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Approximate tensorization of entropy
at high temperature

Pietro Caputo(1), Georg Menz(2), Prasad Tetali(3)

RÉSUMÉ. — On montre que pour des variables aléatoires faiblement
dépendentes l’entropie relative satisfait une version approximée de la pro-
priété de tensorisation associée au cas indépendent. Cela implique une
famille d’inégalités de Sobolev logarithmiques indépendentes de la dimen-
sion. Pour des systèmes de spin en interaction sur un graphe, la condition
de dépendence faible devient une sorte de condition de unicité de Do-
brushin. Nos résultats représentent par ailleurs une version discrète d’un
travail récent par Katalin Marton [27]. On considère aussi des généralisations
naturelles de ces résultats tels que des inégalités de Shearer approximées.

ABSTRACT. — We show that for weakly dependent random variables the
relative entropy functional satisfies an approximate version of the stan-
dard tensorization property which holds in the independent case. As a
corollary we obtain a family of dimensionless logarithmic Sobolev inequal-
ities. In the context of spin systems on a graph, the weak dependence
requirements resemble the well known Dobrushin uniqueness conditions.
Our results can be considered as a discrete counterpart of a recent work
of Katalin Marton [27]. We also discuss some natural generalizations such
as approximate Shearer estimates and subadditivity of entropy.
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1. Introduction

Consider a product measurable space (Ω,F) of the form

(Ω,F) = (Ω1,F1)× · · · × (ΩN ,FN ) , (1.1)

where (Ωk,Fk), k = 1, . . . , N are given measurable spaces. Let µ be a prob-
ability measure on (Ω,F). When µ is a product µ = ⊗Nk=1µk, with µk a
probability measure on (Ωk,Fk), then it is well known (see e.g. [1]) that the
entropy functional satisfies the inequality

Entµ(f) �
∑

k

µ [Entµk(f)] , (1.2)

for all bounded measurable functions f : Ω �→ [0,∞). Here, as usual,

Entµ(f) = µ [f log f ]− µ [f ] logµ [f ] ,

which equals µ[f ] times the relative entropy of ν = (f/µ[f ])µ with respect
to µ. We refer to inequality (1.2) as the tensorization property of entropy. In
the general case where µ is not a product measure, we define the probability
measure µk by conditioning on all variables xj ∈ Ωj , with j 
= k. Thus µk[f ]
denotes the function given by

µk[f ](x) = µ [f |xj , j 
= k] , (1.3)

and Entµk(f) denotes the function µk[f log f ] − µk [f ] log(µk [f ]). We shall
investigate the validity of an approximate tensorization statement of the
form

Entµ(f) � C
∑

k

µ [Entµk(f)] , (1.4)

for all bounded measurable functions f : Ω �→ [0,∞), where C > 0 is a
constant independent of f . We say that µ satisfies AT (C) whenever (1.4)
holds. As we discuss below, if µ satisfies such a bound, then one can deduce
entropy related functional inequalities such as log-Sobolev or modified log-
Sobolev inequalities for the N -component systems as a consequence of the
corresponding inequalities for each component.

The idea that a system with weakly dependent components should dis-
play some kind of tensorization of entropy is implicitly at the heart of the
large body of literature devoted to the proof of logarithmic Sobolev inequal-
ities for spin systems satisfying Dobrushin’s uniqueness conditions or more
general spatial mixing conditions; see [33, 30, 23, 25, 26, 20, 11, 13]. Per-
haps surprisingly, none of these works addresses explicitly the validity of the
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statement (1.4). Recently, the inequality (1.4) has been considered by Mar-
ton [27] in the case of continuous spins, with Ω = RN and µ an absolutely
continuous measure of the form µ(dx) = e−V (x)dx. The author proves (1.4)
under suitable weak dependence conditions that are formulated in terms
of the Hessian of V . This allows her to derive the logarithmic Sobolev in-
equality beyond the usual Bakry-Émery criterion [2] or the more recent
Otto-Reznikoff criterion [29].

In this paper, we focus on deriving general sufficient conditions on
(Ω,F , µ) for inequality (1.4) to be satisfied. In particular, for spin systems
with bounded local interactions, we shall establish that approximate ten-
sorization holds as soon as the temperature is high enough, regardless of
the single spin space and the underlying spatial structure.

Next, we observe that the tensorization property (1.2) is a member of a
much larger family of inequalities, often called Shearer inequalities, satisfied
by product measures. In Section 2.4 below we briefly discuss the problem
of establishing approximate Shearer estimates for weakly dependent non-
product measures.

1.1. Approximate tensorization and the Heat Bath chain

Before describing our results in detail, let us discuss some basic relations
between approximate tensorization and functional inequalities for the Heat
Bath Markov chain (also known as Glauber dynamics or Gibbs sampler).
To define the latter, consider the operator L given by

Lf(x) =
∑

k

(µk[f ](x)− f(x)),

where f : Ω �→ R. Then L defines the infinitesimal generator of a con-
tinuous time Markov chain on Ω, such that with rate 1 independently each
component Ωk, k = 1, . . . , N is updated by replacing xk with a value x′k sam-
pled from the conditional distribution µ [· |xj , j 
= k]. The operator L is a
bounded self-adjoint operator in L2(Ω, µ) and the Markov chain is reversible
with respect to µ. We denote by (etL, t � 0) the heat bath semigroup; see
e.g. [3]. The Dirichlet form of the process is given by

E(f, g) = µ [f(−Lg)] =
∑

k

µ [Covµk(f, g)] , (1.5)

where f, g ∈ L2(Ω, µ) and Covµk(f, g) denotes the covariance

Covµk(f, g) = µk[fg]− µk[f ]µk[g].
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The following inequalities are commonly studied in the Markov chain liter-
ature. Say that µ satisfies P (C), or the Poincaré inequality with constant
C, if

Varµ(g) � C
∑

k

µ [Varµk(g)] , (1.6)

for any bounded function g : Ω �→ R, where Varµ(g) = µ[g2]−µ[g]2 denotes
the variance. Moreover, say that µ satisfies LS(C), or the Log-Sobolev in-
equality with constant C, if

Entµ(f) � C
∑

k

µ
[
Varµk(

√
f)

]
,

for all bounded measurable functions f : Ω �→ [0,∞). Finally, say that µ
satisfies MLS(C), or the Modified Log-Sobolev inequality with constant C,
if

Entµ(f) � C
∑

k

µ [Covµk(f, log f)] ,

for all bounded measurable functions f : Ω �→ [0,∞). Modified log-Sobolev
inequalities have received increasing attention in recent years [13, 18, 19,
8, 5], also in view of their connections with mixing times of Markov chains
[28].

It is well known that P (C) is equivalent to exponential decay of the
variance in the form Varµ(ft) � e−2t/C Varµ(f), for all f ∈ L2(Ω, µ) and for
all t � 0, where ft = etLf . Similarly, MLS(C) is equivalent to exponential
decay of the entropy in the form

Entµ(ft) � e−t/CEntµ(f), (1.7)

for all t � 0, for all functions bounded measurable f � 0, while LS(C) is
equivalent to a hypercontractivity property of the heat bath semigroup; see
[15]. The following implications are also well known [15]: for any C > 0,
LS(C) ⇒ MLS(C/4) ⇒ P (C/2). The approximate tensorization property
AT (C) is naturally linked to the above inequalities as summarized below.

Proposition 1.1.— The following implications hold for any C > 0:

AT (C)⇒ P (C) , LS(C)⇒ AT (C)⇒MLS(C)

Proof. — AT (C) ⇒ P (C) follows by linearization: (1.6) can be obtained
from (1.4) by considering functions f of the form 1 + εg with g bounded
and taking the limit ε→ 0. In words, approximate tensorization of entropy
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implies approximate tensorization of variance, with the same constant C.
To prove AT (C) ⇒ MLS(C), observe that by Jensen’s inequality, for all
functions f � 0 and k ∈ [N ]:

Entµk(f) � Covµk(f, log f).

Finally, LS(C)⇒ AT (C) follows from the well known fact that Varµ(
√
f) �

Entµ(f) for any probability measure µ and any bounded function f � 0.

2. Main results

For simplicity of exposition we formulate our results in the case where
each of the spaces Ωk in (1.1) is finite or at most countably infinite, but
there is no difficulty in transferring the same proof e.g. to the case Ω = RN .
However, one should keep in mind that our main assumptions involve L∞
norms and therefore they are not ideally suited to deal with unbounded
interactions.

The weak dependence assumption is formulated as follows. For each
k ∈ [N ] = {1, . . . , N}, set Ω̄k = ×j∈[N ]: j �=kΩj and write x̄k ∈ Ω̄k for the
vector (xj , j 
= k). Similarly, for i 
= k, set Ω̄k,i = ×j∈[N ]: j �=i,j �=kΩj and
write x̄k,i ∈ Ω̄k,i for the vector (xj , j 
= k, j 
= i). For x = (x1, . . . , xN ) we
write x = (xk, x̄k) and let

µx̄kk (xk) = µ(xk | x̄k) =
µ(xk, x̄k)∑

yk∈Ωk
µ(yk, x̄k)

denote the conditional probability on Ωk, so that

µk[g](x) =
∑

yk∈Ωk

µx̄kk (yk)g(yk, x̄k),

for any bounded g : Ω �→ R. For fixed i 
= k, consider the function ϕi,k :
Ω2
i × Ωk × Ω̄k,i �→ R defined by

ϕi,k(xi, yi, xk, x̄i,k) =
µ
xi,x̄i,k
k (xk)

µ
yi,x̄i,k
k (xk)

. (2.1)

Our main assumption is formulated in terms of the ϕi,k as follows. Define
the coefficients

αi,k = sup
xi,yi∈Ωi,xk∈Ωk,x̄i,k∈Ω̄i,k

ϕi,k(xi, yi, xk, x̄i,k) , (2.2)

δi,k = sup
xi,yi∈Ωi,xk,yk∈Ωk,x̄i,k∈Ω̄i,k

|ϕi,k(xi, yi, xk, x̄i,k)− ϕi,k(xi, yi, yk, x̄i,k)|.

Notice that if µ is a product measure then αi,k = 1 and δi,k = 0 for all
i 
= k.
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Theorem 2.1.— Suppose that the measure µ satisfies the ergodicity as-
sumption

lim
t→∞

Entµ(ft) = 0 , (2.3)

for every bounded measurable function f : Ω �→ R+, where ft = etLf ,
and (etL, t � 0) is the heat bath semigroup. Assume that the coefficients
{αi,k, δi,k} satisfy γ + κ < 1 where

γ = max
i

∑

k: k �=i

∣∣αi,kαk,i − 1
∣∣ , κ =

1

4
max
i

∑

k: k �=i
(δk,i + δi,k)αi,kαk,i.

Then the approximate tensorization (1.4) holds with C = (1− γ − κ)−1.

The proof of Theorem 2.1 is given in Section 3. As in Marton’s paper
[27], the proof follows the semigroup approach. An important difference in
our argument is that we use the heat bath semigroup where Marton uses
the Langevin diffusion. While the overall strategy of the proof is similar,
our setting requires a different technique because of the lack of differential
calculus. Moreover, in contrast with [27], we do not need to require a one-
site log-Sobolev inequality in our assumptions. This allows us to establish
the approximate tensorization for the invariant measure of Markov chains
without log-Sobolev inequality, or even without Poincaré inequality, see the
comments after Corollary 2.3 below.

2.1. Applications

Next, we discuss the implications of Theorem 2.1 in specific examples.
For ease of exposition we limit ourselves to probability measures of the
following form. Let µ0(x) denote a product measure on Ω of the form

µ0(x) =
∏N
i=1 µ0,i(xi), where µ0,i is a probability measure on Ωi for each

i ∈ [N ], and consider the probability measure µ on Ω given by

µ(x) =
µ0(x) e

βW (x)

Z
, W (x) =

1

2

∑

i,j∈[N ]

Ji,j wi,j(xi, xj) , (2.4)

where Z is the normalizing factor, the coefficients Ji,j ∈ R are assumed to
satisfy Ji,i = 0, Ji,j = Jj,i, and we assume that the functions wi,j satisfy

‖wi,j‖∞ = sup
xi,xj

|wi,j(xi, xj)| <∞. (2.5)

Here β > 0 is a parameter, the inverse temperature, measuring the strength
of the interaction. At β = 0 there is no dependence and the inequality (1.4)
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holds with C = 1. Notice that the function W in (2.4) is bounded in the
sense that

‖W‖∞ �
1

2

∑

i,j∈[N ]

|Ji,j | ‖wi,j‖∞ <∞,

where the bound depends on N in general. We first observe that a simple
perturbation argument can be applied to obtain approximate tensorization
for any β > 0, with a constant C depending on ‖W‖∞ and β.

Lemma 2.2.— Under the assumption (2.5) the measure µ in (2.4) sat-
isfies the approximate tensorization (1.4) with C = e6β‖W‖∞ . In particular,
(1.7) holds with the same C.

Proof. — One has

Entµ(f) � e2β‖W‖∞Entµ0(f) � e2β‖W‖∞
∑

k

µ0

[
Entµ0,k

(f)
]
,

where the first bound follows from the Holley-Stroock perturbation argu-
ment [21], while the second one is (1.2). One more application of the Holley-
Stroock perturbation estimate yields Entµ0,k

(f) � e2β‖W‖∞ Entµk(f), and

using µ0(x) � e2β‖W‖∞µ(x) one obtains the claim.

The above lemma, using Proposition 1.1 and the estimate in (1.7), shows
in particular that the ergodicity assumption (2.3) is always satisfied in this
setting. However, it represents a very poor estimate unless ‖W‖∞ does not
depend onN . Below, we consider cases where the functionW is not bounded
uniformly in N , including systems, such as the Ising model, where a phase
transition can occur by varying the parameter β. The main corollary of
Theorem 2.1 is summarized as follows.

Corollary 2.3.— Define εi,k = 4β|Jk,i|‖wi,k‖∞ and assume

q := max
i

∑

k: k �=i
eεi,k(e2εi,k − 1) <

2

3
. (2.6)

Then, the measure µ in (2.4) has the approximate tensorization (1.4) with
C = (1− 3

2q)
−1.

The proof of Corollary 2.3 is given in Section 4. It is interesting to note
that the estimate of Corollary 2.3 is uniform in the choice of the single
probability distributions µ0,i in (2.4), since the smallness condition (2.6)
does not involve the single measures µ0,i. In particular, the single measures
µ0,i are not required to satisfy a Poincaré inequality or any other condition.
Below, we discuss some specific applications of Corollary 2.3. For simplic-
ity we limit ourselves to Glauber dynamics for discrete spin systems and
interacting birth and death chains.
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2.2. Spin systems

Consider the Ising model defined as follows. Let Ω = {−1,+1}N , and
set

µ(x) =
1

Z
exp

(
1
2β

∑
i,j∈[N ] Ji,jxixj +

∑
i∈[N ] hixi

)
, (2.7)

where Z is the normalizing factor, β > 0 is the inverse temperature, the
couplings Ji,j ∈ R are assumed to satisfy Ji,j = Jj,i, and the hi ∈ R are
the so-called external fields. Since the external fields can be absorbed in
the single measures µ0,i, it is immediate to check that the above µ has the
form (2.4) with wi,j(xi, xj) = xixj . Therefore, uniformly in the external
fields, the Ising model defined in (2.7) has the approximate tensorization
(1.4) with C = (1− 3

2q)
−1 as soon as (2.6) holds.

A special case is the ferromagnetic Ising model on a graph G = (V,E),
|V | = N , which corresponds to the choice Ji,j = 1({i, j} ∈ E). In this case
one can obtain the following explicit criterion. Let ∆ = maxi

∑
k: k �=i |Jki|

denote the maximal degree of the graph. Using e.g. et(e2t − 1) < 3t for
t < 1/5 one finds that if 4β < 1/5, then eεi,k(e2εi,k − 1) < 12β|Jk,i|, so
that (2.6) is satisfied as soon as β � β0∆

−1 with e.g. β0 = (18)−1. Another
example is the mean field model or Curie-Weiss model, which corresponds
to Ji,j = 1

N for all i, j ∈ [N ]. In this case, reasoning as above one obtains
that (2.6) is satisfied as soon as e.g. β � β0 = 0.1. The critical point of
the Curie-Weiss model is at β = 1, and therefore it is well known that
approximate tensorization cannot hold for β � 1 since already the Poincaré
inequality (1.6) fails beyond this point; see [16]. The above numbers β0 can
be improved slightly by a more accurate analysis of the values of β which
allow the estimate (2.6), but it is clear that they will generally be far from
the optimal values.

The result of Corollary 2.3 can actually be extended to a much larger
class of spin systems, where the spin takes a finite number s � 2 of values.
For example, letting Ω = {1, . . . , s}N one may define the Potts model Gibbs
measure

µ(x) =
1

Z
exp

(
1
2β

∑
i,j∈[N ] Ji,j1(xi = xj) +

∑
i∈[N ] hixi

)
.

With the same arguments of Corollary 2.3, one obtains, for example, for
the Potts model on a graph G with maximal degree ∆, that there exists
β0(s) > 0 such that the approximate tensorization (1.4) holds as soon as
β � β0(s)∆

−1 uniformly in the external fields.

Remark 2.4. — We point out that in the case of spin systems on the
lattice Zd, it is known that the Log-Sobolev inequality holds for the heat
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bath dynamics under so-called “strong spatial mixing” conditions; see [30,
25, 11, 13]. Moreover, it is known that these spatial mixing conditions can
cover a larger region of the phase diagram than our Dobrushin condition
(2.6); see [25]. Our assumption (2.6) compares well with Zegarlinski’s earlier
result [32]. Since LS(C) implies AT (C) by Proposition 1.1, our results are
weaker than already known estimates in these cases. The only interest here
could be the very different nature of the proof.

2.3. Interacting birth and death chains

Here we investigate some special cases of the general model (2.4) with
unbounded variables. To fix ideas, consider the case where Ω = ZN+ , where
Z+ = {0, 1, . . . , }. Consider the probability measure µ on Ω given by (2.4),
where the µ0,i are fixed reference probability measures on Ωi = Z+ defined
as follows. Let ν(n), n ∈ Z+ denote a probability measure such that

ν(n)2 � n+ 1

n
ν(n+ 1)ν(n− 1) , n � 1.

Such a measure is called ultra log-concave; see e.g. [22]. The basic example is
the Poisson distribution with parameter λ > 0, with ν(n) = e−λλn/n!. Let
Fi : Z+ �→ R denote arbitrary functions such that F∞ := maxi ‖Fi‖∞ <∞
and define the probability

µ0,i(xi) =
ν(xi)e

Fi(xi)

Z
,

where Z denotes the normalization. From [7, Theorem 3.1] we know that
for each i, µ0,i satisfies the following modified log-Sobolev inequality in Z+:

Entµ0,i
(f) � C0 µ0,i [∂if∂ilog f ] , (2.8)

with C0 = e4F∞ν(1)/ν(0), where f : Z+ �→ R+ and ∂if(xi) := f(xi +
1)− f(xi), xi ∈ Z+. The inequality (2.8) expresses the exponential decay of
entropy for the birth and death process with birth rate b(n) = 1 and with
death rate d(n) = 1(n � 1)µ0,i(n − 1)/µ0,i(n), see [7, 12]. The gradient
operator ∂i is extended to functions f on Ω by setting ∂if(x) = f(x+ ei)−
f(x), ei denoting the unit vector in the i-th direction.

Corollary 2.5. — Consider the measure µ given by (2.4) with µ0,i

as above. Suppose the interaction term βW satisfies the assumption (2.6).
Then µ satisfies (1.4) with C = (1− 3

2q)
−1. Moreover, one has the modified

log-Sobolev inequality

Entµ(f) � K
∑

i

µ [∂if∂ilog f ] , (2.9)

with constant K = CC0e
1/3, for all f : Ω �→ R+.
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The inequality (2.9), which can be interpreted as the exponential decay
of entropy for interacting birth and death processes, could have been estab-
lished also by an extension of the discrete Γ2 approach of [7], see the recent
paper [14]; see also [13] for an alternative approach. Let us remark that in
contrast with the case of bounded spin systems it is essential here to consider
the modified log-Sobolev inequality rather than the log-Sobolev inequality
itself, since even the one-dimensional bound (2.8) could fail if we replace the
energy µ0,i [∂if∂ilog f ] by µ0,i

[
(∂i
√
f)2

]
, as it is seen for example when ν

is the Poisson distribution. Finally, we point out that it would be desirable
to prove a modified log-Sobolev inequality as in (2.9) under weaker assump-
tions than (2.5), in order to include unbounded interactions of log-concave
type, see [8] for some examples. This would be natural from a discrete Γ2

perspective; see [14, Section 3.2] where some progress in this direction was
recently made in the case N = 2. For continuous unbounded spins, the log-
Sobolev inequality at high temperature, beyond the Bakry-Émery criterion,
has been established in [34, 31, 6, 29, 27].

2.4. Approximate Shearer inequalities and subadditivity

We conclude this introduction with some notes on possible extensions
of the previous results. Let B be a cover of [N ], that is a family of subsets
B ⊂ [N ] whose union equals [N ]. Let degk(B) denote the degree of k in B,
that is the number of subsets B ∈ B such that B � k, and set

n−(B) = min{degk(B) , k ∈ [N ]} , n+(B) = max{degk(B) , k ∈ [N ]}.

for the minimal and maximal degree, respectively. For any B ⊂ [N ], we
write

µB = µ(· |xj , j ∈ Bc),

for the conditional probability measure on Ωi, i ∈ B, obtained by condi-
tioning µ on the value of all xj ∈ Ωj , j /∈ B. When B = {k} for some k,
then µB coincides with µk defined in (1.3). Also, for any function f , we
write fB = µ[f |xB ], where xB = {xi, i ∈ B}. Note that, when f is a
probability density with respect to µ, then fB is the density of the marginal
of fµ on xB with respect to the marginal of µ on xB . When B = {k} we
simply write fk for f{k}. We recall that any probability measure µ satisfies
the decomposition

Entµ(f) = Entµ(fB) + µ[EntµBc (f)]. (2.10)

We formulate the following version of Shearer-type estimates.
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Proposition 2.6. — For any product measure µ = ⊗Nk=1µk, for any
cover B, for any bounded measurable f � 0,

Entµ(f) �
1

n−(B)

∑

B∈B
µ[EntµB (f)] . (2.11)

This bound can be derived from the classical Shearer estimate for Shan-
non entropy [24, 4]. For the reader’s convenience we give a proof of Propo-
sition 2.6 along these lines in Section 5. Note that using (2.10) one has that
(2.11) is equivalent to the inequality

∑

A∈B̄
Entµ(fA) � n+(B̄) Entµ(f), (2.12)

where B̄ denotes the complementary cover {A = [N ] \B, B ∈ B}.

It is immediate to check that the tensorization statement (1.2) is the spe-
cial case of (2.11) corresponding to the singleton cover B = B1 := {{k} , k ∈
[N ]}. Similarly, for the complementary cover B = BN−1 := B̄1, (2.12) re-
duces to the well known subadditivity property of entropy for product mea-
sures:

∑

k

Entµ(fk) � Entµ(f).

In the case of non-product measures with weak dependences, it is natural
to investigate the validity of an approximate form of Proposition 2.6 such
as

Entµ(f) �
C(B)

n−(B)

∑

B∈B
µ[EntµB (f)] ,

where C(B) > 0 is a suitable constant. Note that, in analogy with Proposi-
tion 1.1, approximate Shearer estimates are naturally linked to Log-Sobolev
inequalities and exponential decay of entropy for the block version of the
heat bath chain with infinitesimal generator given by

LB =
∑

B∈B
(µB − 1).

The following is an immediate corollary of our main result Theorem 2.1.

Corollary 2.7.— Suppose µ satisfies the assumptions of Theorem 2.1
and let C > 0 be the constant appearing in that theorem. Then for any cover
B, setting ∆(B) := max{|B| , B ∈ B},

Entµ(f) � C
∆(B)

n−(B)

∑

B∈B
µ[EntµB (f)] . (2.13)
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We remark that (2.13) is far from optimal if ∆(B) is large, and it becomes
useless if the maximal cardinality of B grows linearly in N . In particular,
it cannot be used to prove an approximate subadditivity statement (corre-
sponding to B = BN−1, ∆(B) = N − 1) of the form

∑

k

Entµ(fk) � C Entµ(f), (2.14)

with a nontrivial constant C > 0. The approximate subadditivity estimate
(2.14) has been obtained with the constant C = 2 in [9, 10] when µ is
the uniform measure on the N -dimensional sphere or the uniform measure
on the symmetric group of permutations SN . While the value C = 2 is
sharp for the sphere [9], it remains open to find the optimal value of C for
the symmetric group. We are not aware of any result of that kind for e.g.
high-temperature Ising systems.

3. Proof of Theorem 2.1

Let E(·, ·) denote the Dirichlet form of the heat-bath chain discussed
in Section 1.1. Let (etL, t � 0) denote the heat-bath semigroup. For any
bounded nonnegative function f on Ω, we write ft = etLf for its evolution
at time t. We need the following lemma.

Lemma 3.1.— For every bounded f � 0, k ∈ [N ] one has

Entµ(f) =

∫ ∞

0

E(ft, log ft) dt, (3.1)

µ [Entµk(f)] =

∫ ∞

0

E(ft, log(ft/µk[ft])) dt. (3.2)

Proof. — From the assumption (2.3) one has Entµ(ft) → 0 as t → ∞.
Therefore, to prove (3.1) it is sufficient to observe that

d

dt
Entµ(ft) = µ[Lft log ft] = −E(ft, log ft),

where we use d
dtft = Lft and µ[ft] = µ[f ] for all t � 0.

From Jensen’s inequality one has 0 � µ [Entµk(ft)] � Entµ(ft) and the
latter tends to zero as t→∞ by (2.3). Therefore, (3.2) follows from

d

dt
µ [Entµk(ft)] = −E(ft, log(ft/µk[ft])) . (3.3)

To prove (3.3), notice that

d

dt
Entµk(ft) = µk[Lft log ft]− µk[Lft] logµk[ft].
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Taking expectation with respect to µ one has

d

dt
µ [Entµk(ft)] = µ[Lft log ft]− µ[Lft logµk[ft]] = −E(ft, log(ft/µk[ft])).

Thanks to Lemma 3.1, in order to prove (1.4), it is sufficient to prove
that for all f � 0:

∑

k

E(f, log(f/µk[f ])) � 2 E(f, log f), (3.4)

with 2 = C−1 > 0. Writing (1.5) explicitly one has

E(f, g) =
1

2

N∑

i=1

∑

x∈Ω

∑

yi∈Ωi

µ(x)µx̄ii (yi)∇if(x; yi)∇ig(x; yi) ,

using the notation

∇if(x; yi) := f(x̄i, yi)− f(x).

Then (3.4) becomes

N∑

k,i=1

∑

x

∑

yi

µ(x)µx̄ii (yi)∇if(x; yi)∇i
(
log f − logµk[f ]

)
(x; yi)

� 2
N∑

i=1

∑

x

∑

yi

µ(x)µx̄ii (yi)∇if(x; yi)∇i log f(x; yi). (3.5)

Noting that ∇k logµk[f ](x; yi) = 0 for all k, the left hand side in (3.5)
satisfies

∑

k,i

∑

x

∑

yi

µ(x)µx̄ii (yi)∇if(x; yi)∇i
(
log f − logµk[f ]

)
(x; yi)

=
∑

i

∑

x

∑

yi

µ(x)µx̄ii (yi)∇if(x; yi)∇i log f(x; yi)

+
∑

k,i: k �=i

∑

x

∑

yi

µ(x)µx̄ii (yi)∇if(x; yi)∇i log f(x; yi)

−
∑

k,i: k �=i

∑

x

∑

yi

µ(x)µx̄ii (yi)∇if(x; yi)∇i logµk[f ](x; yi) . (3.6)

Let us consider the three terms appearing in the right hand side of (3.6). The
first term is exactly what we have in the right hand side of (3.5) apart from
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the constant 2. The essence of the argument below is to show that the last
term is approximately compensated by the term preceding it, the correction
being proportional to the first term with a proportionality constant that
can be made tiny in the regime of weak interaction, so that (3.5) holds with
some positive 2. This program starts with a pointwise estimate of the term
∇i logµk[f ].

3.1. Estimate of ∇i logµk[f ]

As in several related works (see e.g. [33, 30, 23, 25]), estimating gradients
of functions of µk[f ] yields a principal term (which will be responsible for
the compensation in (3.6) alluded to above) plus a covariance term that
needs to be suitably small. A new ingredient here with respect to these
works is the use of the logarithmic mean Λ(a, b), defined as usual by

Λ(a, b) =
a− b

log a− log b
, a, b � 0, a 
= b, (3.7)

and Λ(a, a) = a, for all a � 0; see however [17] for a recent extensive use of
the logarithmic mean in the analysis of entropy decay.

Fix i 
= k and xi, yi ∈ Ωi, x̄k,i ∈ Ω̄k,i. Introduce the probability measure

ν
xi,yi,x̄k,i
k,i on Ωk defined by

ν
xi,yi,x̄k,i
k,i (xk) =

Λ
(
f(yi, xk, x̄k,i), f(xi, xk, x̄k,i)

)
µ
xi,x̄k,i
k (xk)

ν̄
xi,yi,x̄k,i
k,i

, (3.8)

where the normalization ν̄
xi,yi,x̄k,i
k,i is given by

ν̄
xi,yi,x̄k,i
k,i =

∑

xk

Λ
(
f(yi, xk, x̄k,i), f(xi, xk, x̄k,i)

)
µ
xi,x̄k,i
k (xk).

For simplicity, we omit the dependence on f in the notation (3.8). Recall
the definition (2.1) of ϕi,k. The goal of this subsection is to establish the
following estimate.

Proposition 3.2.— For every k 
= i, for all x ∈ Ω, yi ∈ Ωi:

|∇i logµk[f ](x; yi)| � αi,k
∑

x′k

|∇i log f(x̄k, x
′
k; yi)|ν

xi,yi,x̄k,i
k,i (x′k)+ (3.9)

+ αi,k

∣∣ Cov
µ
yi,x̄k,i
k

(
f(yi, ·, x̄k,i), ϕi,k(xi, yi, ·, x̄k,i)

)∣∣
(
ν̄
xi,yi,x̄k,i
k,i

∑
x′k
f(yi, x′k, x̄k,i)µ

yi,x̄k,i
k (x′k)

) 1
2

.
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Proof. We start with simple manipulations: for k 
= i,

∇i logµk[f ](x; yi) = logµk[f ](yi, x̄k,i)− logµk[f ](xi, x̄k,i)

= log
∑

xk

f(yi, xk, x̄k,i)µ
yi,x̄k,i
k (xk)− log

∑

xk

f(yi, xk, x̄k,i)µ
xi,x̄k,i
k (xk)

+ log
∑

xk

f(yi, xk, x̄k,i)µ
xi,x̄k,i
k (xk)− log

∑

xk

f(xi, xk, x̄k,i)µ
xi,x̄k,i
k (xk).

Using the function Λ in (3.7), we have

∇i logµk[f ](x; yi)

=

∑
xk
f(yi, xk, x̄k,i)

(
µ
yi,x̄k,i
k (xk)− µxi,x̄k,ik (xk)

)

Λ
( ∑

xk
f(yi, xk, x̄k,i)µ

yi,x̄k,i
k (xk),

∑
xk
f(yi, xk, x̄k,i)µ

xi,x̄k,i
k (xk)

)

+

∑
xk
∇if(x; yi)µxi,x̄k,ik (xk)

Λ
( ∑

xk
f(yi, xk, x̄k,i)µ

xi,x̄k,i
k (xk),

∑
xk
f(xi, xk, x̄k,i)µ

xi,x̄k,i
k (xk)

)

Note that

Λ(a, b) � qΛ(a′, b′) , if a � qa′ and b � qb′ , (3.10)

for a′, b′, q � 0. This follows e.g. from the representation Λ(a, b) =
∫ 1

0
a1−tbtdt

of the logarithmic mean (3.7). Since Λ(a, a) = a, one has

Λ
( ∑

xk
f(yi, xk, x̄k,i)µ

yi,x̄k,i
k (xk),

∑
xk
f(yi, xk, x̄k,i)µ

xi,x̄k,i
k (xk)

)

�
[
sup
x′k

ϕi,k(yi, xi, x
′
k, x̄k,i)

]−1 ∑
xk
f(yi, xk, x̄k,i)µ

yi,x̄k,i
k (xk)

� (αi,k)
−1 ∑

xk
f(yi, xk, x̄k,i)µ

yi,x̄k,i
k (xk).

Note that
∑

xk

f(yi, xk, x̄k,i)
(
µ
yi,x̄k,i
k (xk)− µxi,x̄k,ik (xk)

)

= −Cov
µ
yi,x̄k,i
k

(
f(yi, ·, x̄k,i), ϕi,k(xi, yi, ·, x̄k,i)

)
.

Moreover, the concavity of (a, b) �→ Λ(a, b) implies that

Λ
( ∑

xk
f(yi, xk, x̄k,i)µ

xi,x̄k,i
k (xk),

∑
xk
f(xi, xk, x̄k,i)µ

xi,x̄k,i
k (xk)

)

�
∑
xk

Λ
(
f(yi, xk, x̄k,i), f(xi, xk, x̄k,i)

)
µ
xi,x̄k,i
k (xk) = ν̄

xi,yi,x̄k,i
k,i . (3.11)

By definition (3.8) we can write:

∑
xk
|∇if(x; yi)|µxi,x̄k,ik (xk)

ν̄
xi,yi,x̄k,i
k,i

=
∑

xk

|∇i log f(x; yi)|νxi,yi,x̄k,ik,i (xk).
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Combining the above bounds we have obtained

|∇i logµk[f ](x; yi)| �
∑

xk

|∇i log f(x; yi)|νxi,yi,x̄k,ik,i (xk)

+ αi,k

∣∣ Cov
µ
yi,x̄k,i
k

(
f(yi, ·, x̄k,i), ϕi,k(xi, yi, ·, x̄k,i)

)∣∣
∑
xk
f(yi, xk, x̄k,i)µ

yi,x̄k,i
k (xk)

. (3.12)

We now derive a slightly different bound on ∇i logµk[f ](x; yi). Namely,

∇i logµk[f ](x; yi)

=

∑
xk
f(yi, xk, x̄k,i)µ

yi,x̄k,i
k (xk)−

∑
xk
f(xi, xk, x̄k,i)µ

xi,x̄k,i
k (xk)

Λ
( ∑

xk
f(yi, xk, x̄k,i)µ

yi,x̄k,i
k (xk),

∑
xk
f(xi, xk, x̄k,i)µ

xi,x̄k,i
k (xk)

)

=
−Cov

µ
yi,x̄k,i
k

(
f(yi, ·, x̄k,i), ϕi,k(xi, yi, ·, x̄k,i)

)

Λ
( ∑

xk
f(yi, xk, x̄k,i)µ

yi,x̄k,i
k (xk),

∑
xk
f(xi, xk, x̄k,i)µ

xi,x̄k,i
k (xk)

)

+

∑
xk
∇if(x; yi)µxi,x̄k,ik (xk)

Λ
( ∑

xk
f(yi, xk, x̄k,i)µ

yi,x̄k,i
k (xk),

∑
xk
f(xi, xk, x̄k,i)µ

xi,x̄k,i
k (xk)

) .

Using (3.10) and (3.11), we have

Λ
( ∑

xk

f(yi, xk, x̄k,i)µ
yi,x̄k,i
k (xk),

∑

xk

f(xi, xk, x̄k,i)µ
xi,x̄k,i
k (xk)

)
�
ν̄
xi,yi,x̄k,i
k,i

αi,k
.

Therefore the first term in the expression of ∇i logµk[f ](x; yi) above is
bounded in absolute value by

αi,k

ν̄
xi,yi,x̄k,i
k,i

∣∣ Cov
µ
yi,x̄k,i
k

(
f(yi, ·, x̄k,i), ϕ(xi, yi, ·, x̄k,i)

)∣∣.

Similarly, the second term is bounded by

αi,k

ν̄
xi,yi,x̄k,i
k,i

∑

xk

|∇if(x; yi)|µxi,x̄k,ik (xk)

= αi,k
∑

xk

|∇i log f(x; yi)|νxi,yi,x̄k,ik,i (xk).

Thus, we have obtained the following estimate:

|∇i logµk[f ](x; yi)| �
αi,k

ν̄
xi,yi,x̄k,i
k,i

∣∣ Cov
µ
yi,x̄k,i
k

(
f(yi, ·, x̄k,i), ϕ(xi, yi, ·, x̄k,i)

)∣∣

+ αi,k
∑

xk

|∇i log f(x; yi)|νxi,yi,x̄k,ik,i (xk). (3.13)

Finally, using αi,k � 1 and putting together (3.12) and (3.13) it is immediate
to obtain the desired bound (3.9).
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The next task is to plug the bound of Proposition 3.2 into the last term
of (3.6). This produces the two terms

A :=
∑

k,i: k �=i
αi,k

∑

x

∑

yi

µ(x)µx̄ii (yi)|∇if(x; yi)|×

×
∑

x′k

|∇i log f(x̄k, x
′
k; yi)|ν

xi,yi,x̄k,i
k,i (x′k),

B :=
∑

k,i: k �=i
αi,k

∑

x

∑

yi

µ(x)µx̄ii (yi)|∇if(x; yi)|×

×

∣∣ Cov
µ
yi,x̄k,i
k

(
f(yi, ·, x̄k,i), ϕi,k(xi, yi, ·, x̄k,i)

)∣∣
(
ν̄
xi,yi,x̄k,i
k,i

∑
x′k
f(yi, x′k, x̄k,i)µ

yi,x̄k,i
k (x′k)

) 1
2

. (3.14)

Below, we analyze the two terms separately. We start with term A which
allows for the main cancellation in (3.6).

3.2. The main cancellation

Let us rewrite A =
∑
k,i: k �=iAk,i, with

Ak,i = αi,k
∑

x̄k,i

∑

xi

∑

yi

µ(x̄k,i, xi)
( ∑

xk

µ
xi,x̄k,i
k (xk)µ

xk,x̄k,i
i (yi)|∇if(x; yi)|

)
×

×
( ∑

x′k

|∇i log f(x̄k, x
′
k; yi)|ν

xi,yi,x̄k,i
k,i (x′k)

)
,

where we use

µ(x) = µ(x̄k,i, xi)µ
xi,x̄k,i
k (xk) , µ(x̄k,i, xi) = µ(x̄k) =

∑

xk

µ(x).

Since

µ
xi,x̄k,i
k (xk)|∇if(x; yi)| = ν̄

xi,yi,x̄k,i
k,i |∇i log f(x̄k, xk, yi)|νxi,yi,x̄k,ik,i (xk),

(3.15)
we obtain

Ak,i � αi,k
∑

x̄k,i

∑

xi

µ(x̄k,i, xi)
∑

yi

(sup
yk

µ
yk,x̄k,i
i (yi))

× ν̄xi,yi,x̄k,ik,i

( ∑

xk

|∇i log f(x̄k, xk, yi)|νxi,yi,x̄k,ik,i (xk)
)2

.
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Using Schwarz’ inequality one has

Ak,i � αi,k
∑

x̄k,i

∑

xi

µ(x̄k,i, xi)
∑

yi

(sup
yk

µ
yk,x̄k,i
i (yi))

× ν̄xi,yi,x̄k,ik,i

∑

xk

|∇i log f(x̄k, xk, yi)|2νxi,yi,x̄k,ik,i (xk))

� αi,k
∑

x̄k,i

∑

xi

µ(x̄k,i, xi)
∑

yi

( sup
yk,y′k

ϕk,i(yk, y
′
k, yi, x̄k,i))

× ν̄xi,yi,x̄k,ik,i

∑

xk

|∇i log f(x̄k, xk, yi)|2µxk,x̄k,ii (yi)ν
xi,yi,x̄k,i
k,i (xk),

where we use

supyk µ
yk,x̄k,i
i (yi)

infy′k µ
y′k,x̄k,i
i (yi)

= sup
yk,y′k

ϕk,i(yk, y
′
k, yi, x̄k,i).

Therefore, using (3.15) and rearranging summations one arrives at

Ak,i � αi,kαk,i
∑

x

∑

yi

µ(x)µx̄ii (yi)∇if(x; yi)∇i log f(x; yi). (3.16)

From (3.16) it follows that (3.6) can be bounded from below as follows:

∑

k,i

∑

x

∑

yi

µ(x)µx̄ii (yi)∇if(x; yi)∇i
(
log f − logµk[f ]

)
(x; yi)

� −B + (1− γ)
∑

i

∑

x

∑

yi

µ(x)µx̄ii (yi)∇if(x; yi)∇i log f(x; yi),

where B is given in (3.14) and

γ = max
i

∑

k: k �=i
(αi,kαk,i − 1).

3.3. Covariance estimate

The next step is an estimate of the form

B � κ
∑

i

∑

x

∑

yi

µ(x)µx̄ii (yi)∇if(x; yi)∇i log f(x; yi), (3.17)

for a suitable constant κ > 0. We start with the following statement.
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Lemma 3.3.— For any fixed k and for all configurations x̄k ∈ Ω̄k, for
any pair of functions g, ψ : Ωk �→ R, with g � 0:

∣∣ Cov
µ
x̄k
k

(
g, ψ

)∣∣ � 1

2

(
sup
zk,z′k

|ψ(zk)− ψ(z′k)|
)( ∑

xk

g(xk)µ
x̄k
k (xk)

) 1
2×

×
( ∑

xk

∑

yk

µx̄kk (xk)µ
x̄k
k (yk)[g(yk)− g(xk)][log g(yk)− log g(xk)]

) 1
2

.

Proof. — Set γ(xk, yk) := µx̄kk (xk)µ
x̄k
k (yk), and write

Cov
µ
x̄k
k

(
g, ψ

)
=

1

2

∑

xk,yk

γ(xk, yk)(g(yk)− g(xk))(ψ(yk)− ψ(xk)).

Therefore,

∣∣ Cov
µ
x̄k
k

(
g, ψ

)∣∣ � 1

2

(
sup
zk,z′k

|ψ(zk)− ψ(z′k)|
) ∑

xk,yk

γ(xk, yk)|g(yk)− g(xk)|.

Schwarz’ inequality yields

∑

xk,yk

γ(xk, yk)|g(yk)− g(xk)| �
( ∑

xk,yk

γ(xk, yk)(g(xk) + g(yk))
) 1

2×

×
( ∑

xk,yk

γ(xk, yk)
(g(xk)− g(yk))2
g(xk) + g(yk)

) 1
2

=
(
2

∑

xk

g(xk)µ
x̄k
k (xk)

) 1
2
( ∑

xk,yk

γ(xk, yk)
(g(xk)− g(yk))2
g(xk) + g(yk)

) 1
2

.

Since Λ(a, b) � (a+ b)/2 one has

(a− b)2/(a+ b) � 1

2
(a− b)2/Λ(a, b) =

1

2
(a− b)(log a− log b).

This shows that

∑

xk,yk

γ(xk, yk)|g(yk)− g(xk)| �
( ∑

xk

g(xk)µ
x̄k
k (xk)

) 1
2×

×
( ∑

xk,yk

γ(xk, yk)[g(yk)− g(xk)][log g(yk)− log g(xk)]
) 1

2

.
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For all fixed xi, yi, x̄k,i, we apply Lemma 3.3 with g(xk) = f(yi, xk, x̄k,i)
and ψ(xk) = ϕi,k(xi, yi, xk, x̄k,i). One finds

∣∣∣ Cov
µ
yi,x̄k,i
k

(
f(yi, ·, x̄k,i), ϕi,k(xi, yi, ·, x̄k,i)

)∣∣∣

� 1

2
δi,k

( ∑

xk

f(yi, xk, x̄k,i)µ
yi,x̄k,i
k (xk)

) 1
2 (
Byi,x̄k,ik (f, log f)

) 1
2 ,

where δi,k is defined in (2.2) and we use the notation

Byi,x̄k,ik (f, g) =
∑

xk

∑

yk

µ
yi,x̄k,i
k (xk)µ

yi,x̄k,i
k (yk)∇kf(x̄i, yi; yk)∇kg(x̄i, yi; yk).

Plugging this into (3.14) one has

B� 1

2

∑

k,i: k �=i
αi,kδi,k

∑

x

∑

yi

µ(x)µx̄ii (yi)|∇if(x; yi)|
(
ν̄
xi,yi,x̄k,i
k,i

)−1/2(Byi,x̄k,ik (f, log f)
) 1

2 .

Using (3.15) and reasoning as in Section 3.2 one has

B � 1

2

∑

k,i: k �=i
αi,kδi,k

∑

x̄k,i

∑

xi

µ(x̄k,i, xi)
∑

yi

(sup
zk

µ
zk,x̄k,i
i (yi))×

×
∑

xk

ν
xi,yi,x̄k,i
k,i (xk)|∇i log f(x; yi)|

(
ν̄
xi,yi,x̄k,i
k,i

)1/2(Byi,x̄k,ik (f, log f)
) 1

2

� 1

2

∑

k,i: k �=i
αi,kδi,k

∑

x̄k,i

∑

xi

µ(x̄k,i, xi)
∑

yi

(sup
zk

µ
zk,x̄k,i
i (yi))×

×
( ∑

xk

ν
xi,yi,x̄k,i
k,i (xk)|∇i log f(x; yi)|2ν̄xi,yi,x̄k,ik,i

)1/2(
Byi,x̄k,ik (f, log f)

) 1
2 .

Using ab � 1
2 a

2 + 1
2 b

2 one has

B � 1

4

∑

k,i: k �=i
αi,kδi,k

∑

x̄k,i

∑

xi

µ(x̄k,i, xi)
∑

yi

(sup
zk

µ
zk,x̄k,i
i (yi))× (3.18)

×
∑

xk

ν
xi,yi,x̄k,i
k,i (xk)|∇i log f(x; yi)|2ν̄xi,yi,x̄k,ik,i +

+
1

4

∑

k,i: k �=i
αi,kδi,k

∑

x̄k,i

∑

xi

µ(x̄k,i, xi)
∑

yi

(sup
zk

µ
zk,x̄k,i
i (yi))Byi,x̄k,ik (f, log f).

Using again (3.15) and the coefficients αk,i as in Section 3.2, the first term
in (3.18) is bounded by

1

4

∑

k,i: k �=i
αi,kαk,iδi,k

∑

x

µ(x)
∑

yi

µ
xk,x̄k,i
i (yi)∇if(x; yi)∇i log f(x; yi).

(3.19)
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Next, we estimate the second term in (3.18). Notice that Byi,x̄k,ik (f, log f)
depends on yi and not on xi. We are going to show that

∑

xi

µ(x̄k,i, xi)(sup
zk

µ
zk,x̄k,i
i (yi)) � αk,iµ(x̄k,i, yi). (3.20)

Write µ(x̄k,i) =
∑
xi
µ(x̄k,i, xi) for the marginal on Ω̄k,i. Let µ

x̄k,i
i,k (yi, xk)

denote the joint law at (Ωi,Ωk) conditioned on x̄k,i ∈ Ω̄k,i, and observe that

∑

xk

µ
x̄k,i
i,k (yi, xk) =

∑

xk

µ
xk,x̄k,i
i (yi)µ(xk|x̄k,i) � inf

zk∈Ωk
µ
zk,x̄k,i
i (yi).

Therefore,

∑

xi

µ(x̄k,i, xi)(sup
zk

µ
zk,x̄k,i
i (yi)) = µ(x̄k,i)

(
sup
zk

µ
zk,x̄k,i
i (yi)

)

� αk,i µ(x̄k,i)
(
inf
zk
µ
zk,x̄k,i
i (yi)

)
� αk,i µ(x̄k,i)

∑

xk

µ
x̄k,i
i,k (yi, xk)

= αk,i
∑

xk

µ(x̄k,i, yi, xk) = αk,iµ(x̄k,i, yi).

This proves (3.20). Thanks to this estimate, the second term in (3.18) is
estimated with

1

4

∑

k,i: k �=i
αi,kαk,iδi,k

∑

x

µ(x)
∑

yk

µ
xi,x̄k,i
k (yk)∇kf(x; yk)∇k log f(x; yk).

(3.21)

Thus, summing (3.19) and (3.21), the final estimate on B is given by (3.17)
with the coefficient κ defined by:

κ =
1

4
max
i

∑

k: k �=i
δk,iαi,kαk,i +

1

4
max
k

∑

i: i �=k
δk,iαk,iαi,k.

This concludes the proof of Theorem 2.1.

4. Proof of corollaries

Proof of Corollary 2.3. — From Lemma 2.2 it follows that (2.3) is satisfied.
Define the function

Ŵk(x) =
∑

j: j �=k
Jjkwjk(xj , xk).

– 711 –



Pietro Caputo, Georg Menz, Prasad Tetali

Then, the measure in (2.4) satisfies

µ
xi,x̄k,i
k (xk) =

µ0,k(xk)e
βŴk(x)

∑
x′k
µ0,k(x′k)e

βŴk(x′k,x̄k)
. (4.1)

Notice that for i 
= k:

Ŵk(x̄k,i, yi, xk) = Ŵk(x̄k,i, xi, xk) + Jk,i(wi,k(yi, xk)− wi,k(xi, xk)).

Setting εi,k = 4β|Jk,i|‖wi,k‖∞ it follows that

e−εi,k � ϕi,k(xi, yi, xk, x̄k,i) � eεi,k . (4.2)

Moreover, from (4.2) one has

|ϕi,k(xi, yi, xk, x̄i,k)− ϕi,k(xi, yi, yk, x̄i,k)| � eεi,k − e−εi,k .

Therefore, the coefficients αi,k and δi,k satisfy

1 � αi,k � eεi,k , 0 � δi,k � eεi,k − e−εi,k .

The numbers γ, κ in Theorem 2.1 can then be bounded by

γ � max
i

∑

k �=i
(e2εi,k − 1) , κ � 1

2
max
i

∑

k �=i
eεi,k(e2εi,k − 1) =

1

2
q.

Under the assumptions of Corollary 2.3 one has κ < 1
3 , γ � q < 2

3 , and
therefore one may apply Theorem 2.1 to obtain (1.4) with C = (1 − γ −
κ)−1 � (1− 3

2q)
−1.

Proof of Corollary 2.5. — From Corollary 2.3 we know that (1.4) holds:

Entµ(f) � C
∑

k

µ [Entµk(f)] .

From (4.1) we also have:

e−2β‖Ŵk‖∞ � µ
xi,x̄k,i
k (xk)

µ0,k(xk)
� e2β‖Ŵk‖∞ . (4.3)

Thus, the perturbation argument from Lemma 2.2 shows that

Entµ(f) � C
∑

k

e2β‖Ŵk‖∞µ
[
Entµ0,k

(f)
]
.
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At this point we can apply the bound (2.8). Therefore

Entµ(f) � C ′
∑

k

e2β‖Ŵk‖∞µ [µ0,k [∂kf∂klog f ]] ,

where C ′ = CC0. Using again (4.3):

Entµ(f) � C ′
∑

k

e4β‖Ŵk‖∞µ [∂kf∂klog f ] .

Finally, observe that

4β‖Ŵk‖∞ � 4β
∑

j: j �=k
|Jj,k|‖wj,k‖∞ =

∑

j: j �=k
εj,k �

q

2
,

where we use εj,k � 1
2 (e2εj,k−1) and q is defined in Corollary 2.3. Therefore,

e4β‖Ŵk‖∞ � eq/2 � e1/3 and the conclusion (2.9) follows with K = C ′e1/3.

5. Proof of Shearer-type estimates

Proof of Proposition 2.6. — As usual, we restrict to the discrete setting.
Suppose that A is a uniform cover of [N ], namely a cover with constant
degree, i.e. n(A) := degk(A) is independent of k. Let us start by showing
that a product measure µ = ⊗Ni=1µi satisfies

∑

A∈A
Entµ(fA) � n(A)Entµ(f). (5.1)

By homogeneity, we may assume f to be a density w.r.t. µ, i.e. µ[f ] = 1.
Call X = (X1, . . . , XN ) the random vector with values in the discrete space
Ω whose probability distribution is fµ. Then fAµA, where µA := ⊗i∈Aµi,
is the law of the marginal XA = (Xi, i ∈ A). The Shannon entropy H(XA)
of XA, for any A ⊂ [N ] satisfies:

H(XA) = −
∑

xA

fA(xA)µA(xA) log(fA(xA)µA(xA))

= −Entµ(fA)−
∑

xA

∑

i∈A
fA(xA)µA(xA) log(µi(xi))

= −Entµ(fA)−
∑

i∈A

∑

xi

fi(xi)µi(xi) log(µi(xi))

= −Entµ(fA) +
∑

i∈A
H(Xi) +

∑

i∈A
µ[fi log fi].
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In other words,

∑

i∈A
H(Xi)−H(XA) = Entµ(fA)−

∑

i∈A
Entµ(fi). (5.2)

The standard Shearer estimate for Shannon entropy (see e.g. [24]) states
that

n(A)H(X) �
∑

A∈A
H(XA). (5.3)

Therefore, summing over A ∈ A in (5.2) and using (5.3)

∑

A∈A
Entµ(fA)− n(A)

∑

i∈[N ]

Entµ(fi) � n(A)
∑

i∈[N ]

H(Xi)− n(A)H(X).

Using (5.2) with A = [N ] one obtains (5.1).

Suppose now that A is a non-uniform cover, i.e. n−(A) < n+(A). We
can add singleton sets to A until we obtain a uniform cover A′ such that
n+(A) = n(A′). It follows that

∑

A∈A
Entµ(fA) �

∑

A∈A′
Entµ(fA) � n(A′) Entµ(f) = n+(A) Entµ(f).

This proves (2.12), which is equivalent to (2.11).

Proof of Corollary 2.7. — From Theorem 2.1 one has

Entµ(f) � C
∑

k

µ [Entµk(f)]

= C
∑

k

∑

B∈B: Bk

1

degk(B)
µ [Entµk(f)]

� C

n−(B)

∑

B∈B

∑

k∈B
µ [Entµk(f)] .

It remains to show that for any B ⊂ [N ]:

∑

k∈B
µ [Entµk(f)] � |B|µ [EntµB (f)] .

However, this is immediate since µ [Entµk(f)] � µ [EntµB (f)], for any
k ∈ B.
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miques, volume 10 of Panoramas et Synthèses [Panoramas and Syntheses]. Société
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