z)), of Theorem 3.12 are noth-
ing else but the coordinate functions of the period map. We will call them
flat periods. The functions Cn −∆ → C, z �→ S(a)(I(z), q(z)), of Theorem
3.13 will be called twisted periods.

Conjecture 3.14.— There exists a function P̃ (z1, . . . , zn) such that

(3.43)

∂2k+1P̃

∂zm0
. . . ∂zm2k

(z) = (−1)k(β(z)(∂m0
) ∗z · · · ∗z β(z)(∂m2k

), [1](z))z

for all m0, . . . ,m2k ∈ J .

The function P̃ (z) with this property will be called the potential function
of second kind.

Notice that formula (3.36) does not hold for r = 2k + 1.

The potential function of second kind P̃ (z) determines the potential
function of first kind P (z). Indeed, by formula (3.4) we have

P (z) =
1

|a|2k+1

∑

m0,m1,...,m2k∈J
zm0

zm1
. . . zm2k

∂2k+1P̃

∂zm0∂zm1 . . . ∂zm2k

(z).(3.44)

More generally, for any r � 2k, we have

∂rP

∂zm0
. . . ∂zmr−1

(z) =
Ak,r

|a|2k+1

∑

mr,...,m2k∈J
zmr . . . zm2k

∂2k+1P̃

∂zm0
. . . ∂zm2k

(z).

(3.45)
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We will call the collection of our objects – the combinatorial bundle
(Cn −∆)× (Sing V ) → Cn −∆ with the contravariant form S(a) and con-
nections (combinatorial and Gauss-Manin); the bundle of algebras
�z∈Cn−∆AΦ(z) → Cn − ∆; the period map q : Cn −∆ → Sing V , the po-
tential functions P (z) and P̃ (z), flat periods S(a)(v, q(z)), twisted periods
S(a)(I(z), q(z)) – a Frobenius like structure on Cn −∆.

The situation here reminds the structure induced on a submanifold of a
Frobenius manifold, cf. [21]. From that point of view one may expect that
Sing V has an honest Frobenius structure and our Frobenius like structure
on Cn −∆ is what can be induced from the Frobenius structure on Sing V
by the period map, cf. with constructions in [3, 13].

Numerous variations of the definition of the Frobenius structure see, for
example, in [4, 5, 14, 21, 10].

In the next sections we will prove Conjectures 3.7, 3.8, 3.14 for families
of generic arrangements and will describe our structure more precisely.

4. Points on line

4.1. An arrangement in Cn × C

Recall that J = {1, . . . , n}. Consider C with coordinate t and Cn with
coordinates z1, . . . , zn. Consider n linear functions on Cn × C, fj = zj + t,

j ∈ J. In Cn × C we define the arrangement C̃ = {H̃j | fj = 0, j ∈ J}.

For every z = (z1, . . . , zn) ∈ Cn the arrangement C̃ induces an arrange-
ment C(z) in the fiber over z of the projection Cn × C → Cn. We iden-
tify the fiber with C. The arrangement C(z) is the arrangement of points
{−z1, . . . ,−zn}. Denote U(C(z)) = C− {−z1, . . . ,−zn} the complement.

A point z ∈ Cn is good if the points −z1, . . . ,−zn are distinct. Good
points form the complement in Cn to the discriminant ∆, which is the union
of hyperplanes Hij = {(z1, . . . , zn) ∈ Cn | zi = zj} labeled by two-element
subsets {i, j} ⊂ J .

4.2. Good fibers

For any z ∈ Cn −∆, the space A1(C(z)) has the standard basis H1(z),
. . . , Hn(z), the space F1(C(z)) has the standard dual basis F (H1(z)), . . . ,
F (Hn(z)). For z1, z2 ∈ Cn −∆, the combinatorial connection identifies the
spaces A1(C(z1)), F1(C(z1)) with the spaces A1(C(z2)), F1(C(z2)), respec-
tively, by identifying the corresponding standard bases.
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Assume that nonzero weights (aj)j∈J are given. Then each arrangement
C(z) is weighted. For z ∈ Cn − ∆, the arrangement C(z) is unbalanced if
|a| = ∑

j∈J aj �= 0. We assume |a| �= 0.

For z ∈ Cn−∆, we denote V = F1(C(z)). We also denote Fj = F (Hj(z))
for j ∈ J . We have

S(a)(Fi, Fj) = δijai, Sing V =
{∑

j∈J
cjFj |

∑

j∈J
cjaj = 0

}
. (4.1)

For j ∈ J , we define the vector vj ∈ V by the formula

vj = −Fj +
aj
|a|

∑

i∈J
Fi. (4.2)

Lemma 4.1.— We have the following properties.

(i) dim Sing V = n− 1.

(ii) For j ∈ J , we have vj ∈ Sing V and
∑

j∈J vj = 0.

(iii) Any n− 1 vectors of (vj)j∈J are linearly independent.

(iv) We have

S(a)(vj , vj) = aj −
a2
j

|a| , j ∈ J, (4.3)

S(a)(vi, vj) = −aiaj|a| , i, j ∈ J, i �= j.

Lemma 4.2.— We have

det
1�i,j�n−1

(S(a)(vi, vj)) =
1

|a|
∏

j∈J
aj . (4.4)

Proof. — DenoteM the transition matrix from the standard basis F1, . . . , Fn
of V to the basis v1, . . . , vn−1,

∑
j∈J Fj . It is easy to see that detM =

(−1)n−1. The vector
∑

j∈J Fj is orthogonal to Sing V and S(a)(
∑

j∈J Fj ,∑
j∈J Fj) = |a|. The determinant of S(a) on V with respect to the standard

basis F1, . . . , Fn equals
∏

j∈J aj . These remarks imply (4.4).

4.3. Operators Kj(z) : V → V

For any pair {i, j} ⊂ J , we define the linear operator Li,j : V → V by
the formula

Fi �→ ajFi − aiFj , Fj �→ aiFj − ajFi, Fm �→ 0, if m /∈ {i, j},(4.5)
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see formula (3.5). Define the operators Kj(z) : V → V , j ∈ J , by the
formula

Kj(z) =
∑

i =j

Lj,i
zj − zi

, (4.6)

see formula (3.6). For any j ∈ J and z ∈ Cn − ∆, the operator Kj(z)
preserves the subspace Sing V ⊂ V and is a symmetric operator, that is
S(a)(Kj(z)v, w) = S(a)(v,Kj(z)w) for all v, w ∈ V , see Theorem 3.2.

Lemma 4.3.— For j ∈ J , we have

Kj(z)vi =
aj

zj − zi
vi +

ai
zi − zj

vj , i �= j, (4.7)

Kj(z)vj = −
∑

i =j

Kj(z)vi.

Corollary 4.4.— We have Kj(z)vi = Ki(z)vj for all i, j.

The differential equations (3.14) for flat sections of the Gauss-Manin
connection on (Cn −∆)× Sing V → Cn −∆ take the form

κ
∂I

∂zj
(z) = Kj(z)I(z), j ∈ J. (4.8)

For generic κ all the flat sections are given by the formula

Iγ(z) =
∑

i∈J

( ∫

γ(z)

∏

m∈J
(zm + t)am/κ dt

zi + t

)
Fi, (4.9)

see formula (3.12). More precisely, all the flat sections are given by (4.9) if

1 + |a|
κ /∈ Z�0 and 1 +

aj
κ /∈ Z�0 for all j ∈ J , see [23] or Theorem 3.3.5 in

[26].

Notice that equations (4.8) are a particular case of the KZ equations,
see Section 1.1-1.3 in [26].

4.4. Conformal blocks

Lemma 4.5.— If κ = |a|, then the Gauss-Manin connection has a one-
dimensional invariant subbundle, generated by the section

q : z �→ 1

|a|
∑

j∈J
zjvj =

1

|a|
∑

j∈J
qj(z)Fj , (4.10)
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where

qi(z) = −zi +
∑

j∈J

aj
|a|zj . (4.11)

This section is flat.

Proof. — The lemma follows from formulas (4.7).

This one-dimensional subbundle will be called the bundle of conformal
blocks at level |a|. A flat section of the subbundle of conformal blocks can
be presented as an integral Iγ(z), where γ is a small circle around infinity.

4.5. Canonical isomorphism and period map

The master function of the arrangement C(z) is

Φ(z, t) =
∑

j∈J
aj log fj =

∑

j∈J
aj log(zj + t). (4.12)

The critical point equation is ∂Φ
∂t =

∑
j∈J

aj
zj+t = 0. The critical set is

CΦ(z) =
{
t ∈ U(C(z))

∣∣ ∑

j∈J

aj
zj + t

= 0
}
. (4.13)

The algebra functions on the critical set is

AΦ(z) = C(U(C(z)))/
〈 ∑

j∈J

aj
zj + t

〉
. (4.14)

The identity element [1](z) ∈ AΦ(z) equals 1
|a|

∑
j∈J zj

[aj
fj

]
.

Lemma 4.6. — We have dimAΦ(z) = n − 1. Any n − 1 elements of([ aj
zj+t

])
j∈J are linearly independent.

Let p ∈ CΦ(z). The Grothendieck residue ρp : Ap,Φ(z) → C is given by

f �→ 1

2π
√
−1

Resp
f
∂Φ
∂t

=
1

2π
√
−1

∫

Γp

fdt
∂Φ
∂t

, (4.15)

where Γp is a small circle around the critical point p oriented clock-wise.
The residue bilinear form ( , )z on AΦ(z) is ⊕p∈CΦ(z)( , )p.
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Lemma 4.7.— For f, g ∈ C(U(C(z))), we have

([f ], [g]) = − 1

2π
√
−1

Rest=∞
fg
∂Φ
∂t

− 1

2π
√
−1

∑

i∈J
Rest=−zi

fg
∂Φ
∂t

. (4.16)

The canonical element is

[E] =
∑

j∈J

[ 1

zj + t

]
⊗ Fj ∈ AΦ(z)⊗ Sing V. (4.17)

The canonical isomorphism α(z) : AΦ(z) → Sing V is given by the formula

[f ] �→ − 1

2π
√
−1

∑

j∈J

(
Rest=∞

f

(zj + t)∂Φ
∂t

+
∑

i∈J
Rest=−zi

f

(zj + t)∂Φ
∂t

)
Fj .

(4.18)

Theorem 4.8.— For k ∈ J , we have

α(z) :
[ ak
zk + t

]
�→ vk. (4.19)

Proof. — Denote

gkj =
ak

(zk + t)(zj + t)

1
∂Φ
∂t

=
ak

(zk + t)(zj + t)

∏
m∈J(zm + t)∑

m∈J am
∏

	 =m(z	 + t)
.

(4.20)
If k �= j, then Rest=−zi gjk = 0 for all i ∈ J . If k = j, then Rest=−zi gjj = 0
for i �= j and Rest=−zj gjj = 2π

√
−1. We also have Rest=∞ gkj = −2π

√
−1 ak
|a|

for all j ∈ J . We obtain the theorem by comparing these formulas with for-
mula (4.2).

Corollary 4.9.— Conjectures 3.7 and 3.8 hold for this family of ar-
rangements.

Proof. — By Theorem 4.8, we have α(z)([1](z)) = q(z), where q(z) is given
by (4.10). Lemma 4.5 implies Conjectures 3.7 and 3.8.

Corollary 4.10. — For this family of arrangements the period map
q : Cn −∆ → Sing V is given by the formula

q(z) =
1

|a|
∑

j∈J
zjvj =

1

|a|
∑

j∈J
qj(z)Fj , (4.21)

the potential function of first kind is

P (z) =
1

|a|2
∑

j∈J
ajq

2
j (z) =

∑

1�i<j�n

a1a2

|a|3 (zi − zj)
2. (4.22)
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By Corollary 4.10, the period map extends to a linear map Cn → Sing V .
The linear map is an epimorphism. The kernel is generated by the vector
(1, . . . , 1).

The standard basis (Hj)j∈J ∈ V ∗ induces linear functions on Sing V ,

hj : vi �→
ai
|a| , if j �= i, vj �→ −1 +

aj
|a| . (4.23)

We have
∑

j∈J ajhj = 0 and any n − 1 of these functions form a basis of
(Sing V )∗.

For i �= j, define the hyperplane H̃i,j ⊂ Sing V by the equation hi−hj =
0.

Lemma 4.11.— For all i, j we have q∗(hi − hj) = zj − zi and q(∆) =

∪i<jH̃i,j.

4.6. Contravariant map as the inverse to the canonical map

The canonical map α(z) : AΦ(z) → Sing V is the isomorphism described
in Theorem 4.8. The contravariant map S(a) : V → V ∗ is defined by the
formula Fi �→ ai(Hi). By identifying ai(Hi) with the differential form ai

fi
dt

and then projecting the coefficient to AΦ(z) we obtain the map

[S(a)] : V → AΦ(z), Fi �→
[ai
fi

]
. (4.24)

Theorem 4.12.— The composition α(z)◦ [S(a)] : V → Sing V is the or-
thogonal projection multiplied by -1. The composition [S(a)]◦α(z) : AΦ(z) →
AΦ(z) is the identity map multiplied by -1.

Proof. — The composition α(z)◦[S(a)] sends Fi to vi which is the orthogonal
projection multiplied by -1 The composition [S(a)] ◦ α(z) sends

[
ai
fi

]
to

−
[ai
fi

]
+
ai
|a|

∑

j∈J

[aj
fj

]
. (4.25)

The last sum is zero in AΦ(z).
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4.7. Multiplication on Sing V and (Sing V )∗

Theorem 4.13.— The canonical isomorphism α(z) : AΦ(z) → Sing V
defines an algebra structure on Sing V ,

vj ∗z vi =
aj

zj − zi
vi +

ai
zi − zj

vj , i �= j, (4.26)

vj ∗z vj = −
∑

i =j

vj ∗z vi.

The element

1

|a|
∑

j∈J
zjvj (4.27)

is the identity element.

The isomorphism S(a)|Sing V : Sing V → (Sing V )∗ induces an algebra
structure on (Sing V )∗.

Lemma 4.14. — The isomorphism S(a)|Sing V : Sing V → (Sing V )∗ is
given by the formula vj �→ −ajhj for all j.

Proof. The lemma follows from formulas (4.23) and (4.3).

Corollary 4.15. — The multiplication on (Sing V )∗ is given by the
formula

hj ∗z hi =
1

zi − zj
hi +

1

zj − zi
hj , i �= j, (4.28)

ajhj ∗z hj = −
∑

i =j

ai hi ∗z hj .

The element

− 1

|a|
∑

j∈J
ajzjhj (4.29)

is the identity element.

4.8. Tangent morphism

The tangent morphism β of the tangent bundle T (Cn −∆) → Cn −∆
to the bundle of algebras �z∈Cn−∆AΦ(z) → Cn−∆ is given by the formula
(3.31),

β(z) : ∂j ∈ Tz(Cn −∆) �→
[ ∂Φ

∂zj

]
=

[ aj
zj + t

]
∈ AΦ(z). (4.30)
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Lemma 4.16.— The map β(z) is an epimorphism. The kernel of β(z)
is generated by the vector

∑
j∈J ∂j.

The residue form on the bundle of algebras induces a holomorphic sym-
metric bilinear form η on T (Cn −∆), see formula (3.32). The bilinear form
η has rank n− 1. Its kernel is generated by the vector

∑
j∈J ∂j .

Lemma 4.17.— We have

η(∂j , ∂j) = −aj +
a2
j

|a| , j ∈ J, (4.31)

η(∂i, ∂j) =
aiaj
|a| , i, j ∈ J, i �= j.

Proof. — The lemma follows from Lemmas 4.1, 4.8 and Theorem 2.7. It can
be checked also by a straightforward calculation.

4.9. Multiplication and potential function of second kind

Let us define the multiplication on fibers of T (Cn −∆) by the formulas

∂i ∗z ∂j =
ai

zi − zj
∂j +

aj
zj − zi

∂i, (4.32)

∂i ∗z ∂i = −
∑

j =i

∂i ∗z ∂j ,

cf. formula 5.25 in [5]. The vector
∑

i∈J ∂i has zero product with everything.

Lemma 4.18.— For every z ∈ Cn − ∆, the morphism β(z) defines an
algebra epimorphism of Tz(Cn − ∆) to AΦ(z), in particular, β(z)(v) ∗z
β(z)(w) = β(z)(v ∗z w) for all v, w ∈ Tz(Cn −∆).

Consider the ideal of Tz(Cn − ∆) generated by
∑

j∈J ∂j . Denote B(z)
the quotient algebra. The morphism β(z) induces an isomorphism B(z) "
AΦ(z).

Lemma 4.19.— The element 1
|a|

∑
i∈J zj∂j projects to the identity ele-

ment of B(z).

The bilinear form η defines a morphism η̃ of the tangent bundle T (Cn−
∆) to the cotangent bundle T ∗(Cn−∆). For j ∈ J , denote pj(z) = ajqj(z) =
aj(−zj +

∑
i∈J

ai
|a|zi). We have

∑
j∈J pj = 0.

Lemma 4.20.— The morphism η̃ is given by the formula ∂j �→ dpj for
all j. The kernel of η̃ is generated by the vector

∑
j∈J ∂j.
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Consider the span of differential one-forms (dpj)j∈J . This span equals
the span of differential one-forms (dzi−dzj)1�i<j�n. The spans in the fibers
define the subbundle

�z∈Cn−∆B
∗(z) → Cn −∆ (4.33)

of the cotangent bundle T ∗(Cn −∆). The subbundle has rank n− 1.

Lemma 4.21. — The form η induces the algebra structure on B∗(z)
given by the formula

dpi ∗z dpj =
ai

zi − zj
dpj +

aj
zj − zi

dpi =
aiaj
zi − zj

d(zi − zj), i �= j,

dpi ∗z dpi = −
∑

j =i

dpj ∗z dpi, (4.34)

and the bilinear form

(dpj , dpj) = −aj +
a2
j

|a| , j ∈ J, (4.35)

(dpi, dpj) =
aiaj
|a| , i, j ∈ J, i �= j.

Introduce the potential function of second kind

P̃ (z) =
1

2

∑

1�i<j�n
aiaj (zi − zj)

2 log(zi − zj). (4.36)

Theorem 4.22.— We have

d
( ∂2P̃

∂zi∂zj

)
= −η̃(∂i) ∗z η̃(∂j) (4.37)

for all i, j.

Proof. — The theorem follows from Lemma 4.21.

Notice that equation (4.37) is the definition (3.5) in [5] of the potential
function of an almost dual Frobenius structure.

The right hand side in (4.37) can be rewritten: η̃(∂i)∗z η̃(∂j) = η̃(∂i∗z∂j).
For all i, j, k, we have

η̃(∂i ∗z ∂j)(∂	) = η(∂i ∗z ∂j , ∂	) = (β(z)(∂i) ∗z β(z)(∂j) ∗z β(z)(∂	), [1](z))z,
(4.38)
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where ( , )z is the residue form on AΦ(z). Formula (4.37) says that for all
i, j, k, we have

∂3P̃

∂zi∂zj∂	
(z) = −(β(z)(∂i) ∗z β(z)(∂j) ∗z β(z)(∂	), [1](z))z. (4.39)

Hence Conjecture 3.14 holds for this family of arrangements.

4.10. Connections on the bundle �z∈Cn−∆B
∗(z) → Cn − ∆ defined

in (4.33)

The combinatorial and Gauss-Manin connections on (Cn−∆)×Sing V →
Cn −∆ induce the combinatorial and Gauss-Manin connections on bundle
(4.33).

Lemma 4.23.— The differential one-forms (dpj)j∈J are flat sections of
the combinatorial connection on bundle (4.33).

Proof. — The vectors vj ∈ Sing V give flat sections of the combinatorial

connection on Cn×Sing V → Cn. By formula (4.19), the elements
[

aj
zj+t

]
∈

AΦ(z) give flat sections of bundle of algebras. Now formula (4.30) and
Lemma 4.20 imply Lemma 4.23.

Let I(z) =
∑

j∈J I
j(z)dpj be a section of bundle (4.33). For i ∈ J , we

denote ∂I
∂zi

=
∑

∂Ij

∂zi
dpj .

Lemma 4.24.— The differential equations for flat sections of the Gauss-
Manin connection take the from

κ
∂I

∂zi
= dpi ∗z I, i ∈ J, (4.40)

see formula (4.34). For generic κ all the flat sections are given by the formula

Iγ,κ(z) =
∑

j∈J

( ∫

γ(z)

∏

i∈J
(zi + t)ai/κ

dt

zj + t

)
dpj , (4.41)

where γ(z) ∈ H1(U(C(z)),Lκ|U(C(z))) is a flat section of the Gauss-Manin
connection on �z∈Cn−∆Hk(U(C(z)),Lκ|U(C(z))) → Cn −∆.

Proof. — The lemma follows from Theorem 3.3 and formula (4.9).

Theorem 4.25.— For every flat section Iγ,κ, we have Iγ,κ = −κ dpγ,κ
where

pγ,κ =

∫

γ(z)

∏

i∈J
(zi + t)ai/κdt. (4.42)
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Proof. — The theorem follows from two formulas:

κ
∂pγ,κ
∂zj

=

∫

γ(z)

∏

i∈J
(zi + t)ai/κ

ajdt

zj + t
(4.43)

and
∑

j∈J
∂pγ,κ
∂zj

= 0.

Following Dubrovin [4, 5], we will call the functions pγ,κ twisted periods.
Notice that this definition agrees with the definition of twisted periods in
Section 3.11, namely, the twisted periods of Theorem 4.25 can be also defined
by formula (3.42) of Theorem 3.13.

Lemma 4.26.— Given κ ∈ C×, let I(z, κ) be a flat section of the Gauss-
Manin connection with the parameter κ. Let I(z,−κ) be a flat section of the
Gauss-Manin connection with the parameter −κ. Then (I(z, κ), I(z,−κ))z
does not depend on z ∈ Cn −∆.

Proof. — The lemma follows from the fact that B∗(z) is a Frobenius algebra.

4.11. Functoriality

In this section we will discuss how our objects extend to strata of the
discriminant ∆ ⊂ Cn.

4.11.1. A stratum X of ∆ is given by a partition (J1, . . . , Jm) of J ,

X = {(z1, . . . , zn) ∈ Cn | zi − zj = 0 for i, j ∈ J	, � = 1, . . . ,m}, (4.44)

dimX = m. The coordinates on X are functions x1, . . . , xm where x	 = zj
for j ∈ J	. Let ι : X ↪→ Cn be the natural embedding. Then

ι∗ :
∂

∂x	
�→

∑

j∈J�

∂

∂zj
, ι∗ : dzj �→ dx	 if j ∈ J	. (4.45)

The remaining strata of ∆ cut on X the union of hyperplanes xi = xj , 1 �
i < j � m which we denote ∆X . For � = 1, . . . ,m, we denote b	 =

∑
j∈J� aj .

We assume that b	 �= 0 for all �.

We restrict our family of arrangements C(z), z ∈ Cn, to X−∆X . For x ∈
X−∆X the corresponding arrangement C(x) consists of points−x1, . . . ,−xm
of weights b1, . . . , bm, respectively. For this new family we will construct all
the objects described in Sections 4.1-4.10 and relate them to the objects con-
structed for the arrangements C(z), z ∈ Cn −∆. The objects corresponding
to the new family will be provided with the index X.
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4.11.2. For x ∈ X − ∆X , the space (VX)∗ = A1(C(x)) has the standard
basis (H	,X), � = 1, . . . ,m. Recall that the space V ∗ of Sections 4.1-4.10 has
the standard basis (Hj), j ∈ J . We have the canonical epimorphism

f∗ : V ∗ → (VX)∗, (Hj) �→ (H	,X) if j ∈ J	. (4.46)

The space VX = F1(C(x)) has the standard basis F	,X , � = 1, . . . ,m. The
space V of Sections 4.1-4.10 has the standard basis Fj , j ∈ J . We have the
canonical embedding

f : VX ↪→ V, F	,X �→
∑

j∈J�
Fj . (4.47)

The subspace of singular vector is defined by the formula

Sing VX =
{ m∑

	=1

c	F	,X |
m∑

	=1

b	c	 = 0
}
. (4.48)

We have f(Sing VX) = f(VX) ∩ (Sing V ). Consider the embedding

f̃ : Sing VX ↪→ Sing V, v �→ f(v). (4.49)

For the contravariant form on VX we have

S
(b)
X (F	,X , Fk,X) = S(a)(f(F	,X), f(Fk,X)) = δ	,kbk. (4.50)

For � = 1, . . . ,m, we define a vector v	,X ∈ Sing VX by the formula

v	,X = −F	,X +
b	
|a|

m∑

k=1

Fk,X . (4.51)

We have f : v	,X �→ ∑
j∈J� vj .

The standard basis (H	,X), � = 1, . . . ,m, induces linear functions on
Sing VX ,

h	,X : vk,X �→ bk
|a| if k �= �, v	,X �→ −1 +

b	
|a| . (4.52)

We have f̃∗ : hj �→ h	,X if j ∈ J	.
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4.11.3. For � = 1, . . . ,m and x ∈ X − ∆X , the operators K	,X(x) :
Sing VX → Sing VX are defined by formulas (4.7),

K	,X(x)vk,X =
b	

x	 − xk
vk,X +

bk
xk − x	

v	,X for � �= k, (4.53)

K	,X(x)v	,X = −
∑

k =	

K	,X(x)vk,X .

For all �, k, we have

f(K	,X(x)vk,X) =
∑

j∈J�
Kj(x)f(vk,X). (4.54)

Notice that the right hand side in (4.54) is well-defined despite the fact that
Kj(x)vi is not well-defined for all vi, see formula (4.7).

4.11.4. Multiplication on Sing VX is defined by formulas (4.26),

v	,X ∗x,X vk,X =
b	

x	 − xk
vk,X +

bk
xk − x	

v	,X for � �= k, (4.55)

v	,X ∗x,X v	,X = −
∑

k =	

v	,X ∗x,X vk,X .

For all �, k, we have

f(v	,X ∗x,X vk,X) = f(v	,X) ∗x f(vk,X). (4.56)

Notice that the right hand side in (4.56) is well-defined despite the fact that
vi ∗x vj is not well-defined for all vi, vj , see formula (4.26).

4.11.5. The multiplication on (Sing VX)∗ is given by formula (4.28),

h	,X ∗x,X hk,X =
1

x	 − xk
h	,X +

1

zk − z	
hk,X , � �= k, (4.57)

b	h	,X ∗x,X hk,	 = −
∑

k =	

bk hk,X ∗x,X h	,X .

If � �= k, i ∈ J	, j ∈ Jk, then

f̃∗(hi ∗x hj) = h	,X ∗x,X hk,X . (4.58)

Notice that hi ∗x hj is well-defined despite the fact that hi ∗x hj is not
well-defined for all hi, hj , see formula (4.26).
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4.11.6. For x ∈ X −∆X the residue form on AΦ(x) induces a holomorphic
bilinear form ηX on Tx(X −∆X),

ηX

( ∂

∂x	
,
∂

∂x	

)
= −b	 +

b2	
|a| , j ∈ J, (4.59)

ηX

( ∂

∂x	
,
∂

∂xk

)
=
b	bk
|a| , � �= k.

For all �, k, have

ηX

( ∂

∂x	
,
∂

∂xk

)
= η

( ∑

i∈J�

∂

∂zi
,
∑

j∈J�

∂

∂zj

)
. (4.60)

For � = 1, . . . ,m, we define a linear function on X,

q	,X(x) = −x	 +
∑

k =	

bk
|a|xk. (4.61)

We have

q	,X(x) = qi(x), if i ∈ J	. (4.62)

The period map qX : X −∆X → Sing VX is defined by formula (4.21),

qX(x) =
1

|a|
m∑

	=1

q	,X(x)F	,X =
1

|a|
m∑

	=1

x	 v	,X . (4.63)

Theorem 4.27.— For all x ∈ X, we have

f(qX(x)) = q(x) (4.64)

and for the potential functions of first kind we have

PX(x) = P (x). (4.65)

4.11.7. For x ∈ X −∆X , the multiplication on Tx(X −∆X) is defined by
formulas (4.32),

∂

∂x	
∗x,X

∂

∂xk
=

b	
x	 − xk

∂

∂xk
+

bk
xk − x	

∂

∂x	
, (4.66)

∂

∂x	
∗x,X

∂

∂x	
= −

∑

k =	

∂

∂xk
∗x,X

∂

∂x	
.
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For all �, k, we have

∂

∂x	
∗x,X

∂

∂xk
=

( ∑

i∈J�

∂

∂zi

)
∗x

( ∑

j∈Jk

∂

∂zj

)
. (4.67)

Notice that the right hand side in (4.67) is well-defined despite the fact that
∂
∂zi

∗x ∂
∂zj

is not well-defined for all i, j, see (4.66).

4.11.8. For � = 1, . . . ,m, we denote p	,X = b	q	,X . The map

η̃X : Tx(X −∆X) → T ∗x (X −∆X), w �→ ηX(w, ·), (4.68)

sends ∂
∂x�

to dp	,X . We have

dp	,X = ι∗
( ∑

i∈J�
dpi

)
. (4.69)

Denote B∗X(x) the span of (dp	,X)m	=1 in T ∗x (X −∆X). This span equals the
span of differential forms (dx	−dxk)1�	<k�m. The multiplication on B∗X(x)
is given by the formulas (4.34),

dp	,X ∗x,X dpk,X =
b	

x	 − xk
dpk,X +

bk
xk − x	

dp	,X

=
b	bk

x	 − xk
d(x	 − xk), � �= k,

dp	,X ∗x,X dp	,X = −
∑

k =	

dpk,X ∗x,X dp	,X . (4.70)

For all �, k, we have

ι∗
( ∑

i∈J�
dpi

)
∗x,X ι∗

( ∑

j∈Jk
dpj

)
= ι∗

( ∑

i∈J�

∑

j∈Jk
dpi ∗x dpj

)
. (4.71)

The potential function of second kind is defined by formula (4.36),

P̃X(x1, . . . , xm) =
1

2

∑

1�	<k�m
b	bk (x	 − xk)

2 log(x	 − xk). (4.72)

By formula (4.37),

d
( ∂2P̃X
∂x	∂xk

)
= −η̃X

( ∂

∂x	

)
∗x,X η̃X

( ∂

∂xk

)
(4.73)

for all �, k. For all �, k, we have

∂2P̃X
∂x	∂xk

(x) = lim
z→x

z∈Cn−∆

∑

i∈J�

∑

j∈Jk

∂2P̃

∂zi∂zj
(z). (4.74)
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4.12. Frobenius like structure

Consider the quotient M of Cn by the one-dimensional subspace
C(1, . . . , 1) and the natural projection π : Cn → M . Then all our ob-
jects – the combinatorial bundle (Cn −∆) × (Sing V ) → Cn −∆ with
the contravariant form S(a) and connections (combinatorial and Gauss-
Manin); the bundle of algebras �z∈Cn−∆AΦ(z) → Cn −∆; the period map
q : Cn −∆ → Sing V , potential functions P (z) and P̃ (z), flat periods pj(z),
twisted periods pγ,κ(z) – descend to the quotient and form on M − π(∆) a
structure which we will also call a Forbenius like structure.

In particular, the functions p1, . . . , pn−1 will form a coordinate systems
on M and η will induce a holomorphic metric on M constant with respect
to the coordinates p1, . . . , pn−1. If yi =

∑n−1
j=1 cj,ipj , j = 1, . . . , n − 1, is a

linear change of coordinates with ci,j ∈ C such that η =
∑n−1

j=1 dy
2
j . Then

equation (4.37) will take the form

d
( ∂2P̃

∂yi∂yj

)
= −dyi ∗y dyj (4.75)

for all i, j. The functions − ∂3P̃
∂yi∂yj∂yk

will become the structure constants

of the multiplication on T ∗y (M − π(∆)) and the potential function P̃ will
satisfies the WDVV equations with respect to the coordinates y1, . . . , yn−1.

5. Generic lines on plane

5.1. An arrangement in Cn × C2

5mm Consider C2 with coordinates t1, t2, Cn with coordinates z1, . . . , zn.
Fix n linear functions on C2, gj = b1j t1 + b2j t2, j ∈ J, bij ∈ C. We assume
that

di,j = det

(
b1i b2i
b1j b2j

)
�= 0 for all i �= j. (5.1)

We define n linear functions on Cn × C2, fj = zj + gj , j ∈ J. In Cn × C2

we define the arrangement C̃ = {H̃j | fj = 0, j ∈ J}.

For every z = (z1, . . . , zn) the arrangement C̃ induces an arrangement
C(z) in the fiber of the projection Cn × C2 → Cn over z. We identify every
fiber with C2. Then C(z) consists of lines Hj(z), j ∈ J , defined in C2 by the
equations fj = 0. Denote U(C(z)) = C2 − ∪j∈JHj(z), the complement to
the arrangement C(z).
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The arrangement C(z) is with normal crossings if and only if z ∈ Cn−∆,
where ∆ = ∪1�i<j<k�nHi,j,k and the hyperplane Hi,j,k is defined by the
equation fi,j,k = 0,

fi,j,k = dj,kzi + dk,izj + di,jzk. (5.2)

Lemma 5.1.— For any four distinct indices i, j, k, � we have

fi,j,k
dk,idi,j

+
fi,k,	
d	,idi,k

+
fi,	,j
dj,idi,	

= 0, (5.3)

f2
i,j,k

di,jdj,kdk,i
−

f2
j,k,	

dj,kdk,	d	,j
+

f2
k,	,i

dk,	d	,idi,k
−

f2
	,i,j

d	,idi,jdj,	
= 0. (5.4)

5.2. Good fibers

For any z ∈ Cn − ∆, the space A2(C(z)) has the standard basis
(Hi(z), Hj(z)), 1 � i < j � n. The space F2(C(z)) has the standard dual
basis F (Hi(z), Hj(z)), 1 � i < j � n. For z1, z2 ∈ Cn −∆, the combinato-
rial connection identifies the spaces A2(C(z1)), F2(C(z1)) with the spaces
A2(C(z2)), F2(C(z2)), respectively, by identifying the standard bases.

Assume that nonzero weights (aj)j∈J are given. Then the arrangement
C(z) is weighted. For z ∈ Cn − ∆, the arrangement C(z) is unbalanced if
|a| �= 0. We assume that |a| �= 0.

For z ∈ Cn−∆, we denote V = F2(C(z)), V ∗ = (F2(C(z))∗ = A2(C(z)),
Fi,j = F (Hi(z), Hj(z)). We have Fi,j = −Fj,i,

S(a)(Fi,j , Fk,	) = 0, if i < j, k < � and (i, j) �= (k, �), (5.5)

S(a)(Fi,j , Fi,j) = aiaj ,

Sing V =
{ ∑

1�i<j�n
ci,jFi,j |

i−1∑

j=1

ajcj,i −
n∑

j=i+1

ajci,j = 0, i = 1, . . . , n
}
.

(5.6)
By Corollary 2.8, the restriction of S(a) to Sing V is nondegenerate. Denote
(Sing V )⊥ the orthogonal complement to Sing V with respect to S(a). Then
V = Sing V ⊕ (Sing V )⊥. Denote π : V → Sing V the orthogonal projection.

Lemma 5.2.— The space (Sing V )⊥ is generated by vectors
∑

i∈J
Fi,j , j ∈ J. (5.7)
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For i �= j, we define the vector vi,j ∈ V by the formula

vi,j = Fi,j −
aj
|a|

∑

k∈J
Fi,k −

ai
|a|

∑

	∈J
F	,j . (5.8)

We have vi,j = −vj,i. Set vi,i = 0.

Lemma 5.3.— We have the following properties.

(i) dim Sing V =
(
n−1

2

)
.

(ii) We have vi,j ∈ Sing V and vi,j = π(Fi,j).

(iii) For j ∈ J , we have
∑

i∈J vi,j = 0.

(iv) For any k ∈ J , the set vi,j, 1 � i < j � n, k /∈ {i, j}, is a basis of
Sing V .

Lemma 5.4.— We have

S(a)(vi,j , vk,	) = 0, if i, j, k, � are distinct, (5.9)

S(a)(vi,j , vi,k) = −aiajak|a| , if i, j, k are distinct,

S(a)(vi,j , vi,j) = −
∑

k =j

S(a)(vi,j , vi,k) = aiaj −
aiaj(ai + aj)

|a| .

5.3. Operators Ki(z) : V → V

For any subset {i, j, k} ⊂ J , we define the linear operator Li,j,k : V → V
by the formula

Fi,j �→ akFi,j + aiFj,k + ajFk,i, (5.10)

Fj,k �→ akFi,j + aiFj,k + ajFk,i,

Fk,i �→ akFi,j + aiFj,k + ajFk,i,

F	,m �→ 0, if {�,m} is not a subset of {i, j, k}.

see formula (3.5). Notice that Li,j,k does not depend on the order of i, j, k.

We define the operators Ki(z) : V → V , i ∈ J , by the formula

Ki(z) =
∑ dj,k

fi,j,k
Li,j,k, (5.11)
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where the sum is over all unordered subsets {j, k} ⊂ J − {i}, see for-
mula (3.6). For any i ∈ J and z ∈ Cn − ∆, the operator Ki(z) preserves
the subspace Sing V ⊂ V and is a symmetric operator, S(a)(Ki(z)v, w) =
S(a)(v,Ki(z)w) for all v, w ∈ V , see Theorem 3.2.

Lemma 5.5.— For i ∈ J , we have

Ki(z)vj,k =
dj,k
fi,j,k

(aivj,k + ajvk,i + akvi,j), if i /∈ {j, k}, (5.12)

Ki(z)vj,i = −
∑

k/∈{i,j}
Ki(z)vj,k. (5.13)

Proof. — The restriction of Ki(z) to (Sing V )⊥ is zero by formula (5.10) and
Lemma 5.2. We have

Ki(z)vj,k = Ki(z)Fj,k =
dj,k
fi,j,k

(aiFj,k + ajFk,i + akFi,j). (5.14)

The right hand side in (5.14) equals the right hand side in (5.12) by Lemma
5.3.

The differential equations (3.14) for flat sections of the Gauss-Manin
connection on (Cn −∆)× Sing V → Cn −∆ take the form

κ
∂I

∂zj
(z) = Kj(z)I(z), j ∈ J. (5.15)

For generic κ all the flat sections are given by the formula

Iγ(z) =
∑

1�i<j�n

( ∫

γ(z)

∏

m∈J
fam/κ
m

di,j
fifj

dt1 ∧ dt2
)
Fi,j , (5.16)

see formula (3.12). These generic κ can be determined more precisely from
the determinant formula in [23].

5.4. Conformal blocks

Define the map q : Cn → Sing V by the formula

q : z �→ − 1

|a|2
∑

1�i<j�n

(zib
1
j − zjb

1
i )

2

di,jb1i b
1
j

vi,j . (5.17)
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Lemma 5.6.— For any k ∈ J , we have

q(z) =
1

|a|2
′∑ f2

i,j,k

di,jdj,kdk,i
vi,j , (5.18)

where the sum is over all pairs i < j such that k /∈ {i, j}.

Proof. — Denote Ai,j = − (zib
1
j−zjb1i )2

di,jb1i b
1
j

, then

q(z) =
1

|a|2
∑

1�i<j�n
Ai,jvi,j . (5.19)

We replace in (5.19) each vi,k with−∑
j =k vi,j and each vk,j with−∑

i =k vi,j .
Then

q(z) =
1

|a|2
′∑

(Ai,j +Aj,k +Ak,i)vi,j , (5.20)

where the sum is the same as in (5.18). The lemma follows from the identity

Ai,j +Aj,k +Ak,i =
f2
i,j,k

di,jdj,kdk,i
. (5.21)

By Lemma 5.6, the map q can be defined in terms of the determinants
di,j , 1 � i < j � n, only without using the individual numbers b1i .

Theorem 5.7. — If κ = |a|/2, then the Gauss-Manin connection on
(Cn−∆)× (Sing V ) → Cn−∆ has a one-dimensional invariant subbundle,
generated by the section q : z �→ q(z), see (5.18). This section is flat.

This one-dimensional subbundle will be called the bundle of conformal
blocks at level |a|/2.

Proof. — We check that

|a|
2

∂q

∂z1
(z) = K1(z)q(z). (5.22)

The other differential equations are proved similarly. By Lemma 5.6 we have

q(z) =
1

|a|2
∑

1<i<j�n

f2
1,i,j

di,jdj,1d1,i
vi,j . (5.23)
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Then

|a|
2

∂q

∂z1
(z) =

1

|a|
∑

1<i<j�n

f1,i,j
dj,1d1,i

vi,j (5.24)

and

K1(z)q(z) =
1

|a|2
∑

1<i<j�n

f1,i,j
dj,1d1,i

(a1vi,j + aivj,1 + ajv1,i) (5.25)

by formula (5.12). By replacing vj,1 with−∑
i =1 vj,i and v1,i with−∑

j =1 vi,j
and using Lemma 5.1 we obtain

K1(z)q(z) =
1

|a|
∑

1<i<j�n

f1,i,j
dj,1d1,i

vi,j . (5.26)

5.5. Algebra AΦ(z)

The master function of the arrangement C(z) is

Φ(z, t) =
∑

j∈J
aj log fj =

∑

j∈J
aj log(zj + b1j t1 + b2j t2). (5.27)

The critical point equations are

∂Φ

∂t1
=

∑

j∈J
aj
b1j
fj

= 0,
∂Φ

∂t2
=

∑

j∈J
aj
b2j
fj

= 0. (5.28)

Introduce Hi, i = 1, 2, by the formula

∂Φ

∂ti
=

Hi∏
j∈J fj

. (5.29)

We have

t1
∂Φ

∂t1
+ t2

∂Φ

∂t2
= |a| −

∑

i∈J
zi
ai
fi
. (5.30)

In other words, we have

t1H1 + t2H2 = |a|
∏

j∈J
fj −

∑

i∈J
ziai

∏

j =i

fj . (5.31)
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The critical set is

CΦ(z) =
{
t ∈ U(C(z))

∣∣ ∂Φ

∂t1
= 0,

∂Φ

∂t2
= 0

}
=

{
t ∈ U(C(z))

∣∣H1 = 0, H2 = 0
}
.

(5.32)
The algebra of functions on the critical set is

AΦ(z) = C(U(C(z)))/
〈 ∂Φ

∂t1
,
∂Φ

∂t2

〉
= C(U(C(z)))/

〈
H1, H2

〉
. (5.33)

Lemma 5.8.— We have dimAΦ(z) =
(
n−1

2

)
.

Introduce elements wi,j ∈ AΦ(z) by the formula

wi,j = aiaj

[ di,j
fifj

]
. (5.34)

Lemma 5.9.— We have wi,j = −wj,i and
∑

j∈J wi,j = 0.

Proof. — The lemma follows from the identity

ai
dfi
fi

∧ dΦ

Φ
=

∑

j∈J
aiaj

di,j
fifj

dt1 ∧ dt2 +
∑

m∈J
dzj ∧ µj , (5.35)

where µj are suitable one-forms.

The elements
[
ai
fi

]
, i ∈ J , generate AΦ(z) by Lemma 2.4.

Lemma 5.10.— For j ∈ J , we have the following identity in AΦ(z),
∑

i∈J
di,j

[ai
fi

]
= 0. (5.36)

Lemma 5.11.— We have
[ai
fi

]
∗z

[aj
fj

]
=

1

di,j
wi,j , i �= j, (5.37)

[aj
fj

]
∗z

[aj
fj

]
=

∑

i/∈{j,k}

dk,i
dj,kdi,j

wi,j , k �= j.

[ai
fi

]
∗z wj,k =

dj,k
fi,j,k

(aiwj,k + ajwk,i + akwi,j), if i /∈ {j, k},(5.38)

[ai
fi

]
∗z wj,i = −

∑

k/∈{i,j}

[ai
fi

]
∗z wj,k.
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Corollary 5.12.— The elements wi,j, 1 � i < j � n, span AΦ(z).

Lemma 5.13.— The identity element [1](z) ∈ AΦ(z) satisfies the equa-
tions

[1](z)=
1

|a|
∑

i∈J
zi

[ai
fi

]
=

1

|a|2
( ∑

i∈J
zi

[ai
fi

])2

=− 1

|a|2
∑

1�i<j�n

(zib
1
j − zjb

1
i )

2

di,jb1i b
1
j

wi,j .

(5.39)

Proof. — To obtain the last expression in (5.39) we replace
[
ai
fi

][
ai
fi

]
with

[
− ai

fi

∑
j =i

b1j
b1i

aj
fj

]
.

Theorem 5.14.— For any k ∈ J , the identity element [1](z) ∈ AΦ(z)
satisfies the equation

[1](z) =
1

|a|2
′∑ f2

i,j,k

di,jdj,kdk,i
wi,j , (5.40)

where the sum is over all pairs i < j such that k /∈ {i, j}.

Proof. — The proof is the same as the proof of Lemma 5.6.

The canonical element is

[E] =
∑

1�i<j�n

[ di,j
fifj

]
⊗ Fi,j ∈ AΦ(z)⊗ Sing V. (5.41)

Theorem 5.15.— The canonical isomorphism

α(z) : AΦ(z) → Sing V (5.42)

is given by the formula

wi,j �→ vi,j . (5.43)

Corollary 5.16.— We have α(z)[1]) = q(z), where q(z) is the confor-
mal block of Theorem 5.7.

5.6. Proof of Theorem 5.15

Introduce the coefficients Bi,j by the formula

α(z)(wk,	) =
∑

1�i<j�n
Bi,jFi,j . (5.44)
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We have

− 4π2

aka	dk,	di,j
Bi,j =

∑

p∈CΦ(z)

Resp
1

fkf	fifj

∏
m∈J f

2
m

H1H2
. (5.45)

Lemma 5.17.— We have Bi,j = 0, if {i, j} ∩ {k, �} = ∅.

Proof. — The differential form

ωk,	,i,j =

∏
m∈J f

2
m

fkf	fifjH1H2
dt1 ∧ dt2 (5.46)

has poles only on the curves H1 = 0 and H2 = 0. The poles are of first
order. To calculate the right hand side in (5.45), we need to take the residue
ResH1=0 ωk,	,i,j of the form ωk,	,i,j at the curve H1 = 0 and then take the
residue of that form on the curve H1 = 0 at the points where H2 = 0. This
is the same as if we took with minus sign the residue of ResH1=0 ωk,	,i,j
on the curve H1 = 0 at infinity. That residue at infinity with minus sign
could be obtained differently in two steps. First we may take the residue
Res∞ ωk,	,i,j of ωk,	,i,j at the line at infinity and then take the residue of
that one-form on the line at infinity at the points where H1 = 0.

So to calculate the right hand side in (5.45) we first calculate Res∞ ωk,	,i,j .
The coordinates at infinity are u1 = t1/t2, u2 = 1/t2. We have fm =
(b1mu1 + b2m + u2zm)/u2. Denote f̃m(u1) = b1mu1 + b2m. For i = 1, 2, we have
Hi(u1/u2, 1/u2) = Ĥi(u1, u2)/u

n−1
2 , where Ĥi(u1, u2) are some polynomi-

als. Denote H̃i(u1) = Ĥi(u1, 0). We have dt1 ∧ dt2 = − 1
u3

2
du1 ∧ du2. Then

the residue of ωk,	,i,j at the line at infinity equals

2π
√
−1 ω̃k,	,i,j =

∏
m∈J f̃m(u)2

f̃k(u)f̃	(u)f̃i(u)f̃j(u)H̃1(u)H̃2(u)
du, (5.47)

where u = u1. On the line at infinity this one-form is holomorphic at u = ∞.

The number 2π
√−1

aka�dk,�di,j
Bi,j equals the sum of residues of the form ω̃k,	,i,j

at the points where H̃1(u) = 0.

By formula (5.30), we have

uH̃1(u) + H̃2(u) = |a|
∏

m∈J
f̃m(u). (5.48)

Thus H̃2(u) = |a|∏m∈J f̃m(u) at the point where H1(u) = 0. Therefore,

the sum of residues of the form ω̃k,	,i,j at the points where H̃1(u) = 0 equals
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the sum of residues of the form

ω̃k,	,i,j =

∏
m/∈{k,	,i,j} f̃m(u)

|a| H̃1(u)
du (5.49)

at the points where H̃1(u) = 0. This sum is zero.

Lemma 5.18.— We have Bk,j = − a�
|a| , if j /∈ {k, �}.

Proof. — On the line at infinity we consider the differential one form

ω̃k,	,i,j =

∏
m∈J f̃m(u)2

f̃2
k (u)f̃	(u)f̃j(u)H̃1(u)H̃2(u)

du, (5.50)

As in Lemma 5.17 we observe that 2π
√−1

aka�dk,�dk,j
Bk,j equals the sum of residues

of that one-form at the points where H1 = 0. Consider the differential one-
form

µ =

∏
m/∈{k,	,j} f̃m(u)

|a| f̃k(u)H̃1(u)
du. (5.51)

As in Lemma 5.17 we observe that 2π
√−1

aka�dk,�dk,j
Bk,j equals the sum of residues

of µ at the points where H̃1(u) = 0 and this sum equals

−Resf̃k=0 µ = − 2π
√
−1

ak|a|dk,	dk,j
. (5.52)

The lemma is proved.

By Lemmas 5.17 and 5.18 we know that α(z)(wk,	) = Bk,	Fk,	
− ak
|a|

∑
i =k Fi,	− a�

|a|
∑

j =	 Fk,j . From the condition that α(z)(wk,	) ∈ Sing V

we conclude that Bk,	 = |a|−ak−a�
|a| . The theorem is proved.

5.7. Contravariant map as the inverse to the canonical map

The canonical map α(z) : AΦ(z) → Sing V is the isomorphism described
in Theorem 5.15. The contravariant map S(a) : V → V ∗ is defined by the
formula Fi,j �→ aiaj(Hi, Hj). By identifying aiaj(Hi, Hj) with the differen-

tial form aiaj
di,j
fifj

dt1 ∧ dt2 and then projecting the coefficient to AΦ(z) we

obtain the map

[S(a)] : V → AΦ(z), Fi,j �→ wi,j = aiaj

[ di,j
fifj

]
. (5.53)

– 181 –



Alexander Varchenko

Theorem 5.19. — The composition α(z) ◦ [S(a)] : V → Sing V is the
orthogonal projection. The composition [S(a)] ◦α(z) : AΦ(z) → AΦ(z) is the
identity map.

Proof. — The composition α(z) ◦ [S(a)] sends Fi,j to vi,j which is the or-
thogonal projection by Lemma 5.3. The composition [S(a)]◦α(z) sends wi,j

to

wi,j −
ai
|a|

∑

k∈J
wk,j −

aj
|a|

∑

	∈J
wi,	. (5.54)

The last two sums are equal to zero in AΦ(z) by Lemma 5.9.

5.8. Corollaries of Theorem 5.15

Theorem 5.20. — For any j ∈ J , the Sing V -valued function ∂q
∂zj

(z)

satisfies the Gauss-Manin differential equations with κ = |a|,

|a| ∂
∂zi

∂q

∂zj
(z) = Ki(z)

∂q

∂zj
(z), i ∈ J. (5.55)

Proof. — By Theorems 5.14 and 5.15, we have

q(z) = α(z)([1](z)) =
1

|a|2α(z)
(
(
∑

m∈J
zm

[am
fm

]
)2

)

=
1

|a|2
∑

m,	∈J
zmz	α(z)

([am
fm

][a	
f	

])
.

By Theorem 5.15, for any m, � ∈ J , the element α(z)(
[
am
fm

][
a�
f�

]
) ∈ Sing V

is a linear combination of vectors vi,j with constant coefficients. Hence

∂2q

∂zj∂zi
(z) =

2

|a|2α(z)
([ai
fi

][aj
fj

])
,

∂q

∂zj
(z) =

2

|a|α(z)
([aj
fj

]
∗z

1

|a|
∑

m∈J
zm

[am
fm

])
=

2

|a|α(z)
([aj
fj

])
,

Ki(z)
∂q

∂zj
(z) =

2

|a|α(z)
([ai
fi

][aj
fj

])
.

This implies the theorem.
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Corollary 5.21.— Conjectures 3.7 and 3.8 hold for this family of ar-
rangements.

The tangent morphism β and the residue form on the bundle of algebras
induce a holomorphic bilinear form η on fibers of the tangent bundle,

η(∂i, ∂j)z = (β(z)(∂i), β(z)(∂j))z = (−1)kS(a)(α(z)β(z)(∂i), α(z)β(z)(∂j))

=
([ai
fi

]
,
[aj
fj

])
z

= (−1)kS(a)
(
α(z)

([ai
fi

])
, α(z)

([aj
fj

]))
. (5.56)

By Theorem 3.10, we have

η(∂i, ∂j)z =
|a|2
4
S(a)(

∂q

∂zi
(z),

∂q

∂zj
(z)). (5.57)

Theorems 3.12 and 3.13 also hold for this family of arrangements.

Theorem 5.22. — Recall the potential function of first kind P (z) =
S(a)(q(z), q(z)). We have

P (z) =
∑

1�i<j<k�n

aiajak
|a|5

f4
i,j,k

d2
i,jd

2
j,kd

2
k,i

. (5.58)

Proof. — By Theorem 3.11, for any r � 4, we have

(β(z)(∂m1) ∗z · · · ∗z β(z)(∂mr ), [1](z))z =
|a|r
A2,r

∂rP

∂zm1 . . . ∂zmr

(z), (5.59)

for all m1, . . . ,mr ∈ J . In particular,

(β(z)(∂k) ∗z β(z)(∂	) ∗z β(z)(∂zm), [1](z))z =
|a|3
4!

∂3P

∂zk∂z	∂zm
(z) (5.60)

for all k, �,m ∈ J . Introduce the function

P̂ (z) =
1

4!

∑

1�i<j<k�n

aiajak
|a|2

f4
i,j,k

d2
i,jd

2
j,kd

2
k,i

. (5.61)

Proposition 5.23.— We have

(β(z)(∂j) ∗z β(z)(∂	) ∗z β(z)(∂zm), [1](z))z =
∂3P̂

∂zj∂z	∂zm
(z) (5.62)

for all k, �,m ∈ J .
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Proof. — For k, � ∈ J , we define the differential one-form ψk,	 on Cn−∆ by
the formula

ψk,	(∂m) = (β(z)(∂k) ∗z β(z)(∂	), β(z)(∂m))z. (5.63)

The canonical isomorphism identifies the residue form and the contravariant
form and therefore we may write

ψk,	(∂m) = S(a)(α(z)β(z)(∂k) ∗z α(z)β(z)(∂	), α(z)β(z)(∂m)). (5.64)

Lemma 5.24.— The form ψk,	 is the differential of the function

ϕk,	(z) =
|a|
2

1

dk,	
S(a)(vk,	, q(z)), (5.65)

if k �= �, and of the function

ϕk,	(z) =
|a|
2

∑

i/∈{j,k}

dj,i
dk,jdi,k

S(a)(vi,k, v), (5.66)

if k = �, where j is any number in J such that j �= k.

Proof. — The vector α(z)β(z)(∂k)∗zα(z)β(z)(∂	) = α(z)(
[
ak
fk

][
a�
f�

]
) ∈ Sing V

equals 1
dk,�

vk,	 if k �= � and equals
∑

i/∈{j,k}
dj,i

dk,jdi,k
vi,k if k = �. We also have

α(z)β(z)(∂m) = |a|
2

∂q
∂zm

. This implies the lemma.

Proposition 5.23 is equivalent to the formula

∂2P̂

∂zk∂z	
= ϕk,	 (5.67)

for all k, � ∈ J . The proof of (5.67) is by direct verification. Namely, assume
that k < �. Then

(5.68)

∂2P̂

∂zk∂z	
=
aiaka	
2|a|2

( ∑

i<k

f2
i,k,l

di,kdk,	d	,i

1

dk,	
+

∑

k<i<	

f2
k,i,l

dk,idi,	d	,k

1

d	,k

+
∑

i>	

f2
k,	,i

dk,	d	,idi,k

1

dk,	

)
.
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We also have

(5.69)

ϕk,	 =
1

2|a|S
(a)

( 1

dk,	
vk,	,

∑

i<j
k/∈{i,j}

f2
i,j,k

di,jdj,kdk,i
vi,j

)
=

=
1

2|a|dk,	
S(a)

(
vk,	,

∑

i<k

f2
i,	,k

di,	d	,kdk,i
vi,	 +

∑

k<i<	

f2
i,	,k

di,	d	,kdk,i
vi,	

+
∑

i>	

f2
	,i,k

d	,idi,kdk,	
v	,i

)

=
aia	ak

2|a|2dk,	

(
−

∑

i<k

f2
i,	,k

di,	d	,kdk,i
−

∑

k<i<	

f2
i,	,k

di,	d	,kdk,i
+

∑

i>	

f2
	,i,k

d	,idi,kdk,	

)
.

Comparing (5.68) and (5.68) we conclude that (5.67) holds if k < �. Assume
that k = �. Then

∂2P̂

∂z2
k

=
∑

i<j
k/∈{i,j}

aiajak
2|a|2

f2
i,j,k

d2
j,kd

2
k,i

(5.70)

We also have

ϕk,	 =
1

2|a|S
(a)

( ∑

m/∈{k,	}

d	,m
dk,	dm,k

vm,k,
∑

i<j
k/∈{i,j}

f2
i,j,k

di,jdj,kdk,i
vi,j

)
(5.71)

=
∑

i<j
k/∈{i,j}

1

2|a|
f2
i,j,k

di,jdj,kdk,i
S(a)

( d	,i
dk,	di,k

vi,k +
d	,j

dk,	dj,k
vj,k, vi,j

)

=
∑

i<j
k/∈{i,j}

aiajak
2|a|2dk,	

f2
i,j,k

di,jdj,kdk,i

(
− d	,i
di,k

+
d	,j
dj,k

)

=
∑

i<j
k/∈{i,j}

aiajak
2|a|2dk,	

f2
i,j,k

di,jdj,kdk,i

d	,kdi,j
di,kdj,k

=
∑

i<j
k/∈{i,j}

aiajak
2|a|2

f2
i,j,k

d2
j,kd

2
k,i

.

Comparing (5.70) and (5.71) we conclude that (5.67) holds for k = �. The
proposition is proved.

Both functions |a|3P (z)/4! and P̂ (z) satisfy the same equation and
both functions are homogeneous polynomials in z of degree four. Hence
|a|3P (z)/4! = P̂ (z). Thus the proposition implies the theorem.
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The period map q : Cn −∆ → Cn −∆ is a polynomial map in z of
degree two with respect to the combinatorial connection.

The space Sing V has distinguished bases labeled by k ∈ J . The basis
corresponding to k consists of the vectors vi,j such that 1 � i < j � n and
k /∈ {i, j}. Such a basis defines coordinate hyperplanes in Sing V .

Lemma 5.25.— The period map sends the discriminant ∆ ⊂ Cn to the
union ∆V ⊂ Sing V of all coordinate hyperplanes of all distinguished bases
in Sing V .

Proof. — The period map is given by the formula q(z) = 1
|a|2

∑′ f2
i,j,k

di,jdj,kdk,i
vi,j ,

where the sum is over all pairs i < j such that k /∈ {i, j}. Thus the functions
f2
i,j,k

di,jdj,kdk,i
are the coordinate functions of the period map in this (combinato-

rially flat) basis. The lemma follows from this description of the coordinate
functions.

Lemma 5.26. — For z ∈ Cn − ∆, the kernel of the differential of the
period map is two dimensional. The kernel is spanned by the vectors

∑

j =i

dj,i∂j , i ∈ J. (5.72)

Any two of these vectors are linearly independent.

Introduce the potential function of second kind

P̃ (z1, . . . , zn) =
1

4!

∑

1�i<j<k�n

aiajak
d2
i,jd

2
j,kd

2
k,i

f4
i,j,k log fi,j,k. (5.73)

Theorem 5.27.— For any m0, . . . ,m4 ∈ J we have

∂5P̃

∂zm0 . . . ∂zm4

(z) =
([am0

fm0

]
∗z · · · ∗z

[am4

fm4

]
, [1](z)

)
z
. (5.74)

Theorem 5.27 proves Conjecture 3.14 for this family of arrangements.

If m1 �= m2 and m3 �= m4, equation (5.74) takes the form

S(a)(Km0(z)vm1,m2 , vm3,m4) = dm1,m2dm3,m4

∂5P̃

∂zm0 . . . ∂zm4

(z). (5.75)

Corollary 5.28.— The matrix elements of the operators Ki(z) with
respect to the (combinatorially constant) vectors vi,j are described by the
fifth derivatives of the potential function of second kind.
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Notice that

S(a)(vm1,m2 , vm3,m4) = dm1,m2dm3,m4

|a|4
4!

∂4P

∂zm1
. . . ∂zm4

(z), (5.76)

where P (z) is the potential function of first kind, see Theorem 3.11.

Proof of Theorem 5.27. — We have the relation
∑

j∈J di,j
[aj
fj

]
= 0 for

any i ∈ J , see (5.36), and the relation

∑

j∈J
di,j

∂

∂zj

∂4P

∂zm1 . . . ∂zm4

(z) = 0 (5.77)

for any m1, . . . ,m4, i ∈ J . By using these two relations and by reordering
the set J if necessary, we can reduce formula (5.74) to three cases in which
(m0, . . . ,m4) equals (5, 1, 2, 3, 4) or (3, 1, 2, 3, 4) or (3, 1, 2, 1, 2).

Let (m0, . . . ,m4) = (5, 1, 2, 3, 4). Then ∂5P̃
∂zm0 ...∂zm4

(z) = 0 and

([am0

fm0

]
∗z · · · ∗z

[am4

fm4

]
, [1](z)

)
z

=
1

d1,2d3,4
S(a)(K5(z)v1,2, v3,4)

=
d1,2

d1,2d3,4f5,1,2
S(a)(a5v1,2 + a1v2,5 + a2v5,1, v3,4) = 0. (5.78)

Let (m0, . . . ,m4) = (3, 1, 2, 3, 4). Then ∂5P̃
∂zm0

...∂zm4
(z) = 0 and

([am0

fm0

]
∗z · · · ∗z

[am4

fm4

]
, [1](z)

)
z

=
1

d1,2d3,4
S(a)(K3(z)v1,2, v3,4)

=
d1,2

d1,2d3,4f3,1,2
S(a)(a3v1,2 + a1v2,3 + a2v3,1, v3,4)

=
d1,2

d1,2d3,4f3,1,2

(
0 + a1

a2a3a4

|a| − a2
a1a3a4

|a|
)

= 0. (5.79)

Let (m0, . . . ,m4) = (3, 1, 2, 1, 2). Then ∂5P̃
∂zm0

...∂zm4
(z) = a1a2a3

d1,2f1,2,3
and

([am0

fm0

]
∗z · · · ∗z

[am4

fm4

]
, [1](z)

)
z

=
1

d1,2d1,2
S(a)(K3(z)v1,2, v1,2)

=
d1,2

d1,2d1,2f3,1,2
S(a)(a3v1,2 + a1v2,3 + a2v3,1, v1,2)

=
d1,2

d1,2d1,2f3,1,2

(
a3

a1a2

∑
j /∈{1,2} aj

|a| + a1
a1a2a3

|a| + a2
a1a2a3

|a|
)

=
a1a2a3

d1,2f1,2,3
. (5.80)

The theorem is proved.
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5.9. Frobenius like structure

Consider the quotient M of Cn by the two-dimensional subspace, which
is the kernel of the period map, see Lemma 5.26. Let π : Cn → M be the
natural projection. Then all our objects descend to the quotient and form
on M − π(∆) a structure which we will also call a Forbenius like structure.

6. Generic arrangements in Ck

6.1. An arrangement in Cn × Ck

Consider Ck with coordinates t1, . . . , tk, Cn with coordinates z1, . . . , zn.
Fix n linear functions on Ck, gj =

∑k
m=1 b

m
j tm, j ∈ J, bmj ∈ C. For

i1, . . . , ik ⊂ J , denote

di1,...,ik = detk	,m=1(b
m
i�

). (6.1)

We assume that all the numbers di1,...,ik are nonzero if i1, . . . , ik are distinct.
In other words we assume that the collection of functions gj , j ∈ J , is
generic. We define n linear functions on Cn × Ck, fj = zj + gj , j ∈ J. In

Cn × Ck we define the arrangement C̃ = {H̃j | fj = 0, j ∈ J}.

For every z = (z1, . . . , zn) the arrangement C̃ induces an arrangement
C(z) in the fiber of the projection Cn ×Ck → Cn over z. We identify every
fiber with Ck. Then C(z) consists of hyperplanes Hj(z), j ∈ J , defined in Ck

by the equations fj = 0. Denote U(C(z)) = Ck−∪j∈JHj(z), the complement
to the arrangement C(z).

The arrangement C(z) is with normal crossings if and only if z ∈ Cn−∆,

∆ = ∪{i1<···<ik+1}⊂JHi1,...,ik+1
, (6.2)

where Hi1,...,ik+1
is the hyperplane defined by the equation fi1,...,ik+1

= 0,

fi1,...,ik+1
=

k+1∑

m=1

(−1)m−1zimdi1,...,îm,...,ik+1
. (6.3)

6.2. Good fibers

For any z ∈ Cn − ∆, the space Ak(C(z)) has the standard basis
(Hi1(z), . . . , Hik(z)), 1 � i1 < · · · < ik � n. The space Fk(C(z)) has the
standard dual basis F (Hi1(z), . . . , Hik(z)). For z1, z2 ∈ Cn − ∆, the com-
binatorial connection identifies the spaces Ak(C(z1)), Fk(C(z1)) with the
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spaces Ak(C(z2)), Fk(C(z2)), respectively, by identifying the corresponding
standard bases.

Assume that nonzero weights (aj)j∈J are given. Then each arrangement
C(z) is weighted. For z ∈ Cn − ∆, the arrangement C(z) is unbalanced if
|a| �= 0. We assume that |a| �= 0.

For z ∈ Cn−∆, we denote V = Fk(C(z)), V ∗ = (Fk(C(z))∗ = Ak(C(z)),
Fi1,...,ik = F (Hi1(z), . . . , Hik(z)). For any permutation σ ∈ Σk, we have
Fiσ(1),...,iσ(k)

= (−1)σFi1,...,ik . If v =
∑

1�i1<···<ik�n ci1,...,ikFi1,...,ik is a vec-
tor of V , we introduce ci1,...,ik for all i1, . . . , ik ∈ J by the rule: ciσ(1),...,iσ(k)

=
(−1)σci1,...,ik . The contravariant form on V is defined by

S(a)(Fi1,...,ik , Fj1,...,jk) = 0, if {i1, . . . , ik} �= {i1, . . . , ik}, (6.4)

S(a)(Fi1,...,ik , Fi1,...,ik) =

k∏

m=1

aim ,

the singular subspace is defined by

Sing V =
{ ∑

1�i1<···<ik�n
ci1,...,ikFi1,...,ik |

∑

j∈J
aj cj,j1,...,jk−1

= 0

for all {j1, . . . , jk−1} ⊂ J
}
. (6.5)

By Corollary 2.8, the restriction of S(a) to Sing V is nondegenerate. Denote
(Sing V )⊥ the orthogonal complement to Sing V with respect to S(a). Then
V = Sing V ⊕ (Sing V )⊥. Denote π : V → Sing V the orthogonal projection.

Lemma 6.1.— The space (Sing V )⊥ is generated by vectors

∑

j∈J
Fj,j1,...,jk−1

, (6.6)

labeled by subsets {j1, . . . , jk−1} ⊂ J.

For distinct i1, . . . , ik, we define the vector vi1,...,ik ∈ V by the formula

vi1,...,ik = Fi1,...,ik −
k∑

m=1

aim
|a|

∑

j∈J
Fi1,...,im−1,j,im+1,...,ik . (6.7)

We have viσ(1),...,iσ(k)
= (−1)σvi1,...,ik . Set vi1,...,ik = 0 if i1, . . . , ik are not

distinct.
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Lemma 6.2.— We have the following properties.

(i) dim Sing V =
(
n−1
k

)
.

(ii) For distinct i1, . . . , ik, we have vi1,...,ik ∈ Sing V and vi1,...,ik = π(Fi1,...,ik).

(iii) For {j1, . . . , jk−1} ⊂ J , we have
∑

j∈J vj1,...,jk−1,j = 0.

(iv) For any m ∈ J , the set vi1,...,ik , 1 � i1 < · · · < ik � n, m /∈
{i1, . . . , ik}, is a basis of Sing V .

Lemma 6.3.— We have

S(a)(vi1,...,ik , vj1,...,jk) = 0, if |{i1, . . . , ik} ∩ {j1, . . . , jk}| < k − 1,

S(a)(vi1,...,ik−1,ik , vi1,...,ik−1,ik+1
) = −

∏k+1
	=1 ai�
|a|

for distinct i1, . . . , ik−1, ik, ik+1,

S(a)(vi1,...,ik , vi1,...,ik) =
(
∑

	/∈{i1,...,ik} ai�)
∏k

m=1 aim

|a| . (6.8)

Proof. — The lemma is a straightforward corollary of (6.4) and (6.7).

6.3. Operators Ki(z) : V → V

For any subset {i1, . . . , ik+1} ⊂ J , we define the linear operator Li1,...,ik+1
:

V → V by the formula

Fi1,...,îm,...,ik+1
�→ (−1)m

k+1∑

	=1

(−1)	ai�Fi1,...,î�,...,ik+1
, m=1, . . . , k+1,(6.9)

Fj1,...,jk �→ 0, if {j1, . . . , jk} is not a subset of {i1, . . . , ik+1},
see formula (3.5). Notice that Li1,...,ik+1

does not depend on the order of
i1, . . . , ik+1.

We define the operators Ki(z) : V → V , i ∈ J , by the formula

Ki(z) =
∑ di1,...,ik

fi,i1,...,ik
Li,i1,...,ik , (6.10)

where the sum is over all unordered subsets {i1, . . . , ik} ⊂ J − {i}, see
formula (3.6). For any i ∈ J and z ∈ Cn −∆, the operator Ki(z) preserves
the subspace Sing V ⊂ V and is a symmetric operator, S(a)(Ki(z)v, w) =
S(a)(v,Ki(z)w) for all v, w ∈ V , see Theorem 3.2.
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Lemma 6.4.— We have

Ki1(z)vi2,...,ik+1
=

di2,...,ik+1

fi1,i2,...,ik+1

k+1∑

	=1

(−1)	+1ai�vi1,...,î�,...,ik+1
,

if i1 /∈ {i2, . . . , ik+1},
Ki1(z)vi1,i2,...,ik = −

∑

m/∈{i1,...,ik}
Ki1(z)vm,i2,...,ik . (6.11)

Proof. — The operatorKi(z) preserve the decomposition Sing V⊕(Sing V )⊥.
Hence

Ki1(z)vi2,...,ik+1
= Ki1(z)π(Fi2,...,ik+1

) = π(Ki1(z)Fi2,...,ik+1
)

= π
( di2,...,ik+1

fi1,i2,...,ik+1

k+1∑

	=1

(−1)	+1ai�Fi1,...,î�,...,ik+1

)

=
di2,...,ik+1

fi1,i2,...,ik+1

k+1∑

	=1

(−1)	+1ai�vi1,...,î�,...,ik+1
.

The differential equations (3.14) for flat sections of the Gauss-Manin
connection on (Cn −∆)× Sing V → Cn −∆ take the form

κ
∂I

∂zj
(z) = Kj(z)I(z), j ∈ J. (6.12)

For generic κ all the flat sections are given by the formula

Iγ(z)=
∑

1�i1<···<ik�n

( ∫

γ(z)

∏

m∈J
fam/κ
m

di1,...,ik
fi1 . . . fik

dt1 ∧. . .∧ dtk
)
Fi1,...,ik ,

(6.13)
see formula (3.12). These generic κ can be determined more precisely from
the determinant formula in [23].

6.4. Algebra AΦ(z)

The master function of the arrangement C(z) is

Φ(z, t) =
∑

j∈J
aj log fj . (6.14)

The critical point equations are

∂Φ

∂ti
=

∑

j∈J
bij
aj
fj

= 0, i = 1, . . . , k. (6.15)
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Introduce Hi, i = 1, . . . , k, by the formula

∂Φ

∂zi
=

Hi∏
j∈J fj

. (6.16)

The critical set is

CΦ(z) = {t ∈ U(C(z)) | ∂Φ

∂zi
(z, t) = 0, i = 1, . . . , k} = (6.17)

= {t ∈ U(C(z)) | Hi(z, t) = 0, i = 1, . . . , k}.

The algebra of functions on the critical set is

AΦ(z) = C(U(C(z)))/
〈 ∂Φ

∂t1
, . . . ,

∂Φ

∂tk

〉
= C(U(C(z)))/

〈
H1, . . . , Hk

〉
. (6.18)

Lemma 6.5.— We have dimAΦ(z) =
(
n−1
k

)
.

Introduce elements wi1,...,ik ∈ AΦ(z) by the formula

wi1,...,ik = ai1 . . . aik

[ di1,...,ik
fi1 . . . fik

]
. (6.19)

Lemma 6.6.— We have wiσ(1),...,iσ(k)
= (−1)σwi1,...,ik for σ ∈ Σk and

∑

i∈J
wi1,...,ik−1,i = 0. (6.20)

Proof. — The lemma follows from the identity

ai1dfi1
fi1

∧ · · · ∧ aik−1
dfik−1

fik−1

∧ dΦ

Φ
= (6.21)

=
∑

i∈J
ai1 . . . ak−1ai

di1,...,ik−1,i

fi1 . . . fk−1fi
dt1 ∧ · · · ∧ dtk +

∑

m∈J
dzj ∧ µj ,

where µj are suitable k − 1-forms.

The elements
[
ai
fi

]
, i ∈ J , generate AΦ(z) by Lemma 2.4.

Lemma 6.7.— For i1, . . . , ik−1 ∈ J , we have the following identity in
AΦ(z),

∑

i∈J
di,i1,...,ik−1

[ai
fi

]
= 0. (6.22)
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Denote I = {i1, . . . , ik−1}. Relation (6.22) will be called the I-relation.

Lemma 6.8.— We have in AΦ(z),

(6.23)

[ai1
fi1

]
∗z wi2,...,ik+1

=
di2,...,ik+1

fi1,i2,...,ik+1

k+1∑

	=1

(−1)	+1ai�wi1,...,î�,...,ik+1
,

if i1 /∈ {i2, . . . , ik+1},[ai1
fi1

]
∗z wi1,i2,...,ik = −

∑

m/∈{i1,...,ik}

[ai1
fi1

]
∗z wm,i2,...,ik .

Proof. — The first formula follows from the identity

dfi1
fi1

∧ · · · ∧ dfik+1

fik+1

(6.24)

=
dfi1,...,ik+1

fik+1

∧
k+1∑

m=1

(−1)m−1 dfi1
fi1

∧ · · · ∧ d̂fim
fim

∧ · · · ∧ dfik+1

fik+1

.

Lemma 6.9.— Fix i0 ∈ J . Then every monomial M =
∏

j∈J
[aj
fj

]sj ∈
AΦ(z) with

∑
j∈J sj = k can be written as a linear combination of ele-

ments wi1,...,ik where i1 < · · · < ik and i0 /∈ {i1, . . . , ik} with coefficients
independent of z.

Proof. — Let us write

M =
[ai0
fi0

]	i0 [aj1
fj1

]	j1
. . .

[ajm
fjm

]	jm
, (6.25)

where i0, j1, . . . , jm are distinct, �i0 , �j1 , . . . , �jm are positive and �i0 + �j1 +
· · ·+ �jm = k.

If �i0 > 0, then let us decrease �i0 by one. For that let us use an I-
relation of formula (6.22), where I = {p1, . . . , pk−1} is any subset which
contains j1, . . . , jm but does not contain i0. By using (6.22), we can write

[ai0
fi0

]	i0
= −

[ai0
fi0

]	i0−1( ∑

i/∈{i0,p1,...,pk−1}

di,p1,...,pk−1

di0,p1,...,pk−1

[ai
fi

])
. (6.26)

Substituting this expression into M , we will present M as a sum of mono-
mials M ′ with the degree of

[ai0
fi0

]
equal to �i0 − 1. In any monomial M ′
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the degrees of initial factors
[ajs
fjs

]
are the same and one new factor appears.

Now to each of the monomials M ′ we will apply the same procedure until
the monomial

[ai0
fi0

]
will not appear in each of the constructed monomial.

Then we will decrease those degrees of �j1 , . . . , �jm which are greater than
one. In the end we will present M as a sum of monomials of the form[ai1
fi1

]
. . .

[aik
fik

]
, where i1 < · · · < ik and i0 /∈ {i1, . . . , ik}. Such a monomial

equals 1
di1,...,ik

wi1,...,ik .

Lemma 6.10.— Fix i0 ∈ J . Then every monomial M =
∏

j∈J
[aj
fj

]sj ∈
AΦ(z) can be written as a linear combination of elements wi1,...,ik where
i1 < · · · < ik and i0 /∈ {i1, . . . , ik}. If

∑
j∈J sj �= k, then the coefficients of

the linear combination may depend on z.

Proof. — The lemma follows from Lemmas 6.9, 6.8, 3.4.

Theorem 6.11. — Fix i0 ∈ J . Then the
(
n−1
k

)
elements wi1,...,ik with

i1 < · · · < ik and i0 /∈ {i1, . . . , ik}, form a basis of AΦ(z).

Proof. — The elements
[
ai
fi

]
, i ∈ J , generate AΦ(z) by Lemma 2.4. Each

polynomial in
[
ai
fi

]
, i ∈ J , is a linear combination of

(
n−1
k

)
elements wi1,...,ik

with i1 < · · · < ik and i0 /∈ {i1, . . . , ik} by Lemma 6.10. But dimAΦ(z) =(
n−1
k

)
. The theorem follows.

Theorem 6.12.— For i0 ∈ J , the identity element [1](z) ∈ AΦ(z) sat-
isfies the equation

[1](z) =
1

|a|k
∑

i1<···<ik
i0 /∈{i1,...,ik}

fki0,i1,...,ik∏k
m=0(−1)mdi0,...,îm,...,ik

wi1,...,ik = (6.27)

=
1

|a|k
∑

i1<···<ik
i0 /∈{i1,...,ik}

(
∑k

m=0(−1)mzimdi0,...,îm,...,ik
)k

∏k
m=0(−1)mdi0,...,îm,...,ik

wi1,...,ik .

Proof. — Our goal is to prove that the decomposition of

[1](z) =
1

|a|k
( ∑

j∈J
zj

[aj
fj

])k
=

1

|a|k
∑

s1+···+sn=k

(
k

s1, . . . , sn

) ∏

j∈J
z
sj
j

[aj
fj

]sj

(6.28)
with respect to the basis (wi1,...,ik , i1 < · · · < ik, i0 /∈ {i1, . . . , ik}) equals
the right hand side in (6.27). For every monomial

∏
j∈J z

sj
j we need to

show that
(

k
s1,...,sn

) ∏
j∈J

[aj
fj

]sj
equals the coefficient of that monomial in

(6.27). For that we need to express
∏

j∈J
[aj
fj

]sj
as a linear combination of
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basis vectors. To obtain this linear combination we will eliminate from this
product the factor

[ai0
fi0

]si0 and will make the powers of all other factors

not greater than 1. This will be done by using the I-relations of formula
(6.22) like in the proof of Lemma 6.9. At every step of that simplification
we will use one of the I-relations. Although the steps of this procedure
are not unique, the resulting linear combination is unique. To prove that
the linear combination of basis vectors representing

(
k

s1,...,sn

) ∏
j∈J

[aj
fj

]sj

equals the coefficient of
∏

j∈J z
sj
j in (6.27), we will fix an arbitrary basis

vector wi1,...,ik and choose a particular sequence of I-relations so that the

coefficient of wi1,...,ik in the decomposition of
(

k
s1,...,sn

) ∏
j∈J

[aj
fj

]sj
will be

equal to the coefficient of
∏

j∈J z
sj
j wi1,...,ik in (6.27).

By comparing the coefficients of a monomial
∏

j∈J z
sj
j in (6.27) and

(6.28), we observe that the coefficients have common factors 1
|a|k

(
k

s1,...,sk

)
,

so we will ignore these common factors in our next reasonings.

Before explaining the choice of the I-relations for an arbitrary pair
(
∏

j∈J z
sj
j , wi1,...,ik) let us consider two examples.

As the first example, we consider a monomial M = zi1 . . . zik , i1 < · · · <
ik, i0 /∈ {i1, . . . zik}. The coefficient of M in (6.28) is

[ai1
fi1

]
. . .

[aik
fik

]
=

1

di1,...,ik
wi1,...,ik =

1

(−1)0dî0,i1,...,ik
wi1,...,ik

=

∏k
m=1(−1)mdi0,...,îm,...,ik∏k
m=0(−1)mdi0,...,îm,...,ik

wi1,...,ik , (6.29)

which is the coefficient of M in (6.27).

As the second example we consider a monomial M = zi0zji . . . zjk−1
,

where i0, ji, . . . , jk−1 are distinct. The monomial M appears in (6.27) in
the coefficient of a basis vector wi1,...,ik if {j1, . . . , jk−1} ⊂ {i1, . . . , ik}. So

we may assume that for some 1 � � � k, we have M = zi0
∏k

m=1
m 	=�

zim . In

(6.28), the coefficient of M is
[ai0
fi0

]∏k
m=1
m	=�

[aim
fim

]
. By using the I-relation for

I = {î0, i1, . . . , î	, . . . , ik}, we transform it into

−
k∏

m=1
m	=�

[aim
fim

] ∑

m/∈{i0,i1,...,î�,...,ik}

dm,i1,...,î�,...,ik

di0,i1,...,î�,...,ik

[am
fm

]
. (6.30)
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We choose the summand in (6.30) corresponding to m = i	. This sum-
mand is

−
k∏

m=1
m	=�

[aim
fim

]di�,i1,...,î�,...,ik
di0,i1,...,î�,...,ik

[ai�
fi�

]
=

k∏

m=1

[aim
fim

] di1,...,i�,...,ik
(−1)	di0,i1,...,î�,...,ik

=

∏k
m=0
m	=�

(−1)mdi0,...,îm,...,ik∏k
m=0(−1)mdi0,...,îm,...,ik

wi1,...,i�,...,ik ,

which is the coefficient of Mwi1,...,i�,...,ik in (6.27).

Now let M be an arbitrary monomial of degree k in variables z1, . . . , zn.
The monomial M appears in (6.27) in the coefficient of a vector wi1,...,ik if
there is a subset {p1, . . . , pr} ⊂ {1, . . . , k} such that M = zs0i0

∏r
m=1 z

sm
ipm

,∑r
m=0 sm = k, and all numbers s1, . . . , sr are positive. Denote

{q1, . . . , qk−r} = {1, . . . , k} − {p1, . . . , pr}, the complement.

In (6.28), the coefficient of M is P =
[ai0
fi0

]s0 ∏r
m=1

[aipm
fipm

]sm
. To express

this product as a linear combination of the basis vectors we need to apply to
this product I-relations k − r times. To calculate the coefficient of wi1,...,ik

we first apply the I-relation with I = {î0, i1, . . . , îq1 , . . . , ik} ⊂ {i0, . . . , ik}
and decrease the degree of

[ai0
fi0

]
by 1,

P = −
[ai0
fi0

]s0−1 r∏

m=1

[aipm
fipm

]sm ∑

m/∈{i0,...,îq1 ,...,ik}

dm,î0,i1,...,îq1 ,...,ik

di0,î0,i1,...,îq1 ,...,ik

[am
fm

]
.

In the next steps we will simplify further the first factors of this expression.
After the future simplifications the only term of this sum that can give
wi1,...,ik is the term with m = iq1 , which is

−
[ai0
fi0

]s0−1 r∏

m=1

[aipm
fipm

]sm diq1 ,î0,i1,...,îq1 ,...,ik
di0,î0,i1,...,îq1 ,...,ik

[aiq1
fiq1

]
(6.31)

=
[ai0
fi0

]s0−1 r∏

m=1

[aipm
fipm

]sm dî0,i1,...,ik
(−1)q1di0,i1,...,îq1 ,...,ik

[aiq1
fiq1

]
.

We will call this term the main term. Now we apply the I-relation with
I = {î0, i1, . . . , îq2 , . . . , ik} ⊂ {i0, . . . , ik} and again decrease the degree of[ai0
fi0

]
by one. After the second step the only term of the obtained sum that

may produce the vector wi1,...,ik is the term

[ai0
fi0

]s0−1 r∏

m=1

[aipm
fipm

]sm dî0,i1,...,ik
(−1)iq1di0,i1,...,îq1 ,...,ik

[aiq1
fiq1

] dî0,i1,...,ik
(−1)q2di0,i1,...,îq2 ,...,ik

[aiq2
fiq2

]
.
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This will be our main term after two steps of the simplifying procedure. We
will repeat this procedure to kill all factors

[ai0
fi0

]
. After si0 steps the main

term will be

r∏

m=1

[aipm
fipm

]sm s0∏

m=1

dî0,i1,...,ik
(−1)qmdi0,i1,...,îqm ,...,ik

[aiqm
fiq2

]
.

Now we will apply the I-relation with I = {i0, . . . , îp1
, . . . , îqs0+1

, . . . , ik} ⊂
{i0, . . . , ik} and decrease the degree of

[aip1
fip1

]
by one. After this procedure

the main term will be

[aip1
fip1

]s1−1 r∏

m=2

[aipm
fipm

]sm s0∏

m=1

dî0,i1,...,ik
(−1)qmdi0,i1,...,îqm ,...,ik

[aiqm
fiq2

]

×
(−1)p1di0,i1,...,îp1 ,...,ik

(−1)qs0+1d
i0,i1,...,îqs0+1

,...,ik

[aiqs0+1

fiqs0+1

]
.

Now we will be decreasing the degree of
[aj1
fj1

]
to make it 1. Then we will

continue this procedure of simplification, which will end with the main term

(
dî0,i1,...,ik

k∏

m=1

[aim
fim

]) ((−1)0dî0,i1,...,ik)
s0

∏r
m=1((−1)pmdi0,i1,...,îpm ,...,ik

)sm

∏k
m=0(−1)mdi0,...,îm,...,ik

.

After replacing the first factor dî0,i1,...,ik
∏k

m=1

[
aim
fim

]
with wi1,...,ik we ob-

serve that the second factor equals the coefficient of Mwi1,...,ik in (6.27).
The theorem is proved.

6.5. Canonical isomoprhism

The set of vectors vi1,...,ik , 1 < i1 < · · · < ik � n, is a basis of Sing V , by
Lemma 6.2. For z ∈ Cn −∆, the set of vectors wi1,...,ik , 1 < i1 < · · · < ik �
n, is a basis of AΦ(z), by Theorem 6.11.

Theorem 6.13.— For z ∈ Cn −∆, the matrix of the canonical isomor-
phism α(z) : AΦ(z) → Sing V with respect to these bases does not depend
on z.

Proof. — For 1 < m1 < · · · < mk � n and 1 � i1 < · · · < ik � n denote

Bi1,...,ik =
∑

p∈CΦ(z)

Resp
1

∏k
j=1 fmj

1
∏k

j=1 fij

∏
	∈J f

k
	∏k

i=1Hi

. (6.32)
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Then

α(z)(wm1,...,mk
) =

∑

1�i1<···<ik�n

dm1,...,mk
di1,...,ik

∏k
j=1 amj

(2π
√
−1)k

Bi1,...,ikFi1,...,ik ,

(6.33)
see formulas (2.19), (2.22). In order to prove the theorem we need to show
that every Bi1,...,ik does not depend on z.

The differential form

ω =
1

∏k
j=1 fmj

1
∏k

j=1 fij

∏
	∈J f

k
	∏k

i=1Hi

dt1 ∧ · · · ∧ dtk (6.34)

has poles only on the hypersurfaces Hi = 0, i = 1, . . . , k. The poles are of
first order. To calculate Bi1,...,ik , we need to take the residue
ψ = ResHi=0,i=1,...,k−1 ω of the form ω at the curve C = {Hi = 0, i =
1, . . . , k − 1} and then take the residue of the form ψ on the curve C at the
points where Hk = 0. This is the same as if we took with minus sign the
residue at infinity of the form ψ on the curve C. That residue at infinity
(up to sign) can be obtained differently in two steps. First we may take the
residue of ω at the hyperplane at infinity (denote the residue by ϕ) and then
take the residue of ϕ at the points of the set {Hi = 0, i = 1, . . . , k − 1}.

So to calculate Bi1,...,ik we first calculate ϕ. The coordinates at infinity
are u1 = t1/tk, . . . , uk−1 = tk−1/tk, uk = 1/tk. We have fm = (b1mu1 +
· · ·+ bk−1

m uk−1 + bkm + zmuk)/uk. Denote f̃m(u1, . . . , uk−1) = b1mu1 + · · ·+
bk−1
m uk−1 + bkm. For i = 1, . . . , k, we have Hi(u1/uk,. . . , uk−1/uk, 1/uk) =
Ĥi(u1, . . . , uk−1, uk)/u

n−1
k , where Ĥi(u1, . . . , uk−1, uk) is a polynomial.

Denote H̃i(u1, . . . , uk−1) = Ĥi(u1, . . . , uk−1, 0). The polynomial
H̃i(u1, . . . , uk−1) does not depend on z.

We have dt1 ∧ · · · ∧ dtk = − 1

uk+1
k

du1 ∧ · · · ∧ duk. By counting all orders

of uk in factors of ω we conclude that the form ω has the first order pole
at the hyperplane at infinity. The residue ϕ of ω at the infinite hyperplane
equals

±2π
√
−1

1
∏k

j=1 f̃mj

1
∏k

j=1 f̃ij

∏
	∈J f̃

k
	∏k

i=1 H̃i

du1 ∧ · · · ∧ duk−1. (6.35)

This form does not depend on z. Now we are supposed to take the sum of
residues of ϕ at the points of the set {H̃i = 0, i = 1, . . . , k − 1} and the
polynomials H̃i also do not depend on z. Hence Bi1,...,ik does not depend
on z. The theorem is proved.

– 198 –



Arrangements and Frobenius like structures

Define the naive isomorphism ν(z) : AΦ(z) → Sing V by the formula

ν(z) : wi1,...,ik �→ vi1,...,ik (6.36)

for all i1, . . . , ik ∈ J .

Lemma 6.14.— The map ν(z) is an isomorphism of vector spaces and
for every i ∈ J and w ∈ AΦ(z) we have

ν(z)
[ai
fi

]
∗z w = Ki(z)ν(z)(w). (6.37)

Proof. — The map ν(z) is an isomorphism by Lemma 6.2 and Theorem 6.11.
Formula (6.37) holds by Lemmas 6.4 and 6.8.

Introduce the linear isomorphism

ζ = α(z)ν(z)−1 : Sing V → Sing V . (6.38)

By Theorem 6.13 and Lemma 6.14 the isomorphism ζ does not depend on
z. By Theorems 6.13 and 3.5 the isomorphism ζ commutes with the action
of operators Ki(z) for all i ∈ J and z ∈ Cn −∆, [Ki(z), ζ] = 0.

Theorem 6.15.— The isomorphism ζ is a scalar operator.

Proof. — By Lemma 4.3 in [27], the eigenvalues of the operators Ki(z) sep-
arate the eigenvectors. The theorem follows from the fact that the operators
Ki(z) have too many eigenvectors, and ζ must preserve all of them. More
precisely, let i1, . . . , ik+1 ∈ J be distinct. Assume that z ∈ Cn −∆ tends to
a generic point z0 of the hyperplane defined by the equation fi1,...,ik+1

= 0.
It follows from Lemma 6.4 that the vector

xi1,...,ik+1
=

k+1∑

	=1

(−1)	+1ai�vi1,...,î�,...,ik+1
∈ Sing V (6.39)

is the limit of an eigenvector of operators Ki(z) as z → z0. Hence, xi1,...,ik+1

is an eigenvector of ζ. It is easy to see that the vectors xi1,...,ik+1
generate

Sing V and for distinct i1, . . . , ik+2 we have

k+2∑

	=1

(−1)	a	xi1,...,î�,...,ik=2
= 0. (6.40)

This equation implies that ζ is a scalar operator on the subspace generated
by the vectors xi1,...,î�,...,ik=2

, � = 1, . . . , k + 2, and this fact implies that ζ
is a scalar operator on Sing V .
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Corollary 6.16.— There exists c ∈ C× such that α(z) = c ν(z), that
is,

α(z) : wi1,...,ik �→ c vi1,...,ik (6.41)

for all i1, . . . , ik ∈ J .

One may expect that c = (−1)k, see Theorems 4.8 and 5.15-.

The canonical isomorphism α(z) induces an algebra structure on Sing V
depending on z ∈ Cn −∆.

Corollary 6.17.— For any i0 ∈ J , the identity element {1}(z) of that
algebra structure satisfies the equation

{1}(z) =
c

|a|k
∑

i1<···<ik
i0 /∈{i1,...,ik}

fki0,i1,...,ik∏k
m=0(−1)mdi0,...,îm,...,ik

vi1,...,ik , (6.42)

where c is defined in Corollary 6.16.

Theorem 6.18. — Conjectures 3.7 and 3.8 hold for this family of ar-
rangements.

Proof. — Conjecture 3.8 is a direct corollary of Theorem 6.13.

Lemma 6.19.— For r � k and m1, . . . ,mr ∈ J , we have

∂r{1}
∂zm1 . . . ∂zmr

(z) =
k(k − 1) . . . (k − r + 1)

|a|r α(z)
( r∏

i=1

[ami

fmi

])
. (6.43)

Proof. — The proof is by induction on r. For r = 0, the statement is true:
{1} = {1}. Assuming the statement is true for some r, we prove the state-
ment for r + 1. We have

∂

∂zj

∂r{1}
∂zm1 . . . ∂zmr

(z) =
∂

∂zj

k(k − 1) . . . (k − r + 1)

|a|r α(z)
( r∏

i=1

[ami

fmi

])

=
∂

∂zj

k(k − 1) . . . (k − r + 1)

|a|r α(z)
( r∏

i=1

[ami

fmi

] 1

|a|k−r (
∑

i∈J
zi

[ai
fi

]
)k−r

)

(∗) c = (−1)k by [29, Theorem 2.16].
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=
k − r

|a| α(z)
([aj
fj

])
∗z

k(k − 1) . . . (k − r + 1)

|a|r α(z)
( r∏

i=1

[ami

fmi

]

× 1

|a|k−r−1
(
∑

i∈J
zi

[ai
fi

]
)k−r−1

)

=
k(k − 1) . . . (k − r + 1)(k − r)

|a|r+1
α(z)

([aj
fj

] r∏

i=1

[ami

fmi

])
.

Let us finish the proof of Conjecture 3.7. We have

∂

∂zj

∂r{1}
∂zm1

. . . ∂zmr

(z)

=
k − r

|a| α(z)
([aj
fj

])
∗z

k(k − 1) . . . (k − r + 1)

|a|r α(z)
( r∏

i=1

[ami

fmi

])

=
k − r

|a| Kj(z)
∂r{1}

∂zm1
. . . ∂zmr

(z).

Introduce the potential function of second kind

P̃ (z1, . . . , zn) (6.44)

=
c2

(2k)!

∑

1�i1<···<ik+1�n

∏k+1
	=1 ai�∏k+1

	=1 d
2
i1,...,î�,...,ik+1

f2k
i1,...,ik+1

log fi1,...,ik+1
,

where c is the constant defined in Corollary 6.16.

Theorem 6.20.— For any m0, . . . ,m2k ∈ J , we have

∂2k+1P̃

∂zm0 . . . ∂zm2k

(z) = (−1)k
([am0

fm0

]
∗z · · · ∗z

[am2k

fm2k

]
, [1](z)

)
z
. (6.45)

Theorem 6.20 proves Conjecture 3.14 for this family of arrangements.

Ifm1, . . . ,mk are distinct andmk+1, . . . ,m2k are distinct, equation (6.45)
takes the form

c2S(a)(Km0
(z)vm1,...,mk

, vmk+1,...,m2k
) (6.46)

= dm1,...,mk
dmk+1,...,m2k

∂2k+1P̃

∂zm0
. . . ∂zm2k

(z).
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Corollary 6.21.— The matrix elements of the operators Ki(z) with
respect to the (combinatorially constant) vectors vi1,...,ik are described by the
(2k + 1)-st derivatives of the potential function of second kind.

Notice that

c2S(a)(vm1,...,mk
, vmk+1,...,m2k

)

= dm1,...,mk
dmk+1,...,m2k

|a|2k
(2k)!

∂2kP

∂zm1 . . . ∂zm2k

(z), (6.47)

where P (z) is the potential function of first kind, see Theorem 3.11.

Proof. — We have the I-relation
∑

j∈J dj,i1,...,ik−1

[aj
fj

]
= 0 for any

i1, . . . , ik−1 ∈ J , see (6.22), and the relation

∑

j∈J
di,i1,...,ik−1

∂

∂zj

∂2kP̃

∂zm1
. . . ∂zm2k

(z) = 0 (6.48)

for any m1, . . . ,m2k, i1, . . . , ik−1 ∈ J . By using these two relations and
by reordering the set J if necessary, we can reduce formula (6.45) to the
case in which (m1, . . . ,mk) are distinct, (mk+1, . . . ,m2k) are distinct, and
m0 /∈ {m1, . . . ,mk}. After that we need to check identity (6.46). That is
done by direct calculation of the left and right hand sides, cf. the proof of
Theorem 5.27.

For example, the most difficult case is if (m0, . . . ,m2k) = (k + 1, 1, . . . ,
k, 1, . . . , k). Then

∂2k+1P̃

∂zm0
. . . ∂zm2k

(z) = c2
∏k+1

m=1 am
(−1)kd1,...,kf1,...,k+1

(6.49)

and

(−1)k
([am0

fm0

]
∗z · · · ∗z

[am2k

fm2k

]
, [1](z)

)
z

= c2
1

d2
1,...,k

S(a)(Kk+1(z)v1,...,k, v1,...,k)

= c2
1

d1,...,kfk+1,1,...,k
S(a)(ak+1v1,...,k +

k∑

	=1

(−1)	a	vk+1,1,...,	̂,...,k, v1,...,k)

= c2
1

d1,...,kfk+1,1,...,k

(∏k+1
m=1 am
|a|

∑

	/∈{1,...,k}
a	 +

∏k+1
m=1 am
|a|

∑

	∈{1,...,k}
a	

)

= c2
1

d1,...,kfk+1,1,...,k

k+1∏

m=1

am. (6.50)
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